1
|
Faraji R, Ganji Z, Zamanpour SA, Nikparast F, Akbari-Lalimi H, Zare H. Impaired white matter integrity in infants and young children with autism spectrum disorder: What evidence does diffusion tensor imaging provide? Psychiatry Res Neuroimaging 2023; 335:111711. [PMID: 37741094 DOI: 10.1016/j.pscychresns.2023.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/26/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Abnormal functional connections are associated with impaired white matter tract integrity in the brain. Diffusion tensor imaging (DTI) is a promising method for evaluating white matter integrity in infants and young children. This work aims to shed light on the location and nature of the decrease in white matter integrity. METHODS Here, the results of 19 studies have been presented that investigated white matter integrity in infants and young children (6 months to 12 years) with autism using diffusion tensor imaging. RESULTS In most of the reviewed studies, an increase in Fractional Anisotropy (FA) and a decrease in Radial Diffusivity (RD) were reported in Corpus Callosum (CC), Uncinate Fasciculus (UF), Cingulum (Cg), Inferior Longitudinal Fasciculus (ILF), and Superior Longitudinal Fasciculus (SLF), and in the Inferior Fronto-Occipital Fasciculus (IFOF) tract, a decrease in FA and an increase in RD were reported. CONCLUSION In the reviewed articles, except for one study, the diffusion indices were different compared to the control group.
Collapse
Affiliation(s)
- Reyhane Faraji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ganji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Zamanpour
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Nikparast
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Akbari-Lalimi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Olivé G, Peñaloza C, Vaquero L, Laine M, Martin N, Rodriguez-Fornells A. The right uncinate fasciculus supports verbal short-term memory in aphasia. Brain Struct Funct 2023; 228:875-893. [PMID: 37005932 PMCID: PMC10147778 DOI: 10.1007/s00429-023-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/05/2023] [Indexed: 04/04/2023]
Abstract
Verbal short-term memory (STM) deficits are associated with language processing impairments in people with aphasia. Importantly, the integrity of STM can predict word learning ability and anomia therapy gains in aphasia. While the recruitment of perilesional and contralesional homologous brain regions has been proposed as a possible mechanism for aphasia recovery, little is known about the white-matter pathways that support verbal STM in post-stroke aphasia. Here, we investigated the relationships between the language-related white matter tracts and verbal STM ability in aphasia. Nineteen participants with post-stroke chronic aphasia completed a subset of verbal STM subtests of the TALSA battery including nonword repetition (phonological STM), pointing span (lexical-semantic STM without language output) and repetition span tasks (lexical-semantic STM with language output). Using a manual deterministic tractography approach, we investigated the micro- and macrostructural properties of the structural language network. Next, we assessed the relationships between individually extracted tract values and verbal STM scores. We found significant correlations between volume measures of the right Uncinate Fasciculus and all three verbal STM scores, with the association between the right UF volume and nonword repetition being the strongest one. These findings suggest that the integrity of the right UF is associated with phonological and lexical-semantic verbal STM ability in aphasia and highlight the potential compensatory role of right-sided ventral white matter language tracts in supporting verbal STM after aphasia-inducing left hemisphere insult.
Collapse
Affiliation(s)
- Guillem Olivé
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Claudia Peñaloza
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Lucía Vaquero
- Legal Medicine, Psychiatry and Pathology Department, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Antoni Rodriguez-Fornells
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Chenausky KV, Norton AC, Tager-Flusberg H, Schlaug G. Auditory-motor mapping training: Testing an intonation-based spoken language treatment for minimally verbal children with autism spectrum disorder. Ann N Y Acad Sci 2022; 1515:266-275. [PMID: 35754007 PMCID: PMC10264969 DOI: 10.1111/nyas.14817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We tested an intonation-based speech treatment for minimally verbal children with autism (auditory-motor mapping training, AMMT) against a nonintonation-based control treatment (speech repetition therapy, SRT). AMMT involves singing, rather than speaking, two-syllable words or phrases. In time with each sung syllable, therapist and child tap together on electronic drums tuned to the same pitches, thus coactivating shared auditory and motor neural representations of manual and vocal actions, and mimicking the "babbling and banging" stage of typical development. Fourteen children (three females), aged 5.0-10.8, with a mean Autism Diagnostic Observation Schedule-2 score of 22.9 (SD = 2.5) and a mean Kaufman Speech Praxis Test raw score of 12.9 (SD = 13.0) participated in this trial. The main outcome measure was percent syllables approximately correct. Four weeks post-treatment, AMMT resulted in a mean improvement of +12.1 (SE = 3.8) percentage points, compared to +2.8 (SE = 5.7) percentage points for SRT. This between-group difference was associated with a large effect size (Cohen's d = 0.82). Results suggest that simultaneous intonation and bimanual movements presented in a socially engaging milieu are effective factors in AMMT and can create an individualized, interactive music-making environment for spoken-language learning in minimally verbal children with autism.
Collapse
Affiliation(s)
- Karen V. Chenausky
- Communication Sciences and Disorders, MGH Institute of Health Professions, Charlestown, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea C. Norton
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Gottfried Schlaug
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Music, Neuroimaging, and Stroke Recovery Laboratory, University of Massachusetts Medical School – Baystate in Springfield, Massachusetts USA; Institute of Applied Life Sciences at UMass Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res 2022; 15:1585-1602. [PMID: 35962721 PMCID: PMC9546367 DOI: 10.1002/aur.2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Patients with autism spectrum disorder (ASD) often show pervasive and complex language impairments that are closely associated with aberrant structural connectivity of language networks. However, the characteristics of white matter connectivity in ASD have remained inconclusive in previous diffusion tensor imaging (DTI) studies. The current meta‐analysis aimed to comprehensively elucidate the abnormality in language‐related white matter connectivity in individuals with ASD. We searched PubMed, Web of Science, Scopus, and Medline databases to identify relevant studies. The standardized mean difference was calculated to measure the pooled difference in DTI metrics in each tract between the ASD and typically developing (TD) groups. The moderating effects of age, sex, language ability, and symptom severity were investigated using subgroup and meta‐regression analysis. Thirty‐three DTI studies involving 831 individuals with ASD and 836 TD controls were included in the meta‐analysis. ASD subjects showed significantly lower fractional anisotropy or higher mean diffusivity across language‐associated tracts than TD controls. These abnormalities tended to be more prominent in the left language networks than in the right. In addition, children with ASD exhibit more pronounced and pervasive disturbances in white matter connectivity than adults. These results support the under‐connectivity hypothesis and demonstrate the widespread abnormal microstructure of language‐related tracts in patients with ASD. Otherwise, white matter abnormalities in the autistic brain could vary depending on the developmental stage and hemisphere.
Collapse
Affiliation(s)
- Min Li
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yide Wang
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masaya Tachibana
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shafiur Rahman
- Department of Child Development, United Graduate School of Child Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Chenausky KV, Tager-Flusberg H. The importance of deep speech phenotyping for neurodevelopmental and genetic disorders: a conceptual review. J Neurodev Disord 2022; 14:36. [PMID: 35690736 PMCID: PMC9188130 DOI: 10.1186/s11689-022-09443-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Speech is the most common modality through which language is communicated, and delayed, disordered, or absent speech production is a hallmark of many neurodevelopmental and genetic disorders. Yet, speech is not often carefully phenotyped in neurodevelopmental disorders. In this paper, we argue that such deep phenotyping, defined as phenotyping that is specific to speech production and not conflated with language or cognitive ability, is vital if we are to understand how genetic variations affect the brain regions that are associated with spoken language. Speech is distinct from language, though the two are related behaviorally and share neural substrates. We present a brief taxonomy of developmental speech production disorders, with particular emphasis on the motor speech disorders childhood apraxia of speech (a disorder of motor planning) and childhood dysarthria (a set of disorders of motor execution). We review the history of discoveries concerning the KE family, in whom a hereditary form of communication impairment was identified as childhood apraxia of speech and linked to dysfunction in the FOXP2 gene. The story demonstrates how instrumental deep phenotyping of speech production was in this seminal discovery in the genetics of speech and language. There is considerable overlap between the neural substrates associated with speech production and with FOXP2 expression, suggesting that further genes associated with speech dysfunction will also be expressed in similar brain regions. We then show how a biologically accurate computational model of speech production, in combination with detailed information about speech production in children with developmental disorders, can generate testable hypotheses about the nature, genetics, and neurology of speech disorders. CONCLUSIONS Though speech and language are distinct, specific types of developmental speech disorder are associated with far-reaching effects on verbal communication in children with neurodevelopmental disorders. Therefore, detailed speech phenotyping, in collaboration with experts on pediatric speech development and disorders, can lead us to a new generation of discoveries about how speech development is affected in genetic disorders.
Collapse
Affiliation(s)
- Karen V Chenausky
- Speech in Autism and Neurodevelopmental Disorders Lab, Massachusetts General Hospital Institute of Health Professions, 36 1st Avenue, Boston, MA, 02129, USA.
- Department of Neurology, Harvard Medical School, Boston, USA.
- Department of Psychological and Brain Sciences, Boston University, Boston, USA.
| | | |
Collapse
|
6
|
Olivé G, Slušná D, Vaquero L, Muchart-López J, Rodríguez-Fornells A, Hinzen W. Structural connectivity in ventral language pathways characterizes non-verbal autism. Brain Struct Funct 2022; 227:1817-1829. [PMID: 35286477 PMCID: PMC9098538 DOI: 10.1007/s00429-022-02474-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
Abstract
Language capacities in autism spectrum disorders (ASD) range from normal scores on standardized language tests to absence of functional language in a substantial minority of 30% of individuals with ASD. Due to practical difficulties of scanning at this severe end of the spectrum, insights from MRI are scarce. Here we used manual deterministic tractography to investigate, for the first time, the integrity of the core white matter tracts defining the language connectivity network in non-verbal ASD (nvASD): the three segments of the arcuate (AF), the inferior fronto-occipital (IFOF), the inferior longitudinal (ILF) and the uncinate (UF) fasciculi, and the frontal aslant tract (FAT). A multiple case series of nine individuals with nvASD were compared to matched individuals with verbal ASD (vASD) and typical development (TD). Bonferroni-corrected repeated measure ANOVAs were performed separately for each tract-Hemisphere (2:Left/Right) × Group (3:TD/vASD/nvASD). Main results revealed (i) a main effect of group consisting in a reduction in fractional anisotropy (FA) in the IFOF in nvASD relative to TD; (ii) a main effect of group revealing lower values of radial diffusivity (RD) in the long segment of the AF in nvASD compared to vASD group; and (iii) a reduced volume in the left hemisphere of the UF when compared to the right, in the vASD group only. These results do not replicate volumetric differences of the dorsal language route previously observed in nvASD, and instead point to a disruption of the ventral language pathway, in line with semantic deficits observed behaviourally in this group.
Collapse
Affiliation(s)
- Guillem Olivé
- Department of Cognition, Development and Educational Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - Dominika Slušná
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, 08018, Barcelona, Spain
| | - Lucía Vaquero
- Legal Medicine, Psychiatry, and Pathology Department, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Educational Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, 08018, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
7
|
The time-locked neurodynamics of semantic processing in autism spectrum disorder: an EEG study. Cogn Neurodyn 2022; 16:43-72. [PMID: 35126770 PMCID: PMC8807749 DOI: 10.1007/s11571-021-09697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
Language processing is often an area of difficulty in Autism Spectrum Disorder (ASD). Semantic processing-the ability to add meaning to a stimulus-is thought to be especially affected in ASD. However, the neurological origin of these deficits, both structurally and temporally, have yet to be discovered. To further previous behavioral findings on language differences in ASD, the present study used an implicit semantic priming paradigm and electroencephalography (EEG) to compare the level of theta coherence throughout semantic processing, between typically developing (TD) and ASD participants. Theta coherence is an indication of synchronous EEG oscillations and was of particular interest due to its previous links with semantic processing. Theta coherence was analyzed in response to semantically related or unrelated pairs of words and pictures across bilateral short, medium, and long electrode connections. We found significant results across a variety of conditions, but most notably, we observed reduced coherence for language stimuli in the ASD group at a left fronto-parietal connection from 100 to 300 ms. This replicates previous findings of underconnectivity in left fronto-parietal language networks in ASD. Critically, the early time window of this underconnectivity, from 100 to 300 ms, suggests that impaired semantic processing of language in ASD may arise during pre-semantic processing, during the initial communication between lower-level linguistic processing and higher-level semantic processing. Our results suggest that language processing functions are unique in ASD compared to TD, and that subjects with ASD might rely on a temporally different language processing loop altogether.
Collapse
|
8
|
Mundorf A, Peterburs J, Ocklenburg S. Asymmetry in the Central Nervous System: A Clinical Neuroscience Perspective. Front Syst Neurosci 2021; 15:733898. [PMID: 34970125 PMCID: PMC8712556 DOI: 10.3389/fnsys.2021.733898] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Recent large-scale neuroimaging studies suggest that most parts of the human brain show structural differences between the left and the right hemisphere. Such structural hemispheric asymmetries have been reported for both cortical and subcortical structures. Interestingly, many neurodevelopmental and psychiatric disorders have been associated with altered functional hemispheric asymmetries. However, findings concerning the relation between structural hemispheric asymmetries and disorders have largely been inconsistent, both within specific disorders as well as between disorders. In the present review, we compare structural asymmetries from a clinical neuroscience perspective across different disorders. We focus especially on recent large-scale neuroimaging studies, to concentrate on replicable effects. With the notable exception of major depressive disorder, all reviewed disorders were associated with distinct patterns of alterations in structural hemispheric asymmetries. While autism spectrum disorder was associated with altered structural hemispheric asymmetries in a broader range of brain areas, most other disorders were linked to more specific alterations in brain areas related to cognitive functions that have been associated with the symptomology of these disorders. The implications of these findings are highlighted in the context of transdiagnostic approaches to psychopathology.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jutta Peterburs
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Linke AC, Slušná D, Kohli JS, Álvarez-Linera Prado J, Müller RA, Hinzen W. Morphometry and functional connectivity of auditory cortex in school-age children with profound language disabilities: Five comparative case studies. Brain Cogn 2021; 155:105822. [PMID: 34837801 DOI: 10.1016/j.bandc.2021.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Many neurodevelopmental conditions imply absent or severely reduced language capacities at school age. Evidence from functional magnetic resonance imaging is highly limited. We selected a series of five cases scanned with the same fMRI paradigm and the aim of relating individual language profiles onto underlying patterns of functional connectivity (FC) across auditory language cortex: three with neurogenetic syndromes (Coffin-Siris, Landau-Kleffner, and Fragile-X), one with idiopathic intellectual disability, one with autism spectrum disorder (ASD). Compared to both a group with typical development (TD) and a verbal ASD group (total N = 110), they all showed interhemispheric FC below two standard deviations of the TD mean. Children with higher language scores showed higher intrahemispheric FC between Heschl's gyrus and other auditory language regions, as well as an increase of FC during language stimulation compared to rest. An increase of FC in forward vs. reversed speech in the posterior and middle temporal gyri was seen across all cases. The Coffin-Siris case, the most severe, also had the most anomalous FC patterns and showed reduced myelin content, while the Landau-Kleffner case showed reduced cortical thickness. These results suggest potential for neural markers and mechanisms of severe language processing deficits under highly heterogeneous etiological conditions.
Collapse
Affiliation(s)
- Annika Carola Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA.
| | - Dominika Slušná
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona 08018, Barcelona, Spain
| | - Jiwandeep Singh Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona 08018, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Floris DL, Wolfers T, Zabihi M, Holz NE, Zwiers MP, Charman T, Tillmann J, Ecker C, Dell'Acqua F, Banaschewski T, Moessnang C, Baron-Cohen S, Holt R, Durston S, Loth E, Murphy DGM, Marquand A, Buitelaar JK, Beckmann CF. Atypical Brain Asymmetry in Autism-A Candidate for Clinically Meaningful Stratification. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:802-812. [PMID: 33097470 DOI: 10.1016/j.bpsc.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder ("autism") is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. METHODS In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions-A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. RESULTS Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. CONCLUSIONS Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
Collapse
Affiliation(s)
- Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Psychology, University of Oslo, Norway; Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo Hospital and Oslo University Hospital, Oslo, Norway
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany; Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Andre Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
11
|
Slušná D, Rodríguez A, Salvadó B, Vicente A, Hinzen W. Relations between language, non-verbal cognition, and conceptualization in non- or minimally verbal individuals with ASD across the lifespan. AUTISM & DEVELOPMENTAL LANGUAGE IMPAIRMENTS 2021; 6:23969415211053264. [PMID: 36440372 PMCID: PMC9685121 DOI: 10.1177/23969415211053264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background & aims Individuals with non- or minimally verbal autism (nvASD) are primarily characterized by a severe speech production deficit, with speech limited to no or only a few words by school age. Significant unclarity remains over variability in language profiles across the lifespan, the nature of the language impairment seen, and (dis-) associations between linguistic and nonverbal cognitive measures. Methods To address these questions, we recruited both a school-age and an adult group with nvASD (total N = 49) and investigated relations between expressive and receptive language, and between these and nonverbal intelligence quotient (NVIQ) and sense-making capacities (the ComFor test). Results Results revealed limited variation across this sample in receptive language, which in turn predicted expressive language levels. Importantly, an upward trend in verbal mental age (VMA) across increasing chronological age was seen in the youngsters (only). A radical dissociation between NVIQ and both expressive and receptive language transpired as well, and a subset of individuals with normal NVIQ were comparable in terms of any other cognitive aspect. Sense-making reached symbolic levels in 62.2% of the sample and loaded on both verbal and nonverbal factors. Conclusions These patterns inform theories of nvASD by revealing an impairment that is not conceptualizable as one of expressive language only, sharply limits learning opportunities across the lifespan, and cannot be compensated for by nonverbal cognition. Implications These findings stress the need to seize developmental opportunities that may disappear when youngsters turn into adults, via therapies that specifically target language as a central cognitive system comprising both production and comprehension.
Collapse
Affiliation(s)
- Dominika Slušná
- Department of Translation and Language
Sciences, Universitat Pompeu Fabra,
Barcelona, Spain
| | - Andrea Rodríguez
- Centre for Orientation and Assistance of
Infants’ and Youth’s Neurodevelopment (COADI), Barcelona, Spain
| | - Berta Salvadó
- Centre for Orientation and Assistance of
Infants’ and Youth’s Neurodevelopment (COADI), Barcelona, Spain
| | - Agustín Vicente
- Department of Linguistics and Basque Studies,
Universidad del País Vasco,
Vitoria-Gasteiz, Spain
| | - Wolfram Hinzen
- Department of Translation and Language
Sciences, Universitat Pompeu Fabra,
Barcelona, Spain
- Catalan Institution for Research and Advanced
Studies (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Altered structural brain connectivity involving the dorsal and ventral language pathways in 16p11.2 deletion syndrome. Brain Imaging Behav 2019; 13:430-445. [PMID: 29629500 DOI: 10.1007/s11682-018-9859-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Copy number variants at the chromosomal locus 16p11.2 contribute to neurodevelopmental disorders such as autism spectrum disorders, epilepsy, schizophrenia, and language and articulation disorders. Here, we provide detailed findings on the disrupted structural brain connectivity in 16p11.2 deletion syndrome (patients: N = 21, age range: 8-16 years; typically developing (TD) controls: 18, 9-16 years) using structural and diffusion MRI. We performed global short-, middle-, long-range, and interhemispheric connectivity analysis in the whole brain using gyral topology-based cortical parcellation. Using region of interest analysis, we studied bilateral dorsal (3 segments of arcuate fasciculus (AF)) and ventral (inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF)) language pathways. Our results showed significantly increased axial (AD) and radial (RD) diffusivities in bilateral anterior AF, decreased volume for left long AF, increased mean diffusivity (MD) and RD for right long AF, and increased AD for bilateral UF in the 16p11.2 deletion group in the absence of significant abnormalities in the whole-brain gyral and interhemispheric connectivity. The selective involvement of the language networks may aid in understanding effects of altered white matter connectivity on neurodevelopmental outcomes in 16p11.2 deletion.
Collapse
|
13
|
Liu J, Tsang T, Jackson L, Ponting C, Jeste SS, Bookheimer SY, Dapretto M. Altered lateralization of dorsal language tracts in 6-week-old infants at risk for autism. Dev Sci 2019; 22:e12768. [PMID: 30372577 PMCID: PMC6470045 DOI: 10.1111/desc.12768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
Altered structural connectivity has been identified as a possible biomarker of autism spectrum disorder (ASD) risk in the developing brain. Core features of ASD include impaired social communication and early language delay. Thus, examining white matter tracts associated with language may lend further insight into early signs of ASD risk and the mechanisms that underlie language impairments associated with the disorder. Evidence of altered structural connectivity has previously been detected in 6-month-old infants at high familial risk for developing ASD. However, as language processing begins in utero, differences in structural connectivity between language regions may be present in the early infant brain shortly after birth. Here we investigated key white matter pathways of the dorsal language network in 6-week-old infants at high (HR) and low (LR) risk for ASD to identify atypicalities in structural connectivity that may predict altered developmental trajectories prior to overt language delays and the onset of ASD symptomatology. Compared to HR infants, LR infants showed higher fractional anisotropy (FA) in the left superior longitudinal fasciculus (SLF); in contrast, in the right SLF, HR infants showed higher FA than LR infants. Additionally, HR infants showed more rightward lateralization of the SLF. Across both groups, measures of FA and lateralization of these pathways at 6 weeks of age were related to later language development at 18 months of age as well as ASD symptomatology at 36 months of age. These findings indicate that early differences in the structure of language pathways may provide an early predictor of future language development and ASD risk.
Collapse
Affiliation(s)
- Janelle Liu
- Interdepartmental Neuroscience Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tawny Tsang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lisa Jackson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carolyn Ponting
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shafali S. Jeste
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Cognitive Neurosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Germain E, Foster NEV, Sharda M, Chowdhury R, Tryfon A, Doyle-Thomas KAR, Anagnostou E, Hyde KL. Pitch direction ability predicts melodic perception in autism. Child Neuropsychol 2018; 25:445-465. [PMID: 29950145 DOI: 10.1080/09297049.2018.1488954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Individuals with autism spectrum disorders (ASDs) often present atypical auditory perception. Previous work has reported both enhanced low-level pitch discrimination and superior abilities to detect local pitch structure on higher-level melodic tasks in ASD. However, it is unclear how low and high levels of auditory perception are related in ASD or typical development (TD), or how this relationship might change across development and stimulus presentation rates. To these aims, in the present study, children with ASD and TD were tested on a low-level pitch direction discrimination task and a high-level melodic global-local task. Groups performed similarly on both of these auditory tasks. Moreover, individual differences in low-level pitch direction ability predicted performance on the higher-level global-local task, with a stronger relationship in ASD. Age did not affect the relationship between low-level and high-level pitch performance in either ASD or TD. However, there was a more positive effect of age on the high-level global-local task performance in TD than ASD. Finally, there was no effect of stimulus rate on the relationship between low-level and high-level pitch performance in either group. These findings provide a better understanding of how perception is associated across levels of processing in ASD versus TD. This work helps to better understand individual differences in auditory perception and to refine ASD phenotypes.
Collapse
Affiliation(s)
- Esther Germain
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada
| | - Nicholas E V Foster
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,c Medicine, McIntyre Medical Building , McGill University , Montreal , Quebec , Canada
| | - Megha Sharda
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada
| | - Rakhee Chowdhury
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada
| | - Ana Tryfon
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,c Medicine, McIntyre Medical Building , McGill University , Montreal , Quebec , Canada
| | - Krissy A R Doyle-Thomas
- d Holland Bloorview Kids Rehabilitation Hospital , University of Toronto , Toronto , ON , Canada
| | - Evdokia Anagnostou
- d Holland Bloorview Kids Rehabilitation Hospital , University of Toronto , Toronto , ON , Canada
| | - Krista L Hyde
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada.,c Medicine, McIntyre Medical Building , McGill University , Montreal , Quebec , Canada
| |
Collapse
|
15
|
Differences in Neural Correlates of Speech Perception in 3 Month Olds at High and Low Risk for Autism Spectrum Disorder. J Autism Dev Disord 2018; 47:3125-3138. [PMID: 28688078 DOI: 10.1007/s10803-017-3222-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we investigated neural precursors of language acquisition as potential endophenotypes of autism spectrum disorder (ASD) in 3-month-old infants at high and low familial ASD risk. Infants were imaged using functional near-infrared spectroscopy while they listened to auditory stimuli containing syllable repetitions; their neural responses were analyzed over left and right temporal regions. While female low risk infants showed initial neural activation that decreased over exposure to repetition-based stimuli, potentially indicating a habituation response to repetition in speech, female high risk infants showed no changes in neural activity over exposure. This finding may indicate a potential neural endophenotype of language development or ASD specific to females at risk for the disorder.
Collapse
|
16
|
Chenausky KV, Schlaug G. From intuition to intervention: developing an intonation-based treatment for autism. Ann N Y Acad Sci 2018; 1423:10.1111/nyas.13609. [PMID: 29508403 PMCID: PMC6127010 DOI: 10.1111/nyas.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 11/26/2022]
Abstract
Autism affects ∼1.5% of children under age 8; its core symptoms include impairment in social-communicative functioning and repetitive behaviors/restricted interests. Music-based interventions have been considered one modality through which to treat autism. This report discusses considerations to take into account when developing a music-based intervention for a core symptom of autism. Treatment modality must be matched to symptom both clinically and theoretically, the behavior to be treated must be carefully defined and assessed, and outcome measures must be capable of showing improvement in that behavior over the course of the study. Fidelity assessment and rater blinding reduce experimenter bias. High inter-rater reliability for perceptually determined outcome measures helps obtain accurate estimates of treatment response. Later stages of testing compare the experimental intervention to matched control treatments or other validated therapies, isolating the intervention's "active ingredients." Such systematic investigation of a new music-based intervention can provide information of different types, ranging from an assessment of whether the intervention has any effect at all to an assessment of its outcomes and risks in uncontrolled community settings. Findings ultimately compose the evidence base that clinicians and families can use to decide the most effective way of addressing symptoms of autism for particular children.
Collapse
Affiliation(s)
- Karen V Chenausky
- Music, Neuroimaging, and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Gottfried Schlaug
- Music, Neuroimaging, and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Grabrucker S, Haderspeck JC, Sauer AK, Kittelberger N, Asoglu H, Abaei A, Rasche V, Schön M, Boeckers TM, Grabrucker AM. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder. Front Mol Neurosci 2018; 10:450. [PMID: 29379414 PMCID: PMC5775238 DOI: 10.3389/fnmol.2017.00450] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD) patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD) mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1) in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jasmin C Haderspeck
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany
| | - Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany
| | - Nadine Kittelberger
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany
| | - Harun Asoglu
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany.,Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Laboratory, Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
18
|
Chenausky K, Kernbach J, Norton A, Schlaug G. White Matter Integrity and Treatment-Based Change in Speech Performance in Minimally Verbal Children with Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:175. [PMID: 28424605 PMCID: PMC5380725 DOI: 10.3389/fnhum.2017.00175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/24/2017] [Indexed: 01/17/2023] Open
Abstract
We investigated the relationship between imaging variables for two language/speech-motor tracts and speech fluency variables in 10 minimally verbal (MV) children with autism. Specifically, we tested whether measures of white matter integrity—fractional anisotropy (FA) of the arcuate fasciculus (AF) and frontal aslant tract (FAT)—were related to change in percent syllable-initial consonants correct, percent items responded to, and percent syllable insertion errors (from best baseline to post 25 treatment sessions). Twenty-three MV children with autism spectrum disorder (ASD) received Auditory-Motor Mapping Training (AMMT), an intonation-based treatment to improve fluency in spoken output, and we report on seven who received a matched control treatment. Ten of the AMMT participants were able to undergo a magnetic resonance imaging study at baseline; their performance on baseline speech production measures is compared to that of the other two groups. No baseline differences were found between groups. A canonical correlation analysis (CCA) relating FA values for left- and right-hemisphere AF and FAT to speech production measures showed that FA of the left AF and right FAT were the largest contributors to the synthetic independent imaging-related variable. Change in percent syllable-initial consonants correct and percent syllable-insertion errors were the largest contributors to the synthetic dependent fluency-related variable. Regression analyses showed that FA values in left AF significantly predicted change in percent syllable-initial consonants correct, no FA variables significantly predicted change in percent items responded to, and FA of right FAT significantly predicted change in percent syllable-insertion errors. Results are consistent with previously identified roles for the AF in mediating bidirectional mapping between articulation and acoustics, and the FAT in its relationship to speech initiation and fluency. They further suggest a division of labor between the hemispheres, implicating the left hemisphere in accuracy of speech production and the right hemisphere in fluency in this population. Changes in response rate are interpreted as stemming from factors other than the integrity of these two fiber tracts. This study is the first to document the existence of a subgroup of MV children who experience increases in syllable- insertion errors as their speech develops in response to therapy.
Collapse
Affiliation(s)
- Karen Chenausky
- Department of Neurology, Music, Neuroimaging, and Stroke Recovery Laboratory, Beth Israel Deaconess Medical CenterBoston, MA, USA.,Department of Neurology, Harvard Medical SchoolBoston, MA, USA
| | - Julius Kernbach
- Department of Neurology, Music, Neuroimaging, and Stroke Recovery Laboratory, Beth Israel Deaconess Medical CenterBoston, MA, USA.,Department of Nuclear Medicine, University Hospital, RWTH Aachen UniversityAachen, Germany
| | - Andrea Norton
- Department of Neurology, Music, Neuroimaging, and Stroke Recovery Laboratory, Beth Israel Deaconess Medical CenterBoston, MA, USA
| | - Gottfried Schlaug
- Department of Neurology, Music, Neuroimaging, and Stroke Recovery Laboratory, Beth Israel Deaconess Medical CenterBoston, MA, USA.,Department of Neurology, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
19
|
Jack A, Pelphrey K. Annual Research Review: Understudied populations within the autism spectrum - current trends and future directions in neuroimaging research. J Child Psychol Psychiatry 2017; 58:411-435. [PMID: 28102566 PMCID: PMC5367938 DOI: 10.1111/jcpp.12687] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD + ID), autism with a history of developmental regression (ASD + R), and minimally verbal autism (ASD + MV) are understudied generally, and especially in the domain of neuroimaging. However, neuroimaging methods are a potentially powerful tool for understanding the etiology of these ASD subtypes. SCOPE AND METHODOLOGY This review evaluates existing neuroimaging research on ASD + MV, ASD + ID, and ASD + R, identified by a search of the literature using the PubMed database, and discusses methodological, theoretical, and practical considerations for future research involving neuroimaging assessment of these populations. FINDINGS There is a paucity of neuroimaging research on ASD + ID, ASD + MV, and ASD + R, and what findings do exist are often contradictory, or so sparse as to be ungeneralizable. We suggest that while greater sample sizes and more studies are necessary, more important would be a paradigm shift toward multimodal (e.g. imaging genetics) approaches that allow for the characterization of heterogeneity within etiologically diverse samples.
Collapse
Affiliation(s)
- Allison Jack
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Ashburn, VA
- Department of Pharmacology and Physiology, The George Washington University, Washington, D.C
| | - Kevin Pelphrey
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Ashburn, VA
- Department of Pharmacology and Physiology, The George Washington University, Washington, D.C
- Children's National Health System, Washington, D.C., USA
| |
Collapse
|
20
|
Reduced Hemispheric Asymmetry of White Matter Microstructure in Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2016; 55:1073-1080. [PMID: 27871642 PMCID: PMC5125511 DOI: 10.1016/j.jaac.2016.09.491] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Many past studies have suggested atypical functional and anatomical hemispheric asymmetries in autism spectrum disorder (ASD). However, almost all of these have examined only language-related asymmetries. Here, we conduct a comprehensive investigation of microstructural asymmetries across a large number of fiber tracts in ASD. METHOD We used diffusion tensor imaging for a comprehensive investigation of anatomical white matter asymmetries across the entire white matter skeleton, using tract-based spatial statistics in 41 children and adolescents with ASD and a matched group of 44 typically developing (TD) participants. RESULTS We found significant asymmetries in the TD group, being rightward for fractional anisotropy and leftward for mean diffusivity (with concordant asymmetries for radial and axial diffusivity). These asymmetries were significantly reduced in the group with ASD: in whole brain analysis for fractional anisotropy, and in a region where several major association and projection tracts travel in close proximity within occipital white matter for mean diffusivity, axial diffusivity, and radial diffusivity. No correlations between global white matter asymmetry and age or socio-communicative abilities were detected. CONCLUSION Our findings in TD children and adolescents can be interpreted as reflecting different processing modes (more integrative in the right and more specialized in the left hemisphere). These asymmetries and the "division of labor" between hemispheres implied by them appear to be diminished in autism spectrum disorder.
Collapse
|
21
|
Chenausky K, Norton A, Tager-Flusberg H, Schlaug G. Auditory-Motor Mapping Training: Comparing the Effects of a Novel Speech Treatment to a Control Treatment for Minimally Verbal Children with Autism. PLoS One 2016; 11:e0164930. [PMID: 27829034 PMCID: PMC5102445 DOI: 10.1371/journal.pone.0164930] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
This study compared Auditory-Motor Mapping Training (AMMT), an intonation-based treatment for facilitating spoken language in minimally verbal children with autism spectrum disorder (ASD), to a matched control treatment, Speech Repetition Therapy (SRT). 23 minimally verbal children with ASD (20 male, mean age 6;5) received at least 25 sessions of AMMT. Seven (all male) were matched on age and verbal ability to seven participants (five male) who received SRT. Outcome measures were Percent Syllables Approximated, Percent Consonants Correct (of 86), and Percent Vowels Correct (of 61) produced on two sets of 15 bisyllabic stimuli. All subjects were assessed on these measures several times at baseline and after 10, 15, 20, and 25 sessions. The post-25 session assessment timepoint, common to all participants, was compared to Best Baseline performance. Overall, after 25 sessions, AMMT participants increased by 19.4% Syllables Approximated, 13.8% Consonants Correct, and19.1% Vowels Correct, compared to Best Baseline. In the matched AMMT-SRT group, after 25 sessions, AMMT participants produced 29.0% more Syllables Approximated (SRT 3.6%);17.9% more Consonants Correct (SRT 0.5); and 17.6% more Vowels Correct (SRT 0.8%). Chi-square tests showed that significantly more AMMT than SRT participants in both the overall and matched groups improved significantly in number of Syllables Approximated per stimulus and number of Consonants Correct per stimulus. Pre-treatment ability to imitate phonemes, but not chronological age or baseline performance on outcome measures, was significantly correlated with amount of improvement after 25 sessions. Intonation-based therapy may offer a promising new interventional approach for teaching spoken language to minimally verbal children with ASD.
Collapse
Affiliation(s)
- Karen Chenausky
- Music and Neuroimaging Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States of America
- Center for Autism Research Excellence, Department of Psychological and Brain Sciences, Boston University, Boston, United States of America
| | - Andrea Norton
- Music and Neuroimaging Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States of America
| | - Helen Tager-Flusberg
- Center for Autism Research Excellence, Department of Psychological and Brain Sciences, Boston University, Boston, United States of America
| | - Gottfried Schlaug
- Music and Neuroimaging Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States of America
| |
Collapse
|
22
|
Libero LE, Burge WK, Deshpande HD, Pestilli F, Kana RK. White Matter Diffusion of Major Fiber Tracts Implicated in Autism Spectrum Disorder. Brain Connect 2016; 6:691-699. [PMID: 27555361 DOI: 10.1089/brain.2016.0442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder found to have widespread alterations in the function and synchrony of brain regions. These differences may underlie alterations in microstructural organization, such as in white matter pathways. To investigate the diffusion of major white matter tracts, the current study examined multiple indices of white matter diffusion in 42 children and adults with ASD and 44 typically developing (TD) age- and IQ-matched peers using diffusion tensor imaging. Diffusivity measures were compared between groups for the following tracts: bilateral cingulum bundle, corpus callosum, inferior longitudinal fasciculus, superior longitudinal fasciculus, and uncinate fasciculus. Results indicate a significant reduction in fractional anisotropy (FA) for the left superior longitudinal fasciculus (LSLF) in ASD children and adults compared with TD peers. A significant increase in radial diffusivity for ASD participants was also found in the same cluster along the LSLF. In addition, a significant positive correlation emerged for all subjects between FA for the LSLF and age, with FA increasing with age. These findings point to a significant alteration in long-distance white matter connectivity in children and adults with ASD, potentially underscoring the relationship between alterations in white matter diffusion and the ASD phenotype. These results also suggest that the white matter alterations in autism may be subtle and related to the developmental trajectory.
Collapse
Affiliation(s)
- Lauren E Libero
- 1 UC Davis MIND Institute , Sacramento, California.,2 UC Davis Department of Psychiatry & Behavioral Sciences , Sacramento, California
| | - Wesley K Burge
- 3 Department of Psychology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Franco Pestilli
- 5 Department of Psychological and Brain Sciences, Indiana University , Bloomington, Indiana
| | - Rajesh K Kana
- 3 Department of Psychology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
23
|
Gonzales HK, O'Reilly M, Lang R, Sigafoos J, Lancioni G, Kajian M, Kuhn M, Longino D, Rojeski L, Watkins L. Research involving anxiety in non-human primates has potential implications for the assessment and treatment of anxiety in autism spectrum disorder: A translational literature review. Dev Neurorehabil 2016; 19:175-92. [PMID: 25057887 DOI: 10.3109/17518423.2014.941117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this translational review (i.e. moving from basic primate research toward possible human applications) was to summarize non-human primate literature on anxiety to inform the development of future assessments of anxiety in non-verbal individuals with autism spectrum disorder (ASD). METHODS Systematic searches of databases identified 67 studies that met inclusion criteria. Each study was analysed and summarised in terms of (a) strategies used to evoke anxiety, (b) non-verbal behavioural indicators of anxiety and (c) physiological indicators of anxiety. RESULTS Eighteen strategies were used to evoke anxiety, 48 non-verbal behavioural indicators and 17 physiological indicators of anxiety were measured. CONCLUSIONS A number of the strategies used with non-human primates, if modified carefully, could be considered in the ongoing effort to study anxiety in individuals with ASD. Potential applications to the assessment of anxiety in humans with ASD are discussed.
Collapse
Affiliation(s)
- Heather K Gonzales
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Mark O'Reilly
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Russell Lang
- b Department of Curriculum and Instruction , Clinic for Autism Research Evaluation and Support, Texas State University , San Marcos , TX , USA
| | - Jeff Sigafoos
- c Department of Special Education , Victoria University of Wellington , Wellington , New Zealand , and
| | - Giulio Lancioni
- d Department of Education , University of Bari , Bari , Italy
| | - Mandana Kajian
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Michelle Kuhn
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Deanna Longino
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laura Rojeski
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laci Watkins
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
24
|
Moseley RL, Correia MM, Baron-Cohen S, Shtyrov Y, Pulvermüller F, Mohr B. Reduced Volume of the Arcuate Fasciculus in Adults with High-Functioning Autism Spectrum Conditions. Front Hum Neurosci 2016; 10:214. [PMID: 27242478 PMCID: PMC4867673 DOI: 10.3389/fnhum.2016.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
Abstract
Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed.
Collapse
Affiliation(s)
- Rachel L Moseley
- Department of Psychology, Bournemouth UniversityDorset, UK; Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridge, UK; Autism Research Centre, Department of Psychiatry, University of CambridgeCambridge, UK
| | - Marta M Correia
- Medical Research Council Cognition and Brain Sciences Unit Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridge, UK; Cambridge Lifespan Asperger Syndrome Service Clinic, Cambridgeshire and Peterborough National Health Service Foundation TrustCambridge, UK
| | - Yury Shtyrov
- Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus UniversityAarhus, Denmark; Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia
| | - Friedemann Pulvermüller
- Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Brain Language Laboratory, Freie Universität BerlinBerlin, Germany
| | - Bettina Mohr
- Department of Psychiatry, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
25
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
26
|
Abstract
Language assessments play a large role in the diagnosis and treatment of autism spectrum disorders (ASD) because language impairments are often part of an ASD diagnosis and language status is a fundamental prognostic indicator for individuals with ASD. Receptive language forms the foundation for competent expressive language including literacy skills. Information from language assessments is also used to create therapy goals and monitor progress on these goals. Therefore, valid and accurate assessment of receptive language for individuals with ASD is paramount. Current assessments include tasks that are particularly difficult for individuals with ASD and often assess higher-level language skills and not emerging language skills, resulting in floor effects for individuals with ASD. Developing better receptive language measures is an important area for future research. Assessing and treating receptive language impairments will lead to improved expressive communication, including social communication, and literacy skills for individuals with ASD.
Collapse
Affiliation(s)
- Kristen Muller
- Department of Speech and Hearing, University of Kansas
Lawrence, KS
| | - Nancy Brady
- Scheifelbush Institute for Life Span Studies, University of Kansas
Lawrence, KS
| |
Collapse
|
27
|
Conti E, Calderoni S, Gaglianese A, Pannek K, Mazzotti S, Rose S, Scelfo D, Tosetti M, Muratori F, Cioni G, Guzzetta A. Lateralization of Brain Networks and Clinical Severity in Toddlers with Autism Spectrum Disorder: A HARDI Diffusion MRI Study. Autism Res 2015; 9:382-92. [PMID: 26280255 DOI: 10.1002/aur.1533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/25/2015] [Indexed: 12/20/2022]
Abstract
Recent diffusion tensor imaging studies in adolescents and children with Autism Spectrum Disorder (ASD) have reported a loss or an inversion of the typical left-right lateralization in fronto-temporal regions crucial for sociocommunicative skills. No studies explored atypical lateralization in toddlers and its correlation with clinical severity of ASD. We recruited a cohort of 20 subjects aged 36 months or younger receiving a first clinical diagnosis of ASD (15 males; age range 20-36 months). Patients underwent diffusion MRI (High-Angular-Resolution Diffusion Imaging protocol). Data from cortical parcellation were combined with tractography to obtain a connection matrix and diffusion indexes (DI ) including mean fractional anisotropy (DFA ), number of tracts (DNUM ), and total tract length (DTTL ). A laterality index was generated for each measure, and then correlated with the Autism Diagnostic Observation Schedule-Generic (ADOS-G) total score. Laterality indexes of DFA were significantly correlated with ADOS-G total scores only in two intrafrontal connected areas (correlation was positive in one case and negative in the other). Laterality indexes of DTTL and DNUM showed significant negative correlations (P < 0.05) in six connected areas, mainly fronto-temporal. This study provides first evidence of a significant correlation between brain lateralization of diffusion indexes and clinical severity in toddlers with a first diagnosis of ASD. Significant correlations mainly involved regions within the fronto-temporal circuits, known to be crucial for sociocommunicative skills. It is of interest that all correlations but one were negative, suggesting an inversion of the typical left-right asymmetry in subjects with most severe clinical impairment.
Collapse
Affiliation(s)
- Eugenia Conti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Anna Gaglianese
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Kerstin Pannek
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Sara Mazzotti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Stephen Rose
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Danilo Scelfo
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Michela Tosetti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Filippo Muratori
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
28
|
Van Hecke AV, Stevens S, Carson AM, Karst JS, Dolan B, Schohl K, McKindles RJ, Remmel R, Brockman S. Measuring the plasticity of social approach: a randomized controlled trial of the effects of the PEERS intervention on EEG asymmetry in adolescents with autism spectrum disorders. J Autism Dev Disord 2015; 45:316-35. [PMID: 23812665 DOI: 10.1007/s10803-013-1883-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study examined whether the Program for the Education and Enrichment of Relational Skills (PEERS: Social skills for teenagers with developmental and autism spectrum disorders: The PEERS treatment manual, Routledge, New York, 2010a) affected neural function, via EEG asymmetry, in a randomized controlled trial of adolescents with Autism spectrum disorders (ASD) and a group of typically developing adolescents. Adolescents with ASD in PEERS shifted from right-hemisphere gamma-band EEG asymmetry before PEERS to left-hemisphere EEG asymmetry after PEERS, versus a waitlist ASD group. Left-hemisphere EEG asymmetry was associated with more social contacts and knowledge, and fewer symptoms of autism. Adolescents with ASD in PEERS no longer differed from typically developing adolescents in left-dominant EEG asymmetry at post-test. These findings are discussed via the Modifier Model of Autism (Mundy et al. in Res Pract Persons Severe Disabl 32(2):124, 2007), with emphasis on remediating isolation/withdrawal in ASD.
Collapse
Affiliation(s)
- Amy Vaughan Van Hecke
- Department of Psychology, Marquette University, PO Box 1881, Milwaukee, WI, 53201-1881, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schlaug G. Musicians and music making as a model for the study of brain plasticity. PROGRESS IN BRAIN RESEARCH 2015; 217:37-55. [PMID: 25725909 DOI: 10.1016/bs.pbr.2014.11.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Playing a musical instrument is an intense, multisensory, and motor experience that usually commences at an early age and requires the acquisition and maintenance of a range of sensory and motor skills over the course of a musician's lifetime. Thus, musicians offer an excellent human model for studying behavioral-cognitive as well as brain effects of acquiring, practicing, and maintaining these specialized skills. Research has shown that repeatedly practicing the association of motor actions with specific sound and visual patterns (musical notation), while receiving continuous multisensory feedback will strengthen connections between auditory and motor regions (e.g., arcuate fasciculus) as well as multimodal integration regions. Plasticity in this network may explain some of the sensorimotor and cognitive enhancements that have been associated with music training. Furthermore, the plasticity of this system as a result of long term and intense interventions suggest the potential for music making activities (e.g., forms of singing) as an intervention for neurological and developmental disorders to learn and relearn associations between auditory and motor functions such as vocal motor functions.
Collapse
Affiliation(s)
- Gottfried Schlaug
- Department of Neurology, Music and Neuroimaging Laboratory, and Neuroimaging, Stroke Recovery Laboratories, Division of Cerebrovascular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Richter J, Poustka L, Vomstein K, Haffner J, Parzer P, Stieltjes B, Henze R. Volumetric alterations in the heteromodal association cortex in children with autism spectrum disorder. Eur Psychiatry 2015; 30:214-20. [PMID: 25561292 DOI: 10.1016/j.eurpsy.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We investigated if alterations in higher-order association areas related to schizophrenia, namely the heteromodal association cortex (HASC), are also observable in subjects with autism spectrum disorder (ASD). METHODS A group of 18 children with ASD and 18 healthy controls (HC) underwent magnetic resonance imaging (MRI). The examination comprised an analysis of group differences in gray matter (GM) volume, surface area (SA) and hemispheric lateralization. RESULTS Differences in GM volumes in children with ASD and HC were detected in frontal and parietal areas related to the HASC. No HASC structure that showed changes in GM volume exhibited differences in SA. Alterations in hemispheric lateralization between ASD and HC are seen in a frontal area of the HASC. CONCLUSIONS Our results indicate that changes in HASC areas are not restricted to schizophrenia, but extend to other psychiatric disorders, namely ASD. The lacking group differences in SA indicate that changes in GM volume are possibly evoked by other variables than SA in children with ASD.
Collapse
Affiliation(s)
- J Richter
- Section Quantitative Imaging-Based Disease Characterization, Department of Radiology, German Cancer Research Center, Heidelberg, Germany; Section Disorders of Personality Development, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - L Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - K Vomstein
- Section Quantitative Imaging-Based Disease Characterization, Department of Radiology, German Cancer Research Center, Heidelberg, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - J Haffner
- Section Disorders of Personality Development, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - P Parzer
- Section Disorders of Personality Development, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - B Stieltjes
- Section Quantitative Imaging-Based Disease Characterization, Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - R Henze
- Section Quantitative Imaging-Based Disease Characterization, Department of Radiology, German Cancer Research Center, Heidelberg, Germany; Section Disorders of Personality Development, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
31
|
Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct 2014; 221:1017-32. [DOI: 10.1007/s00429-014-0953-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022]
|
32
|
Sharda M, Midha R, Malik S, Mukerji S, Singh NC. Fronto-Temporal Connectivity is Preserved During Sung but Not Spoken Word Listening, Across the Autism Spectrum. Autism Res 2014; 8:174-86. [DOI: 10.1002/aur.1437] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/01/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Megha Sharda
- Department of Cognitive Neuroscience and Neuroimaging; National Brain Research Centre; Gurgaon India
| | - Rashi Midha
- Department of Cognitive Neuroscience and Neuroimaging; National Brain Research Centre; Gurgaon India
| | - Supriya Malik
- Southend Klinik-Nurturing Connections; New Delhi India
- School of Psychology; University of Birmingham; Birmingham UK
| | | | - Nandini C. Singh
- Department of Cognitive Neuroscience and Neuroimaging; National Brain Research Centre; Gurgaon India
| |
Collapse
|
33
|
Ameis SH, Catani M. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 2014; 62:158-81. [PMID: 25433958 DOI: 10.1016/j.cortex.2014.10.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) symptoms have been hypothesized to result from altered brain connectivity. The 'disconnectivity' hypothesis has been used to explain characteristic impairments in socio-emotional function, observed clinically in ASD. Here, we review the evidence for impaired white matter connectivity as a neural substrate for socio-emotional dysfunction in ASD. A review of diffusion tensor imaging (DTI) studies, and focused discussion of relevant post-mortem, structural, and functional neuroimaging studies, is provided. METHODS Studies were identified using a sensitive search strategy in MEDLINE, Embase and PsycINFO article databases using the OvidSP database interface. Search terms included database subject headings for the concepts of pervasive developmental disorders, and DTI. Seventy-two published DTI studies examining white matter microstructure in ASD were reviewed. A comprehensive discussion of DTI studies that examined white matter tracts linking socio-emotional structures is presented. RESULTS Several DTI studies reported microstructural differences indicative of developmental alterations in white matter organization, and potentially myelination, in ASD. Altered structure within long-range white matter tracts linking socio-emotional processing regions was implicated. While alterations of the uncinate fasciculus and frontal and temporal thalamic projections have been associated with social symptoms in ASD, few studies examined association of tract microstructure with core impairment in this disorder. CONCLUSIONS The uncinate fasciculus and frontal and temporal thalamic projections mediate limbic connectivity and integrate structures responsible for complex socio-emotional functioning. Impaired development of limbic connectivity may represent one neural substrate contributing to ASD social impairments. Future efforts to further elucidate the nature of atypical white matter development, and its relationship to core symptoms, may offer new insights into etiological mechanisms contributing to ASD impairments and uncover novel opportunities for targeted intervention.
Collapse
Affiliation(s)
- Stephanie H Ameis
- The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Child, Youth and Family Program, Research Imaging Centre, The Campbell Family Mental Health Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Marco Catani
- NATBRAINLAB, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry PO50, King's College London, London, UK.
| |
Collapse
|
34
|
Peterson D, Mahajan R, Crocetti D, Mejia A, Mostofsky S. Left-hemispheric microstructural abnormalities in children with high-functioning autism spectrum disorder. Autism Res 2014; 8:61-72. [PMID: 25256103 DOI: 10.1002/aur.1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 08/12/2014] [Indexed: 12/18/2022]
Abstract
Current theories of the neurobiological basis of autism spectrum disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used diffusion tensor imaging to investigate the microstructural properties of the white matter (WM) that mediates interregional connectivity in 36 high-functioning children with ASD (HF-ASD) as compared with 37 controls. By employing an atlas-based analysis using large deformation diffeometric morphic mapping registration, a widespread but left-lateralized pattern of abnormalities was revealed. The mean diffusivity (MD) of water in the WM of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical WM. Across diagnostic groups, there was a significant effect of age on left-hemisphere MD, with a similar reduction in MD during childhood in both typically developing and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination and may reflect increased short-range cortico-cortical connections subsequent to early WM overgrowth. These findings also highlight left-hemispheric connectivity as relevant to the pathophysiology of ASD and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD.
Collapse
Affiliation(s)
- Daniel Peterson
- Center for Neurodevelopment and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
35
|
Verly M, Verhoeven J, Zink I, Mantini D, Peeters R, Deprez S, Emsell L, Boets B, Noens I, Steyaert J, Lagae L, De Cock P, Rommel N, Sunaert S. Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. Neuroimage Clin 2014; 4:374-82. [PMID: 24567909 PMCID: PMC3930113 DOI: 10.1016/j.nicl.2014.01.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/20/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022]
Abstract
The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.
Collapse
Affiliation(s)
- Marjolein Verly
- Department of Neurosciences, Exp ORL, Catholic University of Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Judith Verhoeven
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Inge Zink
- Department of Neurosciences, Exp ORL, Catholic University of Leuven, Leuven, Belgium
| | - Dante Mantini
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
- Department of Heath Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurosciences, Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Sabine Deprez
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Louise Emsell
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Bart Boets
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Parenting and Special Education Research Unit, Catholic University of Leuven, Leuven, Belgium
- Department of Child and Adolescent Psychiatry, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Ilse Noens
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Parenting and Special Education Research Unit, Catholic University of Leuven, Leuven, Belgium
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, USA
| | - Jean Steyaert
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Department of Child and Adolescent Psychiatry, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Department of Clinical Genetics, University of Maastricht, Maastricht, The Netherlands
| | - Lieven Lagae
- Department of Pediatrics, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Paul De Cock
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Center for Developmental Disabilities, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Nathalie Rommel
- Department of Neurosciences, Exp ORL, Catholic University of Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
37
|
Verly M, Verhoeven J, Zink I, Mantini D, Van Oudenhove L, Lagae L, Sunaert S, Rommel N. Structural and functional underconnectivity as a negative predictor for language in autism. Hum Brain Mapp 2013; 35:3602-15. [PMID: 24375710 DOI: 10.1002/hbm.22424] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/18/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022] Open
Abstract
The development of language, social interaction, and communicative skills are remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the interplay between their brain connectivity and language performance remains largely understudied. Using diffusion tensor imaging tractography and resting-state fMRI, the authors explored the structural and functional connectivity of the language network and its relation to the language profile in a group of healthy control subjects (N = 25) and a group of children with ASD (N = 17). The authors hypothesized that in children with ASD, a neural connectivity deficit of the language network can be related to the observed abnormal language function. They found an absence of the right-hemispheric arcuate fascicle (AF) in 28% (7/25) of the healthy control children and in 59% (10/17) of the children with ASD. In contrast to healthy control children, the absence of the right-hemispheric AF in children with autism was related to a lower language performance as indicated by a lower verbal IQ, lower scores on the Peabody Picture Vocabulary Test, and lower language scores on the Dutch version of the Clinical Evaluation of Language Fundamentals (CELF-4NL). In addition, through iterative fMRI data analyses, the language impairment of children with ASD could be linked to a marked loss of intrahemispheric functional connectivity between inferior frontal and superior temporal regions, known as the cortical language network. Both structural and functional underconnectivity patterns coincide and are related to an abnormal language function in children with ASD.
Collapse
Affiliation(s)
- Marjolein Verly
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cardinale RC, Shih P, Fishman I, Ford LM, Müller RA. Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry 2013; 70:975-82. [PMID: 23903586 PMCID: PMC4153832 DOI: 10.1001/jamapsychiatry.2013.382] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Autism spectrum disorder (ASD) is a brain-based pervasive developmental disorder, which-by growing consensus-is associated with abnormal organization of functional networks. Several previous studies of ASD have indicated atypical hemispheric asymmetries for language. OBJECTIVE To examine the asymmetry of functional networks using a data-driven approach for a comprehensive investigation of hemispheric asymmetry in ASD. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study involved 24 children with ASD and 26 matched typically developing children at San Diego State University and the University of California, San Diego. Data from 10 children had to be excluded for excessive motion, resulting in final samples of 20 participants per group. MAIN OUTCOMES AND MEASURES Asymmetry indices of functional networks identified from independent component analysis of resting-state functional magnetic resonance imaging data. RESULTS Temporal concatenation independent component analysis, performed separately in each group, showed significant group differences in asymmetry indices for 10 out of 17 functional networks. Without exception, these networks (visual, auditory, motor, executive, language, and attentional) showed atypical rightward asymmetry shifts in the ASD group. CONCLUSIONS AND RELEVANCE Atypical rightward asymmetry may be a pervasive feature of functional brain organization in ASD, affecting sensorimotor, as well as higher cognitive, domains.
Collapse
|
39
|
Srinivasan SM, Bhat AN. A review of "music and movement" therapies for children with autism: embodied interventions for multisystem development. Front Integr Neurosci 2013; 7:22. [PMID: 23576962 PMCID: PMC3620584 DOI: 10.3389/fnint.2013.00022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/27/2022] Open
Abstract
The rising incidence of Autism Spectrum Disorders (ASDs) has led to a surge in the number of children needing autism interventions. This paper is a call to clinicians to diversify autism interventions and to promote the use of embodied music-based approaches to facilitate multisystem development. Approximately 12% of all autism interventions and 45% of all alternative treatment strategies in schools involve music-based activities. Musical training impacts various forms of development including communication, social-emotional, and motor development in children with ASDs and other developmental disorders as well as typically developing children. In this review, we will highlight the multisystem impairments of ASDs, explain why music and movement therapies are a powerful clinical tool, as well as describe mechanisms and offer evidence in support of music therapies for children with ASDs. We will support our claims by reviewing results from brain imaging studies reporting on music therapy effects in children with autism. We will also discuss the critical elements and the different types of music therapy approaches commonly used in pediatric neurological populations including autism. We provide strong arguments for the use of music and movement interventions as a multisystem treatment tool for children with ASDs. Finally, we also make recommendations for assessment and treatment of children with ASDs, and provide directions for future research.
Collapse
Affiliation(s)
- Sudha M. Srinivasan
- Department of Kinesiology, Neag School of Education, University of ConnecticutStorrs, CT, USA
- Center for Health, Intervention, and Prevention, University of ConnecticutStorrs, CT, USA
| | - Anjana N. Bhat
- Department of Kinesiology, Neag School of Education, University of ConnecticutStorrs, CT, USA
- Center for Health, Intervention, and Prevention, University of ConnecticutStorrs, CT, USA
- Center for the Ecological Study of Perception and Action, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
40
|
McGrath J, Johnson K, O'Hanlon E, Garavan H, Gallagher L, Leemans A. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study. Autism Res 2013; 6:307-19. [PMID: 23509018 DOI: 10.1002/aur.1290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/15/2013] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are associated with a marked disturbance of neural functional connectivity, which may arise from disrupted organization of white matter. The aim of this study was to use constrained spherical deconvolution (CSD)-based tractography to isolate and characterize major intrahemispheric white matter tracts that are important in visuospatial processing. CSD-based tractography avoids a number of critical confounds that are associated with diffusion tensor tractography, and to our knowledge, this is the first time that this advanced diffusion tractography method has been used in autism research. Twenty-five participants with ASD and aged 25, intelligence quotient-matched controls completed a high angular resolution diffusion imaging scan. The inferior fronto-occipital fasciculus (IFOF) and arcuate fasciculus were isolated using CSD-based tractography. Quantitative diffusion measures of white matter microstructural organization were compared between groups and associated with visuospatial processing performance. Significant alteration of white matter organization was present in the right IFOF in individuals with ASD. In addition, poorer visuospatial processing was associated in individuals with ASD with disrupted white matter in the right IFOF. Using a novel, advanced tractography method to isolate major intrahemispheric white matter tracts in autism, this research has demonstrated that there are significant alterations in the microstructural organization of white matter in the right IFOF in ASD. This alteration was associated with poorer visuospatial processing performance in the ASD group. This study provides an insight into structural brain abnormalities that may influence atypical visuospatial processing in autism.
Collapse
Affiliation(s)
- Jane McGrath
- Department of Psychiatry, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
41
|
Harbinder S, Lazzara CA, Klar AJ. Implication of the Strand-Specific Imprinting and Segregation Model: Integrating in utero Hormone Exposure, Stem Cell and Lateral Asymmetry Hypotheses in Breast Cancer Aetiology. HEREDITARY GENETICS : CURRENT RESEARCH 2013; 2013. [PMID: 34589269 PMCID: PMC8478350 DOI: 10.4172/2161-1041.s2-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Known genetic mutations and familial hereditary factors account for less than 20–25% of breast cancer cases in women, therefore, most instances have been classified as sporadic cases of unknown aetiologies. Single nucleotide polymorphisms (SNPs) were considered as breast cancer risk factors, but numerous studies have failed to support this assertion. Recent evidence correlates aberrant epigenetic mechanisms in the development and metastatic progression of breast cancer, yet there has been limited progress made to identify the primary aetiology underlying sporadic cases of breast cancer. This has led some researchers to consider alternative hypotheses including in utero exposure to deleterious chemical agents during early development, the immortal strand and the strand-specific imprinting and selective chromatid segregation hypotheses. Here, we integrate prominent alternate models to help guide future research on this very important topic concerning human health.
Collapse
Affiliation(s)
- Singh Harbinder
- Department of Biological Sciences, Delaware State University, Dover, USA
| | - Carol A Lazzara
- Department of Biological Sciences, Delaware State University, Dover, USA
| | - Amar Js Klar
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, USA
| |
Collapse
|
42
|
Amunts K, Zilles K. Architecture and organizational principles of Broca's region. Trends Cogn Sci 2012; 16:418-26. [PMID: 22763211 DOI: 10.1016/j.tics.2012.06.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Identifying cortical areas for language and speech processing is a prerequisite for cognitive neuroscience and clinical research. Although Broca's region is one of the essential nodes in the language network, its anatomical constituents are ill-defined and multiple definitions of Broca's region exist. Sanides' concept of microstructural gradations interpreted Broca's region as developing from neighboring motor, dorsolateral-prefrontal, and insular cortices. Recent mapping approaches based on cytoarchitecture, transmitter receptor distribution, and connectivity revealed a highly differentiated segregation of this region far beyond Brodmann's classical scheme. This novel segregational concept of structural and functional architecture more adequately reflects the various functions of Broca's region in cognitive and/or linguistic processes.
Collapse
Affiliation(s)
- Katrin Amunts
- Research Centre Jülich, Institute of Neuroscience and Medicine-INM-1, Jülich, Germany.
| | | |
Collapse
|
43
|
Altenmüller E, Demorest SM, Fujioka T, Halpern AR, Hannon EE, Loui P, Majno M, Oechslin MS, Osborne N, Overy K, Palmer C, Peretz I, Pfordresher PQ, Särkämö T, Wan CY, Zatorre RJ. Introduction to The neurosciences and music IV: learning and memory. Ann N Y Acad Sci 2012; 1252:1-16. [PMID: 22524334 DOI: 10.1111/j.1749-6632.2012.06474.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The conference entitled "The Neurosciences and Music-IV: Learning and Memory'' was held at the University of Edinburgh from June 9-12, 2011, jointly hosted by the Mariani Foundation and the Institute for Music in Human and Social Development, and involving nearly 500 international delegates. Two opening workshops, three large and vibrant poster sessions, and nine invited symposia introduced a diverse range of recent research findings and discussed current research directions. Here, the proceedings are introduced by the workshop and symposia leaders on topics including working with children, rhythm perception, language processing, cultural learning, memory, musical imagery, neural plasticity, stroke rehabilitation, autism, and amusia. The rich diversity of the interdisciplinary research presented suggests that the future of music neuroscience looks both exciting and promising, and that important implications for music rehabilitation and therapy are being discovered.
Collapse
Affiliation(s)
- E Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|