1
|
Shayista H, Prasad MN, Raj SN, Ranjini H, Manju K, Baker S. Mechanistic overview of gut microbiota and mucosal pathogens with respect to cardiovascular diseases. THE MICROBE 2024; 5:100160. [DOI: 10.1016/j.microb.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Yılmaz S, Yur M. Effect of MELD-Na score on overall survival of periampullary cancer. Updates Surg 2024; 76:1819-1825. [PMID: 38710890 PMCID: PMC11455662 DOI: 10.1007/s13304-024-01856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Periampullary cancers have a short overall survival (OS), and many prognostic factors have been studied for this purpose. They usually present with biliary obstruction, which negatively affects the liver, kidney, immune system, and cardiovascular system. This study aimed to investigate the effect of MELD-Na scores on OS in patients undergoing pancreaticoduodenectomy due to periampullary cancer. Patients who underwent pancreaticoduodenectomy due to periampullary cancer between January 2010 and January 2021 were included in the study. After applying the exclusion criteria, 80 of the 124 patients were included in the study. The demographic, laboratory, and pathologic data of the patients were analyzed retrospectively. Univariate analysis showed that MELD-Na score at admission, age-adjusted Charlson Comorbidity Index, adjuvant treatment, portal vein resection, lymphovascular invasion (LVI), T-stage, and tumor location were significantly associated with OS (p < 0.1). In multivariate analysis, MELD-Na score at admission (HR: 1.051, 95% CI [1.004-1.101]; p = 0.033), adjuvant treatment (HR: 4.717, 95% CI [2.371-9.383]; p < 0.001), LVI (HR: 2.473, 95% CI [1.355-4.515]; p = 0.003), and tumor location (HR: 2.380, 95% CI [1.274-4.445]; p = 0.007) were independent risk factors for OS. MELD-Na score, adjuvant treatment, LVI, and tumor location were independent risk factors for the OS of periampullary cancer. The MELD-Na score may be used to predict OS for patients undergoing pancreaticoduodenectomy due to periampullary cancer.
Collapse
Affiliation(s)
- Serkan Yılmaz
- Department of Surgical Oncology, Fethi Sekin State Hospital, Elazığ, Turkey
| | - Mesut Yur
- Department of Surgical Oncology, Fırat University School of Medicine, 23280, Elazığ, Turkey.
| |
Collapse
|
3
|
Mourino-Alvarez L, Juarez-Alia C, Sastre-Oliva T, Perales-Sánchez I, Hernandez-Fernandez G, Chicano-Galvez E, Peralbo-Molina Á, Madruga F, Blanco-Lopez E, Tejerina T, Barderas MG. Dysregulation of Lipid Metabolism Serves as A Link Between Alzheimer's and Cardiovascular Disease, As Witnessed in A Cross-Sectional Study. Aging Dis 2024:AD.2024.0434. [PMID: 39012677 DOI: 10.14336/ad.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular risk factors and established cardiovascular disease (CVD) increase the risk of suffering dementia of the Alzheimer's type (DAT). Here, we set out to define specific molecular profiles of CVD in patients with DAT to better understand its relationship, to unravel the mechanisms underlying the high risk of developing DAT in CVD patients and to define new markers of early disease. Plasma samples from patients with DAT, with and without CVD, were analyzed through a multiomics approach, with integration of metabolomics and proteomics datasets using the OmicsNet web-based tool. Metabolomics results showed an enrichment in lipids and lipid-like molecules. Similarly, the most significant cluster identified through proteomics was formed by 5 proteins related to lipoprotein and cholesterol metabolism. After integration and functional enrichment, glycerolipid metabolism, fatty acid degradation and sphingolipid metabolism were among the most significant functions. Finally, differential expression of ABCA1 and APOH proteins was verified, in an independent cohort also including controls and patients with CVD alone. Both proteins positively correlated with phospho-Tau (181), a classical hallmark of DAT. Different molecular profiles exist in patients with DAT, with and without CVD, with exacerbated alterations in patients in which DAT and CVD co-exist. This information may help to define biomarkers like ABCA1 and APOH that identify patients with cardiovascular dysfunction that are at high risk of developing DAT. Such markers will allow more personalized interventions to be selected, a further step towards precision medicine for individuals whose molecular profiles indicate a distinct response to the same management strategies.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Inés Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Ángela Peralbo-Molina
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Felipe Madruga
- Departament of Geriatrics, Hospital Virgen del Valle, SESCAM, Toledo, Spain
| | - Emilio Blanco-Lopez
- Department of Cardiology, Ciudad Real General University Hospital, Ciudad Real, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| |
Collapse
|
4
|
Kumar P, Shikoh A, Rani N. Evaluating Diastolic Dysfunction as an Indicator of Cirrhotic Cardiomyopathy in Decompensated Chronic Liver Disease. Cureus 2024; 16:e63388. [PMID: 39070451 PMCID: PMC11283850 DOI: 10.7759/cureus.63388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The clinical syndrome of cirrhotic cardiomyopathy (CCM) occurs quite frequently in decompensated chronic liver disease (DCLD) patients without any prior incidence. The compromised life expectancy under such conditions was the key that prompted us to conduct this study. PURPOSE This study was planned to study the prevalence of diastolic dysfunction in chronic liver disease patients, to understand the diagnostic criteria of left ventricular diastolic dysfunction (LVDD) in cirrhotic patients, and to evaluate its occurrence as an early indicator of CCM. METHODS A hospital-based, cross-sectional study was conducted on 158 patients, admitted to the Department of Medicine, Rajendra Institute of Medical Sciences, Ranchi, India, who conformed to our criteria for inclusion and exclusion. The study period was for 18 months. The subjects were clinically and radiologically diagnosed with chronic liver disease. Regression analysis for variables was performed to score the effects of potential variables with outcomes for diastolic dysfunction (DD) prediction. RESULTS Out of 158 patients, 116 belonged to the age group of 31-60 years, pronouncing age to be a significant factor for LVDD. Fifty-three subjects had serum bilirubin levels >2mg/dL and we found serum bilirubin levels to bear a significant correlation with LVDD by exhibiting a p-value <0.0001. Both the Child-Turcotte-Pugh score class (p-value=0.0180) and QTc (p-value <0.0001) bear significant correlation with the development of LVDD, which is also evident from their area under the curve (AUC) values of 0.64 in the receiver operating characteristic (ROC) curve. CONCLUSION Our study concludes that LVDD is an early indicator for assessing the severity of liver cirrhosis in DCLD. The correlation of DCLD with prolonged QTc could predispose patients with DCLD to ventricular arrhythmias. Hence, such patients should undergo serum bilirubin tests, and electrocardiographic checks at regular intervals for early detection, to increase their overall survival rates.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Cardiology, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Amish Shikoh
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND
| | - Neha Rani
- Department of Dermatology, Medini Rai Medical College and Hospital, Medininagar, IND
| |
Collapse
|
5
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
6
|
Long T, Zhu X, Tang D, Li H, Zhang P. Application of a nomogram from coagulation-related biomarkers and C1q and total bile acids in distinguishing advanced and early-stage lung cancer. Int J Biol Markers 2024; 39:130-140. [PMID: 38303516 DOI: 10.1177/03936155241229454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND This study aimed to establish a nomogram to distinguish advanced- and early-stage lung cancer based on coagulation-related biomarkers and liver-related biomarkers. METHODS A total of 306 patients with lung cancer and 172 patients with benign pulmonary disease were enrolled. Subgroup analyses based on histologic type, clinical stage, and neoplasm metastasis status were carried out and multivariable logistic regression analysis was applied. Furthermore, a nomogram model was developed and validated with bootstrap resampling. RESULTS The concentrations of complement C1q, fibrinogen, and D-dimers, fibronectin, inorganic phosphate, and prealbumin were significantly changed in lung cancer patients compared to benign pulmonary disease patients. Multiple regression analysis based on subgroup analysis of clinical stage showed that compared with early-stage lung cancer, female (P < 0.001), asymptomatic admission (P = 0.001), and total bile acids (P = 0.011) were negatively related to advanced lung cancer, while C1q (P = 0.038), fibrinogen (P < 0.001), and D-dimers (P = 0.001) were positively related. A nomogram model based on gender, symptom, and the levels of total bile acids, C1q, fibrinogen, and D-dimers was constructed for distinguishing advanced lung cancer and early-stage lung cancer, with an area under the receiver operating characteristic curve of 0.919. The calibration curve for this nomogram revealed good predictive accuracy (P-Hosmer-Lemeshow = 0.697) between the predicted probability and the actual probability. CONCLUSIONS We developed a nomogram based on gender, symptom, and the levels of fibrinogen, D-dimers, total bile acids, and C1q that can individually distinguish early- and advanced-stage lung cancer.
Collapse
Affiliation(s)
- Tingting Long
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xinyu Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Dongling Tang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Huan Li
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital, The First Hospital Affiliated to Nanchang Medical College, Nanchang, PR China
| | - Pingan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
7
|
Dosh L, Ghazi M, Haddad K, El Masri J, Hawi J, Leone A, Basset C, Geagea AG, Jurjus R, Jurjus A. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transpl Immunol 2024; 83:102000. [PMID: 38262540 DOI: 10.1016/j.trim.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Cardiovascular diseases (CVD) are one of the most challenging diseases and many factors have been demonstrated to affect their pathogenesis. One of the major factors that affect CVDs, especially atherosclerosis, is the gut microbiota (GM). Genetics play a key role in linking CVDs with GM, in addition to some environmental factors which can be either beneficial or harmful. The interplay between GM and CVDs is complex due to the numerous mechanisms through which microbial components and their metabolites can influence CVDs. Within this interplay, the immune system plays a major role, mainly based on the immunomodulatory effects of microbial dysbiosis and its resulting metabolites. The resulting modulation of chronic inflammatory processes was found to reduce the severity of CVDs and to maintain cardiovascular health. To better understand the specific roles of GM-related metabolites in this interplay, this review presents an updated perspective on gut metabolites related effects on the cardiovascular system, highlighting the possible benefits of probiotics in therapeutic strategies.
Collapse
Affiliation(s)
- Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Karim Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon.
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Charbel Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
8
|
Md Shahrulnizam NAN, Mohd Efendy Goon MD, Ab Rahim S, Lew SW, Sheikh Abdul Kadir SH, Ibrahim E. Palm-based tocotrienol-rich fraction (TRF) supplementation modulates cardiac sod1 expression, fxr target gene expression, and tauro-conjugated bile acid levels in aleptinemic mice fed a high-fat diet. GENES & NUTRITION 2024; 19:3. [PMID: 38413846 PMCID: PMC10898183 DOI: 10.1186/s12263-024-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Nur Aliah Natasha Md Shahrulnizam
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohd Danial Mohd Efendy Goon
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sook Weih Lew
- Department of Pediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
9
|
Lu Q, Chen J, Jiang L, Geng T, Tian S, Liao Y, Yang K, Zheng Y, He M, Tang H, Pan A, Liu G. Gut microbiota-derived secondary bile acids, bile acids receptor polymorphisms, and risk of cardiovascular disease in individuals with newly diagnosed type 2 diabetes: a cohort study. Am J Clin Nutr 2024; 119:324-332. [PMID: 38309826 DOI: 10.1016/j.ajcnut.2023.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Secondary bile acids (SBAs), the products of bacterial metabolism, are ligands of the nuclear farnesoid X receptor (FXR) and have been implicated in cardiovascular health. Diet can modulate gut microbiota composition and bile acid metabolism. OBJECTIVES We aimed to examine the associations of circulating SBAs and their receptor polymorphisms with the risk of incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). METHODS A total of 1234 participants with newly diagnosed T2D without CVD or cancer were included from the Dongfeng-Tongji Cohort study in China. Circulating SBAs and their conjugated forms were quantified using liquid chromatography-tandem mass spectrometry. Fifteen single-nucleotide polymorphisms in genes encoding bile acid receptors were genotyped. RESULTS During a median follow-up of 5.7 y, 259 incident CVD cases were documented. After multivariable adjustment, higher levels of unconjugated SBAs [sum of deoxycholic acid (DCA), lithocholic acid, and ursodeoxycholic acid] and DCA were significantly associated with a higher risk of CVD among people with T2D, with hazard ratios (HRs) and 95% confidence intervals (CIs) of 1.62 (1.12, 2.35) and 1.46 (1.04, 2.06) comparing the extreme quartile of SBAs and DCA, respectively. Restricted cubic spline regression suggested a linear relationship of unconjugated SBAs and DCA with an elevated risk of CVD, and per standard deviation, an increment in natural log-transformed unconjugated SBAs and DCA was associated with an 18% (95% CI: 4%, 34%) and 16% (95% CI: 2%, 33%) higher risk of CVD, respectively. Moreover, genetic variants in FXR (rs56163822 TT compared with GG, and rs17030295 TT compared with CC) were significantly associated with a 121%-129% higher risk of CVD among individuals with T2D. CONCLUSIONS A higher proportion of unconjugated SBAs, especially DCA, is linearly associated with a higher risk of CVD among people with newly diagnosed T2D. Our findings support the potential role of gut microbiota-derived SBAs in cardiovascular health in individuals with T2D.
Collapse
Affiliation(s)
- Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junxiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limiao Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufan Tian
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Caparrós-Martín JA, Maher P, Ward NC, Saladié M, Agudelo-Romero P, Stick SM, Chan DC, Watts GF, O’Gara F. An Analysis of the Gut Microbiota and Related Metabolites following PCSK9 Inhibition in Statin-Treated Patients with Elevated Levels of Lipoprotein(a). Microorganisms 2024; 12:170. [PMID: 38257996 PMCID: PMC10818477 DOI: 10.3390/microorganisms12010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of global mortality, often associated with high blood levels of LDL cholesterol (LDL-c). Medications like statins and PCSK9 inhibitors, are used to manage LDL-c levels and reduce ASCVD risk. Recent findings connect the gut microbiota and its metabolites to ASCVD development. We showed that statins modulate the gut microbiota including the production of microbial metabolites involved in the regulation of cholesterol metabolism such as short chain fatty acids (SCFAs) and bile acids (BAs). Whether this pleiotropic effect of statins is associated with their antimicrobial properties or it is secondary to the modulation of cholesterol metabolism in the host is unknown. In this observational study, we evaluated whether alirocumab, a PCSK9 inhibitor administered subcutaneously, alters the stool-associated microbiota and the profiles of SCFAs and BAs. METHODS We used stool and plasma collected from patients enrolled in a single-sequence study using alirocumab. Microbial DNA was extracted from stool, and the bacterial component of the gut microbiota profiled following an amplicon sequencing strategy targeting the V3-V4 region of the 16S rRNA gene. Bile acids and SCFAs were profiled and quantified in stool and plasma using mass spectrometry. RESULTS Treatment with alirocumab did not alter bacterial alpha (Shannon index, p = 0.74) or beta diversity (PERMANOVA, p = 0.89) in feces. Similarly, circulating levels of SCFAs (mean difference (95% confidence interval (CI)), 8.12 [-7.15-23.36] µM, p = 0.25) and BAs (mean difference (95% CI), 0.04 [-0.11-0.19] log10(nmol mg-1 feces), p = 0.56) were equivalent regardless of PCSK9 inhibition. Alirocumab therapy was associated with increased concentration of BAs in feces (mean difference (95% CI), 0.20 [0.05-0.34] log10(nmol mg-1 feces), p = 0.01). CONCLUSION In statin-treated patients, the use of alirocumab to inhibit PCSK9 leads to elevated levels of fecal BAs without altering the bacterial population of the gut microbiota. The association of alirocumab with increased fecal BA concentration suggests an additional mechanism for the cholesterol-lowering effect of PCSK9 inhibition.
Collapse
Affiliation(s)
- Jose A. Caparrós-Martín
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Patrice Maher
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Natalie C. Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, WA 6009, Australia
| | - Montserrat Saladié
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- The University of Western Australia, Perth, WA 6009, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- The University of Western Australia, Perth, WA 6009, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA 6008, Australia
| | - Dick C. Chan
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gerald F. Watts
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Fergal O’Gara
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
11
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
12
|
Nogal A, Alkis T, Lee Y, Kifer D, Hu J, Murphy RA, Huang Z, Wang-Sattler R, Kastenmüler G, Linkohr B, Barrios C, Crespo M, Gieger C, Peters A, Price J, Rexrode KM, Yu B, Menni C. Predictive metabolites for incident myocardial infarction: a two-step meta-analysis of individual patient data from six cohorts comprising 7897 individuals from the COnsortium of METabolomics Studies. Cardiovasc Res 2023; 119:2743-2754. [PMID: 37706562 PMCID: PMC10757581 DOI: 10.1093/cvr/cvad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
AIMS Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies. METHODS AND RESULTS We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n = 1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26-1.56], P < 0.001}, whereas the largest decrease in risk was found for glutamine [HR (95% CI) = 0.74 (0.67-0.82), P < 0.001]. Moreover, the identified metabolites were significantly enriched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis. CONCLUSIONS In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechanisms of action and elaborate pathway findings.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Jie Hu
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rachel A Murphy
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Zhe Huang
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Linkohr
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jackie Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Kathryn M Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| |
Collapse
|
13
|
Shi M, Wei J, Yuan H, Li Y, Guo Z. The role of the gut microbiota and bile acids in heart failure: A review. Medicine (Baltimore) 2023; 102:e35795. [PMID: 37960774 PMCID: PMC10637566 DOI: 10.1097/md.0000000000035795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
Heart failure (HF) is the terminal manifestation of various cardiovascular diseases. Recently, accumulating evidence has demonstrated that gut microbiota are involved in the development of various cardiovascular diseases. Gut microbiota and their metabolites might play a pivotal role in the development of HF. However, previous studies have rarely described the complex role of gut microbiota and their metabolites in HF. In this review, we mainly discussed bile acids (BAs), the metabolites of gut microbiota. We explained the mechanisms by which BAs are involved in the pathogenesis of HF. We also discussed the use of gut microbiota and BAs for treating HF in Chinese medicine, highlighting the advantages of Chinese medicine in treating HF.
Collapse
Affiliation(s)
- Min Shi
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| | - Jiaming Wei
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| | - Hui Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Ya Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan, Changsha, China
| |
Collapse
|
14
|
Huang F, Mariani N, Pariante CM, Borsini A. From dried bear bile to molecular investigation of differential effects of bile acids in ex vivo and in vitro models of myocardial dysfunction: Relevance for neuroinflammation. Brain Behav Immun Health 2023; 32:100674. [PMID: 37593199 PMCID: PMC10430170 DOI: 10.1016/j.bbih.2023.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Bile acids have been known to have both beneficial and detrimental effects on heart function, and as a consequence this can affect the brain. Inflammation is a key factor linking the heart and the brain, bile acids can reduce inflammation in the heart and, as a consequence, neuroinflammation, which may be due to the activation of different peripheral and central cellular and molecular mechanisms. Herein, we compile data published so far and summarise evidence demonstrating the effects of bile acids on myocardial cell viability and function, and its related mechanisms, in ex vivo and in vitro studies conducted in homeostatic state or in models of cardiovascular diseases. Studies show that ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) do not affect the viability or contraction of cardiomyocytes in homeostatic state, and while UDCA has the capability to prevent the effect of hypoxia on reduced cell viability and beating rate, TUDCA can protect endoplasmic reticulum (ER) stress-induced apoptosis and cardiac contractile dysfunction. In contrast, deoxycholic acid (DCA) decreases contraction rate in homeostatic state, but it also prevents hypoxia-induced inflammation and oxidative stress, whereas lithocholic acid (LCA) can rescue doxazosin-induced apoptosis. Moreover, glycodeoxycholic acid (GDCA), cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) and taurodeoxycholic acid (TDCA) decrease contraction, whereas CDCA decreases cell viability in homeostatic conditions. The mechanisms underlying the aforementioned contrasting effects involve a differential regulation of the TGR5, M2R and FXR receptors, as well as the cAMP signalling pathway. Overall, this review confirms the therapeutic potential of certain types of bile acids: UDCA, TUDCA, and potentially LCA, in cardiovascular diseases. By reducing inflammation in the heart, bile acids can improve heart-brain communication and promote overall health. Additional investigations are required to better elucidate mechanisms of action and more personalized clinical therapeutic doses.
Collapse
Affiliation(s)
- Fei Huang
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, PR China
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Carmine M. Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| |
Collapse
|
15
|
Dieu X, Tamareille S, Herbreteau A, Lebeau L, Chao De La Barca JM, Chabrun F, Reynier P, Mirebeau-Prunier D, Prunier F. Combined Metabolipidomic and Machine Learning Approach in a Rat Model of Stroke Reveals a Deleterious Impact of Brain Injury on Heart Metabolism. Int J Mol Sci 2023; 24:12000. [PMID: 37569376 PMCID: PMC10418865 DOI: 10.3390/ijms241512000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac complications are frequently found following a stroke in humans whose pathophysiological mechanism remains poorly understood. We used machine learning to analyse a large set of data from a metabolipidomic study assaying 630 metabolites in a rat stroke model to investigate metabolic changes affecting the heart within 72 h after a stroke. Twelve rats undergoing a stroke and 28 rats undergoing the sham procedure were investigated. A plasmatic signature consistent with the literature with notable lipid metabolism remodelling was identified. The post-stroke heart showed a discriminant metabolic signature, in comparison to the sham controls, involving increased collagen turnover, increased arginase activity with decreased nitric oxide synthase activity as well as an altered amino acid metabolism (including serine, asparagine, lysine and glycine). In conclusion, these results demonstrate that brain injury induces a metabolic remodelling in the heart potentially involved in the pathophysiology of stroke heart syndrome.
Collapse
Affiliation(s)
- Xavier Dieu
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Sophie Tamareille
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
| | - Aglae Herbreteau
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
| | - Lucie Lebeau
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
| | - Juan Manuel Chao De La Barca
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Floris Chabrun
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Pascal Reynier
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Delphine Mirebeau-Prunier
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Fabrice Prunier
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Cardiologie, CHU Angers, F-49000 Angers, France
| |
Collapse
|
16
|
Cui H, Han S, Dai Y, Xie W, Zheng R, Sun Y, Xia X, Deng X, Cao Y, Zhang M, Shang H. Gut microbiota and integrative traditional Chinese and western medicine in prevention and treatment of heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154885. [PMID: 37302262 DOI: 10.1016/j.phymed.2023.154885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heart failure (HF) is the terminal stage of multiple cardiovascular diseases, with high mortality and morbidity. More and more studies have proved that gut microbiota may play a role in the process of HF, which is expected to become a new therapeutic target. The combination of traditional Chinese and Western medicine has vast therapeutic potential of complementation against HF. PURPOSE This manuscript expounds on the research progress of mechanisms of gut microbiota participating in the occurrence and prognosis of HF and the role of integrative traditional Chinese and Western medicine from 1987 to 2022. The combination of traditional Chinese and Western medicine in the prevention and treatment of HF from the perspective of gut microbiota has been discussed. METHODS Studies focusing on the effects and their mechanisms of gut microbiota in HF and the role of integrative traditional Chinese and Western medicine were identified and summarized, including contributions from February 1987 until August 2022. The investigation was carried out in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We searched PubMed, Embase, Cochrane Library, CNKI, Wanfang, and VIP databases up to April 2023 by using the relevant keywords and operators. RESULTS A total of 34 articles were finally included in this review.16 RCTs and 13 basic researches, and 3 clinical research studies involving 7 relevant outcome indicators(cardiac function evaluation index, changes in gut microbiota, inflammatory factors, metabolites of gut microbiota, serum nutritional index protein, quality of life score, intestinal permeability and all-cause mortality). Compared with healthy controls, serum TNF-α and TMAO levels were significantly higher in patients with heart failure [MD = 5.77, 95%CI(4.97, 6.56), p < 0.0001; SMD = 1.92, 95%CI(1.70, 2.14), p < 0.0001]. Escherichia coli and Thick-walled bacteria increased significantly [SMD = -0.99, 95%CI(-1.38, -0.61), p < 0.0001, SMD = 2.58, 95%CI(2.23, 2.93), p < 0.0001];The number of bacteroides and lactobacillus decreased [SMD = -2.29, 95%CI(-2.54, -2.04), p < 0.0001; SMD = -1.55, 95%CI(-1.8, -1.3), p < 0.0001]. There was no difference in bifidobacterium [SMD = 0.16, 95%CI(-0.22, 0.54), p = 0.42]. In the published literature, it is not difficult to see that most of the results are studied and proved based on animal experiments or clinical trials, involving the cellular level, while the mechanism and mode of action of the molecular biology of traditional Chinese medicine are less elaborated, which is related to the characteristics of multi-components and multi-targets of traditional Chinese medicine. The above are the shortcomings of published literature, which can also be the direction of future research. CONCLUSION Heart failure patients have decreased beneficial bacteria such as Bacillus mimics and Lactobacillus in the intestinal flora and increased harmful flora like thick-walled flora. And increase the inflammatory response of the body and the expression of trimethylamine oxide (TMAO) in the serum. And The prevention and treatment of integrative traditional Chinese and Western medicine against heart failure based on gut microbiota and its metabolites is a promising research direction.
Collapse
Affiliation(s)
- Herong Cui
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanan Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaofeng Xia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaopeng Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaru Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
17
|
Mamic P, Snyder M, Tang WHW. Gut Microbiome-Based Management of Patients With Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:1729-1739. [PMID: 37100490 DOI: 10.1016/j.jacc.2023.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 04/28/2023]
Abstract
Despite therapeutic advances, chronic heart failure (HF) is still associated with significant risk of morbidity and mortality. The course of disease and responses to therapies vary widely among individuals with HF, highlighting the need for precision medicine approaches. Gut microbiome stands to be an important aspect of precision medicine in HF. Exploratory clinical studies have revealed shared patterns of gut microbiome dysregulation in this disease, with mechanistic animal studies providing evidence for active involvement of the gut microbiome in development and pathophysiology of HF. Deeper insights into gut microbiome-host interactions in patients with HF promise to deliver novel disease biomarkers, preventative and therapeutic targets, and improve disease risk stratification. This knowledge may enable a paradigm shift in how we care for patients with HF, and pave the path toward improved clinical outcomes through personalized HF care.
Collapse
Affiliation(s)
- Petra Mamic
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, USA; Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Virk MK, Mian MUM, Bashir DA, Wilkes JK, Schlingman T, Flores S, Kennedy C, Lam F, Arikan AA, Nguyen T, Mysore K, Galvan NTN, Coss-Bu J, Karpen SJ, Harpavat S, Desai MS. Elevated bile acids are associated with left ventricular structural changes in biliary atresia. Hepatol Commun 2023; 7:e0109. [PMID: 37058680 PMCID: PMC10109457 DOI: 10.1097/hc9.0000000000000109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND In children with biliary atresia (BA), pathologic structural changes within the heart, which define cirrhotic cardiomyopathy, are associated with adverse perioperative outcomes. Despite their clinical relevance, little is known about the pathogenesis and triggers of pathologic remodeling. Bile acid excess causes cardiomyopathy in experimental cirrhosis, but its role in BA is poorly understood. METHODS Echocardiographic parameters of left ventricular (LV) geometry [LV mass (LVM), LVM indexed to height, left atrial volume indexed to BSA (LAVI), and LV internal diameter (LVID)] were correlated with circulating serum bile acid concentrations in 40 children (52% female) with BA listed for transplantation. A receiver-operating characteristic curve was generated to determine optimal threshold values of bile acids to detect pathologic changes in LV geometry using Youden index. Paraffin-embedded human heart tissue was separately analyzed by immunohistochemistry for the presence of bile acid-sensing Takeda G-protein-coupled membrane receptor type 5. RESULTS In the cohort, 52% (21/40) of children had abnormal LV geometry; the optimal bile acid concentration to detect this abnormality with 70% sensitivity and 64% specificity was 152 µmol/L (C-statistics=0.68). Children with bile acid concentrations >152 µmol/L had ∼8-fold increased odds of detecting abnormalities in LVM, LVM index, left atrial volume index, and LV internal diameter. Serum bile acids positively correlated with LVM, LVM index, and LV internal diameter. Separately, Takeda G-protein-coupled membrane receptor type 5 protein was detected in myocardial vasculature and cardiomyocytes on immunohistochemistry. CONCLUSION This association highlights the unique role of bile acids as one of the targetable potential triggers for myocardial structural changes in BA.
Collapse
Affiliation(s)
- Manpreet K. Virk
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | | | - Dalia A. Bashir
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - John K. Wilkes
- Pediatric Cardiology, Cook Children’s Medical Centre, Fort Worth, Texas, USA
| | - Tobias Schlingman
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Saul Flores
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Curtis Kennedy
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Fong Lam
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Ayse A. Arikan
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Nephrology, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Trung Nguyen
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Krupa Mysore
- Department of Pediatrics, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Nhu Thao Nguyen Galvan
- Division of Abdominal Transplantation and Hepatobiliary Surgery, Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Jorge Coss-Bu
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Saul J. Karpen
- Department of Pediatric Gastroenterology and Hepatology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Sanjiv Harpavat
- Department of Pediatrics, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Moreshwar S. Desai
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Yntema T, Koonen DPY, Kuipers F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients 2023; 15:nu15081850. [PMID: 37111068 PMCID: PMC10141989 DOI: 10.3390/nu15081850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite advances in preventive measures and treatment options, cardiovascular disease (CVD) remains the number one cause of death globally. Recent research has challenged the traditional risk factor profile and highlights the potential contribution of non-traditional factors in CVD, such as the gut microbiota and its metabolites. Disturbances in the gut microbiota have been repeatedly associated with CVD, including atherosclerosis and hypertension. Mechanistic studies support a causal role of microbiota-derived metabolites in disease development, such as short-chain fatty acids, trimethylamine-N-oxide, and bile acids, with the latter being elaborately discussed in this review. Bile acids represent a class of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble vitamins, plays an important role in cholesterol turnover and, as more recently discovered, acts as a group of signaling molecules that exerts hormonal functions throughout the body. Studies have shown mediating roles of bile acids in the control of lipid metabolism, immunity, and heart function. Consequently, a picture has emerged of bile acids acting as integrators and modulators of cardiometabolic pathways, highlighting their potential as therapeutic targets in CVD. In this review, we provide an overview of alterations in the gut microbiota and bile acid metabolism found in CVD patients, describe the molecular mechanisms through which bile acids may modulate CVD risk, and discuss potential bile-acid-based treatment strategies in relation to CVD.
Collapse
Affiliation(s)
- Tess Yntema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
20
|
Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20:135-154. [PMID: 36352157 DOI: 10.1038/s41575-022-00690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
21
|
Chew NW, Muthiah MD, Sanyal AJ. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: pathophysiology and implications for cardiovascular disease. CARDIOVASCULAR ENDOCRINOLOGY AND METABOLISM 2023:137-173. [DOI: 10.1016/b978-0-323-99991-5.00003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
23
|
The Metabolomic Characterization of Different Types of Coronary Atherosclerotic Heart Disease in Male. Cardiol Res Pract 2022; 2022:6491129. [PMID: 35865323 PMCID: PMC9296306 DOI: 10.1155/2022/6491129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background In clinical practice, many patients with coronary atherosclerotic heart disease (CAD) have atypical clinical symptoms. It is difficult to accurately identify stable CAD or unstable CAD early through clinical symptoms and coronary angiography. This study aimed to screen the potential metabolite biomarkers in male patients with stable CAD and unstable CAD. Methods In this work, the metabolomic characterization of the male patients with healthy control (n = 42), stable coronary artery disease (n = 60), non-ST-elevation acute coronary syndrome (n = 45), including prepercutaneous corona intervention (n = 14), and postpercutaneous coronary intervention (n = 31) were performed by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The serum samples of patients were analyzed by multivariate statistics. Results Results showed that 17 altered metabolites were identified to have a clear distinction between the stable CAD group and the healthy subjects. Compared with the stable coronary artery disease group, 15 specific metabolite markers were found in the acute coronary syndrome group. The percutaneous coronary intervention also affected the metabolic behavior of patients with CAD. Conclusions In summary, CAD is closely related to energy metabolism, lipid metabolism, and amino acid metabolism disorders. The different metabolic pattern characteristics of healthy, stable coronary artery disease and acute coronary syndrome are constructed, which brings a novel theoretical basis for the early diagnosis of patients with stable and unstable CAD.
Collapse
|
24
|
Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113401. [PMID: 35684337 PMCID: PMC9182388 DOI: 10.3390/molecules27113401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Bile acids are specific and quantitatively important organic components of bile, which are synthesized by hepatocytes from cholesterol and are involved in the osmotic process that ensures the outflow of bile. Bile acids include many varieties of amphipathic acid steroids. These are molecules that play a major role in the digestion of fats and the intestinal absorption of hydrophobic compounds and are also involved in the regulation of many functions of the liver, cholangiocytes, and extrahepatic tissues, acting essentially as hormones. The biological effects are realized through variable membrane or nuclear receptors. Hepatic synthesis, intestinal modifications, intestinal peristalsis and permeability, and receptor activity can affect the quantitative and qualitative bile acids composition significantly leading to extrahepatic pathologies. The complexity of bile acids receptors and the effects of cross-activations makes interpretation of the results of the studies rather difficult. In spite, this is a very perspective direction for pharmacology.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Maria Zharkova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Pyotr Tkachenko
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Alexandra Synitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | | | - Natalia Lapina
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Nechaev
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Svetlana Kardasheva
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexey Okhlobystin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| |
Collapse
|
25
|
Ionescu RF, Enache RM, Cretoiu SM, Cretoiu D. The Interplay Between Gut Microbiota and miRNAs in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:856901. [PMID: 35369298 PMCID: PMC8965857 DOI: 10.3389/fcvm.2022.856901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
The human microbiota contains microorganisms found on the skin, mucosal surfaces and in other tissues. The major component, the gut microbiota, can be influenced by diet, genetics, and environmental factors. Any change in its composition results in pathophysiological changes that can further influence the evolution of different conditions, including cardiovascular diseases (CVDs). The microbiome is a complex ecosystem and can be considered the metagenome of the microbiota. MicroRNAs (miRNAs) are speculated to interact with the intestinal microbiota for modulating gene expressions of the host. miRNAs represent a category of small non-coding RNAs, consisting of approximately 22 nucleotides, which can regulate gene expression at post-transcriptional level, by influencing the degradation of mRNA and modifying protein amounts. miRNAs display a multitude of roles, being able to influence the pathogenesis and progression of various diseases. Circulating miRNAs are stable against degradation, due to their enclosure into extracellular vesicles (EVs). This review aims to assess the current knowledge of the possible interactions between gut microbiota, miRNAs, and CVDs. As more scientific research is conducted, it can be speculated that personalized patient care in the future may include the management of gut microbiota composition and the targeted treatment against certain expression of miRNAs.
Collapse
Affiliation(s)
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- *Correspondence: Sanda Maria Cretoiu ;
| | - Dragos Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| |
Collapse
|
26
|
Callender C, Attaye I, Nieuwdorp M. The Interaction between the Gut Microbiome and Bile Acids in Cardiometabolic Diseases. Metabolites 2022; 12:65. [PMID: 35050187 PMCID: PMC8778259 DOI: 10.3390/metabo12010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cardio-metabolic diseases (CMD) are a spectrum of diseases (e.g., type 2 diabetes, atherosclerosis, non-alcohol fatty liver disease (NAFLD), and metabolic syndrome) that are among the leading causes of morbidity and mortality worldwide. It has long been known that bile acids (BA), which are endogenously produced signalling molecules from cholesterol, can affect CMD risk and progression and directly affect the gut microbiome (GM). Moreover, studies focusing on the GM and CMD risk have dramatically increased in the past decade. It has also become clear that the GM can function as a "new" endocrine organ. BA and GM have a complex and interdependent relationship with several CMD pathways. This review aims to provide a comprehensive overview of the interplay between BA metabolism, the GM, and CMD risk and progression.
Collapse
Affiliation(s)
- Cengiz Callender
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Liu H, Nguyen HH, Yoon KT, Lee SS. Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:849253. [PMID: 36926084 PMCID: PMC10013066 DOI: 10.3389/fnetp.2022.849253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Cardiac dysfunction associated with cirrhosis in the absence of preexisting heart disease is a condition known as cirrhotic cardiomyopathy (CCM). Cardiac abnormalities consist of enlargement of cardiac chambers, attenuated systolic and diastolic contractile responses to stress stimuli, and repolarization changes. CCM may contribute to cardiovascular morbidity and mortality after liver transplantation and other major surgeries, and also to the pathogenesis of hepatorenal syndrome. The underlying mechanisms of CCM are poorly understood and as such medical therapy is an area of unmet medical need. The present review focuses on the pathogenic mechanisms responsible for development of CCM. The two major concurrent mechanistic pathways are the inflammatory phenotype due to portal hypertension, and protein/lipid synthetic/metabolic defects due to cirrhosis and liver insufficiency. The inflammatory phenotype arises from intestinal congestion due to portal hypertension, resulting in bacteria/endotoxin translocation into the systemic circulation. The cytokine storm associated with inflammation, particularly TNFα acting via NFκB depresses cardiac function. They also stimulate two evanescent gases, nitric oxide and carbon monoxide which produce cardiodepression by cGMP. Inflammation also stimulates the endocannabinoid CB-1 pathway. These systems inhibit the stimulatory beta-adrenergic contractile pathway. The liver insufficiency of cirrhosis is associated with defective synthesis or metabolism of several substances including proteins and lipids/lipoproteins. The protein defects including titin and collagen contribute to diastolic dysfunction. Other protein abnormalities such as a switch of myosin heavy chain isoforms result in systolic dysfunction. Lipid biochemical changes at the cardiac sarcolemmal plasma membrane result in increased cholesterol:phospholipid ratio and decreased membrane fluidity. Final common pathway changes involve abnormal cardiomyocyte intracellular ion kinetics, particularly calcium. In conclusion, cirrhotic cardiomyopathy is caused by two pathways of cellular and molecular dysfunction/damage due to hepatic insufficiency and portal hypertension.
Collapse
Affiliation(s)
- Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Henry H Nguyen
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Ki Tae Yoon
- Liver Center, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Samuel S Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
29
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Feng X, Zhai G, Yang J, Liu Y, Zhou Y, Guo Q. Myocardial Infarction and Coronary Artery Disease in Menopausal Women With Type 2 Diabetes Mellitus Negatively Correlate With Total Serum Bile Acids. Front Endocrinol (Lausanne) 2021; 12:754006. [PMID: 34675887 PMCID: PMC8524089 DOI: 10.3389/fendo.2021.754006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background As metabolic molecules, bile acids (BAs) not only promote the absorption of fat-soluble nutrients, but they also regulate many metabolic processes, including the homeostasis of glucose and lipids. Although total serum BA (TBA) measurement is a readily available clinical test related to coronary artery disease (CAD), myocardial infarction (MI), and type 2 diabetes mellitus (T2DM), the relationship between TBA and these pathological conditions remain unclear, and research on this topic is inconclusive. Methods This study enrolled 20,255 menopausal women aged over 50 years, including 6,421 T2DM patients. The study population was divided into different groups according to the median TBA level in order to explore the clinical characteristics of menopausal women with different TBA levels. Spline analyses, generalized additive model (GAM) model and regression analyses based on TBA level were used to explore the relationship between TBA and different diseases independently, including CAD and MI, or in combination with T2DM. Results Both in the general population and in the T2DM subgroup, the TBA level was significantly lower in CAD patients than in non-CAD patients. Spline analyses indicated that within normal clinical range of TBA concentration (0-10 µmol/L), the presence of CAD and MI showed similar trends in total and T2DM population. Similarly, the GAM model indicated that within the 0-10 μmol/L clinical range, the predicted probability for CAD and MI alone and in combination with T2DM was negatively correlated with TBA concentration. Multivariate regression analysis suggested that low TBA level was positively associated with the occurrence of CAD combined with T2DM (OR: 1.451; 95%CI: 1.141-1.847). Conclusions In menopausal women, TBA may represent a valuable clinical serum marker with negative correlation for CAD and MI in patients with T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Yujie Zhou
- *Correspondence: Yujie Zhou, ; Qianyun Guo,
| | | |
Collapse
|
31
|
Desai MS. Mechanistic insights into the pathophysiology of cirrhotic cardiomyopathy. Anal Biochem 2021; 636:114388. [PMID: 34587512 DOI: 10.1016/j.ab.2021.114388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/22/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Myocardial dysfunction in end stage cirrhotic liver disease, termed cirrhotic cardiomyopathy, is a long known, but little understood comorbidity seen in ∼50% of adults and children who present for liver transplantation. Structural, functional, hemodynamic and electrocardiographic aberrations that occur in the heart as a direct consequence of a damaged liver, is associated with multi-organ failure and increased mortality and morbidity in patients undergoing surgical procedures such as porto-systemic shunt placement and liver transplantation. Despite its clinical significance and rapid advances in science and pharmacotherapy, there is yet no specific treatment for this disease. This may be due to a lack of understanding of the pathogenesis and mechanisms behind how a cirrhotic liver causes cardiac pathology. This review will focus specifically on insights into the molecular mechanisms that drive this liver-heart interaction. Deeper understanding of the etio-pathogenesis of cirrhotic cardiomyopathy will allow us to design and test treatments that can be targeted to prevent and/or reverse this co-morbid consequence of liver failure and improve health care delivery and outcomes in patients with cirrhosis.
Collapse
Affiliation(s)
- Moreshwar S Desai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine and Liver ICU. Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Johansen K, Khodakaram K, Lundgren L, Hasselgren K, Gasslander T, Sandström P, Bratlie SO, Björnsson B. Preoperative Biliary Drainage Does Not Independently Reduce Survival After Pancreaticoduodenectomy Among Patients With Pancreatic Ductal Adenocarcinoma: A National Registry Study. ANNALS OF SURGERY OPEN 2021; 2:e090. [PMID: 37635825 PMCID: PMC10455057 DOI: 10.1097/as9.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 11/26/2022] Open
Abstract
Objective This study aimed to explore a possible relationship between preoperative biliary drainage (PBD) and overall survival in a national cohort of Swedish patients who underwent pancreaticoduodenectomy (PD) for pancreatic ductal adenocarcinoma (PDAC). Background PBD has been shown to increase postoperative complications after PD, but its use is steadily increasing. There are a few small studies that have indicated that PBD might in itself negatively affect overall survival after PD. Methods Patients from the Swedish National Registry for tumors in the pancreatic and periampullary region diagnosed from 2010 to 2019 who underwent PD for PDAC were included. Kaplan-Meier curves, log-rank tests and Cox proportional hazards analyses were performed to investigate survival. Results Out of 15,818 patients in the registry, 3113 had undergone PD, of whom 1471 had a histopathological diagnosis of PDAC. Patients who had undergone PBD had significantly worse survival, but the effect of PBD disappeared in the multivariable analysis when elevated bilirubin at any time was included. Conclusions PBD does not independently influence survival after PD for PDAC, but this study implies that even a nominally increased preoperative bilirubin level might impair long-term survival.
Collapse
Affiliation(s)
- Karin Johansen
- From the Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kaveh Khodakaram
- Department of Gastrosurgical Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Lundgren
- From the Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kristina Hasselgren
- From the Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Thomas Gasslander
- From the Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per Sandström
- From the Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Svein Olav Bratlie
- Department of Gastrosurgical Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bergthor Björnsson
- From the Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Fang X, Zhang S, Wang Z, Zhou J, Qi C, Song J. Cigarette smoke extract combined with LPS down-regulates the expression of MRP2 in chronic pulmonary inflammation may be related to FXR. Mol Immunol 2021; 137:174-186. [PMID: 34273652 DOI: 10.1016/j.molimm.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
The transporter multidrug resistance protein 2 (MRP2) plays an important role in chronic pulmonary inflammation by transporting cigarette smoke and other related inflammatory mediators. However, it is not completely clear whether pulmonary inflammation caused by cigarette smoke extract (CSE) and lipopolysaccharide (LPS) is related to MRP2 and its signal factors. In this study, CSE combined with LPS was used to establish an inflammation model in vivo and in vitro. We found that compared with the control group, after CSE combined with LPS treatment, the expression of MRP2 in rat lung tissue in vivo and human alveolar cell line in vitro was down-regulated, while the expression of inflammatory factors was up-regulated. Through silencing and overexpression of FXR, it was found that silent FXR could down-regulate MRP2 and up-regulate the expression of inflammatory factors. On the contrary, overexpression of FXR could up-regulate MRP2 and down-regulate the expression of inflammatory factors. Our results show that CSE combined with LPS can down-regulate the expression of MRP2 under inflammatory conditions, and the down-regulation of MRP2 expression may be achieved partly through the FXR signal pathway.
Collapse
Affiliation(s)
- Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
34
|
Abstract
Cirrhotic cardiomyopathy is a critical factor that causes morbidity and mortality in crucial conditions such as liver transplantation. In animal model, the common pathophysiologic mechanisms of cirrhotic cardiomyopathy are similar to those associated with bile duct ligation (BDL). Overproduction of inflammatory and oxidant markers plays a crucial role in cirrhotic cardiomyopathy. Spermidine, a multifunctional polyamine, is known for its antioxidant and anti-inflammatory effects. In this study, we investigated the effects of spermidine on development of cirrhotic cardiomyopathy in BDL rats. Rats were randomly housed in 6 groups. Except the normal and sham groups, BDL was performed for all the control and spermidine groups. Seven days after operation, 3 different doses of spermidine (5, 10 and 50 mg/kg) were administrated until day 28, in spermidine groups. At the end of the fourth week, the electrocardiography (ECG) and papillary muscle isolation were performed. The serum level of tumor necrosis factor-a (TNF-α), interleukin-1β (IL-1β), and IL-10 and cardiac level of superoxide dismutase, glutathione (GSH). and malondialdehyde (MDA) were assessed. Furthermore, the nuclear factor-κB (NF-κB) expression was assessed by western blot. Cardiac histopathological changes were monitored. The serum levels of magnesium (Mg) and potassium (K) were investigated. Control group, exhibited exaggerated signs of cirrhotic cardiomyopathy in comparison with the sham group. Co-administration of spermidine at the dose of 10 mg/kg in BDL rats significantly improved the cardiac condition, reduced the inflammatory mediators, and increased antioxidant enzymes. In addition, the histopathologic findings were in accordance with the other results of the study. Besides, there was no significant alteration in serum levels of Mg and K. This study demonstrates that spermidine at the dose of 10 mg/kg significantly improved the cirrhotic cardiomyopathy in BDL model in rats.
Collapse
|
35
|
Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC. Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 2021; 321:H275-H291. [PMID: 34142885 DOI: 10.1152/ajpheart.00225.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol consumption represents a significant public health problem, and excessive ethanol intake is a risk factor for cardiovascular disease (CVD), one of the leading causes of death and disability worldwide. The mechanisms underlying the effects of ethanol on the cardiovascular system are complex and not fully comprehended. The gut microbiota and their metabolites are indispensable symbionts essential for health and homeostasis and therefore, have emerged as potential contributors to ethanol-induced cardiovascular system dysfunction. By mechanisms that are not completely understood, the gut microbiota modulates the immune system and activates several signaling pathways that stimulate inflammatory responses, which in turn, contribute to the development and progression of CVD. This review summarizes preclinical and clinical evidence on the effects of ethanol in the gut microbiota and discusses the mechanisms by which ethanol-induced gut dysbiosis leads to the activation of the immune system and cardiovascular dysfunction. The cross talk between ethanol consumption and the gut microbiota and its implications are detailed. In summary, an imbalance in the symbiotic relationship between the host and the commensal microbiota in a holobiont, as seen with ethanol consumption, may contribute to CVD. Therefore, manipulating the gut microbiota, by using antibiotics, probiotics, prebiotics, and fecal microbiota transplantation might prove a valuable opportunity to prevent/mitigate the deleterious effects of ethanol and improve cardiovascular health and risk prevention.
Collapse
Affiliation(s)
- Carla B P Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Liao HY, Wang CY, Lee CH, Kao HL, Wu WK, Kuo CH. Development of an Efficient and Sensitive Chemical Derivatization-Based LC-MS/MS Method for Quantifying Gut Microbiota-Derived Metabolites in Human Plasma and Its Application in Studying Cardiovascular Disease. J Proteome Res 2021; 20:3508-3518. [PMID: 34053222 DOI: 10.1021/acs.jproteome.1c00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, the gut microbiota has been found to be associated with many diseases, such as inflammatory bowel disease, depression, Parkinson's disease, cancer, metabolic syndrome, and cardiovascular disease (CVD). Among various gut microbiota-derived metabolites (GMs), short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (TRP) metabolites are the most frequently discussed metabolites. LC-MS/MS shows advantages in quantifying the levels of metabolites with good sensitivity and selectivity; however, the poor ionization efficiency and polar characteristics of SCFAs make their analysis challenging, especially when analyzing plasma samples with low SCFA concentrations. Moreover, without characteristic fragment ions for unconjugated BAs and different detection ion modes for TRP metabolites and BAs, GM analysis is complex and time-consuming. To overcome these problems, we developed a derivatization method combined with LC-MS/MS to enhance the sensitivity and LC retention of GMs. Through derivatization with 3-nitrophenylhydrazine (3-NPH), 7 SCFAs, 9 bile acids, and 6 tryptophan metabolites can be simultaneously analyzed via separation within 14 min on a reversed-phase C18 column. For accurate quantification, 13C6-3NPH-labeled standards were used as one-to-one internal standards. This derivatization approach was optimized and then validated. We further applied this method to investigate the targeted GM profile in patients with CVD. The results showed a significant reduction in plasma butyrate levels in CVD patients compared with healthy controls, suggesting its potentially protective role in CVD. In summary, this work provides a sensitive and effective LC-MS/MS method for simultaneously quantifying gut microbiota-related metabolites in human plasma, which could benefit various future gut microbiota-related studies.
Collapse
Affiliation(s)
- Hsin-Yu Liao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Chin-Yi Wang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Ching-Hua Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Hsien-Li Kao
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei 10051, Taiwan
| |
Collapse
|
37
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases II: The bile acid score survival prognostic model. World J Hepatol 2021; 13:543-556. [PMID: 34131469 PMCID: PMC8173345 DOI: 10.4254/wjh.v13.i5.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholestatic liver diseases are characterized by an accumulation of toxic bile acids (BA) in the liver, blood and other tissues which lead to progressive liver injury and poor prognosis in patients.
AIM To discover and validate prognostic biomarkers of cholestatic liver diseases based on the urinary BA profile.
METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and investigated the use of the urinary BA profile to develop survival models that can predict the prognosis of hepatobiliary diseases. The urinary BA profile, a set of non-BA parameters, and the adverse events of liver transplant and/or death were monitored in 257 patients with cholestatic liver diseases for up to 7 years. The BA profile was characterized by calculating BA indices, which quantify the composition, metabolism, hydrophilicity, formation of secondary BA, and toxicity of the BA profile. We have developed and validated the bile-acid score (BAS) model (a survival model based on BA indices) to predict the prognosis of cholestatic liver diseases.
RESULTS We have developed and validated a survival model based on BA (the BAS model) indices to predict the prognosis of cholestatic liver diseases. Our results demonstrate that the BAS model is more accurate and results in higher true-positive and true-negative prediction of death compared to both non-BAS and model for end-stage liver disease (MELD) models. Both 5- and 3-year survival probabilities markedly decreased as a function of BAS. Moreover, patients with high BAS had a 4-fold higher rate of death and lived for an average of 11 mo shorter than subjects with low BAS. The increased risk of death with high vs low BAS was also 2-4-fold higher and the shortening of lifespan was 6-7-mo lower compared to MELD or non-BAS. Similarly, we have shown the use of BAS to predict the survival of patients with and without liver transplant (LT). Therefore, BAS could be used to define the most seriously ill patients, who need earlier intervention such as LT. This will help provide guidance for timely care for liver patients.
CONCLUSION The BAS model is more accurate than MELD and non-BAS models in predicting the prognosis of cholestatic liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
- Department of Pharmaceutical Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Marco Olivera
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Jane Meza
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198-4375, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| |
Collapse
|
38
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases I: Diagnostic markers. World J Hepatol 2021; 13:433-455. [PMID: 33959226 PMCID: PMC8080550 DOI: 10.4254/wjh.v13.i4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis.
AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile.
METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases.
RESULTS Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases.
CONCLUSION BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Marco Olivera
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, College of Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
39
|
Gao J, Yuan G, Xu Z, Lan L, Xin W. Chenodeoxycholic and deoxycholic acids induced positive inotropic and negative chronotropic effects on rat heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:765-773. [PMID: 32808070 DOI: 10.1007/s00210-020-01962-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Bile acids are endogenous amphiphilic steroids from the metabolites of cholesterol. Studies showed that they might contribute to the pathogenesis of cardiopathy in cholestatic liver diseases. Chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) is associated with colon cancer, gallstones, and gastrointestinal disorders. However, little information is available regarding their cardiac effects. Here, we reported that CDCA (100 μM) and DCA (100 μM) significantly increased the left ventricular developed pressure of the isolated rat hearts to 122.3 ± 5.6% and 145.1 ± 13.7%, and the maximal rate of the pressure development rising and descending (± dP/dtmax) to 103.4 ± 17.6% and 124.4 ± 37.7% of the basal levels, respectively. They decreased the heart rate and prolonged the RR, QRS, and QT intervals of Langendorff-perfused hearts in a concentration-dependent manner. Moreover, CDCA and DCA increased the developed tension of left ventricular muscle and the cytosolic Ca2+ concentrations in left ventricular myocytes; these functions positively coordinated with their inotropic effects on hearts. Additionally, CDCA (150 μM) and DCA (100 μM) decreased the sinoatrial node beating rate to 80.6 ± 3.0% and 79.7 ± 0.9% of the basal rate (334.2 ± 10.7 bpm), respectively. These results were consistent with their chronotropic effects. In conclusion, CDCA and DCA induced positive inotropic effects by elevating the Ca2+ in left ventricular myocytes. They exerted negative chronotropic effects by lowering the pace of the sinoatrial node in rat heart. These results indicated that the potential role of bile acids in cardiopathy related to cholestasis.
Collapse
Affiliation(s)
- Jie Gao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Guanyin Yuan
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Zhan Xu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Luyao Lan
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Wenkuan Xin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
40
|
Gesper M, Nonnast ABH, Kumowski N, Stoehr R, Schuett K, Marx N, Kappel BA. Gut-Derived Metabolite Indole-3-Propionic Acid Modulates Mitochondrial Function in Cardiomyocytes and Alters Cardiac Function. Front Med (Lausanne) 2021; 8:648259. [PMID: 33829028 PMCID: PMC8019752 DOI: 10.3389/fmed.2021.648259] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The gut microbiome has been linked to the onset of cardiometabolic diseases, in part facilitated through gut microbiota-dependent metabolites such as trimethylamine-N-oxide. However, molecular pathways associated to heart failure mediated by microbial metabolites remain largely elusive. Mitochondria play a pivotal role in cellular energy metabolism and mitochondrial dysfunction has been associated to heart failure pathogenesis. Aim of the current study was to evaluate the impact of gut-derived metabolites on mitochondrial function in cardiomyocytes via an in vitro screening approach. Methods: Based on a systematic Medline research, 25 microbial metabolites were identified and screened for their metabolic impact with a focus on mitochondrial respiration in HL-1 cardiomyocytes. Oxygen consumption rate in response to different modulators of the respiratory chain were measured by a live-cell metabolic assay platform. For one of the identified metabolites, indole-3-propionic acid, studies on specific mitochondrial complexes, cytochrome c, fatty acid oxidation, mitochondrial membrane potential, and reactive oxygen species production were performed. Mitochondrial function in response to this metabolite was further tested in human hepatic and endothelial cells. Additionally, the effect of indole-3-propionic acid on cardiac function was studied in isolated perfused hearts of C57BL/6J mice. Results: Among the metabolites examined, microbial tryptophan derivative indole-3-propionic acid could be identified as a modulator of mitochondrial function in cardiomyocytes. While acute treatment induced enhancement of maximal mitochondrial respiration (+21.5 ± 7.8%, p < 0.05), chronic exposure led to mitochondrial dysfunction (-18.9 ± 9.1%; p < 0.001) in cardiomyocytes. The latter effect of indole-3-propionic acids could also be observed in human hepatic and endothelial cells. In isolated perfused mouse hearts, indole-3-propionic acid was dose-dependently able to improve cardiac contractility from +26.8 ± 11.6% (p < 0.05) at 1 μM up to +93.6 ± 14.4% (p < 0.001) at 100 μM. Our mechanistic studies on indole-3-propionic acids suggest potential involvement of fatty acid oxidation in HL-1 cardiomyocytes. Conclusion: Our data indicate a direct impact of microbial metabolites on cardiac physiology. Gut-derived metabolite indole-3-propionic acid was identified as mitochondrial modulator in cardiomyocytes and altered cardiac function in an ex vivo mouse model.
Collapse
Affiliation(s)
- Maren Gesper
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Alena B H Nonnast
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nina Kumowski
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Robert Stoehr
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Katharina Schuett
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ben A Kappel
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
41
|
Win A, Delgado A, Jadeja RN, Martin PM, Bartoli M, Thounaojam MC. Pharmacological and Metabolic Significance of Bile Acids in Retinal Diseases. Biomolecules 2021; 11:biom11020292. [PMID: 33669313 PMCID: PMC7920062 DOI: 10.3390/biom11020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bile acids (BAs) are amphipathic sterols primarily synthesized from cholesterol in the liver and released in the intestinal lumen upon food intake. BAs play important roles in micellination of dietary lipids, stimulating bile flow, promoting biliary phospholipid secretion, and regulating cholesterol synthesis and elimination. Emerging evidence, however, suggests that, aside from their conventional biological function, BAs are also important signaling molecules and therapeutic tools. In the last decade, the therapeutic applications of BAs in the treatment of ocular diseases have gained great interest. Despite the identification of BA synthesis, metabolism, and recycling in ocular tissues, much remains unknown with regards to their biological significance in the eye. Additionally, as gut microbiota directly affects the quality of circulating BAs, their analysis could derive important information on changes occurring in this microenvironment. This review aims at providing an overview of BA metabolism and biological function with a focus on their potential therapeutic and diagnostic use for retinal diseases.
Collapse
Affiliation(s)
- Alice Win
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Amanda Delgado
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pamela M. Martin
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Menaka C. Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-9163 or +706-721-7910; Fax: +706-721-9799
| |
Collapse
|
42
|
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021; 13:1-24. [PMID: 33764858 PMCID: PMC8007165 DOI: 10.1080/19490976.2021.1897212] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in cardio-metabolic diseases with diet being among the strongest modulators of gut microbiota composition and function. Resistant dietary carbohydrates are fermented to short-chain fatty acids (SCFAs) by the gut bacteria. Fiber and omega-3 rich diets increase SCFAs production and abundance of SCFA-producing bacteria. Likewise, SCFAs can improve gut barrier integrity, glucose, and lipid metabolism, regulate the immune system, the inflammatory response, and blood pressure. Therefore, targeting the gut microbiota with dietary strategies leading to increased SCFA production may benefit cardio-metabolic health. In this review, we provide an overview of the association between diet, SCFAs produced by the gut microbiota and cardio-metabolic diseases. We first discuss the association between the human gut microbiota and cardio-metabolic diseases, then investigate the role of SCFAs and finally explore the beneficial effects of specific dietary interventions that can improve cardio-metabolic outcomes through boosting the SCFA production.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| | - Ana M. Valdes
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
- School of Medicine, Nottingham City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| |
Collapse
|
43
|
Jamshidi V, Hashemi SA, Khalili A, Fallah P, Ahmadian-Attari MM, Beikzadeh L, Mazloom R, Najafizadeh P, Bayat G. Saffron offers hepatoprotection via up-regulation of hepatic farnesoid-X-activated receptors in a rat model of acetaminophen-induced hepatotoxicity. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:622-632. [PMID: 34804899 PMCID: PMC8588952 DOI: 10.22038/ajp.2021.18227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The most important toxicity of acetaminophen is hepatotoxicity. Farnesoid X-activated receptors (FXR) are one of the nuclear receptor superfamily members which have a pivotal role in the bile acid regulation. The objective of the present study was to examine the role of FXR in mediating the hepatoprotective effects of saffron. METHODS Male Wister rats were randomly allocated into five groups including a control, vehicle, acetaminophen and two saffron extract groups of 150 and 300 mg/kg/day. The liver function and hepatic FXR expression were evaluated using biochemical assay and real time RT-PCR, respectively. Data analysis was performed using the one-way ANOVA followed by Duncan's multiple range test. RESULTS Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) of the acetaminophen group were significantly higher than the control group whereas those of the extract-treated groups were significantly lower than those of the acetaminophen group. The real time RT-PCR findings showed a non-significant down-regulation of FXR mRNA expression, however, a dose-dependent FXR up-regulation was seen in the groups treated with 150 and 300 mg/kg of the extract for 2.67 (p=0.002) and 10.22 (p=0.0001) fold, respectively. CONCLUSION The main finding of the present study was that the hepatic FXR up-regulation had an important role in saffron hepatoprotective activity.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Hashemi
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran ,Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Medical Laboratory Sciences,Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdi Ahmadian-Attari
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran ,Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Beikzadeh
- Department of Medical Laboratory Sciences,Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roham Mazloom
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parvaneh Najafizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran ,Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran ,Corresponding Author: Tel: +98-2634287425 , Fax: +98-2634287425,
| |
Collapse
|
44
|
Lenarczyk M, Laiakis EC, Mattson DL, Johnson BD, Kronenberg A, North PE, Komorowski R, Mäder M, Baker JE. Irradiation of the kidneys causes pathologic remodeling in the nontargeted heart: A role for the immune system. FASEB Bioadv 2020; 2:705-719. [PMID: 33336158 PMCID: PMC7734425 DOI: 10.1096/fba.2020-00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac disease is a frequent and significant adverse event associated with radiotherapy for cancer. Identifying the underlying mechanism responsible for radiation injury to the heart will allow interventions to be developed. In the present study, we tested if local kidney irradiation results in remodeling of the shielded, nontargeted heart. One kidney, two kidneys, or the total body of male WAG and Dahl SS rats were irradiated with 10 Gy of X-rays. Local kidney irradiation resulted in systemic hypertension, increased BUN, infiltration of T lymphocytes, natural killer cells, and macrophages into the renal cortex and medulla, and renal fibrosis. Local irradiation of kidneys in WAG rats resulted in remodeling in the nontargeted heart after 120 days, manifested by perivascular fibrosis and increased interventricular septal thickness, but was not seen in Dahl SS rats due to a high baseline level of fibrosis in the sham-irradiated animals. Genetic depletion of T cells mitigated the nephropathy after local kidney irradiation, indicating a role for the immune system in mediating this outcome. Local kidney irradiation resulted in a cascade of pro-inflammatory cytokines and low-molecular weight metabolites into the circulation associated with transmission of signals resulting in pathologic remodeling in the nontargeted heart. A new model is proposed whereby radiation-induced cardiac remodeling in susceptible animals is indirect, with lower hemi body organs such as the kidney exporting factors into the circulation that cause remodeling outside of the irradiated field in the shielded, nontargeted heart. This nontargeted effect appears to be mediated, in part, by the immune system.
Collapse
Affiliation(s)
| | | | | | | | - Amy Kronenberg
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | | | | | | |
Collapse
|
45
|
Liu J, Qu J, Chen H, Ge P, Jiang Y, Xu C, Chen H, Shang D, Zhang G. The pathogenesis of renal injury in obstructive jaundice: A review of underlying mechanisms, inducible agents and therapeutic strategies. Pharmacol Res 2020; 163:105311. [PMID: 33246170 DOI: 10.1016/j.phrs.2020.105311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Kidney injury is one of the main complications of obstructive jaundice (OJ) and its pathogenesis has not been clarified. As an independent risk factor for OJ associated with significant morbidity and mortality, it can be mainly divided into two types of morphological injury and functional injury. We called these dysfunctions caused by OJ-induced kidney injury as OJKI. However, the etiology of OJKI is still not fully clear, and research studies on how OJKI becomes a facilitated factor of OJ are limited. This article reviews the underlying pathological mechanism from five aspects, including metabolisms of bile acids, hemodynamic disturbances, oxidative stress, inflammation and the organic transporter system. Some nephrotoxic drugs and measures that can enhance or reduce the renal function with potential intervention in perioperative periods to alleviate the incidence of OJKI were also described. Furthermore, a more in-depth study on the pathogenesis of OJKI from multiple aspects for exploring more targeted treatment measures were further put forward, which may provide new methods for the prevention and treatment of clinical OJKI and improve the prognosis.
Collapse
Affiliation(s)
- Jiayue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Haiyang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Yuankuan Jiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Caiming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Hailong Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Guixin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
46
|
Borg MJ, Rayner CK, Jones KL, Horowitz M, Xie C, Wu T. Gastrointestinal Mechanisms Underlying the Cardiovascular Effect of Metformin. Pharmaceuticals (Basel) 2020; 13:ph13110410. [PMID: 33266396 PMCID: PMC7700183 DOI: 10.3390/ph13110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin, the most widely prescribed drug therapy for type 2 diabetes, has pleiotropic benefits, in addition to its capacity to lower elevated blood glucose levels, including mitigation of cardiovascular risk. The mechanisms underlying the latter remain unclear. Mechanistic studies have, hitherto, focused on the direct effects of metformin on the heart and vasculature. It is now appreciated that effects in the gastrointestinal tract are important to glucose-lowering by metformin. Gastrointestinal actions of metformin also have major implications for cardiovascular function. This review summarizes the gastrointestinal mechanisms underlying the action of metformin and their potential relevance to cardiovascular benefits.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210096, China
- Correspondence: ; Tel.: +61-8-8313-6535
| |
Collapse
|
47
|
Montagnana M, Danese E, Giontella A, Bonafini S, Benati M, Tagetti A, Dalbeni A, Cavarzere P, Gaudino R, Pucci M, Salvagno GL, Antoniazzi F, Lippi G, Maffeis C, Fava C. Circulating Bile Acids Profiles in Obese Children and Adolescents: A Possible Role of Sex, Puberty and Liver Steatosis. Diagnostics (Basel) 2020; 10:diagnostics10110977. [PMID: 33233601 PMCID: PMC7699673 DOI: 10.3390/diagnostics10110977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
Background. Childhood obesity is becoming a major health issue and contributes to increasing the risk of cardiovascular disease in adulthood. Since dysregulated metabolism of bile acids (BAs) plays a role in progression of obesity-related disorders, including steatosis and hypertension, this study aimed to investigate BAs profiles in obese children with and without steatosis and hypertension, as well as exploring the interplay between BAs profile and vascular function. Methods. BAs concentrations were quantified with liquid chromatography-tandem mass spectrometry in 69 overweight/obese children and adolescents (mean age, 11.6 ± 2.5 years; 30 females). Liver steatosis was defined with abdomen ultrasonography, whilst hypertension was defined according to the current European guidelines. Vascular function was assessed with ultrasound technique, by measuring carotid intima media thickness (cIMT) and common carotid artery distensibility (cDC). Results. Total and individual glycine-conjugated BAs concentrations were found to be significantly higher in males compared to females, as well as in pre-pubertal compared to pubertal stage (p < 0.05 for both). No difference in BAs concentration was observed between hypertensive and normotensive subjects. Total BAs and glycine conjugated BAs were significantly higher in participants with steatosis compared to those without (p = 0.004 for both). The values of total glycine-conjugate acids were positively correlated with cDC and this association remained significant in linear regression after adjusting for sex, age, pubertal stage, body mass index and aspartate aminotransferase. Conclusion. The results suggest a possible role of BAs in the pathogenesis of liver and/or vascular damage in children and adolescent. Further studies are hence needed to validate these preliminary findings.
Collapse
Affiliation(s)
- Martina Montagnana
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (E.D.); (M.B.); (M.P.); (G.L.S.); (G.L.)
- Correspondence:
| | - Elisa Danese
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (E.D.); (M.B.); (M.P.); (G.L.S.); (G.L.)
| | - Alice Giontella
- “General Medicine and Hypertension” Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.G.); (S.B.); (A.T.); (A.D.); (C.F.)
| | - Sara Bonafini
- “General Medicine and Hypertension” Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.G.); (S.B.); (A.T.); (A.D.); (C.F.)
| | - Marco Benati
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (E.D.); (M.B.); (M.P.); (G.L.S.); (G.L.)
| | - Angela Tagetti
- “General Medicine and Hypertension” Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.G.); (S.B.); (A.T.); (A.D.); (C.F.)
| | - Andrea Dalbeni
- “General Medicine and Hypertension” Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.G.); (S.B.); (A.T.); (A.D.); (C.F.)
| | - Paolo Cavarzere
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37126 Verona, Italy; (P.C.); (R.G.); (F.A.); (C.M.)
| | - Rossella Gaudino
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37126 Verona, Italy; (P.C.); (R.G.); (F.A.); (C.M.)
| | - Mairi Pucci
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (E.D.); (M.B.); (M.P.); (G.L.S.); (G.L.)
| | - Gian Luca Salvagno
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (E.D.); (M.B.); (M.P.); (G.L.S.); (G.L.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37126 Verona, Italy; (P.C.); (R.G.); (F.A.); (C.M.)
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (E.D.); (M.B.); (M.P.); (G.L.S.); (G.L.)
| | - Claudio Maffeis
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37126 Verona, Italy; (P.C.); (R.G.); (F.A.); (C.M.)
| | - Cristiano Fava
- “General Medicine and Hypertension” Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.G.); (S.B.); (A.T.); (A.D.); (C.F.)
| |
Collapse
|
48
|
Jia B, Park D, Hahn Y, Jeon CO. Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes 2020; 11:1300-1313. [PMID: 32329665 PMCID: PMC7524343 DOI: 10.1080/19490976.2020.1748261] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bile acid metabolism by the gut microbiome exerts both beneficial and harmful effects on host health. Microbial bile salt hydrolases (BSHs), which initiate bile acid metabolism, exhibit both positive and negative effects on host physiology. In this study, 5,790 BSH homologs were collected and classified into seven clusters based on a sequence similarity network. Next, the abundance and distribution of BSH in 380 metagenomes from healthy participants were analyzed. It was observed that different clusters occupied diverse ecological niches in the human microbiome and that the clusters with signal peptides were relatively abundant in the gut. Then, the association between BSH clusters and 12 human diseases was analyzed by comparing the abundances of BSH genes in patients (n = 1,605) and healthy controls (n = 1,540). The analysis identified a significant association between BSH gene abundance and 10 human diseases, including gastrointestinal diseases, obesity, type 2 diabetes, liver diseases, cardiovascular diseases, and neurological diseases. The associations were further validated by separate cohorts with inflammatory bowel diseases and colorectal cancer. These large-scale studies of enzyme sequences combined with metagenomic data provide a reproducible assessment of the association between gut BSHs and human diseases. This information can contribute to future diagnostic and therapeutic applications of BSH-active bacteria for improving human health.
Collapse
Affiliation(s)
- Baolei Jia
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,Department of Life Science, Chung-Ang University, Seoul, Republic of Korea,Baolei Jia Department of Life Science, Chung-Ang University, Seoul06974, Republic of Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea,CONTACT Che Ok Jeon
| |
Collapse
|
49
|
Zhang Y, Lickteig AJ, Liu J, Csanaky IL, Klaassen CD. Effects of ablation and activation of Nrf2 on bile acid homeostasis in male mice. Toxicol Appl Pharmacol 2020; 403:115170. [PMID: 32738332 DOI: 10.1016/j.taap.2020.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/16/2023]
Abstract
The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in bile acid (BA) homeostasis remains controversial. In this study, activation of Nrf2 was achieved either pharmacologically by CDDO-imidazolide (CDDO-Im) or genetically through a "gene dose-response" model consisting of Nrf2-null, wild-type (WT), Keap1-knockdown (Keap1-KD), and Keap1-hepatocyte knockout (Keap1-HKO) mice. In WT mice, CDDO-Im increased bile flow and decreased hepatic BAs, which was associated with a down-regulation of the canalicular BA efflux transporter Bsep and an increase in biliary BA excretion. In contrast, hepatic Bsep and biliary BA excretion were not altered in Keap1-KD or Keap1-HKO mice, suggesting that Nrf2 is not important for regulating Bsep or BA-dependent bile flow. In contrast, hepatic Mrp2 and Mrp3 were up-regulated by both pharmacological and genetic activations of Nrf2. Furthermore, ileal BA transporters (Asbt and Ostβ) and cholesterol transporters (Abcg5 and Abcg8) were down-regulated by both pharmacological and genetic activations of Nrf2, suggesting a role of Nrf2 in intestinal absorption of BAs and cholesterol. In Nrf2-null mice, CDDO-Im down-regulated hepatic BA uptake transporters (Ntcp, Oatp1a1, and Oatp1b2), leading to a 39-fold increase of serum BAs. To conclude, the present study demonstrates that activation of Nrf2 in mice up-regulates Mrp2 and Mrp3 in the liver and down-regulates BA and cholesterol transporters in the intestine.
Collapse
Affiliation(s)
- Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital & Clinics, Kansas City, MO 64108, USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
50
|
Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Curr Atheroscler Rep 2020; 22:47. [PMID: 32681421 DOI: 10.1007/s11883-020-00863-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal is to review the connection between gut microbiota and cardiovascular disease, with specific emphasis on bile acids, and the influence of diet in modulating this relationship. RECENT FINDINGS Bile acids exert a much broader range of biological functions than initially recognized, including regulation of cardiovascular function through direct and indirect mechanisms. There is a bi-directional relationship between gut microbiota modulation of bile acid-signaling properties, and their effects on gut microbiota composition. Evidence, primarily from rodent models and limited human trials, suggest that dietary modulation of the gut microbiome significantly impacts bile acid metabolism and subsequently host physiological response(s). Available evidence suggests that the link between diet, gut microbiota, and CVD risk is potentially mediated via bile acid effects on diverse metabolic pathways. However, further studies are needed to confirm/expand and translate these findings in a clinical setting.
Collapse
|