1
|
Song Y, Tan KB, Zhou SF, Zhan G. Biocompatible Copper-Based Nanocomposites for Combined Cancer Therapy. ACS Biomater Sci Eng 2024; 10:3673-3692. [PMID: 38717176 DOI: 10.1021/acsbiomaterials.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper (Cu) and Cu-based nanomaterials have received tremendous attention in recent years because of their unique physicochemical properties and good biocompatibility in the treatment of various diseases, especially cancer. To date, researchers have designed and fabricated a variety of integrated Cu-based nanocomplexes with distinctive nanostructures and applied them in cancer therapy, mainly including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), chemodynamic therapy (CDT), photodynamic therapy (PDT), cuproptosis-mediated therapy, etc. Due to the limited effect of a single treatment method, the development of composite diagnostic nanosystems that integrate chemotherapy, PTT, CDT, PDT, and other treatments is of great significance and offers great potential for the development of the next generation of anticancer nanomedicines. In view of the rapid development of Cu-based nanocomplexes in the field of cancer therapy, this review focuses on the current state of research on Cu-based nanomaterials, followed by a discussion of Cu-based nanocomplexes for combined cancer therapy. Moreover, the current challenges and future prospects of Cu-based nanocomplexes in clinical translation are proposed to provide some insights into the design of integrated Cu-based nanotherapeutic platforms.
Collapse
Affiliation(s)
- Yibo Song
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Kok Bing Tan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| |
Collapse
|
2
|
Xu P, Xing H, Ma Y, Ding X, Li T, Zhang Y, Liu L, Ma J, Niu Q. Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability. Biol Trace Elem Res 2024:10.1007/s12011-024-04226-0. [PMID: 38760610 DOI: 10.1007/s12011-024-04226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe2+) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe2+ and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.
Collapse
Affiliation(s)
- Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiaolong Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2nd Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
3
|
Deng S, Wang WX. Dynamic Regulation of Intracellular Labile Cu(I)/Cu(II) Cycle in Microalgae Chlamydomonas reinhardtii: Disrupting the Balance by Cu Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5255-5266. [PMID: 38471003 DOI: 10.1021/acs.est.3c10257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The labile metal pool involved in intracellular trafficking and homeostasis is the portion susceptible to environmental stress. Herein, we visualized the different intracellular distributions of labile Cu(I) and Cu(II) pools in the alga Chlamydomonas reinhardtii. We first demonstrated that labile Cu(I) predominantly accumulated in the granules within the cytoplasmic matrix, whereas the labile Cu(II) pool primarily localized in the pyrenoid and chloroplast. The cell cycle played an integral role in balancing the labile Cu(I)/Cu(II) pools. Specifically, the labile Cu(II) pool primarily accumulated during the SM phase following cell division, while the labile Cu(I) pool dynamically changed during the G phase as cell size increased. Notably, the labile Cu(II) pool in algae at the SM stage exhibited heightened sensitivity to environmental Cu stress. Exogenous Cu stress disrupted the intracellular labile Cu(I)/Cu(II) cycle and balance, causing a shift toward the labile Cu(II) pool. Our proteomic analysis further identified a putative cupric reductase, potentially capable of reducing Cu(II) to Cu(I), and four putative multicopper oxidases, potentially capable of oxidizing Cu(I) to Cu(II), which may be involved in the conversion between the labile Cu(I) pool and labile Cu(II) pool. Our study elucidated a dynamic cycle of the intracellular labile Cu(I)/Cu(II) pools, which were accessible and responsive to environmental changes.
Collapse
Affiliation(s)
- Shaoxi Deng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z, Lei A. Cuproptosis: Harnessing Transition Metal for Cancer Therapy. ACS NANO 2023; 17:19581-19599. [PMID: 37820312 DOI: 10.1021/acsnano.3c07775] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Transition metal elements, such as copper, play diverse and pivotal roles in oncology. They act as constituents of metalloenzymes involved in cellular metabolism, function as signaling molecules to regulate the proliferation and metastasis of tumors, and are integral components of metal-based anticancer drugs. Notably, recent research reveals that excessive copper can also modulate the occurrence of programmed cell death (PCD), known as cuprotosis, in cancer cells. This modulation occurs through the disruption of tumor cell metabolism and the induction of proteotoxic stress. This discovery uncovers a mode of interaction between transition metals and proteins, emphasizing the intricate link between copper homeostasis and tumor metabolism. Moreover, they provide innovative therapeutic strategies for the precise diagnosis and treatment of malignant tumors. At the crossroads of chemistry and oncology, we undertake a comprehensive review of copper homeostasis in tumors, elucidating the molecular mechanisms underpinning cuproptosis. Additionally, we summarize current nanotherapeutic approaches that target cuproptosis and provide an overview of the available laboratory and clinical methods for monitoring this process. In the context of emerging concepts, challenges, and opportunities, we emphasize the significant potential of nanotechnology in the advancement of this field.
Collapse
Affiliation(s)
- Wuyin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Wentao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zishan Hang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Yueying Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, P. R. China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
5
|
Zhou C, Yang J, Liu T, Jia R, Yang L, Sun P, Zhao W. Copper metabolism and hepatocellular carcinoma: current insights. Front Oncol 2023; 13:1186659. [PMID: 37476384 PMCID: PMC10355993 DOI: 10.3389/fonc.2023.1186659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Copper is an essential trace element that acts as a cofactor in various enzyme active sites in the human body. It participates in numerous life activities, including lipid metabolism, energy metabolism, and neurotransmitter synthesis. The proposal of "Cuproptosis" has made copper metabolism-related pathways a research hotspot in the field of tumor therapy, which has attracted great attention. This review discusses the biological processes of copper uptake, transport, and storage in human cells. It highlights the mechanisms by which copper metabolism affects hepatocellular carcinogenesis and metastasis, including autophagy, apoptosis, vascular invasion, cuproptosis, and ferroptosis. Additionally, it summarizes the current clinical applications of copper metabolism-related drugs in antitumor therapy.
Collapse
Affiliation(s)
- Cheng Zhou
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinqiu Yang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ran Jia
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Pengfei Sun
- Department of Orthopaedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wenxia Zhao
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T, Liu W. Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cell Mol Neurobiol 2023:10.1007/s10571-023-01343-7. [PMID: 36988772 DOI: 10.1007/s10571-023-01343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Programed cell death plays a key role in promoting human development and maintaining homeostasis. Ferroptosis is a recently identified pattern of programmed cell death that is closely associated with the onset and progression of neurodegenerative diseases. Ferroptosis is mainly caused by the intracellular accumulation of iron-dependent lipid peroxides. The cysteine/glutamate antibody Solute carrier family 7 member 11 (SLC7A11, also known as xCT) functions to import cysteine for glutathione biosynthesis and antioxidant defense. SLC7A11 has a significant impact on ferroptosis, and inhibition of SLC7A11 expression promotes ferroptosis. Moreover, SLC7A11 is also closely associated with neurodegenerative diseases. In this paper, we summarize the relationship between ferroptosis and neurodegenerative diseases and the role of SLC7A11 during this process. The various regulatory mechanisms of SLC7A11 are also discussed. In conclusion, we are looking forward to a theoretical basis for further understanding the occurrence and development of ferroptosis in SLC7A11 and neurodegenerative diseases, and to seek new clues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
7
|
Liu L, Lian N, Shi L, Hao Z, Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front Cell Dev Biol 2023; 10:1079548. [PMID: 36684424 PMCID: PMC9846271 DOI: 10.3389/fcell.2022.1079548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Ferroptosis is a recognized novel form of programmed cell death pathway, featuring abnormalities in iron metabolism, SystemXc-/glutathione axis, and lipid peroxidation regulation. A variety of ferroptosis inducers can influence glutathione peroxidase directly or indirectly via diverse pathways, leading to decreased antioxidant capacity, accumulated cellular lipid peroxides, and finally inducing ferroptosis. To date, mounting studies confirm the association of ferroptosis with various cutaneous diseases, including skin homeostasis, neoplastic diseases, infectious diseases, genetic skin disease, inflammatory skin diseases, and autoimmune diseases. There are shared characteristics regarding ferroptosis and various cutaneous diseases in terms of pathophysiological mechanisms, such as oxidative stress associated with iron metabolism disorder and accumulated lipid peroxides. Therefore, we summarize the current knowledge regarding the mechanisms involved in the regulation of ferroptosis for further discussion of its role in the pathogenesis and prognosis of skin diseases. Gaining insight into the underlying mechanisms of ferroptosis and the associated dermatological disorders could illuminate the pathogenesis and treatments of different cutaneous diseases.
Collapse
Affiliation(s)
- Lihao Liu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Ni Lian
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Liqing Shi
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Zhimin Hao
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China,*Correspondence: Kun Chen,
| |
Collapse
|
8
|
Liu D, Yin X, Guan X, Li K. Bioinformatic analysis and machine learning to identify the diagnostic biomarkers and immune infiltration in adenomyosis. Front Genet 2023; 13:1082709. [PMID: 36685847 PMCID: PMC9845720 DOI: 10.3389/fgene.2022.1082709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Adenomyosis is a hormone-dependent benign gynecological disease characterized by the invasion of the endometrium into the myometrium. Women with adenomyosis can suffer from abnormal uterine bleeding, severe pelvic pain, and subfertility or infertility, which can interfere with their quality of life. However, effective diagnostic biomarkers for adenomyosis are currently lacking. The aim of this study is to explore the mechanism of adenomyosis by identifying biomarkers and potential therapeutic targets for adenomyosis and analyzing their correlation with immune infiltration in adenomyosis. Methods: Two datasets, GSE78851 and GSE68870, were downloaded and merged for differential expression analysis and functional enrichment analysis using R software. Weighted gene co-expression network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and support vector machine-recursive feature elimination (SVE-RFE) were combined to explore candidate genes. Quantitative reverse transcriptase PCR (qRT-PCR) was conducted to verify the biomarkers and receiver operating characteristic curve analysis was used to assess the diagnostic value of each biomarker. Single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT were used to explore immune cell infiltration in adenomyosis and the correlation between diagnostic biomarkers and immune cells. Results: A total of 318 genes were differentially expressed. Through the analysis of differentially expressed genes and WGCNA, we obtained 189 adenomyosis-related genes. After utilizing the LASSO and SVM-RFE algorithms, four hub genes, namely, six-transmembrane epithelial antigen of the prostate-1 (STEAP1), translocase of outer mitochondrial membrane 20 (TOMM20), glycosyltransferase eight domain-containing 2 (GLT8D2), and NME/NM23 family member 5 (NME5) expressed in nucleoside-diphosphate kinase, were identified and verified by qRT-PCR. Immune infiltration analysis indicated that T helper 17 cells, CD56dim natural killer cells, monocytes, and memory B-cell may be associated with the occurrence of adenomyosis. There were significant correlations between the diagnostic biomarkers and immune cells. Conclusion: STEAP1, TOMM20, GLT8D2, and NME5 were identified as potential biomarkers and therapeutic targets for adenomyosis. Immune infiltration may contribute to the onset and progression of adenomyosis.
Collapse
Affiliation(s)
- Dan Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiangjie Yin
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohong Guan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Kunming Li, ; Xiaohong Guan,
| | - Kunming Li
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Kunming Li, ; Xiaohong Guan,
| |
Collapse
|
9
|
Kim HY, Park CH, Park JB, Ko K, Lee MH, Chung J, Yoo YH. Hepatic STAMP2 alleviates polychlorinated biphenyl-induced steatosis and hepatic iron overload in NAFLD models. ENVIRONMENTAL TOXICOLOGY 2022; 37:2223-2234. [PMID: 35616167 DOI: 10.1002/tox.23589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/03/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been associated with neurotoxicity, hepatoxicity, oncogenicity, and endocrine-disrupting effects. Although the recent studies have demonstrated that PCB exposure leads to nonalcoholic fatty liver disease (NAFLD), the underlying mechanism has remained unsolved. In this study, we examined the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, and PCB 126 in C57BL/6 mice. Male C57Bl/6 mice were fed a standard diet or a 60% high-fat diet and exposed to Aroclor 1260 (10 mg/kg or 20 mg/kg) or PCB 126 (1 mg/kg or 5 mg/kg) by intraperitoneal injection for a total of four injections (2, 3, 4, and 5 weeks) for 6 weeks. In mice, both Aroclor 1260 and PCB 126-induced liver damage, hepatic steatosis and inflammation. We also observed that PCB exposure-induced hepatic iron overload (HIO). We previously demonstrated that hepatic six transmembrane protein of prostate 2 (STAMP2) may represent a suitable therapeutic target for NAFLD patients. Thus, we further examined whether hepatic STAMP2 is involved in PCB-induced NAFLD. We observed that hepatic STAMP2 was significantly decreased in PCB-induced NAFLD models in vivo and in vitro. Furthermore, overexpression of hepatic STAMP2 using an adenoviral delivery system resulted in improvement of PCB-induced steatosis and HIO in vivo and in vitro. Our findings indicate that enhancing hepatic STAMP2 expression represents a potential therapeutic avenue for the treatment of PCB exposure-induced NAFLD.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
- Department of Oral Microbiology and Oral Genomics Research Center, School of Dentistry, Pusan National University, Busan, Republic of Korea
| | - Chul Hee Park
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Joon Beom Park
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Kangeun Ko
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology and Oral Genomics Research Center, School of Dentistry, Pusan National University, Busan, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
10
|
STEAP1-4 (Six-Transmembrane Epithelial Antigen of the Prostate 1-4) and Their Clinical Implications for Prostate Cancer. Cancers (Basel) 2022; 14:cancers14164034. [PMID: 36011027 PMCID: PMC9406800 DOI: 10.3390/cancers14164034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances in the treatment of prostate cancer, metastatic castration-resistant prostate cancer continues to cause significant morbidity and mortality. New research into highly expressed proteins in metastatic castration-resistant prostate cancer shows that Six-Transmembrane Epithelial Antigen of the Prostate 1–4 (STEAP1–4) are significant drivers of prostate cancer aggressiveness and metastasis. STEAP1, in particular, is highly expressed on the plasma membrane of prostate cancer cells and has received significant attention as a potential therapeutic target. This review highlights what is known about STEAP1–4 and identifies knowledge gaps that require further research. Abstract Six-Transmembrane Epithelial Antigen of the Prostate 1–4 (STEAP1–4) compose a family of metalloproteinases involved in iron and copper homeostasis and other cellular processes. Thus far, five homologs are known: STEAP1, STEAP1B, STEAP2, STEAP3, and STEAP4. In prostate cancer, STEAP1, STEAP2, and STEAP4 are overexpressed, while STEAP3 expression is downregulated. Although the metalloreductase activities of STEAP1–4 are well documented, their other biological functions are not. Furthermore, the properties and expression levels of STEAP heterotrimers, homotrimers, heterodimers, and homodimers are not well understood. Nevertheless, studies over the last few decades have provided sufficient impetus to investigate STEAP1–4 as potential biomarkers and therapeutic targets for prostate cancer. In particular, STEAP1 is the target of many emerging immunotherapies. Herein, we give an overview of the structure, physiology, and pathophysiology of STEAP1–4 to provide context for past and current efforts to translate STEAP1–4 into the clinic.
Collapse
|
11
|
Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021; 22:12442. [PMID: 34830326 PMCID: PMC8622469 DOI: 10.3390/ijms222212442] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Collapse
Affiliation(s)
- Yu Peng
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Xuejiao Chang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
12
|
Kosman DJ. A holistic view of mammalian (vertebrate) cellular iron uptake. Metallomics 2021; 12:1323-1334. [PMID: 32766655 DOI: 10.1039/d0mt00065e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell iron uptake in mammals is commonly distinguished by whether the iron is presented to the cell as transferrin-bound or not: TBI or NTBI. This generic perspective conflates TBI with canonical transferrin receptor, endosomal iron uptake, and NTBI with uptake supported by a plasma membrane-localized divalent metal ion transporter, most often identified as DMT1. In fact, iron uptake by mammalian cells is far more nuanced than this somewhat proscribed view suggests. This view fails to accommodate the substantial role that ZIP8 and ZIP14 play in iron uptake, while adhering to the traditional premise that a relatively high endosomal [H+] is thermodynamically required for release of iron from holo-Tf. The canonical view of iron uptake also does not encompass the fact that plasma membrane electron transport - PMET - has long been linked to cell iron uptake. In fact, the known mammalian metallo-reductases - Dcytb and the STEAP proteins - are members of this cohort of cytochrome-dependent oxido-reductases that shuttle reducing equivalents across the plasma membrane. A not commonly appreciated fact is the reduction potential of ferric iron in holo-Tf is accessible to cytoplasmic reducing equivalents - reduced pyridine and flavin mono- and di-nucleotides and dihydroascorbic acid. This allows for the reductive release of Fe2+ at the extracellular surface of the PM and subsequent transport into the cytoplasm by a neutral pH transporter - a ZIP protein. What this perspective emphasizes is that there are two TfR-dependent uptake pathways, one which does and one which does not involve clathrin-dependent, endolysosomal trafficking. This raises the question as to the selective advantage of having two Tf, TfR-dependent routes of iron accumulation. This review of canonical and non-canonical iron uptake uses cerebral iron trafficking as a point of discussion, a focus that encourages inclusion also of the importance of ferritin as a circulating 'chaperone' of ferric iron.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of Buffalo, Suite 4102, 995 Main St., Buffalo, NY 14203, USA.
| |
Collapse
|
13
|
The Usefulness of STEAP Proteins in Prostate Cancer Clinical Practice. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.steap.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
14
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
15
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
16
|
Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines 2021; 9:biomedicines9030288. [PMID: 34156393 PMCID: PMC8000024 DOI: 10.3390/biomedicines9030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have played a pivotal role in the development of nanomedicine owing to their versatile functions at the nanoscale, which facilitates targeted delivery, high contrast imaging, and on-demand therapy. Some biomedical inadequacies of IONPs on their own, such as the poor resolution of IONP-based Magnetic Resonance Imaging (MRI), can be overcome by co-incorporating optical probes onto them, which can be either molecule- or nanoparticulate-based. Optical probe incorporated IONPs, together with two prominent non-ionizing radiation sources (i.e., magnetic field and light), enable a myriad of biomedical applications from early detection to targeted treatment of various diseases. In this context, many research articles are in the public domain on magneto-optical nanoparticles; discussed in detail are fabrication strategies for their application in the biomedical field; however, lacking is a comprehensive review on real-life applications in vivo, their toxicity, and the prospect of bench-to-bedside clinical studies. Therefore, in this review, we focused on selecting such important nanocomposites where IONPs become the magnetic component, conjugated with various types of optical probes; we clearly classified them into class 1 to class 6 categories and present only in vivo studies. In addition, we briefly discuss the potential toxicity of such nanocomposites and their respective challenges for clinical translations.
Collapse
|
17
|
Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines 2021; 9:biomedicines9030233. [PMID: 33669134 PMCID: PMC7996503 DOI: 10.3390/biomedicines9030233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ceruloplasmin, the main copper-binding protein in blood and some other fluids, is well known for its copper-dependent enzymatic functions and as a source of copper for cells. What is generally unknown or ignored is that, at least in the case of blood plasma and serum, about half of ceruloplasmin is in the apo (copper-free) form. This has led to some misconceptions about the amounts and variations of other copper-binding proteins and so-called “free copper” in the blood that might be indicators of disease states. What is known about the levels, sources, and metabolism of apo versus holo ceruloplasmin and the problems associated with measurements of the two forms is reviewed here.
Collapse
|
18
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| |
Collapse
|
19
|
Abstract
Iron is essential for a variety of physiological processes. Hepatic iron overload acts as a trigger for the progression of hepatic steatosis to nonalcoholic steatohepatitis and hepatocellular carcinoma. In the present study, we aimed to study the effects of iron overload on cellular responses in hepatocytes. Rat primary hepatocytes (RPH), mouse primary hepatocytes (MPH), HepG2 human hepatoma cells and Hepa1-6 mouse hepatoma cells were treated with FeCl3. Treatment with FeCl3 effectively increased iron accumulation in primary hepatocytes. Expression levels of molecules involved in cellular signaling such as AMPK pathway, TGF-β family pathway, and MAP kinase pathway were decreased by FeCl3 treatment in RPH. Cell viability in response to FeCl3 treatment was decreased in RPH but not in HepG2 and Hepa1-6 cells. Treatment with FeCl3 also decreased expression level of LC-3B, a marker of autophagy in RPH but not in liver-derived cell lines. Ultrastructural observations revealed that cell death resembling ferroptosis and necrosis was induced upon FeCl3 treatment in RPH. The expression level of genes involved in iron transport varied among different liver-derived cells- iron is thought to be efficiently incorporated as free Fe2+ in primary hepatocytes, whereas transferrin-iron is the main route for iron uptake in HepG2 cells. The present study reveals specific cellular responses in different liver-derived cells as a consequence of iron overload.
Collapse
|
20
|
Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228765. [PMID: 33233496 PMCID: PMC7699575 DOI: 10.3390/ijms21228765] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is a type of cell death that was described less than a decade ago. It is caused by the excess of free intracellular iron that leads to lipid (hydro) peroxidation. Iron is essential as a redox metal in several physiological functions. The brain is one of the organs known to be affected by iron homeostatic balance disruption. Since the 1960s, increased concentration of iron in the central nervous system has been associated with oxidative stress, oxidation of proteins and lipids, and cell death. Here, we review the main mechanisms involved in the process of ferroptosis such as lipid peroxidation, glutathione peroxidase 4 enzyme activity, and iron metabolism. Moreover, the association of ferroptosis with the pathophysiology of some neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s diseases, has also been addressed.
Collapse
|
21
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
22
|
Kim HY, Kwon WY, Park JB, Lee MH, Oh YJ, Suh S, Baek YH, Jeong JS, Yoo YH. Hepatic STAMP2 mediates recombinant FGF21-induced improvement of hepatic iron overload in nonalcoholic fatty liver disease. FASEB J 2020; 34:12354-12366. [PMID: 32721044 DOI: 10.1096/fj.202000790r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Although previous studies have shown that the administration of fibroblast growth factor 21 (FGF21) reverses hepatic steatosis, the mechanism by which FGF21 exerts a therapeutic effect on nonalcoholic fatty liver disease (NAFLD) is not yet entirely understood. We previously demonstrated that hepatic six transmembrane protein of prostate 2 (STAMP2) may represent a suitable target for NAFLD. We investigated the mechanism underlying the therapeutic effect of recombinant FGF21 on NAFLD, focusing on the involvement of hepatic STAMP2. In this study, we used human nonalcoholic steatosis patient pathology samples, C57BL/6 mice for a high-fat diet (HFD)-induced in vivo NAFLD model, and used human primary hepatocytes and HepG2 cells for oleic acid (OA)-induced in vitro NAFLD model. We observed that recombinant FGF21 treatment ameliorated hepatic steatosis and insulin resistance through the upregulation of STAMP2 expression. We further observed hepatic iron overload (HIO) and reduced iron exporter, ferroportin expression in the liver samples obtained from human NAFLD patients, and HFD-induced NAFLD mice and in OA-treated HepG2 cells. Importantly, recombinant FGF21 improved HIO through the hepatic STAMP2-mediated upregulation of ferroportin expression. Our data suggest that hepatic STAMP2 may represent a suitable therapeutic intervention target for FGF21-induced improvement of NAFLD accompanying HIO.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, South Korea
| | - Woo Young Kwon
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, South Korea
| | - Joon Beom Park
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, South Korea
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, South Korea
| | - Yoo Jin Oh
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, South Korea
| | - SungHwan Suh
- Department of Endocrinology, Dong-A University College of Medicine, Busan, South Korea
| | - Yang Hyun Baek
- Department of Gastroenterology, Dong-A University College of Medicine, Busan, South Korea
| | - Jin Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, South Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine, Busan, South Korea
| |
Collapse
|
23
|
Hesamian MS, Eskandari N. Potential Role of Trace Elements (Al, Cu, Zn, and Se) in Multiple Sclerosis Physiopathology. Neuroimmunomodulation 2020; 27:163-177. [PMID: 33691322 DOI: 10.1159/000511308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an unpredictable disease of the central nervous system. The cause of MS is not known completely, and pathology is specified by involved demyelinated areas in the white and gray matter of the brain and spinal cord. Inflammation and peripheral tolerance breakdown due to Treg cell defects and/or effector cell resistance are present at all stages of the disease. Several invading peripheral immune cells are included in the process of the disease such as macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma cells. Trace elements are known as elements found in soil, plants, and living organisms in small quantities. Some of them (e.g., Al, Cu, Zn, Mn, and Se) are essential for the body's functions like catalysts in enzyme systems, energy metabolism, etc. Al toxicity and Cu, Zn, and Se toxicity and deficiency can affect the immune system and following neuron inflammation and degeneration. These processes may result in MS pathology. Of course, factors such as lifestyle, environment, and industrialization can affect levels of trace elements in the human body.
Collapse
Affiliation(s)
- Mohammad Sadegh Hesamian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,
| |
Collapse
|
24
|
Zhu B, Zhi Q, Xie Q, Wu X, Gao Y, Chen X, Shi L. Reduced expression of ferroportin1 and ceruloplasmin predicts poor prognosis in adrenocortical carcinoma. J Trace Elem Med Biol 2019; 56:52-59. [PMID: 31442954 DOI: 10.1016/j.jtemb.2019.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Iron metabolism is tightly controlled in human cells. Dysregulation of iron metabolism-related genes has been characterized as a promising prognostic biomarker in cancers. However, the expression patterns and prognostic roles of iron metabolism-related genes remain unknown in adrenocortical carcinoma (ACC). OBJECTIVES The primary objective of this study was to explore the expression patterns and prognostic roles of iron metabolism-related genes in ACC using publicly available datasets. METHODS In the present study, we compared the expression patterns of 36 iron metabolism-related genes between ACC tumors (n = 77) and normal adrenal tissues (n = 128) based on The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) data. The associations between clinical variables (including survival rate and pathological stage) and expression levels of iron mentalism-related genes were further explored. All the bioinformatics analyses were performed using the GEPIA or the Metascape tool. RESULTS Twelve iron metabolism-related genes were differentially expressed between ACC tumors and normal controls. Among them, reduced expression levels of ferroportin1 (FPN1) and ceruloplasmin (CP) were significantly correlated with poor survival of ACC patients. Specially, the expression levels of FPN1 were negatively correlated with the pathological stages of ACC. A pan-cancer analysis characterized the reduced expression of FPN1 and CP as an ACC-specific signature among 33 types of cancers. Functional enrichment analysis suggested that both FPN1 and CP might be implicated in several immune processes. CONCLUSION Reduced expression of FPN1 and CP was identified as a potential signature for poor prognosis of ACC in this study. Mechanisms underlying the prognostic value of FPN1 or CP in ACC deserve further experimental investigation.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Qi Zhi
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Qian Xie
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaohui Wu
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yanan Gao
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiao Chen
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Liyun Shi
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
25
|
Sun J, Ji G, Xie J, Jiao Z, Zhang H, Chen J. Six-transmembrane epithelial antigen of the prostate 1 is associated with tumor invasion and migration in endometrial carcinomas. J Cell Biochem 2019; 120:11172-11189. [PMID: 30714206 DOI: 10.1002/jcb.28393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1), a member of the STEAP family, is a general tumor antigen. However, no information has been available to date regarding the function of STEAP1 in the progression of endometrial carcinoma. In this study, we used in vitro and in vivo strategies to prove that STEAP1 plays an important role in the progression of endometrial carcinoma. Immunohistochemistry, immunocytochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot analysis were used to detect the expression of STEAP1 in normal endometrial cells and endometrial cancer cell lines. The progression of the cell cycle, plate clone formation assay, and transwell migration and invasion assays were performed to examine the effects of STEAP1 on cell proliferation, clonogenicity, migration, and their invasive capacity. In addition, we confirmed that STEAP1 was tightly correlated with the development of tumor in vivo. The relationship between epithelial to mesenchymal transition (EMT) and STEAP1 expression was evaluated by RT-qPCR and Western blot analysis. Matrix metalloproteinase (MMP) zymography assay was used to detect the activities of MMP2 and MMP9. STEAP1 was restrictively expressed in endometrial carcinoma and downregulation of the STEAP1 gene increased proliferation and clonogenicity, as well as promoted cell migration, invasion, and the progress of EMT. STEAP1 is downregulated in endometrial carcinoma and can restrict migration and invasion of endometrial carcinoma cells. Overall, STEAP1 may be an ideal target for tumor therapy and diagnosis in the future.
Collapse
Affiliation(s)
- Jiali Sun
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Guoxin Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Xie
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Zhi Jiao
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Haozheng Zhang
- Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
26
|
Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients 2018; 10:E1591. [PMID: 30380720 PMCID: PMC6266612 DOI: 10.3390/nu10111591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Copper, which can potentially be a highly toxic agent, is an essential nutrient due to its role as a cofactor for cuproenzymes and its participation in signaling pathways. In mammals, the liver is a central organ that controls copper turnover throughout the body, including copper absorption, distribution, and excretion. In ontogenesis, there are two types of copper metabolism, embryonic and adult, which maintain the balance of copper in each of these periods of life, respectively. In the liver cells, these types of metabolism are characterized by the specific expression patterns and activity levels of the genes encoding ceruloplasmin, which is the main extracellular ferroxidase and copper transporter, and the proteins mediating ceruloplasmin metalation. In newborns, the molecular genetic mechanisms responsible for copper homeostasis and the ontogenetic switch from embryonic to adult copper metabolism are highly adapted to milk ceruloplasmin as a dietary source of copper. In the mammary gland cells, the level of ceruloplasmin gene expression and the alternative splicing of its pre-mRNA govern the amount of ceruloplasmin in the milk, and thus, the amount of copper absorbed by a newborn is controlled. In newborns, the absorption, distribution, and accumulation of copper are adapted to milk ceruloplasmin. If newborns are not breast-fed in the early stages of postnatal development, they do not have this natural control ensuring alimentary copper balance in the body. Although there is still much to be learned about the neonatal consequences of having an imbalance of copper in the mother/newborn system, the time to pay attention to this problem has arrived because the neonatal misbalance of copper may provoke the development of copper-related disorders.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, 197376 St.-Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, 195251 St.-Petersburg, Russia.
| | - Polina S Babich
- Department of Zoology, Herzen State Pedagogical University of Russia, Kazanskaya str., 6, 191186 St.-Petersburg, Russia.
| | - Yulia A Zatulovskaia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
| | - Francesca Di Sole
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA.
| |
Collapse
|
27
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
28
|
Saxena M, Loza-Rosas SA, Gaur K, Sharma S, Pérez Otero SC, Tinoco AD. Exploring titanium(IV) chemical proximity to iron(III) to elucidate a function for Ti(IV) in the human body. Coord Chem Rev 2018; 363:109-125. [PMID: 30270932 PMCID: PMC6159949 DOI: 10.1016/j.ccr.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its natural abundance and widespread use as food, paint additive, and in bone implants, no specific biological function of titanium is known in the human body. High concentrations of Ti(IV) could result in cellular toxicity, however, the absence of Ti toxicity in the blood of patients with titanium bone implants indicates the presence of one or more biological mechanisms to mitigate toxicity. Similar to Fe(III), Ti(IV) in blood binds to the iron transport protein serum transferrin (sTf), which gives credence to the possibility of its cellular uptake mechanism by transferrin-directed endocytosis. However, once inside the cell, how sTf bound Ti(IV) is released into the cytoplasm, utilized, or stored remain largely unknown. To explain the molecular mechanisms involved in Ti use in cells we have drawn parallels with those for Fe(III). Based on its chemical similarities with Fe(III), we compare the biological coordination chemistry of Fe(III) and Ti(IV) and hypothesize that Ti(IV) can bind to similar intracellular biomolecules. The comparable ligand affinity profiles suggest that at high Ti(IV) concentrations, Ti(IV) could compete with Fe(III) to bind to biomolecules and would inhibit Fe bioavailability. At the typical Ti concentrations in the body, Ti might exist as a labile pool of Ti(IV) in cells, similar to Fe. Ti could exhibit different types of properties that would determine its cellular functions. We predict some of these functions to mimic those of Fe in the cell and others to be specific to Ti. Bone and cellular speciation and localization studies hint toward various intracellular targets of Ti like phosphoproteins, DNA, ribonucleotide reductase, and ferritin. However, to decipher the exact mechanisms of how Ti might mediate these roles, development of innovative and more sensitive methods are required to track this difficult to trace metal in vivo.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sergio A. Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sofia C. Pérez Otero
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| |
Collapse
|
29
|
Kosman DJ. The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking. Metallomics 2018; 10:370-377. [PMID: 29484341 DOI: 10.1039/c8mt00015h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eukaryotic cells, whether free-living or organismal, rely on metallo-reductases to process environmental ferric iron and cupric copper prior to uptake. In addition, some free-living eukaryotes (e.g. fungi and algae) couple ferri-reduction to ferro-oxidation, a process catalyzed by a small cohort of multi-copper oxidases; in these organisms, the ferric iron product is a ligand for cell iron uptake via a ferric iron permease. In addition to their support of iron uptake in lower eukaryotes, ferroxidases support ferrous iron efflux in Chordata; in this process the release of the ferrous iron from the efflux transporter is catalyzed by its ferroxidation. Last, ferroxidases also catalyze the oxidation of cuprous copper and, as metallo-oxidases, mirror the dual activity of the metallo-reductases. This Perspective examines the teleos of the yin-yang of this redox cycling of iron and copper in their metabolism.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Farber Hall Room 140, 3435 Main St., Buffalo, NY 14214-3000, USA.
| |
Collapse
|
30
|
Martins AC, Almeida JI, Lima IS, Kapitão AS, Gozzelino R. Iron Metabolism and the Inflammatory Response. IUBMB Life 2017; 69:442-450. [PMID: 28474474 DOI: 10.1002/iub.1635] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Abstract
Iron (Fe) is essential to almost all organisms, as required by cells to satisfy metabolic needs and accomplish specialized functions. Its ability to exchange electrons between different substrates, however, renders it potentially toxic. Fine tune-mechanisms are necessary to maintain Fe homeostasis and, as such, to prevent its participation into the Fenton reaction and generation of oxidative stress. These are particularly important in the context of inflammation/infection, where restricting Fe availability to invading pathogens is one, if not, the main host defense strategy against microbial growth. The ability of Fe to modulate several aspects of the immune response is associated with a number of "costs" and "benefits", some of which have been described in this review. © 2017 IUBMB Life, 69(6):442-450, 2017.
Collapse
Affiliation(s)
- Ana C Martins
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Joana I Almeida
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Illyane S Lima
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Antonino S Kapitão
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| | - Raffaella Gozzelino
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, NOVA University of Lisbon, Portugal
| |
Collapse
|
31
|
Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, Linder MC. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS One 2016; 11:e0149516. [PMID: 26934375 PMCID: PMC4774968 DOI: 10.1371/journal.pone.0149516] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42) with tight junctions grown in bicameral chambers, and purified human (64)Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the (64)Cu over 16h and secreted half into the apical (milk) fluid. This was partly inhibited by Ag(I). The (64)Cu in ceruloplasmin purified from plasma of (64)Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs) over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2 °C. The ceruloplasmin-derived (64)Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption) increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II)- or Fe(III)-NTA (substrates for cell surface reductases), or Cu(I)-NTA (to compete for transporter uptake) almost eliminated uptake of (64)Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB). However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I) that enters cells through CTR1 and an unknown copper uptake transporter.
Collapse
Affiliation(s)
- Danny Ramos
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - David Mar
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michael Ishida
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Rebecca Vargas
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michaella Gaite
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Aaron Montgomery
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Maria C. Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zatulovskaia YA, Ilyechova EY, Puchkova LV. The Features of Copper Metabolism in the Rat Liver during Development. PLoS One 2015; 10:e0140797. [PMID: 26474410 PMCID: PMC4608700 DOI: 10.1371/journal.pone.0140797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene’s activity was fully repressed. The copper routes in newborns are discussed.
Collapse
Affiliation(s)
- Yulia A Zatulovskaia
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina Y Ilyechova
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia; Laboratory of trace element metabolism, ITMO University, St. Petersburg, Russia
| | - Ludmila V Puchkova
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia; Laboratory of trace element metabolism, ITMO University, St. Petersburg, Russia
| |
Collapse
|
33
|
Pushie MJ, Shaw K, Franz KJ, Shearer J, Haas KL. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1. Inorg Chem 2015; 54:8544-51. [PMID: 26258435 DOI: 10.1021/acs.inorgchem.5b01162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada.,Canadian Light Source Incorporated, Saskatoon, Saskatchewan, Canada
| | - Katharine Shaw
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada , Reno, Nevada 895030, United States
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| |
Collapse
|
34
|
Skjørringe T, Burkhart A, Johnsen KB, Moos T. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci 2015; 8:19. [PMID: 26106291 PMCID: PMC4458610 DOI: 10.3389/fnmol.2015.00019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/20/2015] [Indexed: 01/25/2023] Open
Abstract
Iron is required in a variety of essential processes in the body. In this review, we focus on iron transport in the brain and the role of the divalent metal transporter 1 (DMT1) vital for iron uptake in most cells. DMT1 locates to cellular membranes and endosomal membranes, where it is a key player in non-transferrin bound iron uptake and transferrin-bound iron uptake, respectively. Four isoforms of DMT1 exist, and their respective characteristics involve a complex cell-specific regulatory machinery all controlling iron transport across these membranes. This complexity reflects the fine balance required in iron homeostasis, as this metal is indispensable in many cell functions but highly toxic when appearing in excess. DMT1 expression in the brain is prominent in neurons. Of serious dispute is the expression of DMT1 in non-neuronal cells. Recent studies imply that DMT1 does exist in endosomes of brain capillary endothelial cells denoting the blood-brain barrier. This supports existing evidence that iron uptake at the BBB occurs by means of transferrin-receptor mediated endocytosis followed by detachment of iron from transferrin inside the acidic compartment of the endosome and DMT1-mediated pumping iron into the cytosol. The subsequent iron transport across the abluminal membrane into the brain likely occurs by ferroportin. The virtual absent expression of transferrin receptors and DMT1 in glial cells, i.e., astrocytes, microglia and oligodendrocytes, suggest that the steady state uptake of iron in glia is much lower than in neurons and/or other mechanisms for iron uptake in these cell types prevail.
Collapse
Affiliation(s)
- Tina Skjørringe
- Section of Neurobiology, Biomedicine, Institute of Medicine and Health Technology, Aalborg University Aalborg, Denmark
| | - Annette Burkhart
- Section of Neurobiology, Biomedicine, Institute of Medicine and Health Technology, Aalborg University Aalborg, Denmark
| | - Kasper Bendix Johnsen
- Section of Neurobiology, Biomedicine, Institute of Medicine and Health Technology, Aalborg University Aalborg, Denmark
| | - Torben Moos
- Section of Neurobiology, Biomedicine, Institute of Medicine and Health Technology, Aalborg University Aalborg, Denmark
| |
Collapse
|
35
|
Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 2014; 72:709-27. [PMID: 25355056 DOI: 10.1007/s00018-014-1771-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
There are two barriers for iron entry into the brain: (1) the brain-cerebrospinal fluid (CSF) barrier and (2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease.
Collapse
|
36
|
Abstract
Iron is one of the most important nonorganic substances that make life possible. Iron plays major roles in oxygen transport (eg, hemoglobin; -67% of total body iron [TBI]), short-term oxygen storage (eg, myoglobin; -3.5% of TBI), and energy generation (eg, cytochromes; -3% of TBI). Iron also serves vital roles in various nonheme-containing enzymes (-2% of TBI). Figure 1 lists heme-containing and nonheme iron-containing proteins. TBI is controlled by the rate of iron absorption; there are no physiologic mechanisms to excrete excess iron. Iron deficiency has many adverse consequences, including anemia, and in children, behavioral and learning disorders. Iron excess is toxic to the body, harming the heart, liver, skin, pancreatic islet beta cells, bones, joints, and pituitary gland. Maintaining proper iron balance is essential for maintaining homeostasis and health. TBI in adults normally ranges between 3.5 and 5.0 g. A total of 75% of TBI is functional, and 25% is stored within cells as ferritin or hemosiderin. Ferritin contains 24 subunits of light chains (L chains; 19.7 kDa) and heavy chains (H chains; 21.1 kDa). The L chains are encoded on chromosome 19q13.33 and are 175 amino acids long. The H chains are encoded on chromosome 11q1 and are 183 amino acids long. Each ferritin molecule can contain as many as approximately 4500 ferric ions. Because the major role of iron is in hemoglobin synthesis, this review will focus on iron, iron transport, and hematopoiesis.
Collapse
|
37
|
Abstract
Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states.
Collapse
Affiliation(s)
- Sukru Gulec
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611;
| | | |
Collapse
|
38
|
Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother 2014; 41:213-21. [PMID: 25053935 DOI: 10.1159/000362888] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Collapse
Affiliation(s)
| | - Gérard Waeber
- Service de médecine interne, CHUV, Lausanne, Switzerland
| | | | | | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion sanguine, Epalinges, Switzerland
| |
Collapse
|
39
|
Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process. BMC Genomics 2014; 15:220. [PMID: 24649854 PMCID: PMC3999959 DOI: 10.1186/1471-2164-15-220] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. RESULTS Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). CONCLUSIONS Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality.
Collapse
Affiliation(s)
| | | | | | - Joël Gautron
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| |
Collapse
|
40
|
Montalbetti N, Dalghi MG, Albrecht C, Hediger MA. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins. J Mammary Gland Biol Neoplasia 2014; 19:73-90. [PMID: 24567109 DOI: 10.1007/s10911-014-9317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland,
| | | | | | | |
Collapse
|
41
|
Zhou J, Ye S, Fujiwara T, Manolagas SC, Zhao H. Steap4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/reactive oxygen species (ROS) levels and cAMP response element-binding protein (CREB) activation. J Biol Chem 2013; 288:30064-30074. [PMID: 23990467 DOI: 10.1074/jbc.m113.478750] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function.
Collapse
Affiliation(s)
- Jian Zhou
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Shiqiao Ye
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Toshifumi Fujiwara
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Stavros C Manolagas
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Haibo Zhao
- From the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205.
| |
Collapse
|
42
|
Multi-copper oxidases and human iron metabolism. Nutrients 2013; 5:2289-313. [PMID: 23807651 PMCID: PMC3738974 DOI: 10.3390/nu5072289] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 01/13/2023] Open
Abstract
Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis.
Collapse
|
43
|
Abstract
Although earlier, seminal studies demonstrated that the gut per se has the intrinsic ability to regulate the rates of iron absorption, the spotlight in the past decade has been placed on the systemic regulation of iron homeostasis by the hepatic hormone hepcidin and the molecular mechanisms that regulate its expression. Recently, however, attention has returned to the gut based on the finding that hypoxia inducible factor-2 (HIF-2α) regulates the expression of key genes that contribute to iron absorption. Here we review the current understanding of the molecular mechanisms that regulate iron homeostasis in the gut by focusing on the role of HIF-2 under physiological steady-state conditions and in the pathogenesis of iron-related diseases. We also discuss implications for adapting HIF-2-based therapeutic strategies in iron-related pathological conditions.
Collapse
|
44
|
Abstract
Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.
Collapse
Affiliation(s)
- Suzy V Torti
- Departments of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | |
Collapse
|
45
|
Zhang X, Krause KH, Xenarios I, Soldati T, Boeckmann B. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 2013; 8:e58126. [PMID: 23505460 PMCID: PMC3591440 DOI: 10.1371/journal.pone.0058126] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/30/2013] [Indexed: 12/20/2022] Open
Abstract
A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Central Medical University, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- SwissProt, Swiss Institute of Bioinformatics, Geneva, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics (CIG), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Brigitte Boeckmann
- SwissProt, Swiss Institute of Bioinformatics, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
46
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Rotellar F, Valentí V, Silva C, Gil MJ, Salvador J, Frühbeck G. Six-transmembrane epithelial antigen of prostate 4 and neutrophil gelatinase-associated lipocalin expression in visceral adipose tissue is related to iron status and inflammation in human obesity. Eur J Nutr 2012. [PMID: 23179203 DOI: 10.1007/s00394-012-0464-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Six-transmembrane epithelial antigen of prostate (STEAP)-4 and neutrophil gelatinase-associated lipocalin (NGAL) are novel adipokines related to iron homeostasis with potential roles in insulin resistance and inflammation. The aim of the present work was to evaluate the effect of obesity and iron status on gene expression levels of STEAP-4 and NGAL in visceral adipose tissue (VAT) and its implication in inflammation. METHODS VAT biopsies obtained from 53 subjects were used in the study. Real-time PCR and Western-blot were performed to quantify the levels of STEAP4 and NGAL in VAT as well as the association with other genes implicated in inflammatory pathways. Circulating ferritin and free iron concentrations were also determined. RESULTS Obese patients exhibited significantly increased STEAP4 and NGAL mRNA expression levels (P < 0.001) compared to lean subjects. Protein expression levels of NGAL (P < 0.05) and STEAP4 were also higher in the visceral fat depot of obese patients, although protein levels of STEAP4 did not reach statistical significance. A negative correlation (P < 0.05) between free iron concentrations and gene expression levels of both STEAP4 and NGAL was found, while circulating ferritin concentrations were positively correlated (P < 0.05) with NGAL mRNA after body fat (BF) adjustment. Furthermore, a significant positive association between STEAP4 and NGAL gene expression levels with inflammatory markers was also detected (P < 0.01). CONCLUSION These findings represent the first observation that STEAP4 and NGAL mRNA and protein levels in human VAT are related to iron status. Moreover, STEAP4 and NGAL are associated with pro-inflammatory markers suggesting their potential involvement in the low-grade chronic inflammation accompanying obesity.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schneider JS, Anderson DW, Sonnenahalli H, Vadigepalli R. Sex-based differences in gene expression in hippocampus following postnatal lead exposure. Toxicol Appl Pharmacol 2011; 256:179-90. [PMID: 21864555 DOI: 10.1016/j.taap.2011.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022]
Abstract
The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7±2.1 μg/dl and 27.1±1.7 μg/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
48
|
Qin DN, Zhu JG, Ji CB, Chunmei-Shi, Kou CZ, Zhu GZ, Zhang CM, Wang YP, Ni YH, Guo XR. Monoclonal antibody to six transmembrane epithelial antigen of prostate-4 influences insulin sensitivity by attenuating phosphorylation of P13K (P85) and Akt: possible mitochondrial mechanism. J Bioenerg Biomembr 2011; 43:247-55. [PMID: 21647634 DOI: 10.1007/s10863-011-9360-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/17/2011] [Indexed: 01/18/2023]
Abstract
We examined the effects of anti-six-transmembrane epithelial antigen of the prostate-4 (STEAP4) antibodies on glucose transport in mature adipocytes and determined the mechanism of insulin resistance in obesity. Western blotting was performed to determine STEAP4 expression, to assess translocation of insulin-sensitive glucose transporter 4 (GLUT4), and to measure phosphorylation and total protein content of insulin-signaling proteins. Confocal laser microscopy and flow cytometry were used to detect intracellular reactive oxygen species (ROS) and fluctuations in mitochondrial membrane potential (ΔΨ). ATP production was measured by using a luciferase-based luminescence assay kit. After the application of anti-STEAP4 antibodies at 0.002 mg/mL, adipocytes exhibited reduced insulin-stimulated glucose transport by attenuating the phosphorylation of IRS-1, PI3K (p85), and Akt. The antibodies also potentially increase the level of ROS and decrease cellular ATP production and ΔΨ. In conclusion, (i) STEAP4 regulates the function of IRS-1, PI3K, and Akt and decreases insulin-induced GLUT4 translocation and glucose uptake; (ii) ROS-related mitochondrial dysfunction may be related to a reduced IRS-1 correlation with the PI3K signaling pathway, leading to insulin resistance. These observations highlight the potential role of STEAP4 in glucose homeostasis and possibly in the pathophysiology of type 2 diabetes related to obesity and may provide new insights into the mechanisms of insulin resistance in obesity.
Collapse
Affiliation(s)
- Da-ni Qin
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, No.123 Tianfei Road, Nanjing, 210004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Haas KL, Putterman AB, White DR, Thiele DJ, Franz KJ. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1. J Am Chem Soc 2011; 133:4427-37. [PMID: 21375246 PMCID: PMC3247019 DOI: 10.1021/ja108890c] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular acquisition of copper in eukaryotes is primarily accomplished through the Ctr family of copper transport proteins. In both humans and yeast, methionine-rich "Mets" motifs in the amino-terminal extracellular domain of Ctr1 are thought to be responsible for recruitment of copper at the cell surface. Unlike yeast, mammalian Ctr1 also contains extracellular histidine-rich motifs, although a role for these regions in copper uptake has not been explored in detail. Herein, synthetic model peptides containing the first 14 residues of the extracellular domain of human Ctr1 (MDHSHHMGMSYMDS) have been prepared and evaluated for their apparent binding affinity to both Cu(I) and Cu(II). These studies reveal a high affinity Cu(II) binding site (log K = 11.0 ± 0.3 at pH 7.4) at the amino-terminus of the peptide as well as a high affinity Cu(I) site (log K = 10.2 ± 0.2 at pH 7.4) that utilizes adjacent HH residues along with an additional His or Met ligand. These model studies suggest that the histidine domains may play a direct role in copper acquisition from serum copper-binding proteins and in facilitating the reduction of Cu(II) to the active Ctr1 substrate, Cu(I). We tested this hypothesis by expressing a Ctr1 mutant lacking only extracellular histidine residues in Ctr1-knockout mouse embryonic fibroblasts. Results from live cell studies support the hypothesis that extracellular amino-terminal His residues directly participate in the copper transport function of Ctr1.
Collapse
Affiliation(s)
- Kathryn L. Haas
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | | - Daniel R. White
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708
| | | |
Collapse
|
50
|
Abstract
Aerobic organisms are faced with a dilemma. Environmental iron is found primarily in the relatively inert Fe(III) form, whereas the more metabolically active ferrous form is a strong pro-oxidant. This conundrum is solved by the redox cycling of iron between Fe(III) and Fe(II) at every step in the iron metabolic pathway. As a transition metal ion, iron can be "metabolized" only by this redox cycling, which is catalyzed in aerobes by the coupled activities of ferric iron reductases (ferrireductases) and ferrous iron oxidases (ferroxidases).
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214.
| |
Collapse
|