1
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Mann JE, Hasson N, Su DG, Adeniran AJ, Smalley KSM, Djureinovic D, Jilaveanu LB, Schoenfeld DA, Kluger HM. GP100 expression is variable in intensity in melanoma. Cancer Immunol Immunother 2024; 73:191. [PMID: 39105816 PMCID: PMC11303354 DOI: 10.1007/s00262-024-03776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Drugs or cellular products that bind to gp100 are being investigated for treatment of cutaneous melanoma. The relative specificity of gp100 expression in melanocytes makes it an attractive target to harness for therapeutic intent. For example, Tebentafusp, a bispecific gp100 peptide-HLA-directed CD3 T cell engager, has generated significant enthusiasm in recent years due to its success in improving outcomes for uveal melanoma and is being studied in cutaneous melanoma. However, the extent and intensity of gp100 expression in advanced cutaneous melanoma has not been well studied. Here, we interrogated a large cohort of primary and metastatic melanomas for gp100 expression by immunohistochemistry. Expression in metastatic samples was globally higher and almost uniformly positive, however the degree of intensity was variable. Using a quantitative immunofluorescence method, we confirmed the variability in expression. As gp100-binding drugs are assessed in clinical trials, the association between activity of the drugs and the level of gp100 expression should be studied in order to potentially improve patient selection.
Collapse
Affiliation(s)
- Jacqueline E Mann
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nitzan Hasson
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Su
- Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Keiran S M Smalley
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dijana Djureinovic
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia B Jilaveanu
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - David A Schoenfeld
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Harriet M Kluger
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Katz S, Ciuba D, Ribas A, Shelach N, Zelinger G, Barrow B, Corn BW. A topical BRAF inhibitor (LUT-014) for treatment of radiodermatitis among women with breast cancer. JAAD Int 2024; 15:62-68. [PMID: 38405632 PMCID: PMC10891318 DOI: 10.1016/j.jdin.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 02/27/2024] Open
Abstract
Background Modern radiotherapy is associated with dermatitis (RD) in approximately one-third of patients treated for breast cancer. There is currently no standard for treating RD. Objective The objective of this study was to determine whether LUT014, a topical BRAF inhibitor which paradoxically activates mitogen-activated protein kinase, can safely improve RD. Methods A phase I/II study was designed to first follow a small cohort of women with grade 2 RD regarding toxicity and response. Then, 20 patients were randomized to compare LUT014 to "vehicle" relative to safety and response (measured with common terminology criteria for adverse events, Dermatology Life Quality Index). Results No substantial toxicity (eg, 0 serious adverse event) was associated with LUT014. All 8 women receiving LUT014 achieved treatment success (5-point Dermatology Life Quality Index reduction at day 14) compared to 73% (8/11) on the placebo arm (P = .591). The time to complete recovery was shorter in the treatment arm. Limitations The sample size was limited. Only 2 hospitals were included. Conclusions Topical LU014 is tolerable and may be efficacious for grade 2 RD.
Collapse
Affiliation(s)
- Sanford Katz
- Division of Radiotherapy, Willis-Knighton Cancer Center, Shreveport, Louisiana
| | - Doug Ciuba
- Radiation Oncology of Columbus, Columbus, Georgia
| | - Antoni Ribas
- Department of Medical Oncology, University of California Los Angeles (UCAL) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | - Galit Zelinger
- Department of Medical Oncology, University of California Los Angeles (UCAL) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Briana Barrow
- Division of Radiotherapy, Willis-Knighton Cancer Center, Shreveport, Louisiana
| | - Benjamin W. Corn
- Lutris-Pharma, Tel Aviv, Israel
- Department of Oncology, Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
4
|
Su DG, Djureinovic D, Schoenfeld D, Marquez-Nostra B, Olino K, Jilaveanu L, Kluger H. Melanocortin-1 Receptor Expression as a Marker of Progression in Melanoma. JCO Precis Oncol 2024; 8:e2300702. [PMID: 38662983 PMCID: PMC11513442 DOI: 10.1200/po.23.00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/30/2024] Open
Abstract
PURPOSE Melanocortin-1 receptor (MC1R) plays a critical role in human pigmentation and DNA repair mechanisms. MC1R-targeting agents are being investigated in clinical trials in patients with melanoma, yet large studies investigating the rate and degree of MC1R expression in primary and metastatic human melanoma tissue are lacking. METHODS Using tissue microarrays containing three large cohorts of 225 cases of benign nevi, 189 with primary melanoma, and 271 with metastatic melanoma, we applied quantitative immunofluorescence and immunohistochemistry to comprehensively study MC1R protein expression. RESULTS We show a stepwise elevation of MC1R expression in different stages of melanoma progression (nevi, primary, metastasis). Higher MC1R expression was seen in deeper (>1 mm) primary lesions and ulcerated lesions and was associated with shorter survival in primary and metastatic tumors. On multivariable analysis, Breslow thickness, male sex, and chronic sun exposure were independent predictors of worse overall survival in the primary melanoma cohort. CONCLUSION Our data suggest that MC1R might be a valuable drug target in aggressive melanoma. Additional studies are warranted to determine its functional significance in melanoma progression and its utility as a predictive biomarker in patients receiving MC1R-directed therapies.
Collapse
Affiliation(s)
- David G. Su
- Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT
| | - Dijana Djureinovic
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - David Schoenfeld
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Bernadette Marquez-Nostra
- Department of Radiology, Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, AL
| | - Kelly Olino
- Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT
| | - Lucia Jilaveanu
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Harriet Kluger
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
5
|
Rehman S, Venna P, Davis S, Gopagoni R, Uttam R, Farrukh AM, Salehi M. Primary gallbladder melanoma: A systematic review of literature. Ann Diagn Pathol 2024; 68:152244. [PMID: 38103326 DOI: 10.1016/j.anndiagpath.2023.152244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Primary gallbladder melanoma (PGM) is a rare malignancy with only sporadic cases reported in the English literature. We performed a systematic review of the cases published in the PubMed, Science Direct and Google Scholar databases with the aim of describing the reported clinicopathologic features of PGM. Thirty-six articles reporting on 39 patients were reviewed. There was a male predominance, with 23 (64 %) of 36 patients being males. The mean age at presentation was 55 ±16 years. Pain in the right upper quadrant was reported in 20/27 (74 %). The average size of the tumor was 3.5 × 1.9 × 1.4 cm. Gallbladder calculi were reported in 7/27 (26 %). A cholecystectomy was performed in 34/38 (89.5 %). Grossly, the tumor mostly (96.5 %) had polypoid appearances and on microscopic examination, the tumor were predominantly comprised of epithelioid cells 12/17 (70.6 %). Mitotic figures and prominent nucleoli were reportedly found in 8/8 (100 %) and 3/3 (100 %) respectively. Junctional melanocytic components were present in 13/21 (61.9 %). Tumor cells were reportedly immunoreactive for S-100 and HMB-45 in all tested cases. Metastasis were reported in 25/36 (69.4 %), with lymph nodes being the most common site (n = 8), followed by brain (n = 6) and liver (n = 4) for metastasis. At a mean follow-up period of 19 +/- 3 months, 16 (48.5 %) of the 33 patients with available survival data were alive and 17/33 (51.5 %) were dead of disease. There is a lack of unified criteria for the diagnosis of PGM, and future studies should aim to resolve this.
Collapse
Affiliation(s)
| | | | | | | | - Ritika Uttam
- JJM Medical College, Davangere, Karnataka, India
| | | | | |
Collapse
|
6
|
Dailah HG, Hommdi AA, Koriri MD, Algathlan EM, Mohan S. Potential role of immunotherapy and targeted therapy in the treatment of cancer: A contemporary nursing practice. Heliyon 2024; 10:e24559. [PMID: 38298714 PMCID: PMC10828696 DOI: 10.1016/j.heliyon.2024.e24559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Immunotherapy and targeted therapy have emerged as promising therapeutic options for cancer patients. Immunotherapies induce a host immune response that mediates long-lived tumor destruction, while targeted therapies suppress molecular mechanisms that are important for tumor maintenance and growth. In addition, cytotoxic agents and targeted therapies regulate immune responses, which increases the chances that these therapeutic approaches may be efficiently combined with immunotherapy to ameliorate clinical outcomes. Various studies have suggested that combinations of therapies that target different stages of anti-tumor immunity may be synergistic, which can lead to potent and more prolonged responses that can achieve long-lasting tumor destruction. Nurses associated with cancer patients should have a better understanding of the immunotherapies and targeted therapies, such as their efficacy profiles, mechanisms of action, as well as management and prophylaxis of adverse events. Indeed, this knowledge will be important in establishing care for cancer patients receiving immunotherapies and targeted therapies for cancer treatment. Moreover, nurses need a better understanding regarding targeted therapies and immunotherapies to ameliorate outcomes in patients receiving these therapies, as well as management and early detection of possible adverse effects, especially adverse events associated with checkpoint inhibitors and various other therapies that control T-cell activation causing autoimmune toxicity. Nurses practice in numerous settings, such as hospitals, home healthcare agencies, radiation therapy facilities, ambulatory care clinics, and community agencies. Therefore, as compared to other members of the healthcare team, nurses often have better opportunities to develop the essential rapport in providing effective nurse-led patient education, which is important for effective therapeutic outcomes and continuance of therapy. In this article, we have particularly focused on providing a detailed overview on targeted therapies and immunotherapies used in cancer treatment, management of their associated adverse events, and the impact as well as strategies of nurse-led patient education.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Abdu Hommdi
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mahdi Dafer Koriri
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Essa Mohammed Algathlan
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Siljamäki E, Riihilä P, Suwal U, Nissinen L, Rappu P, Kallajoki M, Kähäri VM, Heino J. Inhibition of TGF-β signaling, invasion, and growth of cutaneous squamous cell carcinoma by PLX8394. Oncogene 2023; 42:3633-3647. [PMID: 37864034 PMCID: PMC10691969 DOI: 10.1038/s41388-023-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The prognosis of patients with metastatic cSCC is poor emphasizing the need for new therapies. We have previously reported that the activation of Ras/MEK/ERK1/2 and transforming growth factor β (TGF-β)/Smad2 signaling in transformed keratinocytes and cSCC cells leads to increased accumulation of laminin-332 and accelerated invasion. Here, we show that the next-generation B-Raf inhibitor PLX8394 blocks TGF-β signaling in ras-transformed metastatic epidermal keratinocytes (RT3 cells) harboring wild-type B-Raf and hyperactive Ras. PLX8394 decreased phosphorylation of TGF-β receptor II and Smad2, as well as p38 activity, MMP-1 and MMP-13 synthesis, and laminin-332 accumulation. PLX8394 significantly inhibited the growth of human cSCC tumors and in vivo collagen degradation in xenograft model. In conclusion, our data indicate that PLX8394 inhibits several serine-threonine kinases in malignantly transformed human keratinocytes and cSCC cells and inhibits cSCC invasion and tumor growth in vitro and in vivo. We identify PLX8394 as a potential therapeutic compound for advanced human cSCC.
Collapse
Affiliation(s)
- Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland.
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
8
|
Zhang X, Shi X, Zhang D, Gong X, Wen Z, Demandel I, Zhang J, Rossello-Martinez A, Chan TJ, Mak M. Compression drives diverse transcriptomic and phenotypic adaptations in melanoma. Proc Natl Acad Sci U S A 2023; 120:e2220062120. [PMID: 37722033 PMCID: PMC10523457 DOI: 10.1073/pnas.2220062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
Physical forces are prominent during tumor progression. However, it is still unclear how they impact and drive the diverse phenotypes found in cancer. Here, we apply an integrative approach to investigate the impact of compression on melanoma cells. We apply bioinformatics to screen for the most significant compression-induced transcriptomic changes and investigate phenotypic responses. We show that compression-induced transcriptomic changes are associated with both improvement and worsening of patient prognoses. Phenotypically, volumetric compression inhibits cell proliferation and cell migration. It also induces organelle stress and intracellular oxidative stress and increases pigmentation in malignant melanoma cells and normal human melanocytes. Finally, cells that have undergone compression become more resistant to cisplatin treatment. Our findings indicate that volumetric compression is a double-edged sword for melanoma progression and drives tumor evolution.
Collapse
Affiliation(s)
- Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Dingyao Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Israel Demandel
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Junqi Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | | | - Trevor J. Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| |
Collapse
|
9
|
Su D, Djureinovic D, Schoenfeld D, Marquez-Nostra B, Olino K, Jilaveanu L, Kluger H. Melanocortin 1 receptor (MC1R) expression as a marker of progression in melanoma. RESEARCH SQUARE 2023:rs.3.rs-3314825. [PMID: 37790306 PMCID: PMC10543287 DOI: 10.21203/rs.3.rs-3314825/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanocortin-1 receptor (MC1R) plays a critical role in human pigmentation and DNA repair mechanisms. MC1R-targeting agents are being investigated in clinical trials in melanoma patients, yet large studies investigating the rate and degree of MC1R expression in primary and metastatic human melanoma tissue are lacking. Using tissue microarrays containing three large cohorts of 225 cases of benign nevi, 189 with primary melanoma, and 271 with metastatic melanoma, we applied quantitative immunofluorescence and immunohistochemistry to comprehensively study MC1R protein expression. We show a stepwise elevation of MC1R expression in different stages of melanoma progression (nevi, primary, metastasis). Higher MC1R expression was seen in deeper (>1 mm) primary lesions, ulcerated lesions, and mucosal melanomas compared to cutaneous melanomas and was associated with shorter survival in primary and metastatic tumors. On multi-variable analysis, Breslow thickness, ulceration, male sex, and chronic sun exposure were independent predictors of worse overall survival in the primary melanoma cohort. In the metastatic melanoma cohort, MC1R expression and mucosal melanomas were independent predictors of inferior overall survival. Our data suggest that MC1R might be a valuable drug target in aggressive melanoma. Additional studies are warranted to determine its functional significance in melanoma progression and its utility as a predictive biomarker in patients receiving MC1R-directed therapies.
Collapse
Affiliation(s)
- David Su
- Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT
| | - Dijana Djureinovic
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - David Schoenfeld
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Bernadette Marquez-Nostra
- Department of Radiology, Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, AL
| | - Kelly Olino
- Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT
| | - Lucia Jilaveanu
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| | - Harriet Kluger
- Division of Medical Oncology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
10
|
Laajala M, Zwaagstra M, Martikainen M, Nekoua MP, Benkahla M, Sane F, Gervais E, Campagnola G, Honkimaa A, Sioofy-Khojine AB, Hyöty H, Ojha R, Bailliot M, Balistreri G, Peersen O, Hober D, Van Kuppeveld F, Marjomäki V. Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ. Microbiol Spectr 2023; 11:e0055223. [PMID: 37436162 PMCID: PMC10433971 DOI: 10.1128/spectrum.00552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.
Collapse
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marleen Zwaagstra
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mari Martikainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Mehdi Benkahla
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Emily Gervais
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anni Honkimaa
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Amir-Babak Sioofy-Khojine
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie Bailliot
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Olve Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Frank Van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Żołek T, Mazurek A, Grudzinski IP. In Silico Studies of Novel Vemurafenib Derivatives as BRAF Kinase Inhibitors. Molecules 2023; 28:5273. [PMID: 37446932 DOI: 10.3390/molecules28135273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
BRAF inhibitors have improved the treatment of advanced or metastatic melanoma in patients that harbor a BRAFT1799A mutation. Because of new insights into the role of aberrant glycosylation in drug resistance, we designed and studied three novel vemurafenib derivatives possessing pentose-associated aliphatic ligands-methyl-, ethyl-, and isopropyl-ketopentose moieties-as potent BRAFV600E kinase inhibitors. The geometries of these derivatives were optimized using the density functional theory method. Molecular dynamic simulations were performed to find interactions between the ligands and BRAFV600E kinase. Virtual screening was performed to assess the fate of derivatives and their systemic toxicity, genotoxicity, and carcinogenicity. The computational mapping of the studied ligand-BRAFV600E complexes indicated that the central pyrrole and pyridine rings of derivatives were located within the hydrophobic ATP-binding site of the BRAFV600E protein kinase, while the pentose ring and alkyl chains were mainly included in hydrogen bonding interactions. The isopropyl-ketopentose derivative was found to bind the BRAFV600E oncoprotein with more favorable energy interaction than vemurafenib. ADME-TOX in silico studies showed that the derivatives possessed some desirable pharmacokinetic and toxicologic properties. The present results open a new avenue to study the carbohydrate derivatives of vemurafenib as potent BRAFV600E kinase inhibitors to treat melanoma.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02 097 Warsaw, Poland
| | - Adam Mazurek
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02 097 Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02 097 Warsaw, Poland
| |
Collapse
|
12
|
Rodrigues L, Watson J, Feng Y, Lewis B, Harvey G, Post G, Megquier K, White ME, Lambert L, Miller A, Lopes C, Zhao S. Shared hotspot mutations in oncogenes position dogs as an unparalleled comparative model for precision therapeutics. Sci Rep 2023; 13:10935. [PMID: 37414794 PMCID: PMC10325973 DOI: 10.1038/s41598-023-37505-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Naturally occurring canine cancers have remarkable similarities to their human counterparts. To better understand these similarities, we investigated 671 client-owned dogs from 96 breeds with 23 common tumor types, including those whose mutation profile are unknown (anal sac carcinoma and neuroendocrine carcinoma) or understudied (thyroid carcinoma, soft tissue sarcoma and hepatocellular carcinoma). We discovered mutations in 50 well-established oncogenes and tumor suppressors, and compared them to those reported in human cancers. As in human cancer, TP53 is the most commonly mutated gene, detected in 22.5% of canine tumors overall. Canine tumors share mutational hotspots with human tumors in oncogenes including PIK3CA, KRAS, NRAS, BRAF, KIT and EGFR. Hotspot mutations with significant association to tumor type include NRAS G61R and PIK3CA H1047R in hemangiosarcoma, ERBB2 V659E in pulmonary carcinoma, and BRAF V588E (equivalent of V600E in humans) in urothelial carcinoma. Our findings better position canines as a translational model of human cancer to investigate a wide spectrum of targeted therapies.
Collapse
Affiliation(s)
- Lucas Rodrigues
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA.
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Benjamin Lewis
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Garrett Harvey
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Gerald Post
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Kate Megquier
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michelle E White
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Lindsay Lambert
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Aubrey Miller
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Christina Lopes
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA.
| |
Collapse
|
13
|
Bijak V, Szczygiel M, Lenkiewicz J, Gucwa M, Cooper DR, Murzyn K, Minor W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin Drug Discov 2023; 18:1221-1230. [PMID: 37592849 PMCID: PMC10620067 DOI: 10.1080/17460441.2023.2246881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Macromolecular X-ray crystallography and cryo-EM are currently the primary techniques used to determine the three-dimensional structures of proteins, nucleic acids, and viruses. Structural information has been critical to drug discovery and structural bioinformatics. The integration of artificial intelligence (AI) into X-ray crystallography has shown great promise in automating and accelerating the analysis of complex structural data, further improving the efficiency and accuracy of structure determination. AREAS COVERED This review explores the relationship between X-ray crystallography and other modern structural determination methods. It examines the integration of data acquired from diverse biochemical and biophysical techniques with those derived from structural biology. Additionally, the paper offers insights into the influence of AI on X-ray crystallography, emphasizing how integrating AI with experimental approaches can revolutionize our comprehension of biological processes and interactions. EXPERT OPINION Investing in science is crucially emphasized due to its significant role in drug discovery and advancements in healthcare. X-ray crystallography remains an essential source of structural biology data for drug discovery. Recent advances in biochemical, spectroscopic, and bioinformatic methods, along with the integration of AI techniques, hold the potential to revolutionize drug discovery when effectively combined with robust data management practices.
Collapse
Affiliation(s)
- Vanessa Bijak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Szczygiel
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Joanna Lenkiewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| |
Collapse
|
14
|
Lie KCM, Bonturi CR, Salu BR, de Oliveira JR, Bonini Galo M, Paiva PMG, Correia MTDS, Oliva MLV. Impairment of SK-MEL-28 Development-A Human Melanoma Cell Line-By the Crataeva tapia Bark Lectin and Its Sequence-Derived Peptides. Int J Mol Sci 2023; 24:10617. [PMID: 37445794 DOI: 10.3390/ijms241310617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melanoma is difficult to treat with chemotherapy, prompting the need for new treatments. Protease inhibitors have emerged as promising candidates as tumor cell proteases promote metastasis. Researchers have developed a chimeric form of the Bauhinia bauhinioides kallikrein inhibitor, rBbKIm, which has shown negative effects on prostate tumor cell lines DU145 and PC3. Crataeva tapia bark lectin, CrataBL, targets sulfated oligosaccharides in glycosylated proteins and has also demonstrated deleterious effects on prostate and glioblastoma tumor cells. However, neither rBbKIm nor its derived peptides affected the viability of SK-MEL-28, a melanoma cell line, while CrataBL decreased viability by over 60%. Two peptides, Pep. 26 (Ac-Q-N-S-S-L-K-V-V-P-L-NH2) and Pep. 27 (Ac-L-P-V-V-K-L-S-S-N-Q-NH2), were also tested. Pep. 27 suppressed cell migration and induced apoptosis when combined with vemurafenib, while Pep. 26 inhibited cell migration and reduced nitric oxide and the number of viable cells. Vemurafenib, a chemotherapy drug used to treat melanoma, was found to decrease the release of interleukin 8 and PDGF-AB/BB cytokines and potentiated the effects of proteins and peptides in reducing these cytokines. These findings suggest that protease inhibitors may be effective in blocking melanoma cells and highlight the potential of CrataBL and its derived peptides.
Collapse
Affiliation(s)
| | - Camila Ramalho Bonturi
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Bruno Ramos Salu
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | | | - Márcia Bonini Galo
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | | | | | | |
Collapse
|
15
|
Farshidfar F, Rhrissorrakrai K, Levovitz C, Peng C, Knight J, Bacchiocchi A, Su J, Yin M, Sznol M, Ariyan S, Clune J, Olino K, Parida L, Nikolaus J, Zhang M, Zhao S, Wang Y, Huang G, Wan M, Li X, Cao J, Yan Q, Chen X, Newman AM, Halaban R. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat Commun 2022; 13:898. [PMID: 35197475 PMCID: PMC8866401 DOI: 10.1038/s41467-022-28566-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Acral melanoma, the most common melanoma subtype among non-White individuals, is associated with poor prognosis. However, its key molecular drivers remain obscure. Here, we perform integrative genomic and clinical profiling of acral melanomas from 104 patients treated in North America (n = 37) or China (n = 67). We find that recurrent, late-arising focal amplifications of cytoband 22q11.21 are a leading determinant of inferior survival, strongly associated with metastasis, and linked to downregulation of immunomodulatory genes associated with response to immune checkpoint blockade. Unexpectedly, LZTR1 - a known tumor suppressor in other cancers - is a key candidate oncogene in this cytoband. Silencing of LZTR1 in melanoma cell lines causes apoptotic cell death independent of major hotspot mutations or melanoma subtypes. Conversely, overexpression of LZTR1 in normal human melanocytes initiates processes associated with metastasis, including anchorage-independent growth, formation of spheroids, and an increase in MAPK and SRC activities. Our results provide insights into the etiology of acral melanoma and implicate LZTR1 as a key tumor promoter and therapeutic target.
Collapse
Affiliation(s)
- Farshad Farshidfar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | - Cong Peng
- Xiangya Hospital, Central South University, Changsha, China
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06520, USA
| | | | - Juan Su
- Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhu Yin
- Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - James Clune
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Olino
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Joerg Nikolaus
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Meiling Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuang Zhao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Dermatologic Surgery Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Gang Huang
- Department of Bone and Soft Tissue oncology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Miaojian Wan
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianan Li
- Department of Bone and Soft Tissue oncology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Jian Cao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiang Chen
- Xiangya Hospital, Central South University, Changsha, China.
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Khan PS, Rajesh P, Rajendra P, Chaskar MG, Rohidas A, Jaiprakash S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg Chem 2022; 120:105597. [PMID: 35033817 DOI: 10.1016/j.bioorg.2022.105597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.
Collapse
Affiliation(s)
- Pathan Shahebaaz Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India
| | - Patil Rajesh
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, India
| | - Patil Rajendra
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, M.S., India
| | - Manohar G Chaskar
- Prof Ramkrishna More College, Akurdi, Pune 411044, Maharashtra, India
| | - Arote Rohidas
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul. Republic of Korea
| | - Sangshetti Jaiprakash
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India.
| |
Collapse
|
17
|
Corrales E, Levit-Zerdoun E, Metzger P, Kowar S, Ku M, Brummer T, Boerries M. Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Commun Signal 2021; 19:123. [PMID: 34930313 PMCID: PMC8686565 DOI: 10.1186/s12964-021-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.
Collapse
Affiliation(s)
- Eyleen Corrales
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Errington TM, Denis A, Allison AB, Araiza R, Aza-Blanc P, Bower LR, Campos J, Chu H, Denson S, Donham C, Harr K, Haven B, Iorns E, Kwok J, McDonald E, Pelech S, Perfito N, Pike A, Sampey D, Settles M, Scott DA, Sharma V, Tolentino T, Trinh A, Tsui R, Willis B, Wood J, Young L. Experiments from unfinished Registered Reports in the Reproducibility Project: Cancer Biology. eLife 2021; 10:73430. [PMID: 34874009 PMCID: PMC8651290 DOI: 10.7554/elife.73430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022] Open
Abstract
As part of the Reproducibility Project: Cancer Biology, we published Registered Reports that described how we intended to replicate selected experiments from 29 high-impact preclinical cancer biology papers published between 2010 and 2012. Replication experiments were completed and Replication Studies reporting the results were submitted for 18 papers, of which 17 were accepted and published by eLife with the rejected paper posted as a preprint. Here, we report the status and outcomes obtained for the remaining 11 papers. Four papers initiated experimental work but were stopped without any experimental outcomes. Two papers resulted in incomplete outcomes due to unanticipated challenges when conducting the experiments. For the remaining five papers only some of the experiments were completed with the other experiments incomplete due to mundane technical or unanticipated methodological challenges. The experiments from these papers, along with the other experiments attempted as part of the Reproducibility Project: Cancer Biology, provides evidence about the challenges of repeating preclinical cancer biology experiments and the replicability of the completed experiments.
Collapse
Affiliation(s)
| | | | - Anne B Allison
- Piedmont Virginia Community College, Charlottesville, United States
| | - Renee Araiza
- University of California, Davis, Davis, United States
| | | | | | | | - Heidi Chu
- Applied Biological Materials, Richmond, Canada
| | - Sarah Denson
- University of California, Davis, Davis, United States
| | | | - Kaitlyn Harr
- University of Virginia, Charlottesville, United States
| | | | | | - Jennie Kwok
- Applied Biological Materials, Richmond, Canada
| | - Elysia McDonald
- Drexel University College of Medicine, Philadelphia, United States
| | - Steven Pelech
- Kinexus Bioinformatics, Vancouver, Canada.,University of British Columbia, Vancouver, United States
| | | | - Amanda Pike
- Applied Biological Materials, Richmond, Canada
| | | | | | - David A Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | | | | | | | | | | | - Joshua Wood
- University of California, Davis, Davis, United States
| | - Lisa Young
- Applied Biological Materials, Richmond, Canada
| |
Collapse
|
19
|
Lacouture ME, Wainberg ZA, Patel AB, Anadkat MJ, Stemmer SM, Shacham-Shmueli E, Medina E, Zelinger G, Shelach N, Ribas A. Reducing Skin Toxicities from EGFR Inhibitors with Topical BRAF Inhibitor Therapy. Cancer Discov 2021; 11:2158-2167. [PMID: 33910927 PMCID: PMC8418997 DOI: 10.1158/2159-8290.cd-20-1847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Treatment of cancer with EGFR inhibitors is limited by on-target skin toxicities induced by inhibition of the MAPK pathway. BRAF inhibitors are known to paradoxically activate the MAPK downstream of EGFR, which we confirmed using human skin keratinocytes. We then conducted a phase I clinical trial testing the hypothesis that topical therapy with the BRAF inhibitor LUT014 could improve skin toxicities induced by EGFR inhibitors. Ten patients with metastatic colorectal cancer who had developed acneiform rash while being treated with cetuximab or panitumumab were enrolled in three cohorts. LUT014 was well tolerated, and there were no dose-limiting toxicities. The acneiform rash improved in the 6 patients who started with grade 2 rash in the low and intermediate cohorts. We conclude that topical LUT014 is safe and efficacious in improving rash from EGFR inhibitors, consistent with the mechanism of action inducting paradoxical MAPK activation. SIGNIFICANCE: BRAF inhibitor topical therapy could avoid dose reductions of EGFR inhibitors, locally treating the main dose-limiting skin toxicity of this class of agents.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
| | - Zev A Wainberg
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Anisha B Patel
- The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Milan J Anadkat
- Washington University School of Medicine, St. Louis, Missouri
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Egmidio Medina
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | | | - Antoni Ribas
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
20
|
Effect of L- to D-Amino Acid Substitution on Stability and Activity of Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. Int J Mol Sci 2021; 22:ijms22168469. [PMID: 34445175 PMCID: PMC8395111 DOI: 10.3390/ijms22168469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
The study investigates the antitumor effect of two cationic peptides, R-DIM-P-LF11-215 (RDP215) and the D-amino acid variant 9D-R-DIM-P-LF11-215 (9D-RDP215), targeting the negatively charged lipid phosphatidylserine (PS) exposed by cancer cells, such as of melanoma and glioblastoma. Model studies mimicking cancer and non-cancer membranes revealed the specificity for the cancer-mimic PS by both peptides with a slightly stronger impact by the D-peptide. Accordingly, membrane effects studied by DSC, leakage and quenching experiments were solely induced by the peptides when the cancer mimic PS was present. Circular dichroism revealed a sole increase in β-sheet conformation in the presence of the cancer mimic for both peptides; only 9D-RDP215 showed increased structure already in the buffer. Ex vitro stability studies by SDS-PAGE as well as in vitro with melanoma A375 revealed a stabilizing effect of D-amino acids in the presence of serum, which was also confirmed in 2D and 3D in vitro experiments on glioblastoma LN-229. 9D-RDP215 was additionally able to pass a BBB model, whereupon it induced significant levels of cell death in LN-229 spheroids. Summarized, the study encourages the introduction of D-amino acids in the design of antitumor peptides for the improvement of their stable antitumor activity.
Collapse
|
21
|
Gautron A, Bachelot L, Aubry M, Leclerc D, Quéméner AM, Corre S, Rambow F, Paris A, Tardif N, Leclair HM, Marin‐Bejar O, Coulouarn C, Marine J, Galibert M, Gilot D. CRISPR screens identify tumor-promoting genes conferring melanoma cell plasticity and resistance. EMBO Mol Med 2021; 13:e13466. [PMID: 33724679 PMCID: PMC8103100 DOI: 10.15252/emmm.202013466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Most genetic alterations that drive melanoma development and resistance to targeted therapy have been uncovered. In contrast, and despite their increasingly recognized contribution, little is known about the non-genetic mechanisms that drive these processes. Here, we performed in vivo gain-of-function CRISPR screens and identified SMAD3, BIRC3, and SLC9A5 as key actors of BRAFi resistance. We show that their expression levels increase during acquisition of BRAFi resistance and remain high in persister cells and during relapse. The upregulation of the SMAD3 transcriptional activity (SMAD3-signature) promotes a mesenchymal-like phenotype and BRAFi resistance by acting as an upstream transcriptional regulator of potent BRAFi-resistance genes such as EGFR and AXL. This SMAD3-signature predicts resistance to both current melanoma therapies in different cohorts. Critically, chemical inhibition of SMAD3 may constitute amenable target for melanoma since it efficiently abrogates persister cells survival. Interestingly, decrease of SMAD3 activity can also be reached by inhibiting the Aryl hydrocarbon Receptor (AhR), another druggable transcription factor governing SMAD3 expression level. Our work highlights novel drug vulnerabilities that can be exploited to develop long-lasting antimelanoma therapies.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Laura Bachelot
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Marc Aubry
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Plateforme GEH, CNRS, InsermBIOSIT ‐ UMS 3480, US_S 018Univ RennesRennesFrance
| | | | - Anaïs M Quéméner
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Sébastien Corre
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Florian Rambow
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | - Anaïs Paris
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Nina Tardif
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Héloïse M Leclair
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Oskar Marin‐Bejar
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | | | - Jean‐Christophe Marine
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | - Marie‐Dominique Galibert
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Service de Génétique Moléculaire et GénomiqueCHU RennesRennesFrance
| | - David Gilot
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Present address:
INSERM U1242Centre Eugène MarquisRennesFrance
| |
Collapse
|
22
|
Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins. Cancers (Basel) 2021; 13:cancers13081770. [PMID: 33917267 PMCID: PMC8068014 DOI: 10.3390/cancers13081770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In this review, the genetic landscape of squamous cell carcinoma is related to the potential targets of indirubin-based small molecules in cancer therapy. Being a component of traditional Chinese medicine, indirubins are used to treat chronic or inflammatory diseases, and have received increasing attention in cancer treatment due to their proapoptotic and antiproliferative activity. Frequent genetic alterations of squamous cell carcinomas are summarized, and it is discussed how these may render tumors susceptible to indirubin-based small molecule inhibitors. Abstract Skin cancers are the most common malignancies in the world. Among the most frequent skin cancer entities, squamous cell carcinoma (SCC) ranks second (~20%) after basal cell carcinoma (~77%). In early stages, a complete surgical removal of the affected tissue is carried out as standard therapy. To treat advanced and metastatic cancers, targeted therapies with small molecule inhibitors are gaining increasing attention. Small molecules are a heterogeneous group of protein regulators, which are produced by chemical synthesis or fermentation. The majority of them belong to the group of receptor tyrosine kinase inhibitors (RTKIs), which specifically bind to certain RTKs and directly influence the respective signaling pathway. Knowledge of characteristic molecular alterations in certain cancer entities, such as SCC, can help identify tumor-specific substances for targeted therapies. Most frequently, altered genes in SCC include TP53, NOTCH, EGFR, and CCND1. For example, the gene CCND1, which codes for cyclin D1 protein, is upregulated in nearly half of SCC cases and promotes proliferation of affected cells. A treatment with the small molecule 5′-nitroindirubin-monoxime (INO) leads to inhibition of cyclin D1 and thus inhibition of proliferation. As a component of Danggui Longhui Wan, a traditional Chinese medicine, indirubins are used to treat chronic diseases and have been shown to inhibit inflammatory reactions. Indirubins are pharmacologically relevant small molecules with proapoptotic and antiproliferative activity. In this review, we discuss the current literature on indirubin-based small molecules in cancer treatment. A special focus is on the molecular biology of squamous cell carcinomas, their alterations, and how these are rendered susceptible to indirubin-based small molecule inhibitors. The potential molecular mechanisms of the efficacy of indirubins in killing SCC cells will be discussed as well.
Collapse
|
23
|
Park KS, Saindane M, Yang EY, Jin T, Rallabandi HR, Heil A, Nam SE, Yoo YB, Yang JH, Kim JB, Park SY, Park WS, Youn YK. Selective inhibition of V600E-mutant BRAF gene induces apoptosis in thyroid carcinoma cell lines. Ann Surg Treat Res 2021; 100:127-136. [PMID: 33748026 PMCID: PMC7943282 DOI: 10.4174/astr.2021.100.3.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Papillary thyroid cancer (PTC) has a high incidence of BRAFV600E mutation. The purpose of this study was to evaluate the potential relationship between thyroiditis and BRAFV600E mutation status in patients with PTC. We investigated how a selective inhibitor of BRAFV600E PLX4032 affects the proliferation and inflammatory cytokine levels of thyroid cancer. Methods Two thyroid cancer cell lines TPC1 and 8505C were treated with PLX4032, an analysis was done on cell growth, cell cycle, the degree of apoptosis, and levels of inflammatory cytokines. To identify the functional links of BRAF, we used the STRING database. Results Docking results illustrated PLX4032 blocked the kinase activity by exclusively binding on the serine/threonine kinase domain. STRING results indicated BRAF is functionally linked to mitogen-activated protein kinase. Both cell lines showed a dose-dependent reduction in growth rate but had a different half maximal inhibitory concentration value for PLX4032. The reaction to PLX4032 was more sensitive in the 8505C cells than in the TPC1 cells. PLX4032 induced a G2/M phase arrest in the TPC1 cells and G0/G1 in the 8505C cells. PLX4032 induced apoptosis only in the 8505C cells. With PLX4032, the TPC1 cells showed decreased levels of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein 1, whereas the 8505C cells showed significantly decreased levels of IL-8, serpin E1/plasminogen activator inhibitor-1, and matrix metalloproteinase (MMP)-3. Conclusion PLX4032 was cytotoxic in both TPC1 and 8505C cells and induced apoptosis. In the 8505C cells, inflammatory cytokines such as IL-8 and MMP-3 were down-regulated. These findings suggest the possibility that the BRAFV600E mutation needs to target inflammatory signaling pathways in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea.,Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Madhuri Saindane
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Eun Yeol Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - TongYi Jin
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Harikrishna Reddy Rallabandi
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Alexander Heil
- Institute of Botany and Molecular Genetics, RWTH, Aachen University, Aachen, Germany
| | - Sang Eun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Jong Bin Kim
- Research Centers for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Seo-Young Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Won Seo Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yeo-Kyu Youn
- Thyroid Clinic, St. Peter's Hospital, Seoul, Korea
| |
Collapse
|
24
|
Keller BA, Laight BJ, Varette O, Broom A, Wedge MÈ, McSweeney B, Cemeus C, Petryk J, Lo B, Burns B, Nessim C, Ong M, Chica RA, Atkins HL, Diallo JS, Ilkow CS, Bell JC. Personalized oncology and BRAF K601N melanoma: model development, drug discovery, and clinical correlation. J Cancer Res Clin Oncol 2021; 147:1365-1378. [PMID: 33555379 DOI: 10.1007/s00432-021-03545-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Mutations in BRAF are the most prominent activating mutations in melanoma and are increasingly recognized in other cancers. There is currently no accepted treatment regimen for patients with mutant BRAFK601N melanoma, and the study of melanoma driven by BRAF mutations at the 601 locus is lacking due to a paucity of cellular model systems. Therefore, we sought to better understand the treatment and clinical approach to patients with mutant BRAFK601N melanoma and subsequently develop a novel personalized oncology platform for rare or treatment-refractory cancers. METHODS We developed and characterized the first patient-derived, naturally occurring BRAFK601N melanoma model, described herein as OHRI-MEL-13, and assessed efficacy using the Prestwick Chemical Library and select targeted therapeutics. RESULTS OHRI-MEL-13 exhibits loss of heterozygosity of BRAF, closely mimics the original tumor's gene expression profile, is tumorigenic in immune-deficient murine models, and is available for public accession through American Type Culture Collection. We present in silico modeling data, which illustrates the therapeutic failure of BRAFV600E-targeted therapies in BRAFK601N mutants. Our platform elucidated a unique role for MEK inhibition with cobimetinib, which resulted in short-term clinical success by reducing the metastatic burden. CONCLUSION Our model of BRAFK601N-activated melanoma was developed, thoroughly characterized, and made available for public accession. This model served to demonstrate the feasibility of a novel personalized oncology platform that could be optimized at an institutional level for rare variant or treatment-refractory cancers. We also demonstrate the clinical utility of monotherapy MEK inhibition in a case of BRAFK601N melanoma.
Collapse
Affiliation(s)
- Brian A Keller
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada.
| | - Brian J Laight
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Oliver Varette
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Aron Broom
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, K1N 6N5, Canada
| | - Marie-Ève Wedge
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Benjamin McSweeney
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Catia Cemeus
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Julia Petryk
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Bryan Lo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Molecular Oncology Diagnostics Laboratory, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Bruce Burns
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Carolyn Nessim
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Division of General Surgery, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Michael Ong
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Division of Medical Oncology, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, K1N 6N5, Canada
| | - Harold L Atkins
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
- The Ottawa Hospital Blood and Marrow Transplant Program, The Ottawa Hospital, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| |
Collapse
|
25
|
Kang SH, Bak DH, Chung BY, Bai HW. Centipedegrass extract enhances radiosensitivity in melanoma cells by inducing G2/M cell cycle phase arrest. Mol Biol Rep 2021; 48:1081-1091. [PMID: 33511511 DOI: 10.1007/s11033-021-06156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Melanoma is aggressive, highly metastatic, and potentially fatal. In the case of patients with advanced melanoma, it is difficult to expect a good prognosis, since this cancer has low sensitivity to chemotherapy and radiation therapy. The use of natural ingredients may enhance existing therapies. Centipedegrass extract (CGE) which contains phenolic structures and C-glycosyl flavones, has been shown to have anti-inflammatory effects and anti-cancer effects. The purpose of this study was to evaluate the radio sensitizing effects of CGE in combination with ionizing radiation (IR). Two melanoma cell lines were exposed to IR after treatment with CGE at concentrations that were not toxic alone. The effects of CGE + IR on cell survival, cell cycle, and apoptotic cell death were examined using MTT and Muse® Cell Analyzer, and fluorescence microscopy. Molecular signaling mechanisms were explored by western blots. Our findings showed that co-treatment of CGE + IR reduced the survival of melanoma cells more than IR alone. Also, cell cycle arrest in CGE-treated cells was enhanced and these cells became more radiosensitive. CGE + IR increased apoptotic cell death more than IR alone. Western blot results showed that the effect of CGE + IR involved MAPKs (ERK1/2, p38, and JNK) pathway. Our study suggests that CGE + IR treatment enhanced radio-sensitization and cell death of melanoma cells via cell cycle arrest and the MAPKs pathway.
Collapse
Affiliation(s)
- Seong Hee Kang
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Dong-Ho Bak
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea. .,Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
26
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
27
|
Tracking of Glycans Structure and Metallomics Profiles in BRAF Mutated Melanoma Cells Treated with Vemurafenib. Int J Mol Sci 2021; 22:ijms22010439. [PMID: 33406789 PMCID: PMC7794875 DOI: 10.3390/ijms22010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Nearly half of patients with advanced and metastatic melanomas harbor a BRAF mutation. Vemurafenib (VEM), a BRAF inhibitor, is used to treat such patients, however, responses to VEM are very short-lived due to intrinsic, adaptive and/or acquired resistance. In this context, we present the action of the B-Raf serine-threonine protein kinase inhibitor (vemurafenib) on the glycans structure and metallomics profiles in melanoma cells without (MeWo) and with (G-361) BRAF mutations. The studies were performed using α1-acid glycoprotein (AGP), a well-known acute-phase protein, and concanavalin A (Con A), which served as the model receptor. The detection of changes in the structure of glycans can be successfully carried out based on the frequency shifts and the charge transfer resistance after interaction of AGP with Con A in different VEM treatments using QCM-D and EIS measurements. These changes were also proved based on the cell ultrastructure examined by TEM and SEM. The LA-ICP-MS studies provided details on the metallomics profile in melanoma cells treated with and without VEM. The studies evidence that vemurafenib modifies the glycans structures and metallomics profile in melanoma cells harboring BRAF mutation that can be further implied in the resistance phenomenon. Therefore, our data opens a new avenue for further studies in the short-term addressing novel targets that hopefully can be used to improve the therapeutic regiment in advanced melanoma patients. The innovating potential of this study is fully credible and has a real impact on the global patient society suffering from advanced and metastatic melanomas.
Collapse
|
28
|
Zhao J, Galvez C, Beckermann KE, Johnson DB, Sosman JA. Novel insights into the pathogenesis and treatment of NRAS mutant melanoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:281-294. [PMID: 34485698 PMCID: PMC8415440 DOI: 10.1080/23808993.2021.1938545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION NRAS was the first mutated oncogene identified in melanoma and is currently the second most common driver mutation in this malignancy. For patients with NRASmutant advanced stage melanoma refractory to immunotherapy or with contraindications to immune-based regimens, there are few therapeutic options including low-efficacy chemotherapy regimens and binimetinib monotherapy. Here, we review recent advances in preclinical studies of molecular targets for NRAS mutant melanoma as well as the failures and successes of early-phase clinical trials. While there are no targeted therapies for NRAS-driven melanoma, there is great promise in approaches combining MEK inhibition with inhibitors of the focal adhesion kinase (FAK), inhibitors of autophagy pathways, and pan-RAF inhibitors. AREAS COVERED This review surveys new developments in all aspects of disease pathogenesis and potential treatment - including those that have failed, stalled, or progressed through various phases of preclinical and clinical development. EXPERT OPINION There are no currently approved targeted therapies for BRAF wild-type melanoma patients harboring NRAS driver mutations though an array of agents are in early phase clinical trials. The diverse strategies taken exploit combined MAP kinase signaling blockade with inhibition of cell cycle mediators, inhibition of the autophagy pathway, and alteration of kinases involved in actin cytoskeleton signaling. Future advances of developmental therapeutics into late stage trials may yield new options beyond immunotherapy for patients with advanced stage disease and NRAS mutation status.
Collapse
Affiliation(s)
- Jeffrey Zhao
- Northwestern University Feinberg School of Medicine
| | - Carlos Galvez
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| | - Kathryn Eby Beckermann
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Douglas B Johnson
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Jeffrey A Sosman
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
29
|
Human Endogenous Retrovirus K Rec forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses 2020; 12:v12111303. [PMID: 33202765 PMCID: PMC7696977 DOI: 10.3390/v12111303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
The HML2 subfamily of HERV-K (henceforth HERV-K) represents the most recently endogenized retrovirus in the human genome. While the products of certain HERV-K genomic copies are expressed in normal tissues, they are upregulated in several pathological conditions, including various tumors. It remains unclear whether HERV-K(HML2)-encoded products overexpressed in cancer contribute to disease progression or are merely by-products of tumorigenesis. Here, we focus on the regulatory activities of the Long Terminal Repeats (LTR5_Hs) of HERV-K and the potential role of the HERV-K-encoded Rec in melanoma. Our regulatory genomics analysis of LTR5_Hs loci indicates that Melanocyte Inducing Transcription Factor (MITF) (also known as binds to a canonical E-box motif (CA(C/T)GTG) within these elements in proliferative type of melanoma, and that depletion of MITF results in reduced HERV-K expression. In turn, experimentally depleting Rec in a proliferative melanoma cell line leads to lower mRNA levels of MITF and its predicted target genes. Furthermore, Rec knockdown leads to an upregulation of epithelial-to-mesenchymal associated genes and an enhanced invasion phenotype of proliferative melanoma cells. Together these results suggest the existence of a regulatory loop between MITF and Rec that may modulate the transition from proliferative to invasive stages of melanoma. Because HERV-K(HML2) elements are restricted to hominoid primates, these findings might explain certain species-specific features of melanoma progression and point to some limitations of animal models in melanoma studies.
Collapse
|
30
|
Huang L, Peng B, Nayak Y, Wang C, Si F, Liu X, Dou J, Xu H, Peng G. Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition. Front Cell Dev Biol 2020; 8:836. [PMID: 32984331 PMCID: PMC7477299 DOI: 10.3389/fcell.2020.00836] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is one of the most common and dangerous skin cancers with a high rate of death every year. Furthermore, N-RAS and B-RAF mutations in melanoma cells increase the difficulties for clinical treatment in patients. Therefore, development of effective and universal drugs against melanoma is urgently needed. Here we demonstrate that baicalein and baicalin, the active components of the Chinese traditional medicinal plant Scutellaria baicalensis Georgi, can significantly inhibit melanoma cell growth and proliferation, suppress tumor cell colony formation and migration, as well as induce apoptosis and senescence in melanoma cells. The anti-tumor effects mediated by baicalein and baicalin are independent of N-RAS and B-RAF mutation statuses in melanoma cells. Mechanistically, we identify that the suppression of baicalein and baicalin on melanoma cells is due to inhibition of tumor cell glucose uptake and metabolism by affecting the mTOR-HIF-1α signaling pathway. In addition, we demonstrated that baicalein and baicalin can suppress tumorigenesis and tumor growth in vivo in the melanoma model. These studies clearly indicate that baicalein and baicalin can control tumor growth and development metabolically and have great potential as novel and universal drugs for melanoma therapy.
Collapse
Affiliation(s)
- Lan Huang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Bo Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Yash Nayak
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Cindy Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Fusheng Si
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Xia Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
31
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
32
|
Targeting mitochondria in melanoma: Interplay between MAPK signaling pathway and mitochondrial dynamics. Biochem Pharmacol 2020; 178:114104. [PMID: 32562785 DOI: 10.1016/j.bcp.2020.114104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Melanoma is a malignant proliferative disease originated in melanocytes, characterized by high metastatic activity and by the activation of oncogenes, such as B-RAF (40-60% of cases). Recent studies have shown that vemurafenib (a MAPK inhibitor) promoted disturbance of mitochondrial bioenergetics, although underlying mechanisms are not fully comprehended. Here we showed that MAPK inhibition by vemurafenib in B-RAFV600E-mutated human melanoma culminated in the inhibition of DRP1 phosphorylation, associated to a large mitochondrial network remodeling to the hyperfused phenotype, and increased oxidative phosphorylation capacity. Such alterations may be associated to melanoma resistance to vemurafenib, since the impairment of oxidative phosphorylation increased the vemurafenib cytotoxicity. These results point to the potential of mitochondrial dynamics as a targetable pathway in melanoma.
Collapse
|
33
|
Khaliq M, Fallahi-Sichani M. Epigenetic Mechanisms of Escape from BRAF Oncogene Dependency. Cancers (Basel) 2019; 11:cancers11101480. [PMID: 31581557 PMCID: PMC6826668 DOI: 10.3390/cancers11101480] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022] Open
Abstract
About eight percent of all human tumors (including 50% of melanomas) carry gain-of-function mutations in the BRAF oncogene. Mutated BRAF and subsequent hyperactivation of the MAPK signaling pathway has motivated the use of MAPK-targeted therapies for these tumors. Despite great promise, however, MAPK-targeted therapies in BRAF-mutant tumors are limited by the emergence of drug resistance. Mechanisms of resistance include genetic, non-genetic and epigenetic alterations. Epigenetic plasticity, often modulated by histone-modifying enzymes and gene regulation, can influence a tumor cell's BRAF dependency and therefore, response to therapy. In this review, focusing primarily on class 1 BRAF-mutant cells, we will highlight recent work on the contribution of epigenetic mechanisms to inter- and intratumor cell heterogeneity in MAPK-targeted therapy response.
Collapse
Affiliation(s)
- Mehwish Khaliq
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Inhibition of epidermal growth factor receptor improves antitumor efficacy of vemurafenib in BRAF-mutant human melanoma in preclinical model. Melanoma Res 2019; 28:536-546. [PMID: 30124539 DOI: 10.1097/cmr.0000000000000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oncogenic activation of the epidermal growth factor receptor (EGFR) signaling pathway occurs in a variety of tumor types, albeit in human melanoma, the contribution of EGFR is still unclear. The potential role of EGFR was analyzed in four BRAF-mutant, one NRAS-mutant and one wild-type NRAS-BRAF-carrying human melanoma cell lines. We have tested clinically available reversible tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, irreversible EGFR-TKI pelitinib and a reversible experimental compound PD153035 on in-vitro proliferation, apoptosis, migration as well as in-vivo metastatic colonization in a spleen-liver model. The presence of the intracellular domain of EGFR protein and its constitutive activity were demonstrated in all cell lines. Efficacies of EGFR-TKIs showed significant differences, and irreversible inhibition had the strongest antitumor potential. Compared with BRAF-mutant cells, wild-type BRAF was associated with relative resistance against gefitinib. In combination with gefitinib, selective mutant BRAF-inhibitor vemurafenib showed additive effect in all BRAF-mutant cell lines. Treatment of BRAF-mutant cells with gefitinib or pelitinib attenuated in-vitro cell migration and in-vivo colonization. Our preclinical data suggest that EGFR is a potential target in the therapy of BRAF-mutant malignant melanoma; however, more benefits could be expected from irreversible EGFR-TKIs and combined treatment settings.
Collapse
|
35
|
Goulielmaki M, Assimomytis N, Rozanc J, Taki E, Christodoulou I, Alexopoulos LG, Zoumpourlis V, Pintzas A, Papahatjis D. DPS-2: A Novel Dual MEK/ERK and PI3K/AKT Pathway Inhibitor with Powerful Ex Vivo and In Vivo Anticancer Properties. Transl Oncol 2019; 12:932-950. [PMID: 31096110 PMCID: PMC6520640 DOI: 10.1016/j.tranon.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
Development of novel bioactive compounds against KRAS and/or BRAF mutant colorectal cancer (CRC) is currently an urgent need in oncology. In addition, single or multitarget kinase inhibitors against MEK/ERK and PI3K/AKT pathways are of potential therapeutic advantage. A new compound based on the benzothiophene nucleus was synthesized, based on previous important outcomes on other pharmaceutical preparations, to be tested as potential anticancer agent. Treatments by 2-5 μM DPS-2 of several CRC and melanoma cell lines bearing either BRAF or KRAS mutations have shown a remarkable effect on cell viability in 2D and 3D cultures. More detailed analysis has shown that DPS-2 can kill cancer cells by apoptosis, reducing at the same time their autophagy properties. After testing activities of several signaling pathways, the compound was found to have a dual inhibition of two major proliferative/survival pathways, MEK/ERK and PI3K/AKT, in both CRC and melanoma, thus providing a mechanistic evidence for its potent anticancer activity. Antitumor activity of DPS-2 was further validated in vivo, as DPS-2 treatment of mouse xenografts of Colo-205 colorectal cancer cells remarkably reduced their tumor formation properties. Our findings suggest that DPS-2 has significant anti-KRAS/ anti-BRAF mutant CRC activity in preclinical models, potentially providing a novel treatment strategy for these difficult-to-treat tumors, which needs to be further exploited.
Collapse
Affiliation(s)
- Maria Goulielmaki
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece
| | - Nikos Assimomytis
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece
| | - Jan Rozanc
- TEPA Lefkippos-Demokritos, Patriarchou Grigoriou & Neapoleos, 15343 Ag. Paraskevi, Attiki, Greece
| | - Eleni Taki
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece
| | - Ioannis Christodoulou
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece
| | - Leonidas G Alexopoulos
- TEPA Lefkippos-Demokritos, Patriarchou Grigoriou & Neapoleos, 15343 Ag. Paraskevi, Attiki, Greece; School of Mechanical Engineering, National Technical University of Athens, Zografou 15780, Greece
| | - Vassilis Zoumpourlis
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece
| | - Alexandros Pintzas
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece
| | - Demetris Papahatjis
- Institute of Biology Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 36 Athens, Greece.
| |
Collapse
|
36
|
Ahn JH, Hwang SH, Cho HS, Lee M. Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis. Biomol Ther (Seoul) 2019; 27:302-310. [PMID: 30293252 PMCID: PMC6513187 DOI: 10.4062/biomolther.2018.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PANTHER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitor-resistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sung-Hee Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
37
|
Datar I, Kalpana G, Choi J, Basuroy T, Trumbly R, Chaitanya Arudra SK, McPhee MD, de la Serna I, Yeung KC. Critical role of miR-10b in B-RafV600E dependent anchorage independent growth and invasion of melanoma cells. PLoS One 2019; 14:e0204387. [PMID: 30995246 PMCID: PMC6469749 DOI: 10.1371/journal.pone.0204387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Recent high-throughput-sequencing of cancer genomes has identified oncogenic mutations in the B-Raf genetic locus as one of the critical events in melanomagenesis. B-Raf encodes a serine/threonine kinase that regulates the MAPK/ERK kinase (MEK) and extracellular signal-regulated kinase (ERK) protein kinase cascade. In normal cells, the activity of B-Raf is tightly regulated and is required for cell growth and survival. B-Raf gain-of-function mutations in melanoma frequently lead to unrestrained growth, enhanced cell invasion and increased viability of cancer cells. Although it is clear that the invasive phenotypes of B-Raf mutated melanoma cells are stringently dependent on B-Raf-MEK-ERK activation, the downstream effector targets that are required for oncogenic B-Raf-mediated melanomagenesis are not well defined. miRNAs have regulatory functions towards the expression of genes that are important in carcinogenesis. We observed that miR-10b expression correlates with the presence of the oncogenic B-Raf (B-RafV600E) mutation in melanoma cells. While expression of miR-10b enhances anchorage-independent growth of B-Raf wild-type melanoma cells, miR-10b silencing decreases B-RafV600E cancer cell invasion in vitro. Importantly, the expression of miR-10b is required for B-RafV600E-mediated anchorage independent growth and invasion of melanoma cells in vitro. Taken together our results suggest that miR-10b is an important mediator of oncogenic B-RafV600E activity in melanoma.
Collapse
Affiliation(s)
- Ila Datar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Gardiyawasam Kalpana
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States of America
| | - Tupa Basuroy
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Robert Trumbly
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | | | | | - Ivana de la Serna
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Kam C. Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
38
|
Beneker CM, Rovoli M, Kontopidis G, Röring M, Galda S, Braun S, Brummer T, McInnes C. Design and Synthesis of Type-IV Inhibitors of BRAF Kinase That Block Dimerization and Overcome Paradoxical MEK/ERK Activation. J Med Chem 2019; 62:3886-3897. [PMID: 30977659 DOI: 10.1021/acs.jmedchem.8b01288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the clinical success of BRAF inhibitors like vemurafenib in treating metastatic melanoma, resistance has emerged through "paradoxical MEK/ERK signaling" where transactivation of one protomer occurs as a result of drug inhibition of the other partner in the activated dimer. The importance of the dimerization interface in the signaling potential of wild-type BRAF in cells expressing oncogenic Ras has recently been demonstrated and proposed as a site of therapeutic intervention in targeting cancers resistant to adenosine triphosphate competitive drugs. The proof of concept for a structure-guided approach targeting the dimerization interface is described through the design and synthesis of macrocyclic peptides that bind with high affinity to BRAF and that block paradoxical signaling in malignant melanoma cells occurring through this drug target. The lead compounds identified are type-IV kinase inhibitors and represent an ideal framework for conversion into next-generation BRAF inhibitors through macrocyclic drug discovery.
Collapse
Affiliation(s)
- Chad M Beneker
- Drug Discovery and Biomedical Sciences , College of Pharmacy , Columbia , South Carolina 29208 , United States
| | - Magdalini Rovoli
- Laboratory of Biochemistry, Department of Veterinary Medicine , University of Thessaly , Karditsa 43131 , Greece
| | - George Kontopidis
- Laboratory of Biochemistry, Department of Veterinary Medicine , University of Thessaly , Karditsa 43131 , Greece
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany
| | - Simeon Galda
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine , University of Freiburg , Freiburg 79085 , Germany.,Centre for Biological Signalling Studies, BIOSS , University of Freiburg , Schänzlestrasse 18 , Freiburg 79104 , Germany.,German Consortium for Translational Cancer Research DKTK, Partner Site Freiburg , German Cancer Research Center (DKFZ) , Heidelberg 69120 , Germany
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences , College of Pharmacy , Columbia , South Carolina 29208 , United States
| |
Collapse
|
39
|
Banerjee S, Akbani R, Baladandayuthapani V. Spectral Clustering via sparse graph structure learning with application to Proteomic Signaling Networks in Cancer. Comput Stat Data Anal 2019; 132:46-69. [PMID: 38774121 PMCID: PMC11106846 DOI: 10.1016/j.csda.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clustering methods for multivariate data exploiting the underlying geometry of the graphical structure between variables are presented. As opposed to standard approaches for graph clustering that assume known graph structures, the edge structure of the unknown graph is first estimated using sparse regression based approaches for sparse graph structure learning. Subsequently, graph clustering on the lower dimensional projections of the graph is performed based on Laplacian embeddings using a penalized k-means approach, motivated by Dirichlet process mixture models in Bayesian nonparametrics. In contrast to standard algorithmic approaches for known graphs, the proposed method allows estimation and inference for both graph structure learning and clustering. More importantly, the arguments for Laplacian embeddings as suitable projections for graph clustering are formalized by providing theoretical support for the consistency of the eigenspace of the estimated graph Laplacians. Fast computational algorithms are proposed to scale the method to large number of nodes. Extensive simulations are presented to compare the clustering performance with standard methods. The methods are applied to a novel pan-cancer proteomic data set, and protein networks and clusters are evaluated across multiple different cancer types.
Collapse
Affiliation(s)
- Sayantan Banerjee
- Operations Management & Quantitative Techniques Area, Indian Institute of ManagementIndore, Indore, India
| | - Rehan Akbani
- Dept of Bioinformatics & Computational Biology, UT MD Anderson Cancer Center,Houston, Texas, USA
| | | |
Collapse
|
40
|
Blair CM, Walsh NM, Littman BH, Marcoux FW, Baillie GS. Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A - C-Raf. BMC Cancer 2019; 19:266. [PMID: 30909892 PMCID: PMC6434832 DOI: 10.1186/s12885-019-5489-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf – MEK – ERK signalling pathway, followed by metastasis. PDE8A has been shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase. Methods We have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A – C-Raf complex in a human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP kinase signalling. Results We have demonstrated that the PDE8A – C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-S259 phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008 to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue and significantly reduced phospho-ERK signalling in that domain. Conclusion Our data suggests that the PDE8A-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor resistant melanoma. Electronic supplementary material The online version of this article (10.1186/s12885-019-5489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Connor M Blair
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Portage Glasgow Limited, Glasgow, UK
| | - Nicola M Walsh
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bruce H Littman
- Portage Pharmaceuticals Limited, Tortola, British Virgin Islands.,EyGen Inc, Wilmington, DE, USA
| | - Frank W Marcoux
- Portage Glasgow Limited, Glasgow, UK.,Portage Pharmaceuticals Limited, Tortola, British Virgin Islands
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,Portage Glasgow Limited, Glasgow, UK.
| |
Collapse
|
41
|
Halaban R, Bacchiocchi A, Straub R, Cao J, Sznol M, Narayan D, Allam A, Krauthammer M, Mansour TS. A novel anti-melanoma SRC-family kinase inhibitor. Oncotarget 2019; 10:2237-2251. [PMID: 31040916 PMCID: PMC6481345 DOI: 10.18632/oncotarget.26787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
The major drawback of melanoma therapy with BRAF and MAPK inhibitors is the innate and acquired drug resistance. We therefore explored alternative targets and developed a new compound, SAB298, that is a SRC-family kinase (SFK) inhibitor. The drug is cytotoxic to patient-derived melanoma cells regardless of oncogene expression and inhibits tumor growth in vivo. As expected, it inhibited SRC and PI3K activity, and had the additional property of ERBB2 inhibition, that lead to inactivation of the two ERK phosphatases PP2A and SHP2. In 57% of the melanoma cell lines tested, the consequent increase in ERK activity lead to proteolytic degradation of its substrate, the lineage specific transcription factor MITF, likely contributing to growth arrest. Treatment with a combination of SAB298 and AZD6244 (selumetinib), induced a synergistic growth inhibition, suggesting that the new compound could be used in the clinic as a substitute for, or in combination with MAPK inhibitors.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Straub
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jian Cao
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mario Sznol
- Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deepak Narayan
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ahmed Allam
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Liu X, Zhang SM, McGeary MK, Krykbaeva I, Lai L, Jansen DJ, Kales SC, Simeonov A, Hall MD, Kelly DP, Bosenberg MW, Yan Q. KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations. Mol Cancer Ther 2019; 18:706-717. [PMID: 30523048 PMCID: PMC6397704 DOI: 10.1158/1535-7163.mct-18-0395] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Tumor heterogeneity is a major challenge for cancer treatment, especially due to the presence of various subpopulations with stem cell or progenitor cell properties. In mouse melanomas, both CD34+p75- (CD34+) and CD34-p75- (CD34-) tumor subpopulations were characterized as melanoma-propagating cells (MPC) that exhibit some of those key features. However, these two subpopulations differ from each other in tumorigenic potential, ability to recapitulate heterogeneity, and chemoresistance. In this study, we demonstrate that CD34+ and CD34- subpopulations carrying the BRAFV600E mutation confer differential sensitivity to targeted BRAF inhibition. Through elevated KDM5B expression, melanoma cells shift toward a more drug-tolerant, CD34- state upon exposure to BRAF inhibitor or combined BRAF inhibitor and MEK inhibitor treatment. KDM5B loss or inhibition shifts melanoma cells to the more BRAF inhibitor-sensitive CD34+ state. These results support that KDM5B is a critical epigenetic regulator that governs the transition of key MPC subpopulations with distinct drug sensitivity. This study also emphasizes the importance of continuing to advance our understanding of intratumor heterogeneity and ultimately develop novel therapeutics by altering the heterogeneous characteristics of melanoma.
Collapse
Affiliation(s)
- Xiaoni Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Ling Lai
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Daniel P Kelly
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
43
|
Vera J, Paludo J, Kottschade L, Brandt J, Yan Y, Block M, McWilliams R, Dronca R, Loprinzi C, Grothey A, Markovic SN. Case series of dabrafenib-trametinib-induced pyrexia successfully treated with colchicine. Support Care Cancer 2019; 27:3869-3875. [DOI: 10.1007/s00520-019-4654-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/15/2019] [Indexed: 01/15/2023]
|
44
|
Understanding and exploiting cell signalling convergence nodes and pathway cross-talk in malignant brain cancer. Cell Signal 2019; 57:2-9. [PMID: 30710631 DOI: 10.1016/j.cellsig.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/03/2023]
Abstract
In cancer, complex intracellular and intercellular signals constantly evolve for the advantage of the tumour cells but to the disadvantage of the whole organism. Decades of intensive research have revealed the critical roles of cellular signalling pathways in regulating complex cell behaviours which influence tumour development, growth and therapeutic response, and ultimately patient outcome. Most studies have focussed on specific pathways and the resulting tumour cell function in a rather linear fashion, partly due to the available methodologies and partly due to the traditionally reductionist approach to research. Advances in cancer research, including genomic technologies have led to a deep appreciation of the complex signals and pathway interactions operating in tumour cells. In this review we examine the role and interaction of three major cell signalling pathways, PI3K, MAPK and cAMP, in regulating tumour cell functions and discuss the prospects for exploiting this knowledge to better treat difficult to treat cancers, using glioblastoma, the most common and deadly malignant brain cancer, as the example disease.
Collapse
|
45
|
Trojaniello C, Festino L, Vanella V, Ascierto PA. Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. Expert Rev Clin Pharmacol 2019; 12:259-266. [PMID: 30652516 DOI: 10.1080/17512433.2019.1570847] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Combination treatment with a BRAF inhibitor and MEK inhibitor is the standard of care for patients with advanced BRAFV600 mutation-positive melanoma. With the currently available combinations of dabrafenib plus trametinib and vemurafenib plus cobimetinib, median progression-free survival (PFS) of over 12 months has been achieved. However, treatment resistance and disease recurrence remain a clinical challenge. Areas covered: Encorafenib in combination with bimetinib offers a new approach that may offer benefits over existing BRAF/MEK inhibitor combinations. Expert opinion: While other BRAF/MEK inhibitor combinations have achieved a median overall survival (OS) of 22 months, patients with advanced BRAF mutation-positive melanoma treated with encorafenib plus binimetinib achieved a median OS of 33.6 months in the phase III COLUMBUS trial. PFS also appears to be improved with encorafenib plus binimetinib. This improved efficacy may be related to the distinct pharmacokinetics of encorafenib, with prolonged binding to the target molecule providing greater BRAF inhibition and increased potency compared with other drugs in the same class. Increased specificity of encorafenib may also result in better tolerability with less off-target effects, including reduced occurrence of pyrexia and photosensitivity. Encorafenib plus binimetinib seems likely to emerge as a valuable therapeutic alternative to established BRAF/MEK inhibitor combinations.
Collapse
Affiliation(s)
- Claudia Trojaniello
- a Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics , Istituto Nazionale Tumori IRCCS Fondazione G. Pascale , Napoli , Italy
| | - Lucia Festino
- a Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics , Istituto Nazionale Tumori IRCCS Fondazione G. Pascale , Napoli , Italy
| | - Vito Vanella
- a Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics , Istituto Nazionale Tumori IRCCS Fondazione G. Pascale , Napoli , Italy
| | - Paolo A Ascierto
- a Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics , Istituto Nazionale Tumori IRCCS Fondazione G. Pascale , Napoli , Italy
| |
Collapse
|
46
|
Theodosakis N, Langdon CG, Micevic G, Krykbaeva I, Means RE, Stern DF, Bosenberg MW. Inhibition of isoprenylation synergizes with MAPK blockade to prevent growth in treatment-resistant melanoma, colorectal, and lung cancer. Pigment Cell Melanoma Res 2018; 32:292-302. [PMID: 30281931 DOI: 10.1111/pcmr.12742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
This study evaluates the use of HMG-CoA reductase inhibitors, or statins, as an adjunctive to BRAF and MEK inhibition as a treatment in melanomas and other tumors with driver mutations in the MAPK pathway. Experiments used simvastatin in conjunction with vemurafenib and selumetinib in vitro and simvastatin with vemurafenib in vivo to demonstrate additional growth abrogation beyond MAPK blockade alone. Additional studies demonstrated that statin anti-tumor effects appeared to depend on inhibition of isoprenoid synthesis given rescue with add-back of downstream metabolites. Ultimately, we concluded that statins represent a possible useful adjunctive therapy in MAPK-driven tumors when given with current approved targeted therapy.
Collapse
Affiliation(s)
| | - Casey G Langdon
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Goran Micevic
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Robert E Means
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - David F Stern
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.,Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
47
|
Vasconcelos ZS, Ralph ACL, Calcagno DQ, dos Santos Barbosa G, do Nascimento Pedrosa T, Antony LP, de Arruda Cardoso Smith M, de Lucas Chazin E, Vasconcelos TRA, Montenegro RC, de Vasconcellos MC. Anticancer potential of benzothiazolic derivative (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol against melanoma cells. Toxicol In Vitro 2018; 50:225-235. [DOI: 10.1016/j.tiv.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
|
48
|
Vemurafenib treatment for patients with locally advanced, unresectable stage IIIC or metastatic melanoma and activating exon 15 BRAF mutations other than V600E. Melanoma Res 2018; 27:585-590. [PMID: 29076950 DOI: 10.1097/cmr.0000000000000398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BRAF mutations are found in ~50% of metastatic melanomas, most commonly in codon V600. Vemurafenib improves progression-free survival and overall survival in patients with advanced BRAF-mutated melanoma. The results of a descriptive study evaluating vemurafenib in patients with advanced melanoma harbouring BRAF mutations other than V600E are reported. Eligible patients with stage IIIC or IV melanoma and non-V600E BRAF mutations received vemurafenib (960 mg, twice daily). End points included investigator-assessed best overall response rate (primary), time to response, duration of response, progression-free survival, overall survival and safety. Planned (V600K vs. non-V600K mutations) subgroup analyses were carried out. Thirty-one patients were enrolled; 13 (42%) had V600K mutations and 18 (58%) had other mutations. Investigator-assessed confirmed that the best overall response rate was 23% (95% confidence interval=10-41%) in the overall population, and was similar between patients with V600K mutations (23%; 95% confidence interval=5-54%) versus other mutations (22%; 95% confidence interval=6-48%). Responses were observed in patients with V600K (n=3), V600E2 (n=1), V600R (n=1), L597S (n=1) and D594G (n=1) mutations. No new safety signals were reported. Vemurafenib showed activity in patients with advanced melanoma with rarer BRAF mutations.
Collapse
|
49
|
Ryabaya OO, Malysheva AA, Khochenkova YA, Solomko ES, Khochenkov DA. Inactivation of Receptor Tyrosine Kinases Overcomes Resistance to Targeted B-RAF Inhibitors in Melanoma Cell Lines. Mol Biol 2018. [DOI: 10.1134/s0026893318020115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Torres-Collado AX, Knott J, Jazirehi AR. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAF V600E-Specific Inhibitor). Cancers (Basel) 2018; 10:cancers10060157. [PMID: 29795041 PMCID: PMC6025215 DOI: 10.3390/cancers10060157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey Knott
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|