1
|
Turesky RJ, Jones C, Guo J, Cammerrer K, Maertens LA, Antonarakis ES, Lu Z, Spector LG. Biomonitoring PhIP, a Potential Prostatic Carcinogen, in the Hair of Healthy Men of African and European Ancestry. TOXICS 2025; 13:42. [PMID: 39853040 PMCID: PMC11769170 DOI: 10.3390/toxics13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
Heterocyclic aromatic amines (HAAs), formed during the cooking of meat, are potential human carcinogens, underscoring the need for long-lived biomarkers to assess exposure and cancer risk. Frequent consumption of well-done meats containing 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a prevalent HAA that is a prostatic carcinogen in rodents and DNA-damaging agent in human prostate cells, has been linked to aggressive prostate cancer (PC) pathology. African American (AA) men face nearly twice the risk for developing and dying from PC compared to White men. We previously demonstrated that scalp hair is a reliable biospecimen for measuring PhIP intake using liquid chromatography-mass spectrometry. This study aimed to determine whether PhIP dietary intake is higher in AA men, potentially contributing to this health disparity. Healthy AA men were found to have a significantly higher mean hair PhIP level (2.12-fold) than White men on free-choice diets. However, this difference was not statistically significant after adjusting for melanin content. Further research is needed to understand how hair pigmentation, follicular density, and other morphological features of hair influence PhIP accumulation. These insights can improve the accuracy of using hair PhIP levels as a biomarker for exposure and its potential associations with cancer risk.
Collapse
Affiliation(s)
- Robert J. Turesky
- Masonic Cancer Center, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (J.G.); (K.C.)
| | - Clarence Jones
- Hue-Man Partnership, 2400 Park Ave., Minneapolis, MN 55404, USA;
| | - Jingshu Guo
- Masonic Cancer Center, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (J.G.); (K.C.)
- Clinical Research and Toxicology, Chromatography and Mass Spectrometry Division, Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Kari Cammerrer
- Masonic Cancer Center, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (J.G.); (K.C.)
| | - Laura A. Maertens
- Masonic Cancer Center, Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Zhanni Lu
- Masonic Cancer Center, Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Logan G. Spector
- Masonic Cancer Center, Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Bontemps Z, Abrouk D, Venier S, Vergne P, Michalet S, Comte G, Moënne-Loccoz Y, Hugoni M. Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. NPJ Biofilms Microbiomes 2024; 10:121. [PMID: 39505900 PMCID: PMC11541736 DOI: 10.1038/s41522-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Tourism in Paleolithic caves can cause an imbalance in cave microbiota and lead to cave wall alterations, such as dark zones. However, the mechanisms driving dark zone formation remain unclear. Using shotgun metagenomics in Lascaux Cave's Apse and Passage across two years, we tested metabarcoding-derived functional hypotheses regarding microbial diversity and metabolic potential in dark zones vs unmarked surfaces nearby. Taxonomic and functional metagenomic profiles were consistent across years but divergent between cave locations. Aromatic compound degradation genes were prevalent inside and outside dark zones, as expected from past biocide usage. Dark zones exhibited enhanced pigment biosynthesis potential (melanin and carotenoids) and melanin was evidenced chemically, while unmarked surfaces showed genes for antimicrobials production, suggesting that antibiosis might restrict the development of pigmented microorganisms and dark zone extension. Thus, this work revealed key functional microbial traits associated with dark zone formation, which helps understand cave alteration processes under severe anthropization.
Collapse
Affiliation(s)
- Zélia Bontemps
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sita Venier
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Pierre Vergne
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Serge Michalet
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Gilles Comte
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Mylène Hugoni
- Institut Universitaire de France (IUF), Paris, France.
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR Microbiologie Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|
3
|
Hasegawa M, Arai E, Tanaka H, Ito S, Wakamatsu K. Sperm Size Decreases With Increasing Pheomelanin Pigmentation but Not With the Amount of Glutathione in the Barn Swallow. Zoolog Sci 2024; 41:430-435. [PMID: 39436004 DOI: 10.2108/zs230120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 10/23/2024]
Abstract
Pigment-based coloration is prevalent in animals, but its expression greatly varies across species, populations, and even among individuals in the same populations. Some animals are highly pigmented and thus have conspicuous coloration, whereas others are modestly pigmented and thus have drab coloration. A possible explanation for the variety in pigmentation is a resource-based tradeoff, in which resources invested in pigmentation are unavailable for other functional traits, and thus animals that need to invest in the latter have limited resources to invest in pigmentation. Resource-based tradeoff is plausible in theory, but direct tests are scarce, partially because of many components of pigment-based coloration (i.e., multiple pigments, integument microstructure, and stains) that affect coloration, preventing the use of coloration as an index of pigmentation. Here, using the barn swallow, Hirundo rustica, we examined the relationship between pheomelanin pigmentation in reddish throat patch (a precopulatory sexual trait) and total sperm length (a postcopulatory sexual trait), with particular attention to glutathione as the common resource. We predicted that pheomelanin, which is the predominant pigment in the reddish throat patch, should be negatively related to total sperm length, and that both sexual traits should be further negatively related to the amount of glutathione. As predicted, we found a negative relationship between pheomelanin pigmentation and total sperm length. However, the amount of glutathione in the blood showed no detectable relationship to them. The tradeoff between pheomelanin pigmentation and sperm size, as inferred from the current and previous results, might not be a simple glutathione-based tradeoff.
Collapse
Affiliation(s)
- Masaru Hasegawa
- Department of Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan,
| | - Emi Arai
- Research Institute for Humanity and Nature, Kamigamo, Kita-ku, Kyoto 603-8047, Japan
| | - Hitomi Tanaka
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Ichihiraga, Seki, Gifu 501-3892, Japan
- Institute for Melanin Chemistry, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
4
|
Tanaka H, Nishimaki-Mogami T, Tamehiro N, Shibata N, Mandai H, Ito S, Wakamatsu K. Pterostilbene, a Dimethyl Derivative of Resveratrol, Exerts Cytotoxic Effects on Melanin-Producing Cells through Metabolic Activation by Tyrosinase. Int J Mol Sci 2024; 25:9990. [PMID: 39337478 PMCID: PMC11432345 DOI: 10.3390/ijms25189990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pterostilbene (PTS), which is abundant in blueberries, is a dimethyl derivative of the natural polyphenol resveratrol (RES). Several plant species, including peanuts and grapes, also produce PTS. Although RES has a wide range of health benefits, including anti-cancer properties, PTS has a robust pharmacological profile that includes a better intestinal absorption and an increased hepatic stability compared to RES. Indeed, PTS has a higher bioavailability and a lower toxicity compared to other stilbenes, making it an attractive drug candidate for the treatment of various diseases, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. We previously reported that RES serves as a substrate for tyrosinase, producing an o-quinone metabolite that is highly cytotoxic to melanocytes. The present study investigated whether PTS may also be metabolized by tyrosinase, similarly to RES. PTS was oxidized as a substrate by tyrosinase to form an o-quinone, which reacted with thiols, such as N-acetyl-L-cysteine, to form di- and tri-adducts. We also confirmed that PTS was taken up and metabolized by human tyrosinase-expressing 293T cells in amounts several times greater than RES. In addition, PTS showed a tyrosinase-dependent cytotoxicity against B16BL6 melanoma cells that was stronger than RES and also inhibited the formation of melanin in B16BL6 melanoma cells and in the culture medium. These results suggest that the two methyl groups of PTS, which are lipophilic, increase its membrane permeability, making it easier to bind to intracellular proteins, and may therefore be more cytotoxic to melanin-producing cells.
Collapse
Affiliation(s)
- Hitomi Tanaka
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, 795-1 Nagamine, Ichihiraga, Seki 501-3892, Japan
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Tomoko Nishimaki-Mogami
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norimasa Tamehiro
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
5
|
Takemori C, Koyanagi-Aoi M, Fukumoto T, Kunisada M, Wakamatsu K, Ito S, Hosaka C, Takeuchi S, Kubo A, Aoi T, Nishigori C. Revealing the UV response of melanocytes in xeroderma pigmentosum group A using patient-derived induced pluripotent stem cells. J Dermatol Sci 2024; 115:111-120. [PMID: 39033075 DOI: 10.1016/j.jdermsci.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is characterized by photosensitivity that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging. OBJECTIVE Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to UV irradiation. METHODS iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m2 of UV-B using microarray analysis. RESULTS XP-A-iMCs expressed SOX10, MITF, and TYR, and showed melanin synthesis. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m2 of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m2 UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m2 UV exposure. CONCLUSION We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.
Collapse
Affiliation(s)
- Chihiro Takemori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Makoto Kunisada
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Department of Dermatology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Chieko Hosaka
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan.
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| |
Collapse
|
6
|
Motovilov KA, Mostert AB. Melanin: Nature's 4th bioorganic polymer. SOFT MATTER 2024; 20:5635-5651. [PMID: 39012013 DOI: 10.1039/d4sm00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The pigments known as the melanins are widely recognized for their responsibility in the coloration of human skin, eyes, hair, and minimising the harmful effects of solar ultraviolet radiation. But specialists are aware that the melanins are present in all living kingdoms, barring viruses, and have functionality that extends beyond neutralizing ionising radiation. The ubiquitous presence of melanin in almost all human organs, recognized in recent years, as well as the presence of melanin in organisms that are evolutionarily distant from each other, indicate the fundamental importance of this class of material for all life forms. In this review, we argue for the need to accept melanins as the fourth primordial class of biological polymers, along with nucleic acids, proteins and polysaccharides. We consistently compare the properties of these canonical biological polymers with the properties of melanin and highlight key features that fundamentally distinguish melanins, their function and its mysteries.
Collapse
Affiliation(s)
- K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141701, Moscow Region, Russia.
| | - A B Mostert
- Department of Physics and Centre for Integrative Semiconductor Materials, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| |
Collapse
|
7
|
Hasse S, Sommer MC, Guenther S, Schulze C, Bekeschus S, von Woedtke T. Exploring the Influence of Cold Plasma on Epidermal Melanogenesis In Situ and In Vitro. Int J Mol Sci 2024; 25:5186. [PMID: 38791225 PMCID: PMC11120903 DOI: 10.3390/ijms25105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Epidermal melanin synthesis determines an individual's skin color. In humans, melanin is formed by melanocytes within the epidermis. The process of melanin synthesis strongly depends on a range of cellular factors, including the fine-tuned interplay with reactive oxygen species (ROS). In this context, a role of cold atmospheric plasma (CAP) on melanin synthesis was proposed due to its tunable ROS generation. Herein, the argon-driven plasma jet kINPen® MED was employed, and its impact on melanin synthesis was evaluated by comparison with known stimulants such as the phosphodiesterase inhibitor IBMX and UV radiation. Different available model systems were employed, and the melanin content of both cultured human melanocytes (in vitro) and full-thickness human skin biopsies (in situ) were analyzed. A histochemical method detected melanin in skin tissue. Cellular melanin was measured by NIR autofluorescence using flow cytometry, and a highly sensitive HPLC-MS method was applied, which enabled the differentiation of eu- and pheomelanin by their degradation products. The melanin content in full-thickness human skin biopsies increased after repeated CAP exposure, while there were only minor effects in cultured melanocytes compared to UV radiation and IBMX treatment. Based on these findings, CAP does not appear to be a useful option for treating skin pigmentation disorders. On the other hand, the risk of hyperpigmentation as an adverse effect of CAP application for wound healing or other dermatological diseases seems to be neglectable.
Collapse
Affiliation(s)
- Sybille Hasse
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
| | - Marie-Christine Sommer
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
| | - Sebastian Guenther
- Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany; (S.G.); (C.S.)
| | - Christian Schulze
- Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany; (S.G.); (C.S.)
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Centre, Walther-Rathenau-Str. 48, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Hasegawa M, Arai E, Ito S, Wakamatsu K. UV-induced feather color change reflects its porphyrin content. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:6. [PMID: 38300300 DOI: 10.1007/s00114-024-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Pigmentary coloration is widespread in animals. Its evolutionary and ecological features are often attributed to the property of predominant pigments; therefore, most research has focused on predominant pigments such as carotenoids in carotenoid-based coloration. However, coloration results from predominant pigments and many other minority pigments, and the importance of the latter is overlooked. Here, we focused on porphyrin, an "uncommon" pigment found in bird feathers, and investigated its importance in the context of feather color changes in the barn swallow Hirundo rustica. We found that the "pheomelanin-based coloration" of the barn swallow faded after the irradiation of UV light, and this effect was particularly strong in the feathers of young swallows (nestlings and fledglings, here). We also found that it is not the predominant pigment, pheomelanin, but protoporphyrin IX pigment that showed the same pattern of depigmentation after the irradiation of UV light, particularly in the feathers of young swallows. In fact, the abovementioned age-dependent feather color change was statistically explained by the amount of porphyrin in the feathers. The current study demonstrates that a minority pigment, porphyrin, explains within-season dynamic color change, an ecological feature of feather coloration. The porphyrin-mediated rapid color change would benefit young birds, in which feather coloration affects the parental food allocation during a few weeks before independence, but not later. Future studies should not ignore these minor but essential pigments and their evolutionary and ecological functions.
Collapse
Affiliation(s)
- Masaru Hasegawa
- Department of Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Emi Arai
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
9
|
Roulin A, Dubey S, Ito S, Wakamatsu K. Melanin-based plumage coloration and melanin content in organs in the barn owl. JOURNAL OF ORNITHOLOGY 2023; 165:429-438. [PMID: 38496038 PMCID: PMC10940376 DOI: 10.1007/s10336-023-02137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 03/19/2024]
Abstract
Although the evolutionary ecology of melanin pigments and melanin-based coloration has been studied in great details, particularly in birds, little is known about the function of melanin stored inside the body. In the barn owl Tyto alba, in which individuals vary in the degree of reddish pheomelanin-based coloration and in the size of black eumelanic feather spots, we measured the concentration in melanin pigments in seven organs. The eyes had by far the most melanin then the skin, pectoral muscle, heart, liver, trachea, and uropygial gland. The concentration in eumelanin was not necessarily correlated with the concentration in pheomelanin suggesting that their production can be regulated independently from each other. Redder barn owls had more pheomelanin in the skin and uropygial gland than white owls, while owls displaying larger black feather spots had more eumelanin in the skin than small-spotted owls. More data are required to evaluate whether melanin-based traits can evolve as an indirect response to selection exerted on melanin deposition in organs.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Sylvain Dubey
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- HW Romandie SA, Avenue Des Alpes 25, CH-1820 Montreux, Switzerland
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
10
|
Wakamatsu K, Dijkstra JM, Mørkøre T, Ito S. Eumelanin Detection in Melanized Focal Changes but Not in Red Focal Changes on Atlantic Salmon ( Salmo salar) Fillets. Int J Mol Sci 2023; 24:16797. [PMID: 38069120 PMCID: PMC10706398 DOI: 10.3390/ijms242316797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a "mimicking experiment", in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan;
| | | | - Turid Mørkøre
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, NO 1432 Ås, Norway;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan;
| |
Collapse
|
11
|
Slater TS, Ito S, Wakamatsu K, Zhang F, Sjövall P, Jarenmark M, Lindgren J, McNamara ME. Taphonomic experiments reveal authentic molecular signals for fossil melanins and verify preservation of phaeomelanin in fossils. Nat Commun 2023; 14:5651. [PMID: 37803012 PMCID: PMC10558522 DOI: 10.1038/s41467-023-40570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/01/2023] [Indexed: 10/08/2023] Open
Abstract
Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.
Collapse
Affiliation(s)
- Tiffany S Slater
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fucheng Zhang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, China
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Materials and Production, 501 15, Borås, Sweden
| | | | - Johan Lindgren
- Department of Geology, Lund University, 223 62, Lund, Sweden
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Yusupova M, Zhou D, You J, Gonzalez-Guzman J, Ghanta MB, Pu H, Abdel-Malek Z, Chen Q, Gross SS, D'Orazio J, Ito S, Wakamatsu K, Harris ML, Zippin JH. Distinct cAMP Signaling Microdomains Differentially Regulate Melanosomal pH and Pigmentation. J Invest Dermatol 2023; 143:2019-2029.e3. [PMID: 37142186 PMCID: PMC10524761 DOI: 10.1016/j.jid.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
cAMP signaling is a well-established regulator of melanin synthesis. Two distinct cAMP signaling pathways-the transmembrane adenylyl cyclase pathway, activated primarily by the MC1R, and the soluble adenylyl cyclase (sAC) pathway-affect melanin synthesis. The sAC pathway affects melanin synthesis by regulating melanosomal pH, and the MC1R pathway affects melanin synthesis by regulating gene expression and post-translational modifications. However, whether MC1R genotype affects melanosomal pH is poorly understood. We now report that loss of function MC1R does not affect melanosomal pH. Thus, sAC signaling appears to be the only cAMP signaling pathway that regulates melanosomal pH. We also addressed whether MC1R genotype affects sAC-dependent regulation of melanin synthesis. Although sAC loss of function in wild-type human melanocytes stimulates melanin synthesis, sAC loss of function has no effect on melanin synthesis in MC1R nonfunctional human and mouse melanocytes or skin and hair melanin in e/e mice. Interestingly, activation of transmembrane adenylyl cyclases, which increases epidermal eumelanin synthesis in e/e mice, leads to enhanced production of eumelanin in sAC-knockout mice relative to that in sAC wild-type mice. Thus, MC1R- and sAC-dependent cAMP signaling pathways define distinct mechanisms that regulate melanosomal pH and pigmentation.
Collapse
Affiliation(s)
- Maftuna Yusupova
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Dalee Zhou
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Jaewon You
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA
| | - Jeydi Gonzalez-Guzman
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megha B Ghanta
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hong Pu
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zalfa Abdel-Malek
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - John D'Orazio
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Melissa L Harris
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan H Zippin
- Department of Dermatology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA; Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA; Englander Institute of Precision Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
13
|
Wissenbach DK, Binz TM, Steuer AE. Advances in testing for sample manipulation in clinical and forensic toxicology-part B: hair samples. Anal Bioanal Chem 2023; 415:5117-5128. [PMID: 37115212 PMCID: PMC10404185 DOI: 10.1007/s00216-023-04706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
As a continuation of part A, focusing on advances in testing for sample manipulation of urine samples in clinical and forensic toxicology, part B of the review article relates to hair, another commonly used matrix for abstinence control testing. Similar to urine manipulation, relevant strategies to manipulate a hair test are lowering drug concentrations in hair to undercut the limits of detection/cut-offs, for instance, by forced washout effects or adulteration. However, distinguishing between usual, common cosmetic hair treatment and deliberate manipulation to circumvent a positive drug test is often impossible. Nevertheless, the identification of cosmetic hair treatment is very relevant in the context of hair testing and interpretation of hair analysis results. Newly evaluated techniques or elucidation of specific biomarkers to unravel adulteration or cosmetic treatment often focused on specific structures of the hair matrix with promising strategies recently proposed for daily routine work. Identification of other approaches, e.g., forced hair-washing procedures, still remains a challenge in clinical and forensic toxicology.
Collapse
Affiliation(s)
- Dirk K Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Tina M Binz
- Center for Forensic Hairanalytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine (ZIFM), University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Wakamatsu K, Ito S. Recent Advances in Characterization of Melanin Pigments in Biological Samples. Int J Mol Sci 2023; 24:ijms24098305. [PMID: 37176019 PMCID: PMC10179066 DOI: 10.3390/ijms24098305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other tissues. The diversity of colors in animals is mainly caused by the quantity and quality of their melanin, such as by the ratios of EM versus PM. We have developed micro-analytical methods to simultaneously measure EM and PM and used these to study the biochemical and genetic fundamentals of pigmentation. The photoreactivity of melanin has become a major focus of research because of the postulated relevance of EM and PM for the risk of UVA-induced melanoma. Our biochemical methods have found application in many clinical studies on genetic conditions associated with alterations in pigmentation. Recently, besides chemical degradative methods, other methods have been developed for the characterization of melanin, and these are also discussed here.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-192, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-192, Aichi, Japan
| |
Collapse
|
15
|
Cai W, Wakamatsu K, Zucca FA, Wang Q, Yang K, Mohamadzadehonarvar N, Srivastava P, Tanaka H, Holly G, Casella L, Ito S, Zecca L, Chen X. DOPA pheomelanin is increased in nigral neuromelanin of Parkinson's disease. Prog Neurobiol 2023; 223:102414. [PMID: 36746222 DOI: 10.1016/j.pneurobio.2023.102414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Neuromelanin (NM) in dopaminergic neurons of human substantia nigra (SN) has a melanic component that consists of pheomelanin and eumelanin moieties and has been proposed as a key factor contributing to dopaminergic neuron vulnerability in Parkinson's disease (PD). While eumelanin is considered as an antioxidant, pheomelanin and related oxidative stress are associated with compromised drug and metal ion binding and melanoma risk. Using postmortem SN from patients with PD or Alzheimer's disease (AD) and unaffected controls, we identified increased L-3,4-dihydroxyphenylalanine (DOPA) pheomelanin and increased ratios of dopamine (DA) pheomelanin markers to DA in PD SN compared to controls. Eumelanins derived from both DOPA and DA were reduced in PD group. In addition, we report an increase in DOPA pheomelanin relative to DA pheomelanin in PD SN. In AD SN, we observed unaltered melanin markers despite reduced DOPA compared to controls. Furthermore, synthetic DOPA pheomelanin induced neuronal cell death in vitro while synthetic DOPA eumelanin showed no significant effect on cell viability. Our findings provide insights into the different roles of pheomelanin and eumelanin in PD pathophysiology. We anticipate our study will lead to further investigations on pheomelanin and eumelanin individually as biomarkers and possibly therapeutic targets for PD.
Collapse
Affiliation(s)
- Waijiao Cai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Institutes of Integrative Medicine, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Shanghai, China
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Qing Wang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA
| | - Kai Yang
- Institutes of Integrative Medicine, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Shanghai, China
| | - Niyaz Mohamadzadehonarvar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA
| | - Pranay Srivastava
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA
| | - Hitomi Tanaka
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Seki, Japan
| | - Gabriel Holly
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, USA.
| |
Collapse
|
16
|
Bi H, Tranell J, Harper DC, Lin W, Li J, Hellström AR, Larsson M, Rubin CJ, Wang C, Sayyab S, Kerje S, Bed’hom B, Gourichon D, Ito S, Wakamatsu K, Tixier-Boichard M, Marks MS, Globisch D, Andersson L. A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken. PLoS Genet 2023; 19:e1010724. [PMID: 37068079 PMCID: PMC10138217 DOI: 10.1371/journal.pgen.1010724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
Collapse
Affiliation(s)
- Huijuan Bi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Tranell
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dawn C. Harper
- Department of Pathology & Laboratory Medicine and Department of Physiology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Weifeng Lin
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Anders R. Hellström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl-Johan Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Susanne Kerje
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bertrand Bed’hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350 Jouy-en-Josas, France
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Michael S. Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Globisch
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, United States of America
| |
Collapse
|
17
|
Pena AM, Ito S, Bornschlögl T, Brizion S, Wakamatsu K, Del Bino S. Multiphoton FLIM Analyses of Native and UVA-Modified Synthetic Melanins. Int J Mol Sci 2023; 24:4517. [PMID: 36901948 PMCID: PMC10002570 DOI: 10.3390/ijms24054517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
To better understand the impact of solar light exposure on human skin, the chemical characterization of native melanins and their structural photo-modifications is of central interest. As the methods used today are invasive, we investigated the possibility of using multiphoton fluorescence lifetime (FLIM) imaging, along with phasor and bi-exponential fitting analyses, as a non-invasive alternative method for the chemical analysis of native and UVA-exposed melanins. We demonstrated that multiphoton FLIM allows the discrimination between native DHI, DHICA, Dopa eumelanins, pheomelanin, and mixed eu-/pheo-melanin polymers. We exposed melanin samples to high UVA doses to maximize their structural modifications. The UVA-induced oxidative, photo-degradation, and crosslinking changes were evidenced via an increase in fluorescence lifetimes along with a decrease in their relative contributions. Moreover, we introduced a new phasor parameter of a relative fraction of a UVA-modified species and provided evidence for its sensitivity in assessing the UVA effects. Globally, the fluorescence lifetime properties were modulated in a melanin-dependent and UVA dose-dependent manner, with the strongest modifications being observed for DHICA eumelanin and the weakest for pheomelanin. Multiphoton FLIM phasor and bi-exponential analyses hold promising perspectives for in vivo human skin mixed melanins characterization under UVA or other sunlight exposure conditions.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L’Oréal Research and Innovation, 93601 Aulnay-sous-Bois, France
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | | | | | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Sandra Del Bino
- L’Oréal Research and Innovation, 93601 Aulnay-sous-Bois, France
| |
Collapse
|
18
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
19
|
Niki Y, Adachi N, Fukata M, Fukata Y, Oku S, Makino-Okamura C, Takeuchi S, Wakamatsu K, Ito S, Declercq L, Yarosh DB, Mammone T, Nishigori C, Saito N, Ueyama T. S-Palmitoylation of Tyrosinase at Cysteine 500 Regulates Melanogenesis. J Invest Dermatol 2023; 143:317-327.e6. [PMID: 36063887 DOI: 10.1016/j.jid.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.
Collapse
Affiliation(s)
- Yoko Niki
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Chieko Makino-Okamura
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan
| | - Lieve Declercq
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Daniel B Yarosh
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Tomas Mammone
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Naoaki Saito
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
20
|
Puckett EE, Davis IS, Harper DC, Wakamatsu K, Battu G, Belant JL, Beyer DE, Carpenter C, Crupi AP, Davidson M, DePerno CS, Forman N, Fowler NL, Garshelis DL, Gould N, Gunther K, Haroldson M, Ito S, Kocka D, Lackey C, Leahy R, Lee-Roney C, Lewis T, Lutto A, McGowan K, Olfenbuttel C, Orlando M, Platt A, Pollard MD, Ramaker M, Reich H, Sajecki JL, Sell SK, Strules J, Thompson S, van Manen F, Whitman C, Williamson R, Winslow F, Kaelin CB, Marks MS, Barsh GS. Genetic architecture and evolution of color variation in American black bears. Curr Biol 2023; 33:86-97.e10. [PMID: 36528024 PMCID: PMC10039708 DOI: 10.1016/j.cub.2022.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.
Collapse
Affiliation(s)
- Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| | - Isis S Davis
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Dawn C Harper
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Gopal Battu
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Dean E Beyer
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Colin Carpenter
- West Virginia Division of Natural Resources, Beckley, WV 25801, USA
| | - Anthony P Crupi
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - Maria Davidson
- The Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA 70898, USA
| | - Christopher S DePerno
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Nicholas Forman
- New Mexico Department of Game and Fish, Santa Fe, NM 87507, USA
| | - Nicholas L Fowler
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - David L Garshelis
- Minnesota Department of Natural Resources, Grand Rapids, MN 55744, USA; IUCN SSC Bear Specialist Group
| | - Nicholas Gould
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Kerry Gunther
- National Park Service, Yellowstone National Park, WY 82190-0168, USA
| | - Mark Haroldson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - David Kocka
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Carl Lackey
- Nevada Department of Wildlife, Reno, NV 89512, USA
| | - Ryan Leahy
- National Park Service, Yosemite National Park Wildlife Management, Yosemite, CA 95389, USA
| | - Caitlin Lee-Roney
- National Park Service, Yosemite National Park Wildlife Management, Yosemite, CA 95389, USA
| | - Tania Lewis
- National Park Service, Glacier Bay National Park, Gustavus, AK 99826, USA
| | - Ashley Lutto
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, AK 99669, USA
| | - Kelly McGowan
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Mike Orlando
- Florida Fish and Wildlife Conservation Commission, Tallahassee, FL 32399, USA
| | - Alexander Platt
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Megan Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jaime L Sajecki
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Stephanie K Sell
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - Jennifer Strules
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Seth Thompson
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Frank van Manen
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Craig Whitman
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Ryan Williamson
- National Park Service, Great Smoky Mountains National Park, Gatlinburg, TN 37738, USA
| | | | - Christopher B Kaelin
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology and Laboratory Medicine and of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Ito S, Napolitano A, Sarna T, Wakamatsu K. Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implications for neuromelanin genesis. J Neural Transm (Vienna) 2023; 130:29-42. [PMID: 36527527 DOI: 10.1007/s00702-022-02574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 ℃. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
Collapse
Affiliation(s)
- Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan.
| | | | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
22
|
Wu G, Mou X, Song H, Liu Y, Wang X, Yang Y, Liu C. Characterization and functional analysis of pax3 in body color transition of polychromatic Midas cichlids (Amphilophus citrinellus). Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110779. [PMID: 35926705 DOI: 10.1016/j.cbpb.2022.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
As the representative genetic and economic trait of ornamental fish, skin color has a strong impact on speciation and adaptation. However, the genetic basis of skin color pigmentation, differentiation and change is still not understood. The Midas cichlid fish with three typical body color transition stages of "black-gray‑gold" is an ideal model system for investigating the formation and change of fish body color. In this study, to investigate the regulatory role of the pair box 3 (pax3) gene in the early body color fading process of Midas cichlids, the complete cDNA sequence (3513 bp) of pax3 was successfully isolated from Midas cichlids (Amphilophus Citrinellus), and found to encode polypeptides of 491 amino acids. Expression patterns of the pax3 gene in tissues of Midas cichlids during different periods, including embryonic development and body color fading stages were detected by quantitative real-time PCR. The qRT-PCR analysis showed that pax3 was expressed in all tissues of adult fish, with a higher expression level in muscle and skin. The highest expression level in muscle tissue was significantly higher than that in other tissues (P < 0.05). During embryonic development, the expression tendency of pax3 was first increased and then decreased. In the three typical stages of early skin color fading from black to gold, pax3 expression in skin, caudal fin and scales all showed a downward trend. The expression level in the black stage was significantly higher than that in other stages (P < 0.05). Positive signal of pax3 protein was detected in the three typical skin color conversion stages, and the highest positive signal intensity was detected in the black stage, which was consistent with qRT-PCR results. After pax3 RNA interference, pax3 and the downstream genes mitf and tyr all decreased, while dct mRNA expression increased in the skin of fish. Western blotting also showed a decrease in pax3 protein concentration. Those results suggest that pax3 plays an important role in skin color formation, distribution and change in Midas cichlids through the melanogenesis pathway.
Collapse
Affiliation(s)
- Guoqiang Wu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xidong Mou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
| | - Hongmei Song
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China.
| | - Yi Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
| | - Xuejie Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
| | - Yexin Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
| | - Chao Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, China
| |
Collapse
|
23
|
Itou T, Ito S, Wakamatsu K. Effects of Aging on Hair Color, Melanosomes, and Melanin Composition in Japanese Males and Their Sex Differences. Int J Mol Sci 2022; 23:ijms232214459. [PMID: 36430936 PMCID: PMC9693441 DOI: 10.3390/ijms232214459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
In a previous study, we observed that the hair color of Japanese females darkens with age and that the causes of this are the increase in melanosome size, the amount of melanin, and the mol% of 5,6-dihydroxyindole (DHI) which has a high absorbance. In this study, we extended the same analyses to male hair to examine the sex differences in hair color, melanin composition, and melanosome morphology. Male hair also tended to darken with age, but it was darker than female hair in those of younger ages. Although there was no age dependence of DHI mol% in male hair, as with female hair, the melanosomes' sizes enlarged with age, the total melanin amount increased, and these findings were correlated with hair color. The analyses, considering age dependence, revealed that there were significant sex differences in the ratio of absorbance of dissolved melanin at the wavelength of 650 nm to 500 nm, in pheomelanin mol%, and in melanosome morphology parameters such as the minor axis. This may be the cause of the sex differences in hair color. Furthermore, the factors related to hair color were analyzed using all the data of the male and female hairs. The results suggested that total melanin amount, pheomelanin mol%, and DHI mol% correlated with hair color.
Collapse
Affiliation(s)
- Takashi Itou
- Kao Corporation, R&D—Hair Care Products Research, Tokyo 131-8501, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
- Correspondence: ; Tel.: +81-562-93-2000; Fax: +81-562-93-9847
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
24
|
Roldan-Kalil J, Zueva L, Alves J, Tsytsarev V, Sanabria P, Inyushin M. Amount of Melanin Granules in Human Hair Defines the Absorption and Conversion to Heat of Light Energy in the Visible Spectrum. Photochem Photobiol 2022. [PMID: 36403200 DOI: 10.1111/php.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
One of the known important functions of hair is protection from extensive sunlight. This protection is accomplished in large part due to natural hair pigmentation which is known to reflect the number of melanin granules (melanosomes) in the hair shaft, and melanin variants. Melanin takes in excessive light energy and converts it to heat in a process called absorption; heat is then dissipated into the environment as infrared radiation, thereby protecting the underlying skin. We used transmission electron microscopy (TEM) to visualize the melanosome counts in samples of human hair, and used thermal microscopy to measure the temperature changes of the samples when exposed to green and blue light lasers. In our experiments green light conversion to heat was highly correlated to the number of melanosomes, whereas blue light conversion to heat was less correlated, which may be because the reddish melanosomes it contains are less effective in absorbing energy from the blue spectrum of light. Anyway, we have shown the metals accumulation in the melanin can be easily visualized with TEM. We confirmed that the amount of melanin granules in human hair defines the conversion to heat of light energy in the visible spectrum.
Collapse
Affiliation(s)
| | - Lidia Zueva
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | - Janaina Alves
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | | | - Priscila Sanabria
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | - Mikhail Inyushin
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| |
Collapse
|
25
|
Kline CD, Anderson M, Bassett JW, Kent G, Berryman R, Honeggar M, Ito S, Wakamatsu K, Indra AK, Moos PJ, Leachman SA, Cassidy PB. MITF Is Regulated by Redox Signals Controlled by the Selenoprotein Thioredoxin Reductase 1. Cancers (Basel) 2022; 14:5011. [PMID: 36291795 PMCID: PMC9600194 DOI: 10.3390/cancers14205011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.
Collapse
Affiliation(s)
- Chelsey D. Kline
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Madeleine Anderson
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John W. Bassett
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gail Kent
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Berryman
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Matthew Honeggar
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sancy A. Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pamela B. Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
26
|
van der Valk ES, Kleinendorst L, Delhanty PJD, van der Voorn B, Visser JA, van Haelst MM, de Graaff LCG, Huisman M, White A, Ito S, Wakamatsu K, de Rijke YB, van den Akker ELT, Iyer AM, van Rossum EFC. Obesity and Hyperphagia With Increased Defective ACTH: A Novel POMC Variant. J Clin Endocrinol Metab 2022; 107:e3699-e3704. [PMID: 35737586 PMCID: PMC9797039 DOI: 10.1210/clinem/dgac342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Patients with pro-opiomelanocortin (POMC) defects generally present with early-onset obesity, hyperphagia, hypopigmentation and adrenocorticotropin (ACTH) deficiency. Rodent models suggest that adequate cleavage of ACTH to α-melanocortin-stimulating hormone (α-MSH) and desacetyl-α-melanocortin-stimulating hormone (d-α-MSH) by prohormone convertase 2 at the KKRR region is required for regulating food intake and energy balance. METHODS We present 2 sisters with a novel POMC gene variant, leading to an ACTH defect at the prohormone convertase 2 cleavage site, and performed functional studies of this variant. RESULTS The patients had obesity, hyperphagia and hypocortisolism, with markerly raised levels of ACTH but unaffected pigmentation. Their ACTH has reduced potency to stimulate the melanocortin (MC) 2 receptor, explaining their hypocortisolism. CONCLUSION The hyperphagia and obesity support evidence that adequate cleavage of ACTH to α-MSH and d-α-MSH is also required in humans for feeding control.
Collapse
Affiliation(s)
- Eline S van der Valk
- Obesity Centre CGG, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | | | | | - Bibian van der Voorn
- Obesity Centre CGG, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jenny A Visser
- Obesity Centre CGG, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - M M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Laura C G de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Anne White
- Divison of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, 470-1192, Japan
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Erica L T van den Akker
- Obesity Centre CGG, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Anand M Iyer
- Obesity Centre CGG, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Elisabeth F C van Rossum
- Correspondence: Elisabeth F. C. van Rossum, MD, PhD, Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, the Netherlands, Rm Rg-5. P. O. Box 2400, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Handl J, Nyvltova P, Capek J, Cesla P, Hovsepyan A, Avetisyan S, Micankova P, Bruckova L, Stankova P, Knotkova K, Petrosyan T, Rousar T. The comparison of biological effects of bacterial and synthetic melanins in neuroblastoma cells. Food Chem Toxicol 2022; 168:113355. [PMID: 35952821 DOI: 10.1016/j.fct.2022.113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Melanins belong to a group of pigments of different structure and origin. They can be produced synthetically or isolated from living organisms. A number of studies have reported testing of various melanins in neurological studies providing different outcomes. Because the structure of melanins can have an effect on obtained results in cell toxicity studies, we present here our original study which aimed to compare the biological effects of bacterial melanin (biotechnologically obtained from B. thuringiensis) with that of synthetic melanin in neuroblastoma cells. Both melanins were structurally characterized in detail. After melanin treatment (0-200 μg/mL), cell viability, glutathione levels, cell morphology and respiration were assessed in SH-SY5Y cells. The structural analysis showed that bacterial melanin is more hydrophilic according to the presence of larger number of -OH moieties. After melanin treatment, we found that synthetic melanin at similar dosage caused always larger cell impairment compared to bacterial melanin. In addition, more severe toxic effect of synthetic melanin was found in mitochondria. In general, we conclude that more hydrophilic, bacterial melanin induced lower toxicity in neuroblastoma cells in comparison to synthetic melanin. Our findings can be useable for neuroscientific studies estimating the potential use for study of neuroprotection, neuromodulation or neurotoxicity.
Collapse
Affiliation(s)
- Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Petr Cesla
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Anichka Hovsepyan
- Scientific and Production Center "Armbiotechnology" SNPO NAS RA, 14 Gyurjyan St., Yerevan, Armenia
| | - Sona Avetisyan
- Scientific and Production Center "Armbiotechnology" SNPO NAS RA, 14 Gyurjyan St., Yerevan, Armenia
| | - Petra Micankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Lenka Bruckova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Pavla Stankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Katerina Knotkova
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tigran Petrosyan
- Department of Physiology and Pathophysiology, Medical Institute, Yerevan Haybusak University, 6 Abelyan St., Yerevan, Armenia
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
28
|
Carpenter EL, Wyant MB, Indra A, Ito S, Wakamatsu K, Merrill GF, Moos PJ, Cassidy PB, Leachman SA, Ganguli-Indra G, Indra AK. Thioredoxin Reductase 1 Modulates Pigmentation and Photobiology of Murine Melanocytes in vivo. J Invest Dermatol 2022; 142:1903-1911.e5. [PMID: 35031135 PMCID: PMC10771865 DOI: 10.1016/j.jid.2021.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Pigment-producing melanocytes overcome frequent oxidative stress in their physiological role of protecting the skin against the deleterious effects of solar UV irradiation. This is accomplished by the activity of several endogenous antioxidant systems, including the thioredoxin antioxidant system, in which thioredoxin reductase 1 (TR1) plays an important part. To determine whether TR1 contributes to the redox regulation of melanocyte homeostasis, we have generated a selective melanocytic Txnrd1-knockout mouse model (Txnrd1mel‒/‒), which exhibits a depigmentation phenotype consisting of variable amelanotic ventral spotting and reduced pigmentation on the extremities (tail tip, ears, and paws). The antioxidant role of TR1 was further probed in the presence of acute neonatal UVB irradiation, which stimulates melanocyte activation and introduces a spike in oxidative stress in the skin microenvironment. Interestingly, we observed a significant reduction in overall melanocyte count and proliferation in the absence of TR1. Furthermore, melanocytes exhibited an elevated level of UV-induced DNA damage in the form of 8-oxo-2'-deoxyguanosine after acute UVB treatment. We also saw an engagement of compensatory antioxidant mechanisms through increased nuclear localization of transcription factor NRF2. Altogether, these data indicate that melanocytic TR1 positively regulates melanocyte homeostasis and pigmentation during development and protects against UVB-induced DNA damage and oxidative stress.
Collapse
Affiliation(s)
- Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Mark B Wyant
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Aaryan Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Corvallis High School, Corvallis, Oregon, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
29
|
Upadhyay PR, Starner RJ, Swope VB, Wakamatsu K, Ito S, Abdel-Malek ZA. Differential Induction of Reactive Oxygen Species and Expression of Antioxidant Enzymes in Human Melanocytes Correlate with Melanin Content: Implications on the Response to Solar UV and Melanoma Susceptibility. Antioxidants (Basel) 2022; 11:1204. [PMID: 35740103 PMCID: PMC9219903 DOI: 10.3390/antiox11061204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Constitutive pigmentation determines the response to sun exposure and the risk for melanoma, an oxidative stress-driven tumor. Using primary cultures of human melanocytes, we compared the effects of constitutive pigmentation on their antioxidant response to solar UV. The quantitation of eumelanin and pheomelanin showed that the eumelanin content and eumelanin to pheomelanin ratio correlated inversely with the basal levels of reactive oxygen species (ROS). Irradiation with 7 J/cm2 solar UV increased ROS generation without compromising melanocyte viability. Among the antioxidant enzymes tested, the basal levels of heme oxygenase-1 (HO-1) and the glutamate cysteine ligase catalytic subunit and modifier subunit (GCLC and GCLM) correlated directly with the eumelanin and total melanin contents. The levels of HO-1 and GCLM decreased at 6 h but increased at 24 h post-solar UV. Consistent with the GCLC and GCLM levels, the basal glutathione (GSH) content was significantly lower in light than in dark melanocytes. The expression of HMOX1, GCLC, GCLM, and CAT did not correlate with the melanin content and was reduced 3 h after solar UV irradiation, particularly in lightly pigmented melanocytes. Solar UV increased p53 and lipid peroxidation, which correlated inversely with the eumelanin and total melanin contents. These intrinsic differences between light and dark melanocytes should determine their antioxidant response and melanoma risk.
Collapse
Affiliation(s)
- Parth R. Upadhyay
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA;
- Department of Dermatology, University of Cincinnati, Cincinnati, OH 45267, USA; (R.J.S.); (V.B.S.)
| | - Renny J. Starner
- Department of Dermatology, University of Cincinnati, Cincinnati, OH 45267, USA; (R.J.S.); (V.B.S.)
| | - Viki B. Swope
- Department of Dermatology, University of Cincinnati, Cincinnati, OH 45267, USA; (R.J.S.); (V.B.S.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan; (K.W.); (S.I.)
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan; (K.W.); (S.I.)
| | - Zalfa A. Abdel-Malek
- Department of Dermatology, University of Cincinnati, Cincinnati, OH 45267, USA; (R.J.S.); (V.B.S.)
| |
Collapse
|
30
|
Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization. Int J Mol Sci 2022; 23:ijms23116238. [PMID: 35682916 PMCID: PMC9181290 DOI: 10.3390/ijms23116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
The overproduction of eumelanin leads to a panel of unaesthetic hyper-pigmented skin diseases, including melasma and age spots. The treatment of these diseases often requires the use of tyrosinase inhibitors, which act as skin whitening agents by inhibiting the synthesis of eumelanin, with harmful side effects. We report here that laccase from Trametes versicolor in association with a cocktail of natural phenol redox mediators efficiently degraded eumelanin from Sepia officinalis, offering an alternative procedure to traditional whitening agents. Redox mediators showed a synergistic effect with respect to their single-mediator counterpart, highlighting the beneficial role of the cocktail system. The pro-oxidant DHICA sub-units of eumelanin were degraded better than the DHI counterpart, as monitored by the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA) and pyrrole-2,3-dicarboxylic acid (PDCA) degradation products. The most effective laccase-mediated cocktail system was successively applied in a two-component prototype of a topical whitening cream, showing high degradative efficacy against eumelanin.
Collapse
|
31
|
Ma Z, Liu X, Liu Y, Chen W, Wang C. Studies on the biosynthetic pathways of melanin in Auricularia auricula. J Basic Microbiol 2022; 62:843-856. [PMID: 35419841 DOI: 10.1002/jobm.202100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/12/2022]
Abstract
Melanin is a natural pigment ubiquitously present in living organisms, including bacteria, fungi, plants, and animals. Melanin produced by the edible mushroom Auricularia auricula has a remarkable potential for resource development. Several A. auricula strains planted across China were collected and analyzed for mycelial growth rate and colony RGB value for color block. Further, the effects of various nutrients on melanin formation, including different carbon and nitrogen sources were evaluated to optimize medium for submerged fermentation. The pathways involved in the biosynthesis of melanin in A. auricula were investigated using an enzyme inhibitor assay and intermediate determination. In addition, the functional activity of purified A. auricula melanin was assessed. The highest melanin yield (1.797 g/L) was displayed by strain AU-3 in medium I. A. auricula melanin was composed of eumelanin, pheomelanin and 1,8-dihydroxynaphthalene melanin, and the biosynthetic pathways involved were Raper-Mason and 1,8-dihydroxynaphthalene melanin pathway. In addition, melanin purified from A. auricula exhibited substantial antioxidant, antibacterial, and antitumor activities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zihui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yutong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Wei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
32
|
Ruiz JJ, Marro M, Galván I, Bernabeu-Wittel J, Conejo-Mir J, Zulueta-Dorado T, Guisado-Gil AB, Loza-Álvarez P. Novel Non-Invasive Quantification and Imaging of Eumelanin and DHICA Subunit in Skin Lesions by Raman Spectroscopy and MCR Algorithm: Improving Dysplastic Nevi Diagnosis. Cancers (Basel) 2022; 14:1056. [PMID: 35205803 PMCID: PMC8870175 DOI: 10.3390/cancers14041056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer, and around 30% of them may develop from pre-existing dysplastic nevi (DN). Diagnosis of DN is a relevant clinical challenge, as these are intermediate lesions between benign and malignant tumors, and, up to date, few studies have focused on their diagnosis. In this study, the accuracy of Raman spectroscopy (RS) is assessed, together with multivariate analysis (MA), to classify 44 biopsies of MM, DN and compound nevus (CN) tumors. For this, we implement a novel methodology to non-invasively quantify and localize the eumelanin pigment, considered as a tumoral biomarker, by means of RS imaging coupled with the Multivariate Curve Resolution-Alternative Least Squares (MCR-ALS) algorithm. This represents a step forward with respect to the currently established technique for melanin analysis, High-Performance Liquid Chromatography (HPLC), which is invasive and cannot provide information about the spatial distribution of molecules. For the first time, we show that the 5, 6-dihydroxyindole (DHI) to 5,6-dihydroxyindole-2-carboxylic acid (DHICA) ratio is higher in DN than in MM and CN lesions. These differences in chemical composition are used by the Partial Least Squares-Discriminant Analysis (PLS-DA) algorithm to identify DN lesions in an efficient, non-invasive, fast, objective and cost-effective method, with sensitivity and specificity of 100% and 94.1%, respectively.
Collapse
Affiliation(s)
- José Javier Ruiz
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain;
| | - Monica Marro
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain;
| | - Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006 Madrid, Spain;
| | - José Bernabeu-Wittel
- Department of Dermatology, University Hospital Virgen del Rocio, 41013 Sevilla, Spain; (J.B.-W.); (J.C.-M.); (T.Z.-D.); (A.B.G.-G.)
| | - Julián Conejo-Mir
- Department of Dermatology, University Hospital Virgen del Rocio, 41013 Sevilla, Spain; (J.B.-W.); (J.C.-M.); (T.Z.-D.); (A.B.G.-G.)
| | - Teresa Zulueta-Dorado
- Department of Dermatology, University Hospital Virgen del Rocio, 41013 Sevilla, Spain; (J.B.-W.); (J.C.-M.); (T.Z.-D.); (A.B.G.-G.)
| | - Ana Belén Guisado-Gil
- Department of Dermatology, University Hospital Virgen del Rocio, 41013 Sevilla, Spain; (J.B.-W.); (J.C.-M.); (T.Z.-D.); (A.B.G.-G.)
| | - Pablo Loza-Álvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain;
| |
Collapse
|
33
|
Pena AM, Decencière E, Brizion S, Sextius P, Koudoro S, Baldeweck T, Tancrède-Bohin E. In vivo melanin 3D quantification and z-epidermal distribution by multiphoton FLIM, phasor and Pseudo-FLIM analyses. Sci Rep 2022; 12:1642. [PMID: 35102172 PMCID: PMC8803839 DOI: 10.1038/s41598-021-03114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Characterizing melanins in situ and determining their 3D z-epidermal distribution is paramount for understanding physiological/pathological processes of melanin neosynthesis, transfer, degradation or modulation with external UV exposure or cosmetic/pharmaceutical products. Multiphoton fluorescence intensity- and lifetime-based approaches have been shown to afford melanin detection, but how can one quantify melanin in vivo in 3D from multiphoton fluorescence lifetime (FLIM) data, especially since FLIM imaging requires long image acquisition times not compatible with 3D imaging in a clinical setup? We propose an approach combining (i) multiphoton FLIM, (ii) fast image acquisition times, and (iii) a melanin detection method called Pseudo-FLIM, based on slope analysis of autofluorescence intensity decays from temporally binned data. We compare Pseudo-FLIM to FLIM bi-exponential and phasor analyses of synthetic melanin, melanocytes/keratinocytes coculture and in vivo human skin. Using parameters of global 3D epidermal melanin density and z-epidermal distribution profile, we provide first insights into the in vivo knowledge of 3D melanin modulations with constitutive pigmentation versus ethnicity, with seasonality over 1 year and with topical application of retinoic acid or retinol on human skin. Applications of Pseudo-FLIM based melanin detection encompass physiological, pathological, or environmental factors-induced pigmentation modulations up to whitening, anti-photoaging, or photoprotection products evaluation.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France.
| | | | - Sébastien Brizion
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Peggy Sextius
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Serge Koudoro
- MINES ParisTech - PSL Research University, Fontainebleau, France
| | - Thérèse Baldeweck
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Campus Charles Zviak RIO, 9 rue Pierre Dreyfus, Clichy, France
- Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
34
|
Estalles C, Turbek SP, José Rodríguez-Cajarville M, Silveira LF, Wakamatsu K, Ito S, Lovette IJ, Tubaro PL, Lijtmaer DA, Campagna L. Concerted variation in melanogenesis genes underlies emergent patterning of plumage in capuchino seedeaters. Proc Biol Sci 2022; 289:20212277. [PMID: 35016545 PMCID: PMC8753160 DOI: 10.1098/rspb.2021.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns-which involve combinations of multiple colour patches across the body-can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype-phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.
Collapse
Affiliation(s)
- Cecilia Estalles
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Sheela P. Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | | | - Luís Fábio Silveira
- Seção de Aves, Museu de Zoologia, Universidade de São Paulo, Caixa Postal 42.494, CEP 04218-970 São Paulo, Brazil
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Irby J. Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Pablo L. Tubaro
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A. Lijtmaer
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Saito T, Okamura K, Kosaki R, Wakamatsu K, Ito S, Nakajima O, Yamashita H, Hozumi Y, Suzuki T. Impact of a SLC24A5 variant on the retinal pigment epithelium of a Japanese patient with oculocutaneous albinism type 6. Pigment Cell Melanoma Res 2021; 35:212-219. [PMID: 34870899 DOI: 10.1111/pcmr.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Oculocutaneous albinism (OCA) 6 is a non-syndromic type of OCA that has distinct ocular symptoms and variable cutaneous hypopigmentation. The causative gene of OCA6 is SLC24A5, which encodes NCKX5, a K+ -dependent Na+ /Ca2+ exchanger 5. NCKX5 is involved in the maturation of melanosomes, but its function is still unclear. In this study, we characterized a Japanese patient with OCA6. Genetic analysis revealed compound heterozygous variants in SLC24A5, c.590 + 1dupG, and c.598G>A (p.G200R). To clarify the functional significance of the missense variant, we generated a knock-in (KI) mouse model carrying the mouse homolog of the G200R variant using the CRISPR/Cas9 system. Chemical analysis showed decreased amounts of eumelanin in the hair and skin of KI mice, while levels of benzothiazine units in pheomelanin were significantly increased in their hair. Retinal pigment was also decreased in KI mice. Notably, a histopathologic study revealed a significant pigment loss in the retinal pigment epithelium (RPE) but not in the choroid. Immunohistochemically, the expression of NCKX5 in the RPE was decreased but was maintained in the choroid of KI mice. These findings could explain the difference in phenotypic severity between eye symptoms and hypopigmentation in the skin/hair.
Collapse
Affiliation(s)
- Toru Saito
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Ken Okamura
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Rika Kosaki
- Division of Medical Genetics, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hidetoshi Yamashita
- Department of Ophthalmology, Yssamagata University Faculty of Medicine, Yamagata, Japan
| | - Yutaka Hozumi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
36
|
Kim M, Jeon K, Shin S, Yoon S, Kim H, Kang HY, Ryu D, Park D, Jung E. Melanogenesis-promoting effect of Cirsium japonicum flower extract in vitro and ex vivo. Int J Cosmet Sci 2021; 43:703-714. [PMID: 34674286 DOI: 10.1111/ics.12746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In this study, we examined the effect of C. japonicum flower extract (CFE) on melanogenesis and its mechanism in vitro and ex vivo. METHODS The effect of CFE on melanogenesis was investigated with lightly (HEMn-LP) and moderately (HEMn-MP) pigmented normal human melanocytes, reconstituted three-dimensional skin (3D skin) model and ex vivo human hair follicles. The melanogenesis-inducing effect of CFE was evaluated using melanin content and intracellular tyrosinase activity assay. The amount and type of eumelanin and pheomelanin were analysed by using HPLC method. The mechanism involved in the effect of CFE on hyperpigmentation was explored by cyclic adenosine monophosphate (cAMP) immunoassay and western blot analysis for tyrosinase, microphthalmia-associated transcription factor (MITF) and phosphorylated CRE-binding protein (pCREB) expression. The degree of pigmentation in 3D skin and L-values were measured using a CR-300 chroma meter. The amount of dissolved melanin was measured using a spectrophotometer. The content of melanin in the hair follicles was evaluated by Fontana Masson staining. RESULTS C. japonicum flower extract significantly increased the melanin content and cellular tyrosinase activity in both HEMn-LP and HEMn-MP cells. The markers of pheomelanin and eumelanin in HEMn-LP and HEMn-MP were also increased by CFE. We observed that CFE treatment on melanocytes increased intracellular cAMP with inducing pCREB and up-regulating the protein levels of TYR and MITF. Furthermore, CFE considerably increased the melanin content in a 3D skin model and ex vivo human hair follicles. CONCLUSIONS These results suggest that CFE exerts hyperpigmentation activity through cAMP signalling in human melanocytes that it can improve follicular depigmentation and vitiligo by stimulating the melanin synthesis.
Collapse
Affiliation(s)
- Minkyung Kim
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Kyungeun Jeon
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Seoungwoo Shin
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Sohyun Yoon
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Hayeon Kim
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dehun Ryu
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| |
Collapse
|
37
|
Abstract
Hinokitiol is a natural bioactive compound found in several aromatic and medicinal plants. It is a terpenoid synthetized and secreted by different species as secondary metabolites. This volatile compound was tested and explored for its different biological properties. In this review, we report the pharmacological properties of hinokitiol by focusing mainly on its anticancer mechanisms. Indeed, it can block cell transformation at different levels by its action on the cell cycle, apoptosis, autophagy via inhibiting gene expression and dysregulating cellular signaling pathways. Moreover, hinokitiol also exhibits other pharmacological properties, including antidiabetic, anti-inflammatory, and antimicrobial effects. It showed multiple and several effects through its inhibition, interaction and/or activation of the main cellular targets inducing these pathologies.
Collapse
|
38
|
Wakamatsu K, Munyard K, Oddie C, Ito S. Photobleached Oxidative Degradation of Melanins: Chemical Characterization of Melanins Present in Alpaca Fiber. Photochem Photobiol 2021; 97:1493-1497. [PMID: 34435360 DOI: 10.1111/php.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
In order to characterize the phenotype and to examine the effects of sun exposure on the color and structure of eumelanin (EM) and pheomelanin (PM) in alpaca fibers, we applied Soluene-350 solubilization, alkaline hydrogen peroxide oxidation (AHPO) and hydroiodic acid (HI) hydrolysis to the base and tip fibers of 20 true-black (TB) and 20 warm-black (WB) alpacas. We analyzed absorbances at 500 nm (A500) and 650 nm (A650), Free and Total pyrrole-2,3,5-tricarboxylic acid (PTCA), 2,3,4,5-tetracarboxylic acid (PTeCA) as degradative products from EM, and 4-amino-3-hydroxyphenylalanine (4-AHP), 3-amino-4-hydroxyphenylalanine (3-AHP) and thiazole-2,4,5-tricarboxylic acid (TTCA) as degradative products from PM. We found that the ratio of PTeCA/Total PTCA increased significantly from the base to the tip in both colors of alpaca fibers, while the ratios of A650/A500 and 4-AHP/3-AHP decreased significantly. These results show that structures made of both EM and PM in alpaca fibers are modified significantly by sun exposure inducing color change. This study indicates that the ratios of A650/A500, PTeCA/Total PTCA and 4-AHP/3-AHP are highly sensitive markers of color change and photodegradation of EM and PM, respectively.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kylie Munyard
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Carolyn Oddie
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
39
|
Allouche J, Rachmin I, Adhikari K, Pardo LM, Lee JH, McConnell AM, Kato S, Fan S, Kawakami A, Suita Y, Wakamatsu K, Igras V, Zhang J, Navarro PP, Lugo CM, Noonan HR, Christie KA, Itin K, Mujahid N, Lo JA, Won CH, Evans CL, Weng QY, Wang H, Osseiran S, Lovas A, Németh I, Cozzio A, Navarini AA, Hsiao JJ, Nguyen N, Kemény LV, Iliopoulos O, Berking C, Ruzicka T, Gonzalez-José R, Bortolini MC, Canizales-Quinteros S, Acuna-Alonso V, Gallo C, Poletti G, Bedoya G, Rothhammer F, Ito S, Schiaffino MV, Chao LH, Kleinstiver BP, Tishkoff S, Zon LI, Nijsten T, Ruiz-Linares A, Fisher DE, Roider E. NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell 2021; 184:4268-4283.e20. [PMID: 34233163 PMCID: PMC8349839 DOI: 10.1016/j.cell.2021.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.
Collapse
Affiliation(s)
- Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA, UK; Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Luba M Pardo
- Department of Dermatology, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 03722 Seoul, Korea
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shinichiro Kato
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Immunology, Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Vivien Igras
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Haley R Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Kathleen A Christie
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaspar Itin
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Nisma Mujahid
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Boston University School of Medicine, Boston, MA 02118, USA; University of Utah, Department of Dermatology, Salt Lake City, UT 84132, USA
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, 05505 Seoul, Korea
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hequn Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sam Osseiran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alyssa Lovas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Antonio Cozzio
- Department of Dermatology, Venerology, and Allergology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Alexander A Navarini
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Jennifer J Hsiao
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nhu Nguyen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Othon Iliopoulos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, University Hospital Munich, Ludwig Maximilian University, 80337 Munich, Germany
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn U912OACD, Argentina
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City 04510, Mexico
| | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Gabriel Bedoya
- Genética Molecular (GENMOL), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000009, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 1027, Chile
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Maria Vittoria Schiaffino
- Internal Medicine, Diabetes and Endocrinology Unit, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Tishkoff
- Departments of Genetics and Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Tamar Nijsten
- Department of Dermatology, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; UMR 7268, CNRS-EFS-ADES, Aix-Marseille University, Marseille 13005, France
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland; Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
40
|
Yu F, Lu Y, Zhong Z, Qu B, Wang M, Yu X, Chen J. Mitf Involved in Innate Immunity by Activating Tyrosinase-Mediated Melanin Synthesis in Pteria penguin. Front Immunol 2021; 12:626493. [PMID: 34093521 PMCID: PMC8173187 DOI: 10.3389/fimmu.2021.626493] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is an important transcription factor that plays a key role in melanogenesis, cell proliferation, survival and immune defense in vertebrate. However, its function and function mechanism in bivalve are still rarely known. In this research, first, a Mitf gene was characterized from Pteria penguin (P. penguin). The PpMitf contained an open reading frame of 1,350 bp, encoding a peptide of 449 deduced amino acids with a highly conserved basic helix-loop-helix-leucine zipper (bHLH-LZ) domain. The PpMITF shared 55.7% identity with amino acid sequence of Crassostrea gigas (C. gigas). Tissue distribution analysis revealed that PpMitf was highly expressed in mantle and hemocytes, which were important tissues for color formation and innate immunity. Second, the functions of PpMitf in melanin synthesis and innate immunity were identified. The PpMitf silencing significantly decreased the tyrosinase activity and melanin content, indicating PpMitf involved in melanin synthesis of P. penguin. Meanwhile, the PpMitf silencing clearly down-regulated the expression of PpBcl2 (B cell lymphoma/leukemia-2 gene) and antibacterial activity of hemolymph supernatant, indicating that PpMitf involved in innate immunity of P. penguin. Third, the function mechanism of PpMitf in immunity was analyzed. The promoter sequence analysis of tyrosinase (Tyr) revealed two highly conserved E-box elements, which were specifically recognized by HLH-LZ of MITF. The luciferase activities analysis showed that Mitf could activate the E-box in Tyr promoter through highly conserved bHLH-LZ domain, and demonstrated that PpMitf involved in melanin synthesis and innate immunity by regulating tyrosinase expression. Finally, melanin from P. penguin, the final production of Mitf-Tyr-melanin pathway, was confirmed to have direct antibacterial activity. The results collectively demonstrated that PpMitf played a key role in innate immunity through activating tyrosinase-mediated melanin synthesis in P. penguin.
Collapse
Affiliation(s)
- Feifei Yu
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yishan Lu
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhiming Zhong
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Bingliang Qu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Meifang Wang
- Ocean College, South China Agriculture University, Guangzhou, China
| | - Xiangyong Yu
- Ocean College, South China Agriculture University, Guangzhou, China
| | - Jiayu Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
41
|
Casati S, Ravelli A, Angeli I, Bergamaschi RF, Binelli G, Minoli M, Orioli M. PTCA (1-H-Pyrrole-2,3,5-Tricarboxylic Acid) as a Marker for Oxidative Hair Treatment: Distribution, Gender Aspects, Correlation with EtG and Self-Reports. J Anal Toxicol 2021; 45:513-520. [PMID: 33027522 DOI: 10.1093/jat/bkaa153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022] Open
Abstract
Hair analysis is an important and reliable resource for the assessment of alcohol or drug abstinence in both clinical and forensic toxicology. Recently, it has been demonstrated that hair oxidative cosmetic treatments lead to the reduction in incorporated xenobiotics in hair, such as ethyl glucuronide (EtG), a marker of alcohol abuse, and the formation of 1-H-pyrrole-2,3,5-tricarboxylic acid (PTCA), a degradation product of melanin. The aim of the present study was to investigate PTCA trends in a large number of samples in order to evaluate the reliability of this biomarker in recognizing previous cosmetic treatment in forensic analyses. Therefore, a single-step extraction followed by an high-performance liquid chromatography--tandem mass spectrometry (HPLC--MS-MS) method was established and validated for the simultaneous determination of EtG and PTCA. This method was applied to 1,219 scalp hair samples from two groups, namely self-reported untreated and in vivo treated hair, exhibiting a concentration range of 6.7 to 440.0 pg/mg for EtG (mean 26.8 pg/mg, median 14.6 pg/mg) and 0.009 to 49.8 ng/mg for PTCA (mean 0.66 ng/mg, median 0.02 ng/mg). The PTCA content was significantly different among the two experimental groups, with the in vivo treated group showing significantly higher levels of PTCA than the untreated group. Finally, an in vitro bleaching was performed and the results confirmed that a strong hair oxidative treatment may negatively affect EtG test results (false negative), whereas the mean PTCA content increased showing statistically significant differences between untreated and in vitro oxidative treated samples. The present study suggests that the determination of PTCA in routine hair analysis procedure could be useful in order to discover previous cosmetic treatment including oxidation.
Collapse
Affiliation(s)
- Sara Casati
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Laboratorio di Tossicologia Forense, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Ravelli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Laboratorio di Tossicologia Forense, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Angeli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Laboratorio di Tossicologia Forense, Università degli Studi di Milano, Milan, Italy
| | - Roberta F Bergamaschi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Laboratorio di Tossicologia Forense, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, Varese, Italy
| | - Mauro Minoli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Laboratorio di Tossicologia Forense, Università degli Studi di Milano, Milan, Italy
| | - Marica Orioli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Laboratorio di Tossicologia Forense, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Eisenbeiss L, Binz TM, Baumgartner MR, Kraemer T, Steuer AE. Cheating on forensic hair testing? Detection of potential biomarkers for cosmetically altered hair samples using untargeted hair metabolomics. Analyst 2021; 145:6586-6599. [PMID: 32785338 DOI: 10.1039/d0an01265c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hair analysis has become an integral part in forensic toxicological laboratories for e.g. assessment of drug or alcohol abstinence. However, hair samples can be manipulated by cosmetic treatments, altering drug concentrations which eventually leads to false negative hair test results. In particular oxidative bleaching of hair samples under alkaline conditions significantly affects incorporated drug concentrations. To date, current techniques to detect cosmetic hair adulterations bear limitations such as the implementation of cut-off values or the requirement of specialized instrumentations. As a new approach, untargeted hair metabolomics analysis was applied to detect altered, endogenous biomolecules that could be used as biomarkers for oxidative cosmetic hair treatments. For this, genuine hair samples were treated in vitro with 9% hydrogen peroxide (H2O2) for 30 minutes. Untreated and treated hair samples were analyzed using liquid-chromatography high-resolution time-of-flight mass spectrometry. In total, 69 metabolites could be identified as significantly altered after hair bleaching. The majority of metabolites decreased after bleaching, yet totally degraded metabolites were most promising as suitable biomarkers. The formation of biomarker ratios of metabolites decreasing and increasing in concentrations improved the discrimination of untreated and treated hair samples. With the results of this study, the high variety of identified biomarkers now offers the possibility to include single biomarkers or biomarker selections into routine screening methods for improved data interpretation of hair test results.
Collapse
Affiliation(s)
- Lisa Eisenbeiss
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| | - Tina M Binz
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| | - Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Casati S, Angeli I, Ravelli A, Bergamaschi RF, Guzzi A, Giannasi C, Brini AT, Minoli M, Orioli M. Endogenous 1-H-Pyrrole-2,3,5-Tricarboxylic Acid (PTCA) in Hair and Its Forensic Applications: A Pilot Study on a Wide Multi-Ethnic Population. J Anal Toxicol 2021; 45:269-276. [PMID: 32860709 DOI: 10.1093/jat/bkaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/10/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Over the years, several studies have shown that many factors are likely to affect the results of forensic hair analyses and complicate their interpretation. Among these factors, one of the major drawbacks in hair analysis is the affectability of deposited xenobiotics by cosmetic treatments, which could be eventually used to adulterate the sample. It is well known that some cosmetic treatments containing hydrogen peroxide, such as permanent dyeing or bleaching, lead to the formation of 1-H-pyrrole-2,3,5-tricarboxylic acid (PTCA), a melanin degradation product. Considering that PTCA is also an endogenous compound, spontaneously formed by natural oxidation of melanin, its only detection in hair is not enough to confirm a cosmetic oxidative treatment. For this reason, the aim of the present work was to develop and validate a reliable liquid-liquid extraction method in ultra-high-performance liquid chromatographic-tandem mass spectrometry for the determination of endogenous PTCA in hair from a wide multi-ethnic population (African, Arab, Asian-Pacific, Caucasian, Hispanic and Indian). According to previous studies, untreated hair samples showed a PTCA content of 8.54 ± 5.72 ng/mg (mean ± standard deviation [SD]), ranging between 0.44 and 23.7 ng/mg; after in vitro cosmetic bleaching, PTCA increased to 16.8 ± 6.95 ng/mg (range: 4.16-32.3 ng/mg). Comparing baseline PTCA levels of each subgroup with the others, we could not observe any statistically significant difference, except for Caucasians (P < 0.05), wherein the concentrations were lower. Further studies and a wider sampling are necessary to elucidate the role of PTCA as diagnostic marker of cosmetic hair treatment in forensic field.
Collapse
Affiliation(s)
- Sara Casati
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| | - Ilaria Angeli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| | - Alessandro Ravelli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| | - Roberta F Bergamaschi
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| | - Andrea Guzzi
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| | | | - Anna T Brini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Mauro Minoli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| | - Marica Orioli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Photoreactivity of Hair Melanin from Different Skin Phototypes-Contribution of Melanin Subunits to the Pigments Photoreactive Properties. Int J Mol Sci 2021; 22:ijms22094465. [PMID: 33923346 PMCID: PMC8123205 DOI: 10.3390/ijms22094465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Photoreactivity of melanin has become a major focus of research due to the postulated involvement of the pigment in UVA-induced melanoma. However, most of the hitherto studies were carried out using synthetic melanin models. Thus, photoreactivity of natural melanins is yet to be systematically analyzed. Here, we examined the photoreactive properties of natural melanins isolated from hair samples obtained from donors of different skin phototypes (I, II, III, and V). X-band and W-band electron paramagnetic resonance (EPR) spectroscopy was used to examine the paramagnetic properties of the pigments. Alkaline hydrogen peroxide degradation and hydroiodic acid hydrolysis were used to determine the chemical composition of the melanins. EPR oximetry and spin trapping were used to examine the oxygen photoconsumption and photo-induced formation of superoxide anion, and time-resolved near infrared phosphorescence was employed to determine the singlet oxygen photogeneration by the melanins. The efficiency of superoxide and singlet oxygen photogeneration was related to the chemical composition of the studied melanins. Melanins from blond and chestnut hair (phototypes II and III) exhibited highest photoreactivity of all examined pigments. Moreover, melanins of these phototypes showed highest quantum efficiency of singlet oxygen photogeneration at 332 nm and 365 nm supporting the postulate of the pigment contribution in UVA-induced melanoma.
Collapse
|
45
|
Lorquin F, Ziarelli F, Amouric A, Di Giorgio C, Robin M, Piccerelle P, Lorquin J. Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments. Sci Rep 2021; 11:8538. [PMID: 33879803 PMCID: PMC8058095 DOI: 10.1038/s41598-021-87328-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/15/2021] [Indexed: 11/09/2022] Open
Abstract
Pyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn2+ chemical autoxidation (PyoCHEM yield 0.317 g/g substrate), (2) an induced bacterial culture of Halomonas titanicae through the 4-hydroxyphenylacetic acid-1-hydroxylase route (PyoBACT, 0.55 g/L), and (3) a process using a recombinant laccase extract with the highest level produced (PyoENZ, 1.25 g/g substrate) and all the criteria for a large-scale prototype. The chemical structures had been investigated by 13C solid-state NMR (CP-MAS) and FTIR. Car-Car bindings predominated in the three polymers, Car-O-Car (ether) linkages being absent, proposing mainly C3-C6 (α-bindings) and C4-C6 (β-bindings) configurations. This work highlighted a biological decarboxylation by the laccase or bacterial oxidase(s), leading to the partly formation of gentisyl alcohol and gentisaldehyde that are integral parts of the polymer. By comparison, PyoENZ exhibited an Mw of 5,400 Da, was hyperthermostable, non-cytotoxic even after irradiation, scavenged ROS induced by keratinocytes, and had a highly DPPH-antioxidant and Fe3+-reducing activity. As a representative pigment of living cells and an available standard, PyoENZ might also be useful for applications in extreme conditions and skin protection.
Collapse
Affiliation(s)
- Faustine Lorquin
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France.,Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Fabio Ziarelli
- Fédération Sciences Chimiques de Marseille, Aix-Marseille Université, 52 Avenue Escadrille Normandie Niemen, 13397, Marseille, France
| | - Agnès Amouric
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France
| | - Carole Di Giorgio
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Philippe Piccerelle
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Jean Lorquin
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France.
| |
Collapse
|
46
|
Wakamatsu K, Zippin JH, Ito S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res 2021; 34:730-747. [PMID: 33751833 DOI: 10.1111/pcmr.12970] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Melanins are widely distributed in animals and plants; in vertebrates, most melanins are present on the body surface. The diversity of pigmentation in vertebrates is mainly attributed to the quantity and ratio of eumelanin and pheomelanin synthesis. Most natural melanin pigments in animals consist of both eumelanin and pheomelanin in varying ratios, and thus, their combined synthesis is called "mixed melanogenesis." Gene expression is an established mechanism for controlling melanin synthesis; however, there are multiple factors that affect melanin synthesis besides gene expression. Due to the differential sensitivity of the eumelanin and pheomelanin synthetic pathways to pH, melanosomal pH likely plays a major role in mixed melanogenesis. Here, we focused on various factors affecting mixed melanogenesis including (1) chemical regulation of melanin synthesis, (2) melanosomal pH regulation during normal melanogenesis and effect on mixed melanogenesis, and (3) mechanisms of melanosomal pH control (proton pumps, channels, transporters, and signaling pathways).
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| |
Collapse
|
47
|
Lasisi T. The constraints of racialization: How classification and valuation hinder scientific research on human variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:376-386. [PMID: 33675042 DOI: 10.1002/ajpa.24264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Human biological variation has historically been studied through the lens of racialization. Despite a general shift away from the use of overt racial terminologies, the underlying racialized frameworks used to describe and understand human variation still remain. Even in relatively recent anthropological and biomedical work, we can observe clear manifestations of such racial thinking. This paper shows how classification and valuation are two specific processes which facilitate racialization and hinder attempts to move beyond such frameworks. The bias induced by classification distorts descriptions of phenotypic variation in a way that erroneously portrays European populations as more variable than others. Implicit valuation occurs in tandem with classification and produces narratives of superiority/inferiority for certain phenotypic variants without an objective biological basis. The bias of racialization is a persistent impediment stemming from the inheritance of scientific knowledge developed under explicitly racial paradigms. It is also an internalized cognitive distortion cultivated through socialization in a world where racialization is inescapable. Though undeniably challenging, this does not present an insurmountable barrier, and this bias can be mitigated through the critical evaluation of past work, the active inclusion of marginalized perspectives, and the direct confrontation of institutional structures enforcing racialized paradigms.
Collapse
Affiliation(s)
- Tina Lasisi
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
48
|
A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111923. [PMID: 33641916 DOI: 10.1016/j.msec.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023]
Abstract
Chitosan-melanin complex from Catharsius molossus L. has proven to possess superior pharmaceutical excipient performance and may be the new source of water-soluble protein-free natural melanin. Herein, it was enzymatically hydrolyzed into the chitooligosaccharide-melanin complex (CMC) whose main chemical units were composed of eumelanin and chitooligosaccharides and showed three-layer structures. Additionally, this biomacromolecule could self-assemble into 40 nm nanoparticles (CMC Nps) in a weakly acidic aqueous solution. Interestingly, CMC displayed strong affinity for cell membrane by binding the phosphatidylserine, glycoprotein, glycolipids and glycosaminoglycans accumulated on the surface of tumor cells, notably, CMC Nps could enter cells and mainly target the nucleus by interacting with DNA and/or RNA substrates located around the nucleus to disrupt the proliferation and apoptosis processes. The findings suggest CMC may be the novel material for subcellular organelle targeting of cancer cells.
Collapse
|
49
|
Xie J, Li H, Che H, Dong X, Yang X, Xie W. Extraction, physicochemical characterisation, and bioactive properties of ink melanin from cuttlefish (
Sepia
esculenta
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jingwen Xie
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
| | - Hongyan Li
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Hongxia Che
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Xihong Yang
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| | - Wancui Xie
- College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao266011China
- Shandong Provincial Key Laboratory of Biochemical Engineering Qingdao266011China
| |
Collapse
|
50
|
Shankar N, Guimarães AO, Napoli E, Giulivi C. Forensic determination of hair deposition time in crime scenes using electron paramagnetic resonance. J Forensic Sci 2021; 66:72-82. [PMID: 32986869 DOI: 10.1111/1556-4029.14570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Several types of biological samples, including hair strands, are found at crime scenes. Apart from the identification of the value and the contributor of the probative evidence, it is important to prove that the time of shedding of hair belonging to a suspect or victim matches the crime window. To this end, to estimate the ex vivo aging of hair, we evaluated time-dependent changes in melanin-derived free radicals in blond, brown, and black hairs by using electron paramagnetic resonance spectroscopy (EPR). Hair strands aged under controlled conditions (humidity 40%, temperature 20-22°C, indirect light, with 12/12 hour of light/darkness cycles) showed a time-dependent decay of melanin-derived radicals. The half-life of eumelanin-derived radicals in hair under our experimental settings was estimated at 22 ± 2 days whereas that of pheomelanin was about 2 days suggesting better stabilization of unpaired electrons by eumelanin. Taken together, this study provides a reference for future forensic studies on determination of degradation of shed hair in a crime scene by following eumelanin radicals by utilizing the non-invasive, non-destructive, and highly specific EPR technique.
Collapse
Affiliation(s)
- Nikhita Shankar
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - André O Guimarães
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|