1
|
Adan IH, Asudi GO, Niassy S, Jalloh AA, Mutua JM, Chidawanyika F, Khamis F, Khan Z, Subramanian S, Dubois T, Mutyambai DM. Comparative microbiome diversity in root-nodules of three Desmodium species used in push-pull cropping system. Front Microbiol 2024; 15:1395811. [PMID: 38966391 PMCID: PMC11222577 DOI: 10.3389/fmicb.2024.1395811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Abstract
Background Desmodium species used as intercrops in push-pull cropping systems are known to repel insect-pests, suppress Striga species weeds, and shift soil microbiome. However, the mechanisms through which Desmodium species impact the soil microbiome, either through its root exudates, changes in soil nutrition, or shading microbes from its nodules into the rhizosphere, are less understood. Here, we investigated the diversity of root-nodule microbial communities of three Desmodium species- Desmodium uncinatum (SLD), Desmodium intortum (GLD), and Desmodium incanum (AID) which are currently used in smallholder maize push-pull technology (PPT). Methods Desmodium species root-nodule samples were collected from selected smallholder farms in western Kenya, and genomic DNA was extracted from the root-nodules. The amplicons underwent paired-end Illumina sequencing to assess bacterial and fungal populations. Results We found no significant differences in composition and relative abundance of bacterial and fungal species within the root-nodules of the three Desmodium species. While a more pronounced shift was observed for fungal community compositions compared to bacteria, no significant differences were observed in the general diversity (evenness and richness) of fungal and bacterial populations among the three Desmodium species. Similarly, beta diversity was not significantly different among the three Desmodium species. The root-nodule microbiome of the three Desmodium species was dominated by Bradyrhizobium and Fusarium species. Nevertheless, there were significant differences in the proportion of marker gene sequences responsible for energy and amino acid biosynthesis among the three Desmodium species, with higher sequence proportions observed in SLD. Conclusion There is no significant difference in the microbial community of the three Desmodium species used in PPT. However, root-nodule microbiome of SLD had significantly higher marker gene sequences responsible for energy and amino acid biosynthesis. Therefore, it is likely that the root-nodules of the three Desmodium species host similar microbiomes and influence soil health, consequently impacting plant growth and agroecosystem functioning.
Collapse
Affiliation(s)
- Isack H. Adan
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - George Ochieng Asudi
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Saliou Niassy
- Inter-African Phytosanitary Council of the African Union, Yaoundé, Cameroon
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | - Frank Chidawanyika
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Free State, Bloemfontein, South Africa
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Zeyaur Khan
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Thomas Dubois
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Life Science, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
2
|
Fazal A, Wen Z, Yang M, Wang C, Hao C, Lai X, Jie W, Yang L, He Z, Yang H, Cai J, Qi J, Lu G, Niu K, Sun S, Yang Y. Triple-transgenic soybean in conjunction with glyphosate drive patterns in the rhizosphere microbial community assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122337. [PMID: 37562532 DOI: 10.1016/j.envpol.2023.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyi Wang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenyu Hao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Lai
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liu Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhuoyu He
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huan Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Duan Y, Li Y, Zhang J, Song Y, Jiang Y, Tong X, Bi Y, Wang S, Wang S. Genome Survey and Chromosome-Level Draft Genome Assembly of Glycine max var. Dongfudou 3: Insights into Genome Characteristics and Protein Deficiencies. PLANTS (BASEL, SWITZERLAND) 2023; 12:2994. [PMID: 37631204 PMCID: PMC10459189 DOI: 10.3390/plants12162994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Dongfudou 3 is a highly sought-after soybean variety due to its lack of beany flavor. To support molecular breeding efforts, we conducted a genomic survey using next-generation sequencing. We determined the genome size, complexity, and characteristics of Dongfudou 3. Furthermore, we constructed a chromosome-level draft genome and speculated on the molecular basis of protein deficiency in GmLOX1, GmLOX2, and GmLOX3. These findings set the stage for high-quality genome analysis using third-generation sequencing. The estimated genome size is approximately 1.07 Gb, with repetitive sequences accounting for 72.50%. The genome is homozygous and devoid of microbial contamination. The draft genome consists of 916.00 Mb anchored onto 20 chromosomes, with annotations of 46,446 genes and 77,391 transcripts, achieving Benchmarking Single-Copy Orthologue (BUSCO) completeness of 99.5% for genome completeness and 99.1% for annotation. Deletions and substitutions were identified in the three GmLox genes, and they also lack corresponding active proteins. Our proposed approach, involving k-mer analysis after filtering out organellar DNA sequences, is applicable to genome surveys of all plant species, allowing for accurate assessments of size and complexity. Moreover, the process of constructing chromosome-level draft genomes using closely related reference genomes offers cost-effective access to valuable information, maximizing data utilization.
Collapse
Affiliation(s)
- Yajuan Duan
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Yue Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Jing Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Yongze Song
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Yan Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Xiaohong Tong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Yingdong Bi
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| | - Sui Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (Y.D.); (Y.L.)
| |
Collapse
|
4
|
Sun T, Yang Y, Duan K, Liao Y, Zhang Z, Guan Z, Chen S, Fang W, Chen F, Zhao S. Biodiversity of Endophytic Microbes in Diverse Tea Chrysanthemum Cultivars and Their Potential Promoting Effects on Plant Growth and Quality. BIOLOGY 2023; 12:986. [PMID: 37508417 PMCID: PMC10376344 DOI: 10.3390/biology12070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
The endophytic microbiomes significantly differed across tea chrysanthemum cultivars and organs (stems and leaves). The most abundant endophytic bacterial genera were Pseudomonas, Masillia, and Enterobacter in the leaves and Sphingomonas and Curtobacterium in the stems of the five cultivars. Meanwhile, the most abundant endophytic fungal genera in the leaves and stems of the five tea chrysanthemums were Alternaria, Cladosporium, and Sporobolomyces. Specifically, Rhodotorula was dominant in the leaves of 'Jinsi huangjv' and Paraphoma was dominant in the stems of 'Jinsi huangjv'. In all cultivars, the diversity and richness of endophytic bacteria were higher in leaves than in stems (p < 0.05). The highest diversity and richness of endophytic bacteria were recorded in 'Chujv', followed by 'Jinsi huangjv', 'Fubai jv', 'Nannong jinjv', and 'Hangbai jv'. Meanwhile, endophytic fungi were less pronounced. Twenty-seven and 15 cultivable endophytic bacteria and fungi were isolated, four isolated endophytic bacteria, namely, CJY1 (Bacillus oryzaecorticis), CY2 (Pseudomonas psychrotolerans), JSJ7, and JSJ17 (Enterobacter cloacae) showed higher indole acetic acid production ability. Further field studies indicated that inoculation of these four endophytic bacteria not only promoted plant growth and yield but also increased total flavonoids, chlorogenic acid, luteolin, and 3,5-dicoffeylquinic acid levels in the dry flowers of tea chrysanthemums.
Collapse
Affiliation(s)
- Tong Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yanrong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Kuolin Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Zhi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
5
|
Roriz M, Pereira SI, Castro PM, Carvalho SM, Vasconcelos MW. Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions. Heliyon 2023; 9:e14620. [PMID: 37180927 PMCID: PMC10172870 DOI: 10.1016/j.heliyon.2023.e14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional strategies to manage iron (Fe) deficiency still present drawbacks, and more eco-sustainable solutions are needed. Knowledge on soybean-specific diversity and functional traits of their plant growth-promoting bacteria (PGPB) potentiates their applicability as bioinoculants to foster soybean performance under calcareous soil conditions. This work aimed to assess the efficacy of PGPB, retrieved from soybean tissues/rhizosphere, in enhancing plant growth and development as well as crop yield under alkaline soil conditions. Seventy-six bacterial strains were isolated from shoots (18%), roots (53%), and rhizosphere (29%) of soybean. Twenty-nine genera were identified, with Bacillus and Microbacterium being the most predominant. Based on distinct plant growth-promoting traits, the endophyte Bacillus licheniformis P2.3 and the rhizobacteria Bacillus aerius S2.14 were selected as bioinoculants. In vivo tests showed that soybean photosynthetic parameters, chlorophyll content, total fresh weight, and Fe concentrations were not significantly affected by bioinoculation. However, inoculation with B. licheniformis P2.3 increased pod number (33%) and the expression of Fe-related genes (FRO2, IRT1, F6'H1, bHLH38, and FER4), and decreased FC-R activity (45%). Moreover, bioinoculation significantly affected Mn, Zn, and Ca accumulation in plant tissues. Soybean harbors several bacterial strains in their tissues and in the rhizosphere with capacities related to Fe nutrition and plant growth promotion. The strain B. licheniformis P2.3 showed the best potential to be incorporated in bioinoculant formulations for enhancing soybean performance under alkaline soil conditions.
Collapse
Affiliation(s)
- Mariana Roriz
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Corresponding author.
| | - Sofia I.A. Pereira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula M.L. Castro
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Susana M.P. Carvalho
- GreenUPorto – Research Centre on Sustainable Agrifood Production / Inov4Agro & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646, Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
6
|
Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. MICROBIAL ECOLOGY 2023; 85:1113-1135. [PMID: 36319743 PMCID: PMC10156819 DOI: 10.1007/s00248-022-02136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Collapse
Affiliation(s)
- Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bartholomew Saanu Adeleke
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
7
|
Solanki AC, Gurjar NS, Sharma S. Co-Inoculation of Non-Symbiotic Bacteria Bacillus and Paraburkholderia Can Improve the Soybean Yield, Nutrient Uptake, and Soil Parameters. Mol Biotechnol 2023:10.1007/s12033-023-00719-w. [PMID: 36947359 DOI: 10.1007/s12033-023-00719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Due to its nutritional value and oil, soybean (Glycine max L.) became an economic crop in India and worldwide. The current study investigated the effect of forest-associated plant growth-promoting rhizobacteria (PGPR) on soybean yield and grain nutrient content. Five potential bacteria were used in this study based on their PGPR traits. The pot assay result with two crops (soybean and chickpea) confirmed the growth promotion activity of the two strains (Bacillus subtilis MpS15 and Paraburkholderia sabiae NvS21). The result showed significant (p < 0.05) enhancement in plant length and biomass with the seed treatment with strains (MpS15 and NvS21) compared to the control. Later both biocompatible potential strains were used in field experiments as individuals and consortia. Seed treatment of consortia significantly improves the nodulation and photosynthetic content more than individual treatments and control. Compared to the control, the co-inoculation of MpS15 and NvS21 increased soybean grain, straw yield, and grain NPK contents. Interestingly, soil parameters (organic carbon, available NPK) showed a strong correlation (p < 0.05) with plant parameters and nutrient uptake. Overall, our study provides strong relationships between soil parameters, microbial inoculum as consortia, and soybean performance, and these strains may be utilized as bioinoculant in future.
Collapse
Affiliation(s)
- Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh, 462042, India.
| | - Narendra Singh Gurjar
- Department of Soil Science and Agriculture Chemistry, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Satish Sharma
- Department of Plant Pathology, B.M. College of Agriculture Khandwa, Khandwa, Madhya Pradesh, India
| |
Collapse
|
8
|
Kaur J, Mudgal G, Chand K, Singh GB, Perveen K, Bukhari NA, Debnath S, Mohan TC, Charukesi R, Singh G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci Rep 2022; 12:21330. [PMID: 36494408 PMCID: PMC9734154 DOI: 10.1038/s41598-022-25225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieria trifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacterium pusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l-1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l-1), gibberellic acid (172.98 mg l-1), ammonia (42.66 µmol ml-1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants' physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.
Collapse
Affiliation(s)
- Jaspreet Kaur
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gaurav Mudgal
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kartar Chand
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gajendra B. Singh
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kahkashan Perveen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Najat A. Bukhari
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Sandip Debnath
- grid.440987.60000 0001 2259 7889Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, Birbhum, West Bengal 731236 India
| | - Thotegowdanapalya C. Mohan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Rajulu Charukesi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Gaurav Singh
- Stress Signaling to the Nucleus, CNRS-Institute of Molecular Biology of Plants, 12 Rue du General-Zimmer, 67000 Strasbourg, France
| |
Collapse
|
9
|
Yang M, Luo F, Song Y, Ma S, Ma Y, Fazal A, Yin T, Lu G, Sun S, Qi J, Wen Z, Li Y, Yang Y. The host niches of soybean rather than genetic modification or glyphosate application drive the assembly of root-associated microbial communities. Microb Biotechnol 2022; 15:2942-2957. [PMID: 36336802 PMCID: PMC9733649 DOI: 10.1111/1751-7915.14164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil-plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.
Collapse
Affiliation(s)
- Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Fuhe Luo
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yuchen Song
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Shenglin Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yudi Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Tongming Yin
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- School of Life SciencesHuaiyin Normal UniversityHuaianChina
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource SciencesZhejiang A&F UniversityHangzhouChina
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
10
|
Kim DR, Kim SH, Lee SI, Kwak YS. Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean. THE PLANT PATHOLOGY JOURNAL 2022; 38:372-382. [PMID: 35953057 PMCID: PMC9372108 DOI: 10.5423/ppj.oa.05.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.
Collapse
Affiliation(s)
- Da-Ran Kim
- Resarch Institute of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Su-Hyeon Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828,
Korea
| | - Su In Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828,
Korea
| | - Youn-Sig Kwak
- Resarch Institute of Life Science, Gyeongsang National University, Jinju 52828,
Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
11
|
Iquebal MA, Jagannadham J, Jaiswal S, Prabha R, Rai A, Kumar D. Potential Use of Microbial Community Genomes in Various Dimensions of Agriculture Productivity and Its Management: A Review. Front Microbiol 2022; 13:708335. [PMID: 35655999 PMCID: PMC9152772 DOI: 10.3389/fmicb.2022.708335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Agricultural productivity is highly influenced by its associated microbial community. With advancements in omics technology, metagenomics is known to play a vital role in microbial world studies by unlocking the uncultured microbial populations present in the environment. Metagenomics is a diagnostic tool to target unique signature loci of plant and animal pathogens as well as beneficial microorganisms from samples. Here, we reviewed various aspects of metagenomics from experimental methods to techniques used for sequencing, as well as diversified computational resources, including databases and software tools. Exhaustive focus and study are conducted on the application of metagenomics in agriculture, deciphering various areas, including pathogen and plant disease identification, disease resistance breeding, plant pest control, weed management, abiotic stress management, post-harvest management, discoveries in agriculture, source of novel molecules/compounds, biosurfactants and natural product, identification of biosynthetic molecules, use in genetically modified crops, and antibiotic-resistant genes. Metagenomics-wide association studies study in agriculture on crop productivity rates, intercropping analysis, and agronomic field is analyzed. This article is the first of its comprehensive study and prospects from an agriculture perspective, focusing on a wider range of applications of metagenomics and its association studies.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratna Prabha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
12
|
Native Rhizospheric and Endophytic Fungi as Sustainable Sources of Plant Growth Promoting Traits to Improve Wheat Growth under Low Nitrogen Input. J Fungi (Basel) 2022; 8:jof8020094. [PMID: 35205849 PMCID: PMC8875171 DOI: 10.3390/jof8020094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat crops require effective nitrogen fertilization to produce high yields. Only half of chemical N2 fertilizers are absorbed into plants while the rest remains in the soil, causing environmental problems. Fungi could maximize nitrogen absorption, and from an environmental and biodiversity point of view, there is an urgent necessity for bioprospecting native fungi associated with wild plants growing in harsh environments, e.g., St. Katherine Protectorate (SKP) in the arid Sinai. Recovered taxa, either endophytic and/or rhizospheric, were screened for their plant growth-promoting (PGP) traits. Eighteen fungal isolates (15 rhizospheric and 3 endophytic) belonging to anamorphic ascomycetes were recovered from 9 different wild plants, and their PGP traits (indole-3-acetic acid [IAA] production, phosphate solubilization, siderophore production, and hydrolytic enzyme production) were measured. Rhizospheric isolate NGB-WS14 (Chaetosphaeronema achilleae) produced high levels of IAA (119.1 μg mL−1) in the presence of tryptophan, while NGB-WS 8 (Acrophialophora levis) produced high IAA levels (42.4 μg mL−1) in the absence of tryptophan. The highest phosphate-solubilizing activity (181.9 μg mL−1) was recorded by NGB-WFS2 (Penicillium chrysogenum). Endophytic isolate NGB-WFE16 (Fusarium petersiae) exhibited a high percentage level of Siderophore Unit (96.5% SU). All isolates showed variability in the secretion of extracellular hydrolytic enzymes. Remarkably, all isolates had antagonistic activity (55.6% to 87.3% suppression of pathogen growth) against the pathogenic taxon Alternaria alternata (SCUF00001378) in the dual-assay results. Out of the 18 isolates, 4 rhizospheric and 1 endophytic isolate showed significant increases in shoot dry weight and shoot nitrogen and chlorophyll content of wheat plants subjected to low inputs of chemical nitrogen (N) fertilizers (50% reduction) compared with the non-inoculated control in a pot experiment. Potent taxa were subjected to sequencing for molecular confirmation of phenotypic identification. The retrieved ITS sequences in this study have been deposited in GenBank under accession numbers from LC642736 to LC642740. This study considered the first report of endophytic fungi of Cheilanthes vellea, a wild plant with PGPF which improves wheat growth. These results recommend using PGPF as inoculants to alleviate low nitrogen fertilization.
Collapse
|
13
|
Abdel-Hamid MS, Fouda A, El-Ela HKA, El-Ghamry AA, Hassan SED. Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomol Concepts 2021; 12:175-196. [PMID: 35041305 DOI: 10.1515/bmc-2021-0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
The main objective of the current study was to improve the essential oil contents of Thymus vulgaris L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of T. vulgaris, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: Bacillus haynesii T9r, Citrobacter farmeri T10r, Bacillus licheniformis T11r, Bacillus velezensis T12r, and Bacillus velezensis T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C2H4/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of T. vulgaris individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.
Collapse
Affiliation(s)
| | - Amr Fouda
- Soil Fertility and Microbiology Department, Desert Research Center, El-Mataria, Cairo, Egypt
| | - Hesham Kamal Abo El-Ela
- Soil Fertility and Microbiology Department, Desert Research Center, El-Mataria, Cairo, Egypt
| | - Abbas A El-Ghamry
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
14
|
Dimkić I, Bhardwaj V, Carpentieri-Pipolo V, Kuzmanović N, Degrassi G. The chitinolytic activity of the Curtobacterium sp. isolated from field-grown soybean and analysis of its genome sequence. PLoS One 2021; 16:e0259465. [PMID: 34731210 PMCID: PMC8565777 DOI: 10.1371/journal.pone.0259465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
Curtobacterium sp. GD1 was isolated from leaves of conventionally grown soybean in Brazil. It was noteworthy that among all bacteria previously isolated from the same origin, only Curtobacterium sp. GD1 showed a strong chitinase activity. The enzyme was secreted and its production was induced by the presence of colloidal chitin in the medium. The chitinase was partially purified and characterized: molecular weight was approximately 37 kDa and specific activity 90.8 U/mg. Furthermore, Curtobacterium sp. GD1 genome was sequenced and analyzed. Our isolate formed a phylogenetic cluster with four other Curtobacterium spp. strains, with ANIb/ANIm ≥ 98%, representing a new, still non described Curtobacterium species. The circular genome visualization and comparison of genome sequences of strains forming new cluster indicated that most regions within their genomes were highly conserved. The gene associated with chitinase production was identified and the distribution pattern of glycosyl hydrolases genes was assessed. Also, genes associated with catabolism of structural carbohydrates such as oligosaccharides, mixed polysaccharides, plant and animal polysaccharides, as well as genes or gene clusters associated with resistance to antibiotics, toxic compounds and auxin biosynthesis subsystem products were identified. The abundance of putative glycosyl hydrolases in the genome of Curtobacterium sp. GD1 suggests that it has the tools for the hydrolysis of different polysaccharides. Therefore, Curtobacterium sp. GD1 isolated from soybean might be a bioremediator, biocontrol agent, an elicitor of the plant defense responses or simply degrader.
Collapse
Affiliation(s)
- Ivica Dimkić
- Department of Biochemistry and Molecular Biology, University of Belgrade – Faculty of Biology, Belgrade, Serbia
| | - Vibha Bhardwaj
- Ras Al Khaimah Municipality Department, Director Environment Laboratories, Dubai, United Arab Emirates
| | | | - Nemanja Kuzmanović
- Federal Research Centre for Cultivated Plants (JKI), Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Braunschweig, Germany
| | - Giuliano Degrassi
- Industrial Biotechnology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Buenos Aires, Argentina
| |
Collapse
|
15
|
Evolutionary genomics and biosynthetic potential of novel environmental Actinobacteria. Appl Microbiol Biotechnol 2021; 105:8805-8822. [PMID: 34716462 DOI: 10.1007/s00253-021-11659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Actinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential. Actinobacteria reveal complex patterns of evolution, responses, and adaptations to their environment, which are not yet well understood. We analyzed three novel plant isolates and explored their habitat adaptation, evolutionary patterns, and potential secondary metabolite production. The phylogenomically characterized isolates belonged to Actinoplanes sp. TFC3, Streptomyces sp. L06, and Embleya sp. NF3. Positively selected genes, relevant in strain evolution, encoded enzymes for stress resistance in all strains, including porphyrin, chlorophyll, and ubiquinone biosynthesis in Embleya sp. NF3. Streptomyces sp. L06 encoded for pantothenate and proteins for CoA biosynthesis with evidence of positive selection; furthermore, Actinoplanes sp. TFC3 encoded for a c-di-GMP synthetase, with adaptive mutations. Notably, the genomes harbored many genes involved in the biosynthesis of at least ten novel secondary metabolites, with many avenues for future new bioactive compound characterization-specifically, Streptomyces sp. L06 could make new ribosomally synthesized and post-translationally modified peptides, while Embleya sp. NF3 could produce new non-ribosomal peptide synthetases and ribosomally synthesized and post-translationally modified peptides. At the same time, TFC3 has particularly enriched in terpene and polyketide synthases. All the strains harbored conserved genes in response to diverse environmental stresses, plant growth promotion factors, and degradation of various carbohydrates, which supported their endophytic lifestyle and showed their capacity to colonize other niches. This study aims to provide a comprehensive estimation of the genomic features of novel Actinobacteria. It sets the groundwork for future research into experimental tests with new bioactive metabolites with potential application in medicine, biofertilizers, and plant biomass residue utilization, with potential application in medicine, as biofertilizers and in plant biomass residues utilization. KEY POINTS: • Potential of novel environmental bacteria for secondary metabolites production • Exploring the genomes of three novel endophytes isolated from a medicinal tree • Pan-genome analysis of Actinobacteria genera.
Collapse
|
16
|
Mayhood P, Mirza BS. Soybean Root Nodule and Rhizosphere Microbiome: Distribution of Rhizobial and Nonrhizobial Endophytes. Appl Environ Microbiol 2021; 87:e02884-20. [PMID: 33674438 PMCID: PMC8117765 DOI: 10.1128/aem.02884-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Soybean root nodules are known to contain a high diversity of both rhizobial endophytes and nonrhizobial endophytes (NREs). Nevertheless, the variation of these bacteria among different root nodules within single plants has not been reported. So far, it is unclear whether the selection of NREs among different root nodules within single plants is a random process or is strictly controlled by the host plant to favor a few specific NREs based on their beneficial influence on plant growth. As well, it is also unknown if the relative frequency of NREs within different root nodules is consistent or if it varies based on the location or size of a root nodule. We assessed the microbiomes of 193 individual soybean root nodules from nine plants using high-throughput DNA sequencing. Bradyrhizobium japonicum strains occurred in high abundance in all root nodules despite the presence of other soybean-compatible rhizobia, such as Ensifer, Mesorhizobium, and other species of Bradyrhizobium in soil. Nitrobacter and Tardiphaga were the two nonrhizobial genera that were uniformly detected within almost all root nodules, though they were in low abundance. DNA sequences related to other NREs that have frequently been reported, such as Bacillus, Pseudomonas, Flavobacterium, and Variovorax species, were detected in a few nodules. Unlike for Bradyrhizobium, the low abundance and inconsistent occurrence of previously reported NREs among different root nodules within single plants suggest that these microbes are not preferentially selected as endophytes by host plants and most likely play a limited part in plant growth as endophytes.IMPORTANCE Soybean (Glycine max L.) is a valuable food crop that also contributes significantly to soil nitrogen by developing a symbiotic association with nitrogen-fixing rhizobia. Bacterial endophytes (both rhizobial and nonrhizobial) are considered critical for the growth and resilience of the legume host. In the past, several studies have suggested that the selection of bacterial endophytes within root nodules can be influenced by factors such as soil pH, nutrient availability, host plant genotype, and bacterial diversity in soil. However, the influence of size or location of root nodules on the selection of bacterial endophytes within soybean roots is unknown. It is also unclear whether the selection of nonrhizobial endophytes within different root nodules of a single plant is a random process or is strictly regulated by the host. This information can be useful in identifying potential bacterial species for developing bioinoculants that can enhance plant growth and soil nitrogen.
Collapse
Affiliation(s)
- Parris Mayhood
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| | - Babur S Mirza
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| |
Collapse
|
17
|
Root-Associated Endophytic Bacterial Community Composition of Asparagus officinalis of Three Different Varieties. Indian J Microbiol 2021; 61:160-169. [PMID: 33927457 DOI: 10.1007/s12088-021-00926-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022] Open
Abstract
Asparagus (Asparagus officinalis L) is an economically important crop, rich in nutrients, and is also conducive to solving ecological and environmental problems. Plants may acquire benefits from root-associated endophytic bacteria. However, the composition of the endophytic bacterial community associated with the roots of asparagus is poorly elucidated. In this study, the nine root samples of asparagus from three different varieties including Asparagus officinalis var. Grande (GLD), A. officinalis var. Jinglvlu3 (JL3) and A. officinalis var. Jingzilu2 (JZL) were investigated by high-throughput sequencing technology of the 16S rDNA V5-V7 hypervariable region of endophytic bacteria. A total of 16 phyla, 29 classes, 90 orders, 171 families, and 312 genera were identified. Endophytic bacteria diversity and bacteria structure was different among the three varieties and was influenced by rhizosphere soil properties and varieties. In the GLD variety, the main phyla were Proteobacteria, Actinobacteria, and Firmicutes. The main phylum in JL3 and JZL varieties was Proteobacteria. The observations showed that GLD had the highest diversity of endophytes as indicated by the Shannon index (GLD > JZL > JL3). The order of the endophytes richness was GLD > JL3 > JZL. The PCA and PCoA analysis revealed the microbial communities were different between three different asparagus varieties, and the microbial composition of GLD and JZL was more similar. This report provides an important reference for the study of endophytic microorganisms of asparagus. Supplementary information The online version contains supplementary material available at (10.1007/s12088-021-00926-6) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, Gobouri AA, Hassan SED. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. PLANTS (BASEL, SWITZERLAND) 2021; 10:E76. [PMID: 33401438 PMCID: PMC7824221 DOI: 10.3390/plants10010076] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
In this study, 15 bacterial endophytes linked with the leaves of the native medicinal plant Pulicaria incisa were isolated and identified as Agrobacterium fabrum, Acinetobacter radioresistant, Brevibacillus brevis, Bacillus cereus, Bacillus subtilis, Paenibacillus barengoltzii, and Burkholderia cepacia. These isolates exhibited variant tolerances to salt stress and showed high efficacy in indole-3-acetic acid (IAA) production in the absence/presence of tryptophan. The maximum productivity of IAA was recorded for B. cereus BI-8 and B. subtilis BI-10 with values of 117 ± 6 and 108 ± 4.6 μg mL-1, respectively, in the presence of 5 mg mL-1 tryptophan after 10 days. These two isolates had a high potential in phosphate solubilization and ammonia production, and they showed enzymatic activities for amylase, protease, xylanase, cellulase, chitinase, and catalase. In vitro antagonistic investigation showed their high efficacy against the three phytopathogens Fusarium oxysporum, Alternaria alternata, and Pythium ultimum, with inhibition percentages ranging from 20% ± 0.2% to 52.6% ± 0.2% (p ≤ 0.05). Therefore, these two endophytic bacteria were used as bio-inoculants for maize seeds, and the results showed that bacterial inoculations significantly increased the root length as well as the fresh and dry weights of the roots compared to the control plants. The Zea mays plant inoculated with the two endophytic strains BI-8 and BI-10 significantly improved (p ≤ 0.05) the growth performance as well as the nutrient uptake compared with an un-inoculated plant.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ehab F. El-Belely
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Sharkia, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| |
Collapse
|
19
|
Duke SO. Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:1-65. [PMID: 33895876 DOI: 10.1007/398_2020_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most used herbicide globally. It is a unique non-selective herbicide with a mode of action that is ideal for vegetation management in both agricultural and non-agricultural settings. Its use was more than doubled by the introduction of transgenic, glyphosate-resistant (GR) crops. All of its phytotoxic effects are the result of inhibition of only 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), but inhibition of this single enzyme of the shikimate pathway results in multiple phytotoxicity effects, both upstream and downstream from EPSPS, including loss of plant defenses against pathogens. Degradation of glyphosate in plants and microbes is predominantly by a glyphosate oxidoreductase to produce aminomethylphosphonic acid and glyoxylate and to a lesser extent by a C-P lyase to produce sarcosine and phosphate. Its effects on non-target plant species are generally less than that of many other herbicides, as it is not volatile and is generally sprayed in larger droplet sizes with a relatively low propensity to drift and is inactivated by tight binding to most soils. Some microbes, including fungal plant pathogens, have glyphosate-sensitive EPSPS. Thus, glyphosate can benefit GR crops by its activity on some plant pathogens. On the other hand, glyphosate can adversely affect some microbes that are beneficial to agriculture, such as Bradyrhizobium species, although GR crop yield data indicate that such an effect has been minor. Effects of glyphosate on microbes of agricultural soils are generally minor and transient, with other agricultural practices having much stronger effects.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA.
| |
Collapse
|
20
|
Wang C, Pian R, Chen X, Lv H, Zhou W, Zhang Q. Beneficial Effects of Tannic Acid on the Quality of Bacterial Communities Present in High-Moisture Mulberry Leaf and Stylo Silage. Front Microbiol 2020; 11:586412. [PMID: 33224123 PMCID: PMC7667238 DOI: 10.3389/fmicb.2020.586412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Tannic acid (TA), a type of polyphenol, is widely distributed in plants, especially in legumes. Not only does it possess antimicrobial properties, but it also has the ability to bind with proteins. The fermentation parameters, nitrogen fractions, antioxidant capacity, and bacterial communities present in mulberry leaves and stylo (Stylosanthes guianensis) ensiled with or without 1 and 2% TA per kilogram of fresh matter (FM) were investigated after 75 days’ fermentation. The results showed that 1 and 2% TA both significantly decreased the butyric acid content (4.39 and 7.83 g/kg dry matter (DM), respectively) to an undetectable level in both mulberry leaf and stylo silage. In addition, 2% TA significantly increased the contents of lactate (24.0–39.0 and 8.50–32.3 g/kg DM), acetate (18.0–74.5 and 9.07–53.3 g/kg DM), and the antioxidant capacity of both mulberry leaf and stylo silage, respectively. With the addition of 1 and 2% TA, the pH values (5.55–5.04 and 4.87, respectively) and ammonia-N (NH3-N) content (85.5–27.5 and 16.9 g/kg total nitrogen (TN), respectively) were all significantly decreased in stylo silage. In addition, TA increased the relative abundance of Weissella, Acinetobacter, and Kosakonia spp. and decreased that of undesirable Clostridium spp. TA can thus be used to improve the silage quality of both mulberry leaf and stylo silage, with 2% TA being the better concentration of additive to use.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Ruiqi Pian
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Hongjian Lv
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Faria PSA, Marques VDO, Selari PJRG, Martins PF, Silva FG, Sales JDF. Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 2020; 242:126600. [PMID: 33011553 DOI: 10.1016/j.micres.2020.126600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Anacardium othonianum Rizzini, a cashew tree native to the Brazilian Cerrado, is economically important due to its applications in the food, chemical and pharmaceutical industries. However, A. othonianum yields a crop with low productivity due to a number of factors, such as nutritionally poor soils, drought and losses due to pests and diseases. Brazil is one of the nine largest cashew nut producers worldwide, and sustainable technologies are needed to increase the productivity of this crop. In this context, the use of endophytic microorganisms could promote plant growth and provide protection against phytopathogens. In this study, the isolation of the root endophytic community of A. othonianum led to the characterization of 22 distinct bacterial strains with multifunctional traits for plant growth promotion. The results of in vitro assays to assess auxin synthesis, phosphate solubilization, phosphatase and siderophore production and biocontrol against Fusarium oxysporum led to the selection of Acinetobacter lwoffii Bac109 and Pantoea agglomerans Bac131 as the most promising strains. The reinoculation of the Bac109 and Bac131 strains onto A. othonianum seeds showed that the treatment containing a mixture of these strains was the most effective in promoting increases in the biometric parameters of early plant growth. Thus, this study highlights the biotechnological potential of a consortium of A. lwoffii Bac109 and P. agglomerans Bac131 for future applications in sustainable cashew cultivation.
Collapse
Affiliation(s)
- Paula Sperotto Alberto Faria
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Vinicius de Oliveira Marques
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Priscila Jane Romano Gonçalves Selari
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Ceres, Goiás, Brazil.
| | - Paula Fabiane Martins
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Juliana de Fátima Sales
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| |
Collapse
|
22
|
Yang Y, Liu L, Singh RP, Meng C, Ma S, Jing C, Li Y, Zhang C. Nodule and Root Zone Microbiota of Salt-Tolerant Wild Soybean in Coastal Sand and Saline-Alkali Soil. Front Microbiol 2020; 11:2178. [PMID: 33071999 PMCID: PMC7536311 DOI: 10.3389/fmicb.2020.523142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Soil salinization limits crop growth and yield in agro-ecosystems worldwide by reducing soil health and altering the structure of microbial communities. Salt-tolerant plant growth-promoting rhizobacteria (PGPR) alleviate plant salinity stress. Wild soybean (Glycine soja Sieb. and Zucc.) is unique in agricultural ecosystems owing to its ability to grow in saline-alkali soils and fix atmospheric nitrogen via symbiotic interactions with diverse soil microbes. However, this rhizosphere microbiome and the nodule endosymbionts have not been investigated to identify PGPR. In this study, we investigated the structural and functional rhizosphere microbial communities in saline-alkali soil from the Yellow River Delta and coastal soil in China, as well as wild soybean root nodule endosymbionts. To reveal the composition of the microbial ecosystem, we performed 16S rRNA and nifH gene amplicon sequencing on root nodules and root zones under different environmental conditions. In addition, we used culture-independent methods to examine the root bacterial microbiome of wild soybean. For functional characterization of individual members of the microbiome and their impact on plant growth, we inoculated isolates from the root microbiome with wild soybean and observed nodulation. Sinorhizobium/Ensifer accounted for 97% of the root nodule microbiome, with other enriched members belonging to the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, and Gemmatimonadetes; the genera Sphingomonas, Microbacterium, Arthrobacter, Nocardioides, Streptomyces, Flavobacterium, Flavisolibacter, and Pseudomonas; and the family Enterobacteriaceae. Compared to saline-alkali soil from the Yellow River Delta, coastal soil was highly enriched for soybean nodules and displayed significant differences in the abundance and diversity of β-proteobacteria, δ-proteobacteria, Actinobacteria, and Bacteroidetes. Overall, the wild soybean root nodule microbiome was dominated by nutrient-providing Sinorhizobium/Ensifer and was enriched for bacterial genera that may provide salt resistance. Thus, this reductionist experimental approach provides an avenue for future systematic and functional studies of the plant root microbiome.
Collapse
Affiliation(s)
- Yingjie Yang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lei Liu
- Bureau of Agriculture and Rural Affairs of Laoshan District, Qingdao, China
| | - Raghvendra Pratap Singh
- Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun, India
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
23
|
Tosi M, Gaiero J, Linton N, Mafa-Attoye T, Castillo A, Dunfield K. Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6125-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Fadiji AE, Babalola OO. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci 2020; 27:3622-3633. [PMID: 33304173 PMCID: PMC7714962 DOI: 10.1016/j.sjbs.2020.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogen affects plant growth, host health and productivity. Endophytes, presumed to live inside the plant tissues, might be helpful in sustaining the future of agriculture. Although recent studies have proven that endophytes can be pathogenic, commensal, non-pathogenic, and/or beneficial, this review will focus on the beneficial category only. Beneficial endophytes produce a number of compounds which are useful for protecting plants from environmental conditions, enhancing plant growth and sustainability, while living conveniently inside the hosts. The population of endophytes is majorly controlled by location, and climatic conditions where the host plant grows. Often the most frequently isolated endophytes from the tissues of the plant are fungi, but sometimes greater numbers of bacteria are isolated. Beneficial endophytes stand a chance to replace the synthetic chemicals currently being used for plant growth promotion if carefully explored by researchers and embraced by policymakers. However, the roles of endophytes in plant growth improvement and their behavior in the host plant have not been fully understood. This review presents the current development of research into beneficial endophytes and their effect in improving plant growth.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| |
Collapse
|
25
|
Adeleke BS, Babalola OO. The endosphere microbial communities, a great promise in agriculture. Int Microbiol 2020; 24:1-17. [PMID: 32737846 DOI: 10.1007/s10123-020-00140-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Agricultural food production and sustainability need intensification to address the current global food supply to meet human demand. The continuous human population increase and other anthropogenic activities threaten food security. Agrochemical inputs have long been used in conventional agricultural systems to boost crop productivity, but they are disadvantageous to a safe environment. Towards developing environmentally friendly agriculture, efforts are being directed in exploring biological resources from soil and plant microbes. The survival of the rhizosphere and endosphere microbiota is influenced by biotic and abiotic factors. Plant microbiota live interdependently with the host plants. Endophytes are regarded as colonizer microbes inhabiting and establishing microbial communities within the plant tissue. Their activities are varied and include fixing atmospheric nitrogen, solubilizing phosphate, synthesis of siderophores, secretion of metabolite-like compounds containing active biocontrol agents in the control of phytopathogens, and induced systemic resistance that stimulates plant response to withstand stress. Exploring beneficial endophyte resources in the formulation of bio-inoculants, such as biofertilizers, as an alternative to agrochemicals (fertilizers and pesticides) in developing environmentally friendly agriculture and for incorporation into crop breeding and disease control program is promising. Therefore, in this review, endosphere microbial ecology, associating environmental factors, and their roles that contribute to their effectiveness in promoting plant growth for maximum agricultural crop productivity were highlighted.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
26
|
Shafeeq S, Wang X, Lünsdorf H, Brauner A, Römling U. Draft Genome Sequence of the Urinary Catheter Isolate Enterobacter ludwigii CEB04 with High Biofilm Forming Capacity. Microorganisms 2020; 8:microorganisms8040522. [PMID: 32260576 PMCID: PMC7232144 DOI: 10.3390/microorganisms8040522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023] Open
Abstract
Enterobacter ludwigii is a fermentative Gram-negative environmental species and accidental human pathogen that belongs to the Enterobacter cloacae complex with the general characteristics of the genus Enterobacter. The clinical isolate E. ludwigii CEB04 was derived from a urinary tract catheter of an individual not suffering from catheter-associated urinary tract infection. The draft genome sequence of the high biofilm forming E. ludwigii CEB04 was determined by PacBio sequencing. The chromosome of E. ludwigii CEB04 is comprised of one contig of 4,892,375 bps containing 4596 predicted protein-coding genes and 120 noncoding RNAs. E. ludwigii CEB04 harbors several antimicrobial resistance markers and has an extended cyclic-di-GMP signaling network compared to Escherichia coli K-12.
Collapse
Affiliation(s)
- Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
| | - Xiaoda Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
| | - Heinrich Lünsdorf
- Helmholtz Center for Infection Research, DE-38124 Braunschweig, Germany;
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
- Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (S.S.); (X.W.); (A.B.)
- Correspondence:
| |
Collapse
|
27
|
Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, Yazaki K, Sugiyama A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. PLANT, CELL & ENVIRONMENT 2020; 43:1036-1046. [PMID: 31875335 DOI: 10.1111/pce.13708] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plant roots nurture a wide variety of microbes via exudation of metabolites, shaping the rhizosphere's microbial community. Despite the importance of plant specialized metabolites in the assemblage and function of microbial communities in the rhizosphere, little is known of how far the effects of these metabolites extend through the soil. We employed a fluid model to simulate the spatiotemporal distribution of daidzein, an isoflavone secreted from soybean roots, and validated using soybeans grown in a rhizobox. We then analysed how daidzein affects bacterial communities using soils artificially treated with daidzein. Simulation of daidzein distribution showed that it was only present within a few millimetres of root surfaces. After 14 days in a rhizobox, daidzein was only present within 2 mm of root surfaces. Soils with different concentrations of daidzein showed different community composition, with reduced α-diversity in daidzein-treated soils. Bacterial communities of daidzein-treated soils were closer to those of the soybean rhizosphere than those of bulk soils. This study highlighted the limited distribution of daidzein within a few millimetres of root surfaces and demonstrated a novel role of daidzein in assembling bacterial communities in the rhizosphere by acting as more of a repellant than an attractant.
Collapse
Affiliation(s)
- Fuki Okutani
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Shoichiro Hamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Naoto Nihei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taku Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
28
|
Zheng Y, Gong X. Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis. MICROBIOME 2019; 7:152. [PMID: 31791400 PMCID: PMC6888988 DOI: 10.1186/s40168-019-0770-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/11/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Given their adaptation to nutrient-poor and drought environments, cycads are vital models for plant-microbiome interaction research because they are likely to host an important reservoir of beneficial microbes that may support cycad survival. However, a comprehensive understanding of the diversity and community composition of microbiome associated with different plant compartments as well as bulk soils of cycad species remains elusive. METHOD An extensive investigation of species diversity and community composition of bacterial and fungal microbiome in roots, seeds, unfertilized seeds, ovules, pollens, and soils of Cycas panzhihuaensis L. Zhou & S. Y. Yang has been conducted by high-through sequencing technology. Moreover, principal component analysis (PCA), hierarchical cluster analysis (HCA), and heatmap analysis were applied to test the niche-specific effect and biogeography factor among different sample types of this cycad species. RESULTS Highly diverse microbiota and significant variation of community structure were found among different compartments of C. panzhihuaensis. Soils exhibited a remarkable differentiation of bacterial community composition compared to the other five plant organs as revealed by PCA, HCA, and heatmap analyses. Different compartments possessed unique core microbial taxa with Pseudomonadaceae and Nectriaceae shared among them. According to the indicator species analysis, there was almost no differentiation of dominant microbiomes with regard to the geography of the host cycad. Two main transmission models existed in the C. panzhihuaensis. CONCLUSIONS Each sample type represented a unique niche and hosted a niche-specific core microbial taxa. Contrary to previous surveys, biogeography hardly exerted impact on microbial community variation in this study. The majority of the cycad-associated microbes were horizontally derived from soils and/or air environments with the rest vertically inherited from maternal plants via seeds. This study offers a robust knowledge of plant-microbiome interaction across various plant compartments and soils and lends guidelines to the investigation of adaptation mechanism of cycads in arid and nutrient-poor environments as well as their evolutionary conservation.
Collapse
Affiliation(s)
- Ying Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| |
Collapse
|
29
|
Carpentieri-Pipolo V, de Almeida Lopes KB, Degrassi G. Phenotypic and genotypic characterization of endophytic bacteria associated with transgenic and non-transgenic soybean plants. Arch Microbiol 2019; 201:1029-1045. [PMID: 31111187 DOI: 10.1007/s00203-019-01672-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/03/2023]
Abstract
Endophytic bacteria isolated from non-transgenic and transgenic Roundup Ready® glyphosate-resistant (GR) soybean plants were investigated to analyze the correspondence between phenotypic and genotypic characteristics and to determine whether or not the strains could be grouped based on the source of isolation in transgenic or non-transgenic plants, respectively. Most of the strains recovered from GR plants have shown the ability for plant growth promotion (PGP) by means of IAA production and inorganic phosphate solubilization, and 100% of the strains showed great motility (swarm or swim); in addition, 90% of the strains were able to metabolize the majority of carbon sources tested. GR soybean fields showed higher endophytes abundance than non-transgenic; however, analyzing the phylogenetic trees constructed using the partial 16SrRNA gene sequences, higher diversity was observed in non-transgenic soybean fields. Overall the majority of isolated endophytes could utilize multiple patterns of carbon sources and express resistance to antibiotics, while isolates varied widely in the PGP ability. The greater pattern and frequency of utilization of carbon sources and frequency and intensity of antibiotic resistance compared with PGP ability within the soybean endophytes community suggest that carbon sources metabolism and antibiotic resistance confer a greater relative fitness benefit than PGP ability. In conclusion, cluster analysis of the phenotypes and 16SrRNA gene sequences reveals lack of correspondence between the pattern of bacterial isolates and the transgenic character of plants, and the heterogeneity of clustering suggested that various adaptive processes, such as stress response, could have contributed to generate phenotypic variability to enhance endophytes overall fitness.
Collapse
Affiliation(s)
| | - Karla Bianca de Almeida Lopes
- Agronomy Department, Londrina State University, Rodovia Celso Garcia Cid, Pr 445 km 380, PO Box 10.011, Londrina, PR, 86057-970, Brazil
| | - Giuliano Degrassi
- IBioBA-ICGEB, International Centre for Genetic Engineering and Biotechnology, Polo Cientifico Tecnologico, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Assessment of biotechnological potentials of strains isolated from repasso olive pomace in Tunisia. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Borah A, Das R, Mazumdar R, Thakur D. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J Appl Microbiol 2019; 127:825-844. [PMID: 31216598 DOI: 10.1111/jam.14356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
AIM Tea (Camellia sinensis (L.) O. Kuntze) is an economically important caffeine-containing beverage crop with massive plantation in the Northeast corner of the agroclimatic belt of India. The main aim of the work was to isolate, identify and characterize the native plant growth promoting endophytes associated with tea for future microbe based bioformulation. METHODS AND RESULTS A total of 129 endophytic bacteria were isolated and characterized for plant growth promoting traits such as indole-3-acetic acid (IAA), phosphate solubilization, ammonia production, biocontrol traits like siderophore and extracellular enzyme production. BOX-PCR fingerprinting was used to differentiate the various bacterial isolates obtained from six different tea species. 16S rRNA sequencing and blast analysis showed that these isolates belonged to different genera, that is, Bacillus, Brevibacterium, Paenibacillus and Lysinibacillus. Lysinibacillus sp. S24 showed the highest phosphate solubilization and IAA acid production efficiency of 268·4 ± 14·3 and 13·5 ± 0·5 µg ml-1 , respectively. Brevibacterium sp. S91 showed the highest ammonia production of 6·2 ± 0·5 µmol ml-1 . Chitinase, cellulase, protease and pectinase activities were shown by 4·6, 34·1, 27·13 and 13·14% of the total isolates, respectively. Similarly, 41% of the total isolates were positive for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Further, the potent PGP isolates, S24 and S91 were able to enhance the vegetative parameters such as dry/fresh weight of root and shoot of tea plants in nursery conditions. CONCLUSION Our findings corroborate that tea endophytic bacteria possess the potential to demonstrate multiple PGP traits both, in vivo and in vitro and have the potential for further large-scale trials. SIGNIFICANCE AND IMPACT OF THE STUDY The exploration of tea endophytic bacterial community is suitable for the development of bioformulations for an integrated nutrient management and thus sustainable crop production and decreasing the hazardous effects of chemical fertilizers on the environment and human health.
Collapse
Affiliation(s)
- A Borah
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - R Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - R Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - D Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
32
|
Wen ZL, Yang MK, Du MH, Zhong ZZ, Lu YT, Wang GH, Hua XM, Fazal A, Mu CH, Yan SF, Zhen Y, Yang RW, Qi JL, Hong Z, Lu GH, Yang YH. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Front Microbiol 2019; 10:1335. [PMID: 31275269 PMCID: PMC6591461 DOI: 10.3389/fmicb.2019.01335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
During the past decades, the effects of the transgenic crops on soil microbial communities have aroused widespread interest of scientists, which was mainly related to the health and growth of plants. In this study, the maize root-associated bacterial communities of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgenic glyphosate-tolerant (GT) maize line CC-2 (CC2) and its recipient variety Zhengdan958 (Z958) were compared at the tasseling and flowering stages by high-throughput sequencing of V3-V4 hypervariable regions of 16S rRNA gene (16S rDNA) amplicons via Illumina MiSeq. In addition, real-time quantitative PCR (qPCR) was also performed to analyze the nifH gene abundance between CC2 and Z958. Our results showed no significant difference in alpha/beta diversity of root-associated bacterial communities at the tasseling or flowering stage between CC2 and Z958 under field growth conditions. The relative abundances of the genera Bradyrhizobium and Bacillus including species B. cereus and B. muralis were significantly lower in the roots of CC2 than that of Z985 under field conditions. Both these species are regarded as plant growth promoting bacteria (PGPB), as they belong to both nitrogen-fixing and phosphate-solubilizing bacterial genera. The comparison of the relative abundance of nitrogen-fixing/phosphate-solubilizing bacteria at the class, order or family levels indicated that only one class Bacilli, one order Bacillales and one family Bacillaceae were found to be significantly lower in the roots of CC2 than that of Z985. These bacteria were also enriched in the roots and rhizospheric soil than in the surrounding soil at both two stages. Furthermore, the class Betaproteobacteria, the order Burkholderiales, the family Comamonadaceae, and the genus Acidovorax were significantly higher in the roots of CC2 than that of Z985 at the tasseling stage, meanwhile the order Burkholderiales and the family Comamonadaceae were also enriched in the roots than in the rhizospheric soil at both stages. Additionally, the nifH gene abundance at the tasseling stage in the rhizosphere soil also showed significant difference. The relative abundance of nifH gene was higher in the root samples and lower in the surrounding soil, which implicated that the roots of maize tend to be enriched in nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Zhong-Ling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mei-Hang Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhao-Zhao Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Yun-Ting Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Gu-Hao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Xiao-Mei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Chun-Hua Mu
- Shandong Academy of Agriculture Sciences, Jinan, China
| | - Shu-Feng Yan
- Henan Academy of Agriculture Sciences, Zhengzhou, China
| | - Yan Zhen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Degrassi G, Mortato V, Devescovi G, Hoshino R, Chatnaparat T, Kojic M, Carpentieri-Pipolo V, Zhao Y, Venturi V. Many plant pathogenic Pseudomonas savastanoi pv glycinea isolates possess an inactive quorum sensing ahlR gene via a point mutation. FEMS Microbiol Lett 2019; 366:fnz149. [PMID: 31271427 DOI: 10.1093/femsle/fnz149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023] Open
Abstract
Many plant bacterial pathogens monitor their group behaviour and their population density via production of N-acyl homoserine lactone signals which regulate the expression of several genes via the LuxI/R homologs. This regulatory network, termed quorum sensing (QS), is present in the soybean bacterial pathogen Pseudomonas savastanoi pv glycinea (Psg). The sequenced genomes of two strains of Psg, race 4 and B076, contain an N-acyl homoserine lactone (AHL) based LuxI/R QS system named AhlI/R. While studying the QS system of Psg strains race 4 and B076 isolated in USA, LMG5066 in New Zealand and IBSBF355 in Brazil, we found that B076, LMG5066 and IBSBF355 possess a point mutation in the ahlR gene that causes a frameshift resulting in a truncated AhlR protein. Psg race 4 does not possess the mutation in ahlR and the QS system is functional. The same mutation in the ahlR gene was found to be also present in 9 of 19 Psg strains isolated from diseased soybean in Illinois. Phenotypic analysis of strains showed that swarming motility is repressed whereas phosphate solubilisation was activated by QS in Psg. Analysing the secretome, we also found that four proteins were under QS regulation.
Collapse
Affiliation(s)
- Giuliano Degrassi
- Industrial Biotechnology Group, IBioBA-ICGEB, Godoy Cruz 2390, Buenos Aires, Argentina
| | - Valentina Mortato
- Industrial Biotechnology Group, IBioBA-ICGEB, Godoy Cruz 2390, Buenos Aires, Argentina
| | - Giulia Devescovi
- Bacteriology Group, ICGEB, Padriciano 99, I-34149 Trieste, Italy
| | - Rodrigo Hoshino
- Agronomy Department, Londrina State University, Londrina 10.011, Parana, Brasil
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, 288 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | | | - Youfu Zhao
- Department of Crop Sciences, 288 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Vittorio Venturi
- Bacteriology Group, ICGEB, Padriciano 99, I-34149 Trieste, Italy
| |
Collapse
|
34
|
Insight into the Bacterial Endophytic Communities of Peach Cultivars Related to Crown Gall Disease Resistance. Appl Environ Microbiol 2019; 85:AEM.02931-18. [PMID: 30824451 DOI: 10.1128/aem.02931-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
Crown gall disease caused by Agrobacterium tumefaciens severely impacts the production of peach and other fruit trees. Several peach cultivars are partially resistant to A. tumefaciens, but little is known about the roles of endophytic microbiota in disease resistance. In the present study, the endophytic bacterial communities of resistant and susceptible peach cultivars "Honggengansutao" and "Okinawa" were analyzed using universal 16S rRNA gene amplicon sequencing in parallel with the cultivation and characterization of bacterial isolates. A total of 1,357,088 high-quality sequences representing 3,160 distinct operational taxonomic units (OTUs; Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes) and 1,200 isolates of 20 genera and 305 distinct ribotypes were collected from peach roots and twigs. It was found that factors including plant developmental stage, cultivar, and A. tumefaciens invasion strongly influenced the peach endophytic communities. The community diversity of endophytic bacteria and the abundance of culturable bacteria were both higher in the roots of the resistant cultivar, particularly after inoculation. Strikingly, the pathogen antagonists Streptomyces and Pseudomonas in roots and Rhizobium in twigs were most frequently detected in resistant plants. Our results suggest that the higher abundance and diversity of endophytic bacteria and increased proportions of antagonistic bacteria might contribute to the natural defense of the resistant cultivar against A. tumefaciens This work reveals the relationships between endophytic bacteria and disease resistance in peach plants and provides important information for microbiome-based biocontrol of crown gall disease in fruit trees.IMPORTANCE Agrobacterium tumefaciens as the causal agent of peach crown gall disease can be controlled by planting resistant cultivars. This study profiles the endophytic bacteria in susceptible and resistant peach cultivars, advancing our understanding of the relationships between endophytic bacterial communities and peach crown gall disease, with potential implications for other complex microbiome-plant-pathogen interactions. The resistant cultivar may defend itself by increasing the diversity and abundance of beneficial endophytic bacteria. The antagonists identified among the genera Streptomyces, Pseudomonas, and Rhizobium may have application potential for biocontrol of crown gall disease in fruit trees.
Collapse
|
35
|
da Silva JF, da Silva TR, Escobar IEC, Fraiz ACR, dos Santos JWM, do Nascimento TR, dos Santos JMR, Peters SJW, de Melo RF, Signor D, Fernandes-Júnior PI. Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands. World J Microbiol Biotechnol 2018; 34:186. [DOI: 10.1007/s11274-018-2568-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
36
|
de Almeida Lopes KB, Carpentieri-Pipolo V, Fira D, Balatti PA, López SMY, Oro TH, Stefani Pagliosa E, Degrassi G. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J Appl Microbiol 2018; 125:1466-1481. [PMID: 29978936 DOI: 10.1111/jam.14041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
AIMS This research was aimed at identifying and characterizing endophytic micro-organisms associated with soybean that have antimicrobial activity towards soybean pathogens. METHODS AND RESULTS Soybean plants were collected from field trials in four locations of southern Brazil that were cultivated with conventional (C) and transgenic glyphosate-resistant (GR) soybeans. Endophytic bacteria isolated from roots, stems and leaves of soybeans were evaluated for their capacity to inhibit fungal and bacterial plant pathogens and 13 micro-organisms were identified with antagonistic activity. Approximately 230 bacteria were isolated and identified based on the 16S rRNA and rpoN gene sequences. Bacteria isolated from conventional and transgenic soybeans were significantly different not only in population diversity but also in their antagonistic capacity. Thirteen isolates showed in vitro antagonism against Sclerotinia sclerotiorum, Phomopsis sojae and Rhizoctonia solani. Bacillus sp. and Burkholderia sp. were the most effective isolates in controlling bacterial and fungal pathogens in vitro. Extracts and precipitates from culture supernatants of isolates showed different patterns of inhibitory activity on growth of fungal and bacterial pathogens. CONCLUSIONS Bacillus sp. and Burkholderia sp. were the most effective isolates in controlling fungal pathogens in vitro, and the activity is mainly due to peptides. However, most of the studied bacteria showed the presence of antimicrobial compounds in the culture supernatant, either peptides, bacteriocins or secondary metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY These results could be significant to develop tools for the biological control of soybean diseases. The work brought to the identification of micro-organisms such as Bacillus sp. and Burkholderia sp. that have the potential to protect crops in order to enhance a sustainable management system of crops. Furthermore, the study provides the first evidences of the influence of management as well as the genetics of glyphosate-resistant soybean on the diversity of bacterial endophytes of soybean phytobiome.
Collapse
Affiliation(s)
| | | | - Djordje Fira
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Fac. de Ciencias Agrarias y Forestales - UNLP, La Plata, Argentina
| | | | | | | | - Giuliano Degrassi
- International Center for Genetic Engineering and Biotechnology, Polo Cientifico Tecnologico, Buenos Aires, Argentina
| |
Collapse
|
37
|
Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:129-138. [PMID: 29990724 DOI: 10.1016/j.ecoenv.2018.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
There are fewer reports on plant growth promoting (PGP) bacteria living in nodules as helper to tolerance to abiotic stress such as salinity and drought. The study was conducted to isolate rhizobial and non-rhizobial drought and salinity tolerant bacteria from the surface sterilized root nodules of alfalfa, grown in saline soils, and evaluate the effects of effective isolates on plant growth under salt stress. Based on drought and salinity tolerance of bacterial isolates and having multiple PGP traits, two non-rhizobial endophytic isolates and one rhizobial endophytic isolate were selected for further identification and characterization. Based on partial sequences of 16 S rRNA genes, non-rhizobial isolates and rhizobial isolate were closely related to Klebsiella sp., Kosakonia cowanii, and Sinorhizobium meliloti, respectively. None of the two non-rhizobial strains were able to form nodules on alfalfa roots under greenhouse and in vitro conditions. Co-inoculation of alfalfa plant with Klebsiella sp. A36, K. cowanii A37, and rhizobial strain S. meliloti ARh29 had a positive effect on plant growth indices under salinity stress. In addition, the single inoculation of non-rhizobial strains without rhizobial strain resulted in an increase in alfalfa growth indices compared to the plants non-inoculated and the ones inoculated with S. meliloti ARh29 alone under salinity stress, indicating that nodule non-rhizobial strains have PGP potentials and may be a promising way for improving effectiveness of Rhizobium bio-fertilizers in salt-affected soils.
Collapse
Affiliation(s)
- Fatemeh Noori
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hassan Etesami
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran.
| | - Hamid Najafi Zarini
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farshad Alishahi
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran
| |
Collapse
|
38
|
Sipiczki M, Selim SA. Antagonistic yeasts from a salt-lake region in Egypt: identification of a taxonomically distinct group of phylloplane strains related to Sporisorium. Antonie Van Leeuwenhoek 2018; 112:523-541. [PMID: 30317452 DOI: 10.1007/s10482-018-1184-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/06/2018] [Indexed: 11/28/2022]
Abstract
Non-pathogenic yeasts antagonising microorganisms that cause pre- and postharvest diseases of plants have been found in diverse habitats. Their practical applicability as biocontrol agents (BCAs) depends on the strength of their antagonistic activity and/or spectrum of sensitive target microorganisms. In this study, yeasts were isolated from the phylloplane and fruits of plants growing in the alkaline water lake region Wadi El-Natrun, Egypt, and tested for antifungal and antibacterial activity. All phylloplane yeast isolates belonged to the Basidiomycota and most of them could antagonise at least certain test organisms. One group of isolates showing strong antagonism against almost all fungi and yeasts appears to represent a hitherto undescribed species distantly related to the smut genus Sporisorium. This is the first report of antagonistic activity in Sporisorium. The isolates assigned to Naganishia and Papiliotrema were more effective against bacteria. The broadest range and intensity of antagonism was observed in the fruit-associated strains belonging to the ascomycetous species Wickerhamomyces subpelliculosus. The Wickerhamomyces strains are good broad-spectrum BCA candidates, the Sporisorium strains could be used as efficient antifungal BCAs, whereas the Papiliotrema isolate can be exploited as an antibacterial biocontrol agent.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, 4032, Hungary.
| | - Samy A Selim
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Al-Jouf, Kingdom of Saudi Arabia.,Faculty of Science, Botany Department, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
39
|
Lu GH, Tang CY, Hua XM, Cheng J, Wang GH, Zhu YL, Zhang LY, Shou HX, Qi JL, Yang YH. Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS One 2018; 13:e0192008. [PMID: 29408918 PMCID: PMC5800644 DOI: 10.1371/journal.pone.0192008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/14/2018] [Indexed: 01/01/2023] Open
Abstract
The increased worldwide commercial cultivation of transgenic crops during the past 20 years is accompanied with potential effects on the soil microbial communities, because many rhizosphere and endosphere bacteria play important roles in promoting plant health and growth. Previous studies reported that transgenic plants exert differential effects on soil microbial communities, especially rhizobacteria. Thus, this study compared the soybean root-associated bacterial communities between a 5-enolpyruvylshikimate-3-phosphate synthase -transgenic soybean line (ZUTS31 or simply Z31) and its recipient cultivar (Huachun3 or simply HC3) at the vegetative, flowering, and seed-filling stages. High-throughput sequencing of 16S rRNA gene (16S rDNA) V4 hypervariable region amplicons via Illumina MiSeq and real-time quantitative PCR (qPCR) were performed. Our results revealed no significant differences in the overall alpha diversity of root-associated bacterial communities at the three developmental stages and in the beta diversity of root-associated bacterial communities at the flowering stage between Z31 and HC3 under field growth. However, significant differences in the beta diversity of rhizosphere bacterial communities were found at the vegetative and seed-filling stages between the two groups. Furthermore, the results of next generation sequencing and qPCR showed that the relative abundances of root-associated main nitrogen-fixing bacterial genera, especially Bradyrhizobium in the roots, evidently changed from the flowering stage to the seed-filling stage. In conclusion, Z31 exerts transitory effects on the taxonomic diversity of rhizosphere bacterial communities at the vegetative and seed-filling stages compared to the control under field conditions. In addition, soybean developmental change evidently influences the main symbiotic nitrogen-fixing bacterial genera in the roots from the flowering stage to the seed-filling stage.
Collapse
Affiliation(s)
- Gui-Hua Lu
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Yi Tang
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Mei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEP, Nanjing, China
| | - Jing Cheng
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Gu-Hao Wang
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yin-Ling Zhu
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Li-Ya Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Hui-Xia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Liang Qi
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: , (YHY); (JLQ)
| | - Yong-Hua Yang
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: , (YHY); (JLQ)
| |
Collapse
|
40
|
Rath M, Mitchell TR, Gold SE. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res 2018; 208:76-84. [PMID: 29551214 DOI: 10.1016/j.micres.2017.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
Volatile organic compounds (VOCs) produced by Plant Growth Promoting Rhizobacteria have recently been investigated due to their role in plant growth promotion and defense. Whereas some bacterial VOCs like 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol produced by strains of Bacillus subtilis and Bacillus amyloliquefaciens promote plant growth, others like hydrogen cyanide and 3-phenylpropionic acid are phytotoxic, inhibiting plant growth. Bacillus mojavensis, a close relative of B. subtilis, is an endophytic bacterium of maize that has been shown to have antagonistic activity against the mycotoxigenic phytopathogen Fusarium verticillioides and growth promotion activity on maize seedlings. To investigate the growth promotion activity of B. mojavensis, Arabidopsis thaliana seedlings were grown on 1/2x Murashige & Skoog (MS) medium in divided Petri dishes while bacteria were grown either on 1/2x MS or nutrient agar (NA) medium, so that only microbial volatiles reached the seedlings. Significant plant growth promotion in Arabidopsis seedlings was observed when 1/2x MS medium was used for bacterial growth. In contrast, phytotoxicity was observed with bacterial growth on NA medium. These results indicate that VOCs produced by B. mojavensis may act as plant growth modulators rather than just promoters. Using Solid Phase Microextraction (SPME) coupled with GC-MS, the plant growth promoting compounds acetoin and 2,3-butanediol were both identified as being produced by B. mojavensis on growth promoting 1/2x MS medium. In contrast, while no phytotoxic VOC was conclusively identified from B. mojavensis on NA medium, detection of relatively high levels of acetone/2-propanone indicates its possible contribution to Arabidopsis phytotoxicity.
Collapse
Affiliation(s)
- M Rath
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - T R Mitchell
- Toxicology and Mycotoxin Research Unit, National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - S E Gold
- Toxicology and Mycotoxin Research Unit, National Poultry Research Center, USDA-ARS, Athens, GA, United States.
| |
Collapse
|
41
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017; 8:2552. [PMID: 29312235 PMCID: PMC5742157 DOI: 10.3389/fmicb.2017.02552] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C. Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Chang HX, Haudenshield JS, Bowen CR, Hartman GL. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity. Front Microbiol 2017; 8:519. [PMID: 28421041 PMCID: PMC5378059 DOI: 10.3389/fmicb.2017.00519] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022] Open
Abstract
Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
| | - James S. Haudenshield
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| | - Charles R. Bowen
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| | - Glen L. Hartman
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| |
Collapse
|
43
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017. [PMID: 29312235 DOI: 10.1016/j.apsoil.2011.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, Yun BW, Lee IJ. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:236-43. [PMID: 27182958 DOI: 10.1016/j.plaphy.2016.05.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 05/21/2023]
Abstract
Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas endogenous abscisic acid (23.31 ± 2.76 ng) and jasmonic acid (25.51 ± 4.20 ng) were observed to be significantly lower in these inoculated plants than in those treated with exogenous GA3 and water. Results of the present study suggest that B. amyloliquefaciens RWL-1 has the ability to produce GAs and that its inoculation in seedlings can be beneficial to rice plants. Broader field trials should be conducted to determine its use as an alternative biofertilizer.
Collapse
Affiliation(s)
- Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea; Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea; Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|