1
|
Martin J, Langley K, Cooper M, Rouquette OY, John A, Sayal K, Ford T, Thapar A. Sex differences in attention-deficit hyperactivity disorder diagnosis and clinical care: a national study of population healthcare records in Wales. J Child Psychol Psychiatry 2024. [PMID: 38864317 DOI: 10.1111/jcpp.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Population-based studies have observed sex biases in the diagnosis and treatment of attention-deficit hyperactivity disorder (ADHD). Females are less likely to be diagnosed or prescribed ADHD medication. This study uses national healthcare records, to investigate sex differences in diagnosis and clinical care in young people with ADHD, particularly regarding recognition and treatment of other mental health conditions. METHODS The cohort included individuals diagnosed with ADHD, born between 1989 and 2013 and living in Wales between 2000 and 2019. Routine primary and secondary healthcare record data were used to derive diagnoses of ADHD and other neurodevelopmental and mental health conditions, as well as ADHD and antidepressant medications. Demographic variables included ethnicity, socioeconomic deprivation and contact with social services. RESULTS There were 16,458 individuals diagnosed with ADHD (20.3% females, ages 3-30 years), with a male-to-female ratio of 3.9:1. Higher ratios (4.8:1) were seen in individuals diagnosed younger (<12 years), with the lowest ratio (1.9:1) in those diagnosed as adults (>18). Males were younger at first recorded ADHD diagnosis (mean = 10.9 vs. 12.6 years), more likely to be prescribed ADHD medication and younger at diagnosis of co-occurring neurodevelopmental conditions. In contrast, females were more likely to receive a diagnosis of anxiety, depression or another mental health condition and to be prescribed antidepressant medications, prior to ADHD diagnosis. These sex differences were largely stable across demographic groups. CONCLUSIONS This study adds to the evidence base that females with ADHD are experiencing later recognition and treatment of ADHD. The results indicate that this may be partly because of diagnostic overshadowing from other mental health conditions, such as anxiety and depression, or initial misdiagnosis. Further research and dissemination of findings to the public are needed to improve awareness, timely diagnosis and treatment of ADHD in females.
Collapse
Affiliation(s)
- Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| | - Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK
| | - Miriam Cooper
- Neurodevelopmental Service, Cwm Taf Morgannwg University Health Board, Merthyr Tydfil, UK
| | - Olivier Y Rouquette
- Institute of Suicide Prevention and Mental Health, Swansea University, Swansea, UK
| | - Ann John
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
- Institute of Suicide Prevention and Mental Health, Swansea University, Swansea, UK
| | - Kapil Sayal
- Centre for ADHD and Neurodevelopmental Disorders Across the Lifespan, Institute of Mental Health, Nottingham, UK
- Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tamsin Ford
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Anita Thapar
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Martin J. Why are females less likely to be diagnosed with ADHD in childhood than males? Lancet Psychiatry 2024; 11:303-310. [PMID: 38340761 DOI: 10.1016/s2215-0366(24)00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
ADHD is less likely to be diagnosed in females than males, especially in childhood. Females also typically receive the diagnosis later than males and are less likely to be prescribed ADHD medication. Understanding why these sex differences in clinical care and treatment for ADHD occur is key to improving timely diagnosis in people affected by ADHD. This Personal View is a conceptual review synthesising literature on this topic. This publication considers potential biological explanations (eg, genetic factors), influence of diagnostic practices (eg, criteria suitability, diagnostic overshadowing, and sex-specific diagnostic thresholds), and sociocultural explanations (eg, sex differences in presentation and compensatory behaviours), for the observed sex differences in ADHD clinical practice. This Personal View also outlines future research directions for improving understanding of sex differences in recognition and diagnosis of ADHD.
Collapse
Affiliation(s)
- Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics and Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK.
| |
Collapse
|
3
|
Guo Y, Li J, Hu R, Luo H, Zhang Z, Tan J, Luo Q. Associations between ADHD and risk of six psychiatric disorders: a Mendelian randomization study. BMC Psychiatry 2024; 24:99. [PMID: 38317064 PMCID: PMC10840247 DOI: 10.1186/s12888-024-05548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Observational studies and diagnostic criteria have indicated that Attention Deficit Hyperactivity Disorder (ADHD) frequently comorbid with various psychiatric disorders. Therefore, we conducted a Mendelian randomization (MR) study to explore this potential genetic association between ADHD and six psychiatric disorders. METHODS Using a two-sample Mendelian randomization (MR) design, this study systematically screened genetic instrumental variables (IVs) based on the genome-wide association studies (GWAS) of ADHD and six psychiatric disorders, with the inverse variance weighted (IVW) method as the primary approach. RESULTS The study revealed a positive and causal association between ADHD and the risk of ASD, with an odds ratio (OR) of 2.328 (95%CI: 1.241-4.368) in the IVW MR analysis. Additionally, ADHD showed a positive causal effect on an increased risk of schizophrenia, with an OR of 1.867 (95%CI: 1.260-2.767) in the IVW MR analysis. However, no causal effect of Tic disorder, Mental retardation, Mood disorders and Anxiety disorder with ADHD was found in the analysis mentioned above. CONCLUSION Our MR analysis provides robust evidence of the causal role of ADHD in increasing the risk of ASD and schizophrenia. However, ADHD is not associated with the risk of Tic Disorder, Mental Retardation, Mood Disorders and Anxiety Disorder. This suggests the need for increased attention to the co-occurrence of ADHD-ASD or ADHD-schizophrenia and the implementation of timely intervention and treatment.
Collapse
Affiliation(s)
- Yanwei Guo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyao Li
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqin Hu
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huirong Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan Tan
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Luo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Grazioli S, Crippa A, Rosi E, Candelieri A, Ceccarelli SB, Mauri M, Manzoni M, Mauri V, Trabattoni S, Molteni M, Colombo P, Nobile M. Exploring telediagnostic procedures in child neuropsychiatry: addressing ADHD diagnosis and autism symptoms through supervised machine learning. Eur Child Adolesc Psychiatry 2024; 33:139-149. [PMID: 36695897 PMCID: PMC9875192 DOI: 10.1007/s00787-023-02145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Recently, there has been an increase in telemedicine applied to child neuropsychiatry, such as the use of online platforms to collect remotely case histories and demographic and behavioral information. In the present proof-of-concept study, we aimed to understand to what extent information parents and teachers provide through online questionnaires overlaps with clinicians' diagnostic conclusions on attention-deficit/hyperactivity disorder (ADHD). Moreover, we intended to explore a possible role that autism spectrum disorders (ASD) symptoms played in this process. We examined parent- and teacher-rated questionnaires collected remotely and an on-site evaluation of intelligence quotients from 342 subjects (18% females), aged 3-16 years, and referred for suspected ADHD. An easily interpretable machine learning model-decision tree (DT)-was built to simulate the clinical process of classifying ADHD/non-ADHD based on collected data. Then, we tested the DT model's predictive accuracy through a cross-validation approach. The DT classifier's performance was compared with those that other machine learning models achieved, such as random forest and support vector machines. Differences in ASD symptoms in the DT-identified classes were tested to address their role in performing a diagnostic error using the DT model. The DT identified the decision rules clinicians adopt to classify an ADHD diagnosis with an 82% accuracy rate. Regarding the cross-validation experiment, our DT model reached a predictive accuracy of 74% that was similar to those of other classification algorithms. The caregiver-reported ADHD core symptom severity proved the most discriminative information for clinicians during the diagnostic decision process. However, ASD symptoms were a confounding factor when ADHD severity had to be established. Telehealth procedures proved effective in obtaining an automated output regarding a diagnostic risk, reducing the time delay between symptom detection and diagnosis. However, this should not be considered an alternative to on-site procedures but rather as automated support for clinical practice, enabling clinicians to allocate further resources to the most complex cases.
Collapse
Affiliation(s)
- Silvia Grazioli
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Alessandro Crippa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Eleonora Rosi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy.
| | - Antonio Candelieri
- Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy
| | - Silvia Busti Ceccarelli
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Maddalena Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
- PhD School in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Martina Manzoni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Valentina Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Sara Trabattoni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Paola Colombo
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| | - Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, Bosisio Parini, Lecco, Italy
| |
Collapse
|
5
|
Nazeer N, Rohanachandra YM, Prathapan S. Predictors of Attention Deficit Hyperactivity Disorder in Sri Lankan Children: A School Based Community Study. J Atten Disord 2023:10870547231167571. [PMID: 37052253 DOI: 10.1177/10870547231167571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
OBJECTIVE To evaluate potential risk-factors of ADHD among primary school-children (PSC) in state schools in Colombo district of Sri Lanka. METHOD A case-control study was conducted with 73 cases and 264 controls selected randomly among 6 to 10-year-old PSC from Sinhala medium state schools in Colombo district. Primary care givers completed the SNAP-IV P/T-S scale to screen for ADHD and an interviewer-administered questionnaire on risk-factors. Children's diagnostic status was confirmed by a Consultant Child and Adolescent Psychiatrist based on DSM-5 criteria. RESULTS A binomial regression model identified male sex (aOR = 3.45; 95% CI [1.65, 7.18]), lower educational level of the mother (aOR = 2.99; 95% CI [1.31, 6.48]), birth weight <2,500 g (aOR = 2.83; 95% CI [1.17, 6.81]),a neonatal complications (aOR = 3.82; 95% CI [191, 7.65]) and child having witnessed verbal/emotional aggression between parents (aOR = 2.08; 95% CI [1.01, 4.27])as significant predictors of ADHD. CONCLUSION Primary prevention should focus on strengthening neonatal, maternal and child health services within the country.
Collapse
|
6
|
Jung B, Ahn K, Justice C, Norman L, Price J, Sudre G, Shaw P. Rare copy number variants in males and females with childhood attention-deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:1240-1247. [PMID: 36517639 PMCID: PMC10010944 DOI: 10.1038/s41380-022-01906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
While childhood attention-deficit/hyperactivity disorder (ADHD) is more prevalent in males than females, genetic contributors to this effect have not been established. Here, we explore sex differences in the contribution of common and/or rare genetic variants to ADHD. Participants were from the Adolescent Brain and Cognitive Development study (N = 1253 youth meeting DSM-5 criteria for ADHD [mean age = 11.46 years [SD = 0.87]; 31% female] and 5577 unaffected individuals [mean age = 11.42 years [SD = 0.89]; 50% female], overall 66% White, non-Hispanic (WNH), 19% Black/African American, and 15% other races. Logistic regression tested for interactions between sex (defined genotypically) and both rare copy number variants (CNV) and polygenic (common variant) risk in association with ADHD. There was a significant interaction between sex and the presence of a CNV deletion larger than 200 kb, both in the entire cohort (β = -0.74, CI = [-1.27 to -0.20], FDR-corrected p = 0.048) and, at nominal significance levels in the WNH ancestry subcohort (β = -0.86, CI = [-1.51 to -0.20], p = 0.010). Additionally, the number of deleted genes interacted with sex in association with ADHD (whole cohort. β = -0.13, CI = [-0.23 to -0.029], FDR-corrected p = 0.048; WNH. β = -0.17, CI = [-0.29 to -0.050], FDR-corrected p = 0.044) as did the total length of CNV deletions (whole cohort. β = -0.12, CI = [-0.19 to -0.044], FDR-corrected p = 0.028; WNH. β = -0.17, CI = [-0.28 to -0.061], FDR-corrected p = 0.034). This sex effect was driven by increased odds of childhood ADHD for females but not males in the presence of CNV deletions. No similar sex effect was found for CNV duplications or polygenic risk scores. The association between CNV deletions and ADHD was partially mediated by measures of cognitive flexibility. In summary, CNV deletions were associated with increased odds for childhood ADHD in females, but not males.
Collapse
Affiliation(s)
- Benjamin Jung
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cristina Justice
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Luke Norman
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jolie Price
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Green A, Baroud E, DiSalvo M, Faraone SV, Biederman J. Examining the impact of ADHD polygenic risk scores on ADHD and associated outcomes: A systematic review and meta-analysis. J Psychiatr Res 2022; 155:49-67. [PMID: 35988304 DOI: 10.1016/j.jpsychires.2022.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Early identification of attention-deficit/hyperactivity disorder (ADHD) is critical for mitigating the many negative functional outcomes associated with its diagnosis. Because of the strong genetic basis of ADHD, the use of polygenic risk scores (PRS) could potentially aid in the early identification of ADHD and associated outcomes. Therefore, a systematic search of the literature on the association between ADHD and PRS in pediatric populations was conducted. All articles were screened for a priori inclusion and exclusion criteria, and, after careful review, 33 studies were included in our systematic review and 16 studies with extractable data were included in our meta-analysis. The results of the review were categorized into three common themes: the associations between ADHD-PRS with 1) the diagnosis of ADHD and ADHD symptoms 2) comorbid psychopathology and 3) cognitive and educational outcomes. Higher ADHD-PRS were associated with increased odds of having a diagnosis (OR = 1.37; p<0.001) and more symptoms of ADHD (β = 0.06; p<0.001). While ADHD-PRS were associated with a persistent diagnostic trajectory over time in the systematic review, the meta-analysis did not confirm these findings (OR = 1.09; p = 0.62). Findings showed that ADHD-PRS were associated with increased odds for comorbid psychopathology such as anxiety/depression (OR = 1.16; p<0.001) and irritability/emotional dysregulation (OR = 1.14; p<0.001). Finally, while the systematic review showed that ADHD-PRS were associated with a variety of negative cognitive outcomes, the meta-analysis showed no significant association (β = 0.08; p = 0.07). Our review of the available literature suggests that ADHD-PRS, together with risk factors, may contribute to the early identification of children with suspected ADHD and associated disorders.
Collapse
Affiliation(s)
- Allison Green
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Evelyne Baroud
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital and McLean Hospital, Harvard Medical School, Boston, MA, United States
| | - Maura DiSalvo
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joseph Biederman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Langley K, Martin J, Thapar A. Genetics of Attention-Deficit Hyperactivity Disorder. Curr Top Behav Neurosci 2022; 57:243-268. [PMID: 35538303 DOI: 10.1007/7854_2022_338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) has long been recognized as being a highly heritable condition and our understanding of the genetic contributions to ADHD has grown over the past few decades. This chapter will discuss the studies that have examined its heritability and the efforts to identify specific genetic risk-variants at the molecular genetic level. We outline the various techniques that have been used to characterize genetic contributions to ADHD, describing what we have learnt so far, what there is still to learn and the methodologies that can be used to further our knowledge. In doing so we will discuss research into rare and common genetic variants, polygenic risk scores, and gene-environment interplay, while also describing what genetic studies have revealed about the biological processes involved in ADHD and what they have taught us about the overlap between ADHD and other psychiatric and somatic disorders. Finally, we will discuss the strengths and limitations of the current methodologies and clinical implications of genetic research to date.
Collapse
Affiliation(s)
- Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK. .,MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Joanna Martin
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.,Division of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.,Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Lee KS, Xiao J, Luo J, Leibenluft E, Liew Z, Tseng WL. Characterizing the Neural Correlates of Response Inhibition and Error Processing in Children With Symptoms of Irritability and/or Attention-Deficit/Hyperactivity Disorder in the ABCD Study®. Front Psychiatry 2022; 13:803891. [PMID: 35308882 PMCID: PMC8931695 DOI: 10.3389/fpsyt.2022.803891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD), characterized by symptoms of inattention and/or hyperactivity and impulsivity, is a neurodevelopmental disorder associated with executive dysfunctions, including response inhibition and error processing. Research has documented a common co-occurrence between ADHD and pediatric irritability. The latter is more characterized by affective symptoms, specifically frequent temper outbursts and low frustration tolerance relative to typically developing peers. Shared and non-shared neural correlates of youths with varied profiles of ADHD and irritability symptoms during childhood remain largely unknown. This study first classified a large sample of youths in the Adolescent Brain Cognitive Development (ABCD) study at baseline into distinct phenotypic groups based on ADHD and irritability symptoms (N = 11,748), and then examined shared and non-shared neural correlates of response inhibition and error processing during the Stop Signal Task in a subset of sample with quality neuroimaging data (N = 5,948). Latent class analysis (LCA) revealed four phenotypic groups, i.e., high ADHD with co-occurring irritability symptoms (n = 787, 6.7%), moderate ADHD with low irritability symptoms (n = 901, 7.7%), high irritability with no ADHD symptoms (n = 279, 2.4%), and typically developing peers with low ADHD and low irritability symptoms (n = 9,781, 83.3%). Latent variable modeling revealed group differences in the neural coactivation network supporting response inhibition in the fronto-parietal regions, but limited differences in error processing across frontal and posterior regions. These neural differences were marked by decreased coactivation in the irritability only group relative to youths with ADHD and co-occurring irritability symptoms and typically developing peers during response inhibition. Together, this study provided initial evidence for differential neural mechanisms of response inhibition associated with ADHD, irritability, and their co-occurrence. Precision medicine attending to individual differences in ADHD and irritability symptoms and the underlying mechanisms are warranted when treating affected children and families.
Collapse
Affiliation(s)
- Ka Shu Lee
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, United States
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zeyan Liew
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Wan-Ling Tseng
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Akingbuwa WA, Hammerschlag AR, Bartels M, Middeldorp CM. Systematic Review: Molecular Studies of Common Genetic Variation in Child and Adolescent Psychiatric Disorders. J Am Acad Child Adolesc Psychiatry 2022; 61:227-242. [PMID: 33932494 DOI: 10.1016/j.jaac.2021.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A systematic review of studies using molecular genetics and statistical approaches to investigate the role of common genetic variation in the development, persistence, and comorbidity of childhood psychiatric traits was conducted. METHOD A literature review was performed using the PubMed database, following PRISMA guidelines. There were 131 studies meeting inclusion criteria, having investigated at least one type of childhood-onset or childhood-measured psychiatric disorder or trait with the aim of identifying trait-associated common genetic variants, estimating the contribution of single nucleotide polymorphisms (SNPs) to the amount of variance explained (SNP-based heritability), investigating genetic overlap between psychiatric traits, or investigating whether the stability in traits or the association with adult traits is explained by genetic factors. RESULTS The first robustly associated genetic variants have started to be identified for childhood psychiatric traits. There were substantial contributions of common genetic variants to many traits, with variation in single nucleotide polymorphism heritability estimates depending on age and raters. Moreover, genetic variants also appeared to explain comorbidity as well as stability across a range of psychiatric traits in childhood and across the life span. CONCLUSION Common genetic variation plays a substantial role in childhood psychiatric traits. Increased sample sizes will lead to increased power to identify genetic variants and to understand genetic architecture, which will ultimately be beneficial to targeted and prevention strategies. This can be achieved by harmonizing phenotype measurements, as is already proposed by large international consortia and by including the collection of genetic material in every study.
Collapse
Affiliation(s)
- Wonuola A Akingbuwa
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Anke R Hammerschlag
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Meike Bartels
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Christel M Middeldorp
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia; Prof. Middeldorp is also with the Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Services, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Powell V, Agha SS, Jones RB, Eyre O, Stephens A, Weavers B, Lennon J, Allardyce J, Potter R, Smith D, Thapar A, Rice F. ADHD in adults with recurrent depression. J Affect Disord 2021; 295:1153-1160. [PMID: 34706428 PMCID: PMC8552915 DOI: 10.1016/j.jad.2021.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Depression is highly heterogeneous in its clinical presentation. Those with attention deficit/hyperactivity disorder (ADHD) may be at risk of a more chronic and impairing depression compared to those with depression alone according to studies of young people. However, no studies to date have examined ADHD in recurrently depressed adults in mid-life. METHOD In a sample of women in mid-life (n=148) taken from a UK based prospective cohort of adults with a history of recurrent depression, we investigated the prevalence of ADHD and the association of ADHD with clinical features of depression. RESULTS 12.8% of the recurrently depressed women had elevated ADHD symptoms and 3.4% met DSM-5 diagnostic criteria for ADHD. None of the women reported having a diagnosis of ADHD from a medical professional. ADHD symptoms were associated with earlier age of depression onset, higher depression associated impairment, a greater recurrence of depressive episodes and increased persistence of subthreshold depression symptoms over the study period, higher levels of irritability and increased risk of self-harm or suicide attempt. ADHD symptoms were associated with increased risk of hospitalisation and receiving non-first-line antidepressant medication. LIMITATIONS ADHD was measured using a questionnaire measure. We focussed on mothers in a longitudinal study of recurrent depression, so the findings may not apply to males or other groups. CONCLUSIONS Higher ADHD symptoms appear to index a worse clinical presentation for depression. Clinical implications include that in women with early onset, impairing and recurrent depression, the possibility of underlying ADHD masked by depression needs to be considered.
Collapse
Affiliation(s)
- Victoria Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK.
| | - Sharifah Shameem Agha
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK; Cwm Taf Morgannwg University Health Board Health Board, Wales, UK
| | - Rhys Bevan Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK; Cwm Taf Morgannwg University Health Board Health Board, Wales, UK
| | - Olga Eyre
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| | - Alice Stephens
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| | - Bryony Weavers
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| | - Jess Lennon
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| | - Judith Allardyce
- Centre for Clinical Brain Sciences, The University of Edinburgh, Scotland, UK
| | - Robert Potter
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| | - Daniel Smith
- Centre for Clinical Brain Sciences, The University of Edinburgh, Scotland, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| | - Frances Rice
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Wales, UK
| |
Collapse
|
13
|
Skogheim TS, Weyde KVF, Aase H, Engel SM, Surén P, Øie MG, Biele G, Reichborn-Kjennerud T, Brantsæter AL, Haug LS, Sabaredzovic A, Auyeung B, Villanger GD. Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children. ENVIRONMENTAL RESEARCH 2021; 202:111692. [PMID: 34293314 DOI: 10.1016/j.envres.2021.111692] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may be a risk factor for neurodevelopmental deficits and disorders, but evidence is inconsistent. OBJECTIVES We investigated whether prenatal exposure to PFAS were associated with childhood diagnosis of attention-deficit/hyperactivity disorder (ADHD) or autism spectrum disorder (ASD). METHODS This study was based on the Norwegian Mother, Father and Child Cohort Study and included n = 821 ADHD cases, n = 400 ASD cases and n = 980 controls. Diagnostic cases were identified by linkage with the Norwegian Patient Registry. In addition, we used data from the Medical Birth Registry of Norway. The study included the following PFAS measured in maternal plasma sampled mid-pregnancy: Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptanesulfonic acid (PFHpS), and perfluorooctane sulfonate (PFOS). Relationships between individual PFAS and ADHD or ASD diagnoses were examined using multivariable adjusted logistic regression models. We also tested for possible non-linear exposure-outcome associations. Further, we investigated the PFAS mixture associations with ASD and ADHD diagnoses using a quantile-based g-computation approach. RESULTS Odds of ASD was significantly elevated in PFOA quartile 2 [OR = 1.71 (95% CI: 1.20, 2.45)] compared to quartile 1, and PFOA appeared to have a non-linear, inverted U-shaped dose-response relationship with ASD. PFOA was also associated with increased odds of ADHD, mainly in quartile 2 [OR = 1.54 (95% CI: 1.16, 2.04)] compared to quartile 1, and displayed a non-linear relationship in the restricted cubic spline model. Several PFAS (PFUnDA, PFDA, and PFOS) were inversely associated with odds of ADHD and/or ASD. Some of the associations were modified by child sex and maternal education. The overall PFAS mixture was inversely associated with ASD [OR = 0.76 (95% CI: 0.64, 0.90)] as well as the carboxylate mixture [OR = 0.79 (95% CI: 0.68, 0.93)] and the sulfonate mixture [OR = 0.84 (95% CI: 0.73, 0.96)]. CONCLUSION Prenatal exposure to PFOA was associated with increased risk of ASD and ADHD in children. For some PFAS, as well as their mixtures, there were inverse associations with ASD and/or ADHD. However, the inverse associations reported herein should not be interpreted as protective effects, but rather that there could be some unresolved confounding for these relationships. The epidemiologic literature linking PFAS exposures with neurodevelopmental outcomes is still inconclusive, suggesting the need for more research to elucidate the neurotoxicological potential of PFAS during early development.
Collapse
Affiliation(s)
- Thea S Skogheim
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Kjell Vegard F Weyde
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Heidi Aase
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Campus Box 7435, Chapel Hill, NC, 27599-7435, USA
| | - Pål Surén
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Merete G Øie
- Department of Psychology, University of Oslo, PO Box 1094, Blindern, N-0317, Oslo, Norway
| | - Guido Biele
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO Box 1171, Blindern, N-0318, Oslo, Norway
| | - Anne Lise Brantsæter
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Line S Haug
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Bonnie Auyeung
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK; Department of Psychiatry, Autism Research Centre, University of Cambridge, Douglas House, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Gro D Villanger
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| |
Collapse
|
14
|
Ronald A, de Bode N, Polderman TJC. Systematic Review: How the Attention-Deficit/Hyperactivity Disorder Polygenic Risk Score Adds to Our Understanding of ADHD and Associated Traits. J Am Acad Child Adolesc Psychiatry 2021; 60:1234-1277. [PMID: 33548493 PMCID: PMC11164195 DOI: 10.1016/j.jaac.2021.01.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate, by systematically reviewing the literature, whether the attention-deficit/hyperactivity disorder (ADHD) polygenic risk score (PRS) associates with ADHD and related traits in independent clinical and population samples. METHOD PubMed, Embase and PsychoInfo were systematically searched, alongside study bibliographies. Quality assessments were conducted, and a best-evidence synthesis was applied. Studies were excluded when the predictor was not based on the latest ADHD genome-wide association study, when PRS was not based on genome-wide results, or when the study was a review. Initially, 197 studies were retrieved (February 22, 2020), and a second search (June 3, 2020) yielded a further 49 studies. From both searches, 57 studies were eligible, and 44 studies met inclusion criteria. RESULTS Included studies were published in the last 3 years. Over 80% of the studies were rated excellent, based on a standardized quality assessment. Evidence of associations between ADHD PRS and the following categories was strong: ADHD, ADHD traits, brain structure, education, externalizing behaviors, neuropsychological constructs, physical health, and socioeconomic status. Evidence for associations with addiction, autism, and mental health were mixed and were, so far, inconclusive. Odds ratios for PRS associating with ADHD ranged from 1.22% to 1.76%; variance explained in dimensional assessments of ADHD traits was 0.7% to 3.3%. CONCLUSION A new wave of high-quality research using the ADHD PRS has emerged. Eventually, symptoms may be partly identified based on PRS, but the current ADHD PRS is useful for research purposes only. This review shows that the ADHD PRS is robust and reliable, associating not only with ADHD but many outcomes and challenges known to be linked to ADHD.
Collapse
Affiliation(s)
| | - Nora de Bode
- Vrije Universiteit Amsterdam, the Netherlands, and Amsterdam UMC, the Netherlands
| | - Tinca J C Polderman
- Vrije Universiteit Amsterdam, the Netherlands, and Amsterdam UMC, the Netherlands.
| |
Collapse
|
15
|
Sulkama S, Puurunen J, Salonen M, Mikkola S, Hakanen E, Araujo C, Lohi H. Canine hyperactivity, impulsivity, and inattention share similar demographic risk factors and behavioural comorbidities with human ADHD. Transl Psychiatry 2021; 11:501. [PMID: 34599148 PMCID: PMC8486809 DOI: 10.1038/s41398-021-01626-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder impairing the quality of life of the affected individuals. The domestic dog can spontaneously manifest high hyperactivity/impulsivity and inattention which are components of human ADHD. Therefore, a better understanding of demographic, environmental and behavioural factors influencing canine hyperactivity/impulsivity and inattention could benefit both humans and dogs. We collected comprehensive behavioural survey data from over 11,000 Finnish pet dogs and quantified their level of hyperactivity/impulsivity and inattention. We performed generalised linear model analyses to identify factors associated with these behavioural traits. Our results indicated that high levels of hyperactivity/impulsivity and inattention were more common in dogs that are young, male and spend more time alone at home. Additionally, we showed several breed differences suggesting a substantial genetic basis for these traits. Furthermore, hyperactivity/impulsivity and inattention had strong comorbidities with compulsive behaviour, aggressiveness and fearfulness. Multiple of these associations have also been identified in humans, strengthening the role of the dog as an animal model for ADHD.
Collapse
Affiliation(s)
- Sini Sulkama
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Jenni Puurunen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Milla Salonen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Salla Mikkola
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Emma Hakanen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - César Araujo
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
16
|
Martin J, Shameem Agha S, Eyre O, Riglin L, Langley K, Hubbard L, Stergiakouli E, O'Donovan M, Thapar A. Sex differences in anxiety and depression in children with attention deficit hyperactivity disorder: Investigating genetic liability and comorbidity. Am J Med Genet B Neuropsychiatr Genet 2021; 186:412-422. [PMID: 33939260 DOI: 10.1002/ajmg.b.32842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 01/15/2023]
Abstract
It is unknown why attention deficit hyperactivity disorder (ADHD) is more common in males, whereas anxiety and depression show a female population excess. We tested the hypothesis that anxiety and depression risk alleles manifest as ADHD in males. We also tested whether anxiety and depression in children with ADHD show a different etiology to typical anxiety and depression and whether this differs by sex. The primary clinical ADHD sample consisted of 885 (14% female) children. Psychiatric symptoms were assessed using standardized interviews. Polygenic risk scores (PRS) were derived using large genetic studies. Replication samples included independent clinical ADHD samples (N = 3,794; 25.7% female) and broadly defined population ADHD samples (N = 995; 33.4% female). We did not identify sex differences in anxiety or depression PRS in children with ADHD. In the primary sample, anxiety PRS were associated with social and generalized anxiety in males, with evidence of a sex-by-PRS interaction for social anxiety. These results did not replicate in the broadly defined ADHD sample. Depression PRS were not associated with comorbid depression symptoms. The results suggest that anxiety and depression genetic risks are not more likely to lead to ADHD in males. Also, the evidence for shared etiology between anxiety symptoms in those with ADHD and typical anxiety was weak and needs replication.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sharifah Shameem Agha
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Cwm Taf Morgannwg University Health Board Health Board, Wales, UK
| | - Olga Eyre
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lucy Riglin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kate Langley
- School of Psychology, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Michael O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Martin J, Asjadi K, Hubbard L, Kendall K, Pardiñas AF, Jermy B, Lewis CM, Baune BT, Boomsma DI, Hamilton SP, Lucae S, Magnusson PK, Martin NG, McIntosh AM, Mehta D, Mors O, Mullins N, Penninx BWJH, Preisig M, Rietschel M, Jones I, Walters JTR, Rice F, Thapar A, O’Donovan M. Examining sex differences in neurodevelopmental and psychiatric genetic risk in anxiety and depression. PLoS One 2021; 16:e0248254. [PMID: 34473692 PMCID: PMC8412369 DOI: 10.1371/journal.pone.0248254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022] Open
Abstract
Anxiety and depression are common mental health disorders and have a higher prevalence in females. They are modestly heritable, share genetic liability with other psychiatric disorders, and are highly heterogeneous. There is evidence that genetic liability to neurodevelopmental disorders, such as attention deficit hyperactivity disorder (ADHD) is associated with anxiety and depression, particularly in females. We investigated sex differences in family history for neurodevelopmental and psychiatric disorders and neurodevelopmental genetic risk burden (indexed by ADHD polygenic risk scores (PRS) and rare copy number variants; CNVs) in individuals with anxiety and depression, also taking into account age at onset. We used two complementary datasets: 1) participants with a self-reported diagnosis of anxiety or depression (N = 4,178, 65.5% female; mean age = 41.5 years; N = 1,315 with genetic data) from the National Centre for Mental Health (NCMH) cohort and 2) a clinical sample of 13,273 (67.6% female; mean age = 45.2 years) patients with major depressive disorder (MDD) from the Psychiatric Genomics Consortium (PGC). We tested for sex differences in family history of psychiatric problems and presence of rare CNVs (neurodevelopmental and >500kb loci) in NCMH only and for sex differences in ADHD PRS in both datasets. In the NCMH cohort, females were more likely to report family history of neurodevelopmental and psychiatric disorders, but there were no robust sex differences in ADHD PRS or presence of rare CNVs. There was weak evidence of higher ADHD PRS in females compared to males in the PGC MDD sample, particularly in those with an early onset of MDD. These results do not provide strong evidence of sex differences in neurodevelopmental genetic risk burden in adults with anxiety and depression. This indicates that sex may not be a major index of neurodevelopmental genetic heterogeneity, that is captured by ADHD PRS and rare CNV burden, in adults with anxiety and depression.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Kimiya Asjadi
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Leon Hubbard
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Kimberley Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Bradley Jermy
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Nordrhein-Westfalen, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dorret I. Boomsma
- Dept. of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, Netherland
| | - Steven P. Hamilton
- Psychiatry, Kaiser Permanente Northern California, San Francisco, California, United States of America
| | | | - Patrik K. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G. Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Divya Mehta
- Centre for Genomics and Personalised Health, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, Denmark
| | - Niamh Mullins
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, Netherland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Ian Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Frances Rice
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Michael O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
18
|
Eilertsen EM, Hannigan LJ, McAdams TA, Rijsdijk FV, Czajkowski N, Reichborn-Kjennerud T, Ystrom E, Gjerde LC. Parental Prenatal Symptoms of Depression and Offspring Symptoms of ADHD: A Genetically Informed Intergenerational Study. J Atten Disord 2021; 25:1554-1563. [PMID: 32338109 DOI: 10.1177/1087054720914386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective: The primary aim of the present study was to separate the direct effect of maternal prenatal depression on offspring ADHD from the passive transmission of genetic liability. Method: A children-of-twins and siblings design including 17,070 extended-family units participating in the Norwegian Mother and Child Cohort Study was used. Self-ratings were obtained from parents using the Symptom Checklist during pregnancy. Maternal ratings using Conner's Parent Rating Scale were obtained when the children were 5 years of age. Results: Genetic influences were important for explaining similarity between parents and offspring. There was also evidence for a maternal effect after accounting for genetic transmission (m = 0.06, 95% confidence interval [CI] = [0.02, 0.09]). Conclusion: Our results were consistent with hypotheses suggesting that maternal prenatal depression influences symptoms of ADHD in offspring. However, the effect was weak and a substantial portion of the association could be accounted for by shared genetic influences.
Collapse
Affiliation(s)
| | | | | | | | - Nikolai Czajkowski
- Norwegian Institute of Public Health, Oslo, Norway.,University of Oslo, Norway
| | | | - Eivind Ystrom
- Norwegian Institute of Public Health, Oslo, Norway.,University of Oslo, Norway
| | - Line C Gjerde
- Norwegian Institute of Public Health, Oslo, Norway.,University of Oslo, Norway
| |
Collapse
|
19
|
Faraone SV, Banaschewski T, Coghill D, Zheng Y, Biederman J, Bellgrove MA, Newcorn JH, Gignac M, Al Saud NM, Manor I, Rohde LA, Yang L, Cortese S, Almagor D, Stein MA, Albatti TH, Aljoudi HF, Alqahtani MMJ, Asherson P, Atwoli L, Bölte S, Buitelaar JK, Crunelle CL, Daley D, Dalsgaard S, Döpfner M, Espinet S, Fitzgerald M, Franke B, Gerlach M, Haavik J, Hartman CA, Hartung CM, Hinshaw SP, Hoekstra PJ, Hollis C, Kollins SH, Sandra Kooij JJ, Kuntsi J, Larsson H, Li T, Liu J, Merzon E, Mattingly G, Mattos P, McCarthy S, Mikami AY, Molina BSG, Nigg JT, Purper-Ouakil D, Omigbodun OO, Polanczyk GV, Pollak Y, Poulton AS, Rajkumar RP, Reding A, Reif A, Rubia K, Rucklidge J, Romanos M, Ramos-Quiroga JA, Schellekens A, Scheres A, Schoeman R, Schweitzer JB, Shah H, Solanto MV, Sonuga-Barke E, Soutullo C, Steinhausen HC, Swanson JM, Thapar A, Tripp G, van de Glind G, van den Brink W, Van der Oord S, Venter A, Vitiello B, Walitza S, Wang Y. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci Biobehav Rev 2021; 128:789-818. [PMID: 33549739 PMCID: PMC8328933 DOI: 10.1016/j.neubiorev.2021.01.022] [Citation(s) in RCA: 500] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Misconceptions about ADHD stigmatize affected people, reduce credibility of providers, and prevent/delay treatment. To challenge misconceptions, we curated findings with strong evidence base. METHODS We reviewed studies with more than 2000 participants or meta-analyses from five or more studies or 2000 or more participants. We excluded meta-analyses that did not assess publication bias, except for meta-analyses of prevalence. For network meta-analyses we required comparison adjusted funnel plots. We excluded treatment studies with waiting-list or treatment as usual controls. From this literature, we extracted evidence-based assertions about the disorder. RESULTS We generated 208 empirically supported statements about ADHD. The status of the included statements as empirically supported is approved by 80 authors from 27 countries and 6 continents. The contents of the manuscript are endorsed by 366 people who have read this document and agree with its contents. CONCLUSIONS Many findings in ADHD are supported by meta-analysis. These allow for firm statements about the nature, course, outcome causes, and treatments for disorders that are useful for reducing misconceptions and stigma.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and Neuroscience and Physiology, Psychiatry Research Division, SUNY Upstate Medical University, Syracuse, NY, USA; World Federation of ADHD, Switzerland; American Professional Society of ADHD and Related Disorders (APSARD), USA.
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Child and Adolescent Psychiatrist's Representative, Zentrales-ADHS-Netz, Germany; The German Association of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - David Coghill
- Departments of Paediatrics and Psychiatry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Yi Zheng
- Beijing Anding Hospital, Capital Medical University, Beijing, China; The National Clinical Research Center for Mental Disorders, Beijing, China; Beijing Key Laboratory of Mental Disorders, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China; Asian Federation of ADHD, China; Chinese Society of Child and Adolescent Psychiatry, China
| | - Joseph Biederman
- Clinical & Research Programs in Pediatric Psychopharmacology & Adult ADHD, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Australian ADHD Professionals Association (AADPA), Australia
| | - Jeffrey H Newcorn
- American Professional Society of ADHD and Related Disorders (APSARD), USA; Departments of Psychiatry and Pediatrics, Division of ADHD and Learning Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Gignac
- Department of Child and Adolescent Psychiatry, Montreal Children's Hospital, MUHC, Montreal, Canada; Child and Adolescent Psychiatry Division, McGill University, Montreal, Canada; Canadian ADHD Research Alliance (CADDRA), Canada
| | | | - Iris Manor
- Chair, Israeli Society of ADHD (ISA), Israel; Co-chair of the neurodevelopmental section in EPA (the European Psychiatric Association), France
| | - Luis Augusto Rohde
- Department of Psychiatry, Federal University of Rio Grande do Sul, Brazil
| | - Li Yang
- Asian Federation of ADHD, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton,UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, USA; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; University of Nottingham, Nottingham, UK
| | - Doron Almagor
- University of Toronto, SickKids Centre for Community Mental Health, Toronto, Canada; Canadian ADHD Research Alliance (CADDRA), Canada
| | - Mark A Stein
- University of Washington, Seattle, WA, USA; Seattle Children's Hospital, Seattle, WA, USA
| | - Turki H Albatti
- Saudi ADHD Society Medical and Psychological Committee, Saudi Arabia
| | - Haya F Aljoudi
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Saudi ADHD Society Medical and Psychological Committee, Saudi Arabia
| | - Mohammed M J Alqahtani
- Clinical Psychology, King Khalid University, Abha, Saudi Arabia; Saudi ADHD Society, Saudi Arabia
| | - Philip Asherson
- Social Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
| | - Lukoye Atwoli
- Department of Mental Health and Behavioural Science, Moi University School of Medicine, Eldoret, Kenya; Brain and Mind Institute, and Department of Internal Medicine, Medical College East Africa, the Aga Khan University, Kenya; African College of Psychopharmacology, Kenya; African Association of Psychiatrists, Kenya
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Healthcare Services, Region Stockholm, Sweden; Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia, Australia
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Cleo L Crunelle
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Dept. of Psychiatry, Brussel, Belgium; International Collaboration on ADHD and Substance Abuse (ICASA), Nijmegen, the Netherlands
| | - David Daley
- Division of Psychiatry and Applied Psychology, School of Medicine University of Nottingham, Nottingham, UK; NIHR MindTech Mental Health MedTech Cooperative & Centre for ADHD and Neurodevelopmental Disorders Across the Lifespan (CANDAL), Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Søren Dalsgaard
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Manfred Döpfner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Child and Adolescent Cognitive Behavior Therapy (AKiP), Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany; Zentrales-ADHS-Netz, Germany
| | | | | | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Professional Board, ADHD Europe, Belgium
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands; Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, the Netherlands; ADHD Across the Lifespan Network from European College of Neuropsychopharmacology(ECNP), the Netherlands
| | | | - Stephen P Hinshaw
- University of California, Berkeley, CA, USA; University of California, San Francisco, CA, USA
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Chris Hollis
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, USA; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK; NIHR MindTech MedTech Co-operative, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Scott H Kollins
- Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA
| | - J J Sandra Kooij
- Amsterdam University Medical Center (VUMc), Amsterdam, the Netherlands; PsyQ, The Hague, the Netherlands; European Network Adult ADHD, the Netherlands; DIVA Foundation, the Netherlands; Neurodevelopmental Disorders Across Lifespan Section of European Psychiatric Association, France
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Tingyu Li
- Growth, Development and Mental Health Center for Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, China; National Research Center for Clinical Medicine of Child Health and Disease, Chongqing, China; The Subspecialty Group of Developmental and Behavioral Pediatrics, the Society of Pediatrics, Chinese Medical Association, China
| | - Jing Liu
- Asian Federation of ADHD, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China; The Chinese Society of Child and Adolescent Psychiatry, China; The Asian Society for Child and Adolescent Psychiatry and Allied Professions, China
| | - Eugene Merzon
- Department of Family Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Leumit Health Services, Tel Aviv, Israel; Israeli Society of ADHD, Israel; Israeli National Diabetes Council, Israel
| | - Gregory Mattingly
- Washington University, St. Louis, MO, USA; Midwest Research Group, St Charles, MO, USA
| | - Paulo Mattos
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, Brazil; Brazilian Attention Deficit Association (ABDA), Brazil
| | | | | | - Brooke S G Molina
- Departments of Psychiatry, Psychology, Pediatrics, Clinical & Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel T Nigg
- Center for ADHD Research, Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Diane Purper-Ouakil
- University of Montpellier, CHU Montpellier Saint Eloi, MPEA, Medical and Psychological Unit for Children and Adolescents (MPEA), Montpellier, France; INSERM U 1018 CESP-Developmental Psychiatry, France
| | - Olayinka O Omigbodun
- Centre for Child & Adolescent Mental Health, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Child & Adolescent Psychiatry, University College Hospital, Ibadan, Nigeria
| | | | - Yehuda Pollak
- Seymour Fox School of Education, The Hebrew University of Jerusalem, Israel; The Israeli Society of ADHD (ISA), Israel
| | - Alison S Poulton
- Brain Mind Centre Nepean, University of Sydney, Sydney, Australia; Australian ADHD Professionals Association (AADPA), Australia
| | - Ravi Philip Rajkumar
- Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | | | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; German Psychiatric Association, Germany
| | - Katya Rubia
- World Federation of ADHD, Switzerland; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK; European Network for Hyperkinetic Disorders (EUNETHYDIS), Germany
| | - Julia Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; The German Association of Child and Adolescent Psychiatry and Psychotherapy, Germany; Zentrales-ADHS-Netz, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Neurodevelopmental Disorders Across Lifespan Section of European Psychiatric Association, France; International Collaboration on ADHD and Substance Abuse (ICASA), the Netherlands; DIVA Foundation, the Netherlands
| | - Arnt Schellekens
- Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behavior, Department of Psychiatry, Nijmegen, the Netherlands; International Collaboration on ADHD and Substance Abuse (ICASA), Nijmegen, the Netherlands
| | - Anouk Scheres
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Renata Schoeman
- University of Stellenbosch Business School, Cape Town, South Africa; South African Special Interest Group for Adult ADHD, South Africa; The South African Society of Psychiatrists/Psychiatry Management Group Management Guidelines for ADHD, South Africa; World Federation of Biological Psychiatry, Germany; American Psychiatric Association, USA; Association for NeuroPsychoEconomics, USA
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Henal Shah
- Topiwala National Medical College & BYL Nair Ch. Hospital, Mumbai, India
| | - Mary V Solanto
- The Zucker School of Medicine at Hofstra-Northwell, Northwell Health, Hemstead, NY, USA; Children and Adults with Attention-Deficit/Hyperactivity Disorder (CHADD), USA; American Professional Society of ADHD and Related Disorders (APSARD), USA; National Center for Children with Learning Disabilities (NCLD), USA
| | - Edmund Sonuga-Barke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Child & Adolescent Psychiatry, Aarhus University, Aarhus, Denmark
| | - César Soutullo
- American Professional Society of ADHD and Related Disorders (APSARD), USA; European Network for Hyperkinetic Disorders (EUNETHYDIS), Germany; Louis A. Faillace MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hans-Christoph Steinhausen
- University of Zurich, CH, Switzerland; University of Basel, CH, Switzerland; University of Southern Denmark, Odense, Denmark; Centre of Child and Adolescent Mental Health, Copenhagen, Denmark
| | - James M Swanson
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Anita Thapar
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Wales, UK
| | - Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Geurt van de Glind
- Hogeschool van Utrecht/University of Applied Sciences, Utrecht, the Netherlands
| | - Wim van den Brink
- Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Saskia Van der Oord
- Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; European ADHD Guidelines Group, Germany
| | - Andre Venter
- University of the Free State, Bloemfontein, South Africa
| | - Benedetto Vitiello
- University of Torino, Torino, Italy; Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Yufeng Wang
- Asian Federation of ADHD, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
20
|
Martin J, Ghirardi L, Chen Q, Hartman CA, Rosenqvist MA, Taylor MJ, Birgegård A, Almqvist C, Lichtenstein P, Larsson H. Investigating gender-specific effects of familial risk for attention-deficit hyperactivity disorder and other neurodevelopmental disorders in the Swedish population. BJPsych Open 2020; 6:e65. [PMID: 32552921 PMCID: PMC7345736 DOI: 10.1192/bjo.2020.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Many psychiatric disorders show gender differences in prevalence. Recent studies suggest that female patients diagnosed with anxiety and depression carry more genetic risks related to attention-deficit hyperactivity disorder (ADHD) compared with affected males. AIMS In this register-based study, we aimed to test whether female patients who received clinical diagnoses of anxiety, depressive, bipolar and eating disorders are at higher familial risk for ADHD and other neurodevelopmental disorders, compared with diagnosed male patients. METHOD We analysed data from a record-linkage of several Swedish national registers, including 151 025 sibling pairs from 103 941 unique index individuals diagnosed with anxiety, depressive, bipolar or eating disorders, as well as data from 646 948 cousin pairs. We compared the likelihood of having a relative diagnosed with ADHD/neurodevelopmental disorders in index males and females. RESULTS Female patients with anxiety disorders were more likely than affected males to have a brother with ADHD (odd ratio (OR) = 1.13, 95% CI 1.05-1.22). Results for broader neurodevelopmental disorders were similar and were driven by ADHD diagnoses. Follow-up analyses revealed similar point estimates for several categories of anxiety disorders, with the strongest effect observed for agoraphobia (OR = 1.64, 95% CI 1.12-2.39). No significant associations were found in individuals with depressive, bipolar or eating disorders, or in cousins. CONCLUSIONS These results provide modest support for the possibility that familial/genetic risks for ADHD may show gender-specific phenotypic expression. Alternatively, there could be gender-specific biases in diagnoses of anxiety and ADHD. These factors could play a small role in the observed gender differences in prevalence of ADHD and anxiety.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK; and Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden
| | - Laura Ghirardi
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden
| | - Qi Chen
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden
| | - Catharina A Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Mina A Rosenqvist
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden
| | - Mark J Taylor
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden
| | | | - Catarina Almqvist
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden; and Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet; and School of Medical Sciences, Örebro University, Sweden
| |
Collapse
|
21
|
Wendt FR, Pathak GA, Tylee DS, Goswami A, Polimanti R. Heterogeneity and Polygenicity in Psychiatric Disorders: A Genome-Wide Perspective. ACTA ACUST UNITED AC 2020; 4:2470547020924844. [PMID: 32518889 PMCID: PMC7254587 DOI: 10.1177/2470547020924844] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have been performed for many psychiatric disorders and revealed a complex polygenic architecture linking mental and physical health phenotypes. Psychiatric diagnoses are often heterogeneous, and several layers of trait heterogeneity may contribute to detection of genetic risks per disorder or across multiple disorders. In this review, we discuss these heterogeneities and their consequences on the discovery of risk loci using large-scale genetic data. We primarily highlight the ways in which sex and diagnostic complexity contribute to risk locus discovery in schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorder, posttraumatic stress disorder, major depressive disorder, obsessive-compulsive disorder, Tourette’s syndrome and chronic tic disorder, anxiety disorders, suicidality, feeding and eating disorders, and substance use disorders. Genetic data also have facilitated discovery of clinically relevant subphenotypes also described here. Collectively, GWAS of psychiatric disorders revealed that the understanding of heterogeneity, polygenicity, and pleiotropy is critical to translate genetic findings into treatment strategies.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
22
|
Leppert B, Millard LAC, Riglin L, Davey Smith G, Thapar A, Tilling K, Walton E, Stergiakouli E. A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank. PLoS Genet 2020; 16:e1008185. [PMID: 32392212 PMCID: PMC7274459 DOI: 10.1371/journal.pgen.1008185] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are highly heritable and associated with a wide variety of social adversity and physical health problems. Using genetic liability (rather than phenotypic measures of disease) as a proxy for psychiatric disease risk can be a useful alternative for research questions that would traditionally require large cohort studies with long-term follow up. Here we conducted a hypothesis-free phenome-wide association study in about 330,000 participants from the UK Biobank to examine associations of polygenic risk scores (PRS) for five psychiatric disorders (major depression (MDD), bipolar disorder (BP), schizophrenia (SCZ), attention-deficit/ hyperactivity disorder (ADHD) and autism spectrum disorder (ASD)) with 23,004 outcomes in UK Biobank, using the open-source PHESANT software package. There was evidence after multiple testing (p<2.55x10-06) for associations of PRSs with 294 outcomes, most of them attributed to associations of PRSMDD (n = 167) and PRSSCZ (n = 157) with mental health factors. Among others, we found strong evidence of association of higher PRSADHD with 1.1 months younger age at first sexual intercourse [95% confidence interval [CI]: -1.25,-0.92] and a history of physical maltreatment; PRSASD with 0.01% lower erythrocyte distribution width [95%CI: -0.013,-0.007]; PRSSCZ with 0.95 lower odds of playing computer games [95%CI:0.95,0.96]; PRSMDD with a 0.12 points higher neuroticism score [95%CI:0.111,0.135] and PRSBP with 1.03 higher odds of having a university degree [95%CI:1.02,1.03]. We were able to show that genetic liabilities for five major psychiatric disorders associate with long-term aspects of adult life, including socio-demographic factors, mental and physical health. This is evident even in individuals from the general population who do not necessarily present with a psychiatric disorder diagnosis. Psychiatric disorders are associated with a wide range of adverse health, social and economic problems. Our study investigated the association of genetic risk for five common psychiatric disorders with socio- demographics, lifestyle and health of about 330,000 participants in the UK Biobank using a systematic, hypothesis-free approach. We found that genetic risk for attention deficit/hyperactivity disorder (ADHD) and bipolar disorder were most strongly associated with lifestyle factors, such as time of first sexual intercourse and educational attainment. Genetic risks for autism spectrum disorder and schizophrenia were associated with altered blood cell counts and decreased risk of playing computer games, respectively. Increased genetic risk for depression was associated with other mental health outcomes such as neuroticism and irritability. In general, our results suggest that genetic risk for psychiatric disorders associates with a range of health and lifestyle traits that were measured in adulthood, in individuals from the general population who do not necessarily present with a psychiatric disorder diagnosis. However, it is important to note that these associations are not necessary causal but can also represent genetic correlation or be influenced by other factors, such as socio-economic factors and selection into the cohort. The findings should inform future research using causally informative designs.
Collapse
Affiliation(s)
- Beate Leppert
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- * E-mail: (BL); (ES)
| | - Louise A. C. Millard
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Intelligent Systems Laboratory, University of Bristol, Bristol, United Kingdom
| | - Lucy Riglin
- Division of Psychological Medicine and Clinical Neurosciences; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anita Thapar
- Division of Psychological Medicine and Clinical Neurosciences; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Kate Tilling
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Esther Walton
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- * E-mail: (BL); (ES)
| |
Collapse
|
23
|
Addicoat A, Thapar AK, Riglin L, Thapar A, Collishaw S. Adult mood problems in children with neurodevelopmental problems: evidence from a prospective birth cohort followed to age 50. Soc Psychiatry Psychiatr Epidemiol 2020; 55:351-358. [PMID: 31119307 DOI: 10.1007/s00127-019-01727-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Specific child neurodevelopmental (ND) disorders such as ADHD and learning problems are associated with concurrent and future (up to early adulthood) mood problems. However, it is unclear whether findings generalise to population traits as well as diagnoses, to general as well as specific neurodevelopmental domains, and whether risk associations extend to later adulthood or diminish with age. METHODS We used data from a UK cohort of children born in 1958, the National Child Development Study (NCDS). ND problems were assessed at ages 7 and 11 years with parent- and teacher ratings of restlessness, hyperactivity and motor co-ordination difficulties, and by individual tests of reading, arithmetic and general cognitive ability. Mood (depression/anxiety) problems were assessed using the Malaise symptom screen at 23, 33, 42, and 50 years. Factor analyses were conducted to assess whether the specific neurodevelopmental domains could be aggregated into a general "ND" latent factor as well as specific factors. Associations with mood outcomes were then tested. RESULTS A bi-factor model with a general "ND" latent factor and specific "motor" and "cognition" factors fits the data well. The specific cognition and motor factor scores were associated with mood problems in early adulthood only. The "ND" factor demonstrated associations with mood problems at each adult follow-up (men - age 23 years: β = 0.17; age 33: β = 0.16; age 42: β = 0.14; age 50: β = 0.16; women - 23 years: β = 0.25; 33 years: β = 0.26; 42 years: β = 0.14; 50 years: β = 0.16; all ps < 0.01). Interactions by sex indicated that the association between this general factor and mood problems was more pronounced for women than men at ages 23 years (β = 0.09, p = 0.005) and 33 years (β = 0.10, p = 0.003), but not at 42 or 50 years (ps > 0.8). CONCLUSIONS Our results suggest that, in a population-based cohort, a general, childhood neurodevelopmental difficulty factor is stably associated with mood problems in adult life.
Collapse
Affiliation(s)
- Alishia Addicoat
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Child and Adolescent Psychiatry, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Ajay K Thapar
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Child and Adolescent Psychiatry, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Lucy Riglin
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Child and Adolescent Psychiatry, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Anita Thapar
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Child and Adolescent Psychiatry, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Stephan Collishaw
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Child and Adolescent Psychiatry, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, Wales, UK.
| |
Collapse
|
24
|
Skogheim TS, Villanger GD, Weyde KVF, Engel SM, Surén P, Øie MG, Skogan AH, Biele G, Zeiner P, Øvergaard KR, Haug LS, Sabaredzovic A, Aase H. Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children. Int J Hyg Environ Health 2020; 223:80-92. [PMID: 31653559 PMCID: PMC6922090 DOI: 10.1016/j.ijheh.2019.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are persistent organic pollutants that are suspected to be neurodevelopmental toxicants, but epidemiological evidence on neurodevelopmental effects of PFAS exposure is inconsistent. We investigated the associations between prenatal exposure to PFASs and symptoms of attention-deficit/hyperactivity disorder (ADHD) and cognitive functioning (language skills, estimated IQ and working memory) in preschool children, as well as effect modification by child sex. MATERIAL AND METHODS This study included 944 mother-child pairs enrolled in a longitudinal prospective study of ADHD symptoms (the ADHD Study), with participants recruited from The Norwegian Mother, Father and Child Cohort Study (MoBa). Boys and girls aged three and a half years, participated in extensive clinical assessments using well-validated tools; The Preschool Age Psychiatric Assessment interview, Child Development Inventory and Stanford-Binet (5th revision). Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of gestation. Multivariable adjusted regression models were used to examine exposure-outcome associations with two principal components extracted from the seven detected PFASs. Based on these results, we performed regression analyses of individual PFASs categorized into quintiles. RESULTS PFAS component 1 was mainly explained by perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA). PFAS component 2 was mainly explained by perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid (PFNA). Regression models showed a negative association between PFAS component 1 and nonverbal working memory [β = -0.08 (CI: -0.12, -0.03)] and a positive association between PFAS component 2 and verbal working memory [β = 0.07 (CI: 0.01, 0.12)]. There were no associations with ADHD symptoms, language skills or IQ. For verbal working memory and PFAS component 2, we found evidence for effect modification by child sex, with associations only for boys. The results of quintile models with individual PFASs, showed the same pattern for working memory as the results in the component regression analyses. There were negative associations between nonverbal working memory and quintiles of PFOA, PFNA, PFHxS, PFHpS and PFOS and positive associations between verbal working memory and quintiles of PFOA, PFNA, PFDA and PFUnDA, with significant relationships mainly in the highest concentration groups. CONCLUSIONS Based on our results, we did not find consistent evidence to conclude that prenatal exposure to PFASs are associated with ADHD symptoms or cognitive dysfunctions in preschool children aged three and a half years, which is in line with the majority of studies in this area. Our results showed some associations between PFASs and working memory, particularly negative relationships with nonverbal working memory, but also positive relationships with verbal working memory. The relationships were weak, as well as both positive and negative, which suggest no clear association - and need for replication.
Collapse
Affiliation(s)
- Thea S Skogheim
- Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Gro D Villanger
- Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | | | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2104C McGavran-Greenberg Hall CB 7435, Chapel Hill, NC, 27599, USA
| | - Pål Surén
- Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Merete G Øie
- Department of Psychology, University of Oslo, PO Box 1094, Blindern, N-0317, Oslo, Norway; Research Department, Innlandet Hospital Trust, PO Box 104, N-2381, Brumunddal, Norway
| | - Annette H Skogan
- The National Centre for Epilepsy, PO Box 4956, Nydalen, N-0424, Oslo, Norway
| | - Guido Biele
- Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Pål Zeiner
- Division of Mental Health and Addiction, Oslo University Hospital, PO Box 4956, Nydalen, N-0424, Oslo, Norway; Department of Clinical Medicine, University of Oslo, PO Box 1171, N-0318, Oslo, Norway
| | - Kristin R Øvergaard
- Division of Mental Health and Addiction, Oslo University Hospital, PO Box 4956, Nydalen, N-0424, Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | | | - Heidi Aase
- Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| |
Collapse
|
25
|
Abdel Hamed NA, Hammad EEDM, Salama RH, Yassa HA, Awaga MM. Secondhand smoke as a risk factor for attention deficit hyperactivity disorder in children. Inhal Toxicol 2019; 31:420-427. [PMID: 31874576 DOI: 10.1080/08958378.2019.1705440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Attention deficit hyperactivity disorder (ADHD) is recognized as a common childhood psychiatric disorder with a worldwide prevalence estimated at 5%. In Egypt, early exposure of children to smoke occurred due to many causes mainly tobacco use. This exposure is linked to a variety of developmental and behavioral consequences for children. This study aimed to investigate the potential association between secondhand smoke (SHS) exposure and ADHD in children and find the association between the level of exposure to SHS and the degree of ADHD symptoms.Method: Case-control study was done by a random selection of children from the outpatient Clinic of Assiut University Hospital of Children. Data were collected by a questionnaire to evaluate home exposure to SHS and blood sampling for serum cotinine measurement as an indicator of exposure to SHS.Results: Of 70 ADHD children, 62 (88.6%) of them reported home exposure to smoke while only 14 of 30 control children (46.7%) reported home exposure to smoke. The serum cotinine level was insignificantly higher in the ADHD group than the control group.Conclusion: In conclusion, there is a significant association between ADHD in the examined sample of children and exposure to SHS. Serum cotinine is a biomarker reflecting current exposure to SHS but it is not a reliable indicator of past and long-term exposure to SHS.
Collapse
Affiliation(s)
- Nahed A Abdel Hamed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ragaa H Salama
- Department of Clinical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba A Yassa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa M Awaga
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
26
|
Martin J, Tammimies K, Karlsson R, Lu Y, Larsson H, Lichtenstein P, Magnusson PKE. Copy number variation and neuropsychiatric problems in females and males in the general population. Am J Med Genet B Neuropsychiatr Genet 2019; 180:341-350. [PMID: 30307693 PMCID: PMC6767107 DOI: 10.1002/ajmg.b.32685] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/05/2022]
Abstract
Neurodevelopmental problems (NPs) are more common in males, whereas anxiety and depression are more common in females. Rare copy number variants (CNVs) have been implicated in neurodevelopmental disorders. The aim of this study was to characterize the relationship between rare CNVs with NPs, anxiety, and depression in a childhood population sample, as well as to examine sex-specific effects. We analyzed a sample of N = 12,982 children, of whom 5.3% had narrowly defined NPs (clinically diagnosed), 20.9% had broadly defined NPs (based on validated screening measures, but no diagnosis), and 3.0% had clinically diagnosed anxiety or depression. Rare (<1% frequency) CNVs were categorized by size (100-500 kb or > 500 kb), type, and putative relevance to NPs. We tested for association of CNV categories with outcomes and examined sex-specific effects. Medium deletions (OR[CI] = 1.18[1.05-1.33], p = .0053) and large duplications (OR[CI] = 1.45[1.19-1.75], p = .00017) were associated with broadly defined NPs. Large deletions (OR[CI] = 1.85[1.14-3.01], p = .013) were associated with narrowly defined NPs. There were no significant sex differences in CNV burden in individuals with NPs. Although CNVs were not associated with anxiety/depression in the whole sample, in individuals diagnosed with these disorders, females were more likely to have large CNVs (OR[CI] = 3.75[1.45-9.68], p = .0064). Rare CNVs are associated with both narrowly and broadly defined NPs in a general population sample of children. Our results also suggest that large, rare CNVs may show sex-specific phenotypic effects.
Collapse
Affiliation(s)
- Joanna Martin
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetStockholmSweden
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUnited Kingdom
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Department of Women's and Children's HealthKarolinska Institutet and Center for Psychiatry ResearchStockholmSweden
| | - Robert Karlsson
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetStockholmSweden
| | - Yi Lu
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetStockholmSweden
| | - Henrik Larsson
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology & BiostatisticsKarolinska InstitutetStockholmSweden
| | | |
Collapse
|
27
|
Leppert B, Havdahl A, Riglin L, Jones HJ, Zheng J, Davey Smith G, Tilling K, Thapar A, Reichborn-Kjennerud T, Stergiakouli E. Association of Maternal Neurodevelopmental Risk Alleles With Early-Life Exposures. JAMA Psychiatry 2019; 76:834-842. [PMID: 31042271 PMCID: PMC6495368 DOI: 10.1001/jamapsychiatry.2019.0774] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
Importance Early-life exposures, such as prenatal maternal lifestyle, illnesses, nutritional deficiencies, toxin levels, and adverse birth events, have long been considered potential risk factors for neurodevelopmental disorders in offspring. However, maternal genetic factors could be confounding the association between early-life exposures and neurodevelopmental outcomes in offspring, which makes inferring a causal relationship problematic. Objective To test whether maternal polygenic risk scores (PRSs) for neurodevelopmental disorders were associated with early-life exposures previously linked to the disorders. Design, Setting, and Participants In this UK population-based cohort study, 7921 mothers with genotype data from the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent testing for association of maternal PRS for attention-deficit/hyperactivity disorder (ADHD PRS), autism spectrum disorder (ASD PRS), and schizophrenia (SCZ PRS) with 32 early-life exposures. ALSPAC data collection began September 6, 1990, and is ongoing. Data were analyzed for the current study from April 1 to September 1, 2018. Exposures Maternal ADHD PRS, ASD PRS, and SCZ PRS were calculated using discovery effect size estimates from the largest available genome-wide association study and a significance threshold of P < .05. Main Outcomes and Measures Outcomes measured included questionnaire data on maternal lifestyle and behavior (eg, smoking, alcohol consumption, body mass index, and maternal age), maternal use of nutritional supplements and medications in pregnancy (eg, acetaminophen, iron, zinc, folic acid, and vitamins), maternal illnesses (eg, diabetes, hypertension, rheumatism, psoriasis, and depression), and perinatal factors (eg, birth weight, preterm birth, and cesarean delivery). Results Maternal PRSs were available from 7921 mothers (mean [SD] age, 28.5 [4.8] years). The ADHD PRS was associated with multiple prenatal factors, including infections (odds ratio [OR], 1.11; 95% CI, 1.04-1.18), use of acetaminophen during late pregnancy (OR, 1.11; 95% CI, 1.04-1.18), lower blood levels of mercury (β coefficient, -0.06; 95% CI, -0.11 to -0.02), and higher blood levels of cadmium (β coefficient, 0.07; 95% CI, 0.05-0.09). Little evidence of associations between ASD PRS or SCZ PRS and prenatal factors or of association between any of the PRSs and adverse birth events was found. Sensitivity analyses revealed consistent results. Conclusions and Relevance These findings suggest that maternal risk alleles for neurodevelopmental disorders, primarily ADHD, are associated with some pregnancy-related exposures. These findings highlight the need to carefully account for potential genetic confounding and triangulate evidence from different approaches when assessing the effects of prenatal exposures on neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Beate Leppert
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alexandra Havdahl
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Lucy Riglin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Hannah J. Jones
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre, University Hospitals Bristol NHS (National Health Service) Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kate Tilling
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Evie Stergiakouli
- MRC (Medical Research Council) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Riglin L, Eyre O, Thapar AK, Stringaris A, Leibenluft E, Pine DS, Tilling K, Smith GD, O’Donovan MC, Thapar A. Identifying Novel Types of Irritability Using a Developmental Genetic Approach. Am J Psychiatry 2019; 176:635-642. [PMID: 31256611 PMCID: PMC6677571 DOI: 10.1176/appi.ajp.2019.18101134] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Irritability, which is strongly associated with impairment and negative outcomes, is a common reason for referral to mental health services but is a nosological and treatment challenge. A major issue is how irritability should be conceptualized. The authors used a developmental approach to test the hypothesis that there are several forms of irritability, including a "neurodevelopmental/ADHD-like" type, with onset in childhood, and a "depression/mood" type, with onset in adolescence. METHODS Data were analyzed from the Avon Longitudinal Study of Parents and Children, a prospective U.K. population-based cohort. Irritability trajectory classes were estimated for 7,924 individuals with data at multiple time points across childhood and adolescence (four possible time points from approximately ages 7 to 15). Psychiatric diagnoses were assessed at approximately ages 7 and 15. Psychiatric genetic risk was indexed by polygenic risk scores (PRSs) for attention deficit hyperactivity disorder (ADHD) and depression, derived using large genome-wide association study results. RESULTS Five irritability trajectory classes were identified: low (81.2%), decreasing (5.6%), increasing (5.5%), late-childhood limited (5.2%), and high-persistent (2.4%). The early-onset high-persistent trajectory was associated with male preponderance, childhood ADHD (odds ratio=108.64, 95% CI=57.45-204.41), and ADHD PRS (odds ratio=1.31, 95% CI=1.09-1.58). The adolescent-onset increasing trajectory was associated with female preponderance, adolescent depression (odds ratio=5.14, 95% CI=2.47-10.73), and depression PRS (odds ratio=1.20, 95% CI=1.05-1.38). Both the early-onset high-persistent and adolescent-onset increasing trajectory classes were associated with adolescent depression diagnosis and ADHD PRS. CONCLUSIONS The developmental context of irritability may be important in its conceptualization: early-onset persistent irritability may be more neurodevelopmental/ADHD-like and later-onset irritability more depression/mood-like. These findings have implications for treatment as well as nosology.
Collapse
Affiliation(s)
- Lucy Riglin
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Olga Eyre
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Ajay K Thapar
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Argyris Stringaris
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Michael C O’Donovan
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Anita Thapar
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK,Corresponding author. Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff CF24 4HQ. Tel: +442920688325.
| |
Collapse
|
29
|
Davis LK. Bridging Molecular Genetics and Epidemiology to Better Understand Sex Differences in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2018; 83:e55-e57. [PMID: 29804590 PMCID: PMC9134214 DOI: 10.1016/j.biopsych.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Lea Karatheodoris Davis
- Department of Medicine, Division of Genetic Medicine, Department of Psychiatry and Behavioral Sciences, and the Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|