1
|
Lu L, Shan C, Tong D, Yu Y, Zhang W, Zhang X, Shu Y, Li W, Liu G, Shi W. Olfactory toxicity of tetrabromobisphenol A to the goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135661. [PMID: 39213767 DOI: 10.1016/j.jhazmat.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Bobrovskikh AV, Zubairova US, Naumenko LG, Doroshkov AV. Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. BIOLOGY 2024; 13:773. [PMID: 39452082 PMCID: PMC11505477 DOI: 10.3390/biology13100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The innate immune system (IIS) is an ancient and essential defense mechanism that protects animals against a wide range of pathogens and diseases. Although extensively studied in mammals, our understanding of the IIS in other taxa remains limited. The zebrafish (Danio rerio) serves as a promising model organism for investigating IIS-related processes, yet the immunogenetics of fish are not fully elucidated. To address this gap, we conducted a meta-analysis of single-cell RNA sequencing (scRNA-seq) datasets from zebrafish kidney marrow, encompassing approximately 250,000 immune cells. Our analysis confirms the presence of key genetic pathways in zebrafish innate immune cells that are similar to those identified in mammals. Zebrafish macrophages specifically express genes encoding cathepsins, major histocompatibility complex class II proteins, integral membrane proteins, and the V-ATPase complex and demonstrate the enrichment of oxidative phosphorylation ferroptosis processes. Neutrophils are characterized by the significant expression of genes encoding actins, cytoskeleton organizing proteins, the Arp2/3 complex, and glycolysis enzymes and have demonstrated their involvement in GnRH and CLR signaling pathways, adherents, and tight junctions. Both macrophages and neutrophils highly express genes of NOD-like receptors, phagosomes, and lysosome pathways and genes involved in apoptosis. Our findings reinforce the idea about the existence of a wide spectrum of immune cell phenotypes in fish since we found only a small number of cells with clear pro- or anti-inflammatory signatures.
Collapse
Affiliation(s)
- Aleksandr V. Bobrovskikh
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Ulyana S. Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ludmila G. Naumenko
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Alexey V. Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Campos-Sánchez JC, Esteban MÁ. Effects of dietary astaxanthin on immune status and lipid metabolism in gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109731. [PMID: 38944253 DOI: 10.1016/j.fsi.2024.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Astaxanthin (AX) is a carotenoid known to have one of the highest documented antioxidant capacities and has attracted considerable scientific and commercial interest. The incorporation of AX into aquaculture practices has been associated with improved pigmentation, modulation of the immune and endocrine systems, stress reduction, reproductive efficiency and general fish health. This study describes the effects of dietary AX (0, control, 20, 100 and 500 mg kg-1 AX per kg of diet) for 15 and 30 days on growth performance, immune and antioxidant status, histology and gene expression in gilthead seabream (Sparus aurata). Fish fed diets enriched with 500 mg kg-1 of AX for 15 days decreased in skin mucus peroxidase activity while at 30 days of trial, fish fed a diet supplemented with 20 mg kg-1 AX increased the peroxidase activity in serum. In addition, bactericidal activity against Vibrio harveyi increased in the skin mucus of fish fed any of the AX supplemented diets. Regarding antioxidant activities in the liver, catalase and glutathione reductase were decreased and increased, respectively, in fish fed a diet supplemented with 500 mg kg-1 of AX. Finally, although the expression of up to 21 inflammatory and lipid metabolism-related genes was analysed in visceral adipose tissue, only the expression of the interleukin 6 (il6) gene was up-regulated in fish fed a diet supplemented with 20 mg kg-1 of AX. The present results provide a detailed insight into the potent antioxidant properties of AX and its possible modulatory effects on the immune status and lipid metabolism of seabream, which may be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Balde A, Ramya CS, Nazeer RA. A review on current advancement in zebrafish models to study chronic inflammatory diseases and their therapeutic targets. Heliyon 2024; 10:e31862. [PMID: 38867970 PMCID: PMC11167310 DOI: 10.1016/j.heliyon.2024.e31862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory diseases are caused due to prolonged inflammation at a specific site of the body. Among other inflammatory diseases, bacterial meningitis, chronic obstructive pulmonary disease (COPD), atherosclerosis and inflammatory bowel diseases (IBD) are primarily focused on because of their adverse effects and fatality rates around the globe in recent times. In order to come up with novel strategies to eradicate these diseases, a clear understanding of the mechanisms of the diseases is needed. Similarly, detailed insight into the mechanisms of commercially available drugs and potent lead compounds from natural sources are also important to establish efficient therapeutic effects. Zebrafish is widely accepted as a model to study drug toxicity and the pharmacokinetic effects of the drug. Moreover, researchers use various inducers to trigger inflammatory cascades and stimulate physiological changes in zebrafish. The effect of these inducers contrasts with the type of zebrafish used in the investigation. Hence, a thorough analysis is required to study the current advancements in the zebrafish model for chronic inflammatory disease suppression. This review presents the most common inflammatory diseases, commercially available drugs, novel therapeutics, and their mechanisms of action for disease suppression. The review also provides a detailed description of various zebrafish models for these diseases. Finally, the future prospects and challenges for the same are described, which can help the researchers understand the potency of the zebrafish model and its further exploration for disease attenuation.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Cunnathur Saravanan Ramya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Lan Z, Yang R, Wang H, Xue X, Sun Y, Wang S, Zhang Y, Meng J. Rapid identifying of COX-2 inhibitors from turmeric (Curcuma longa) by bioaffinity ultrafiltration coupled with UPLC-Q Exactive-Orbitrap-MS and zebrafish-based in vivo validation. Bioorg Chem 2024; 147:107357. [PMID: 38604020 DOI: 10.1016/j.bioorg.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Turmeric (Curcuma longa), a typical source with recognized anti-inflammatory activity, is one such medicine-food homology source, yet its anti-inflammatory mechanisms and specific component combinations remain unclear. In this study, a net fishing method combining bio-affinity ultrafiltration and ultra-high performance liquid chromatography-mass spectrometry (AUF-LC/MS) was employed and 13 potential COX-2 inhibitors were screened out from C. longa. 5 of them (C1, 17, 20, 22, 25) were accurately isolated and identified. Initially, their IC50 values were measured (IC50 of C1, 17, 20, 22 and 25 is 55.08, 48.26, 29.13, 111.28 and 150.48 μM, respectively), and their downregulation of COX-2 under safe concentrations (400, 40, 120, 50 and 400 μM for C1, 17, 20, 22 and 25, respectively) was confirmed on RAW 264.7 cells. Further, in transgenic zebrafish (Danio rerio), significant anti-inflammatory activity at safe concentrations (15, 3, 1.5, 1.5 and 3 μg/mL for C1, 17, 20, 22 and 25, respectively) were observed in a dose-dependent manner. More importantly, molecular docking analysis further revealed the mode of interaction between them and the key active site residues of COX-2. This study screened out and verified unreported COX-2 ligands, potentially accelerating the discovery of new bioactive compounds in other functional foods.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China; School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rui Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hu Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Xingyang Xue
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510000, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| |
Collapse
|
7
|
Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro immune-depression and anti-inflammatory activities of cantharidin on gilthead seabream (Sparus aurata) leucocytes activated by λ-carrageenan. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109470. [PMID: 38442766 DOI: 10.1016/j.fsi.2024.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Cantharidin is a natural compound with known therapeutic applications in humans. The aim of this study was to investigate the in vitro effects of cantharidin on gilthead seabream (Sparus aurata) head kidney leucocytes (HKL) stimulated with λ-carrageenan. HKLs were incubated for 24 h with cantharidin (0, 2.5 and 5 μg mL-1) and λ-carrageenan (0 and 1000 μg mL-1). The results showed that HKL viability only decreased by 15.2% after incubated with 5 μg mL-1 of cantharidin and λ-carrageenan. Cantharidin increased the peroxidase activity of HKLs only when incubated in combination with λ-carrageenan. Besides this, cantharidin inhibited the respiratory burst and phagocytic activities. Furthermore, cantharidin induced morphological changes in HKLs (apoptotic and vacuolization signs) that were enhanced when incubated with λ-carrageenan. Considering the analysis of the selected gene expression studied in HKLs [NF-κB subunits (rela, relb, crel, nfkb1, nfkb2), proinflammatory cytokines (il1b, tnfa), anti-inflammatory cytokines (il10, tgfb) and caspases (casp1, casp3, casp8, casp9)], although λ-carrageenan up-regulated the expression of the proinflammatory gene il1b, λ-carrageenan and cantharidin down-regulated its expression in HKLs. In addition, cantharidin up-regulated casp3 and casp9 expression. The casp3 and casp9 gene expression was down-regulated while casp1 gene expression was up-regulated in HKLs incubated with both cantharidin and λ-carrageenan. All the effects of cantharidin are related to its inhibitory effect on protein phosphatases, which induce apoptosis at long exposure times, and minimize the effects of λ-carrageenan. The present results provide detailed insight into the immune-depressive and anti-inflammatory properties of cantharidin on immune cells, which could be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
8
|
Mohammed-Geba K, ElShaarawy RS, Alian A, Ibrahim HM, Galal-Khallaf A. Unraveling the Red Sea soft coral Sarcophyton convolutum potentials against oxidative and inflammatory stresses in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109442. [PMID: 38354966 DOI: 10.1016/j.fsi.2024.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The Red Sea is one of the world's hotspots for biodiversity, and for marine natural products (MNPs) as well. These MNPs attract special interest for their capabilities to combat inflammatory and oxidative stress-related diseases, being some of the most serious health problems worldwide nowadays. The current study aimed to identify the bioactive ingredients of the Red Sea soft coral Sarcophyton convolutum, and to assess its protective potentials against oxidative and inflammatory stresses. Coral extract (CE) was analyzed using GC-MS and HPLC. In a protection trial, adult zebrafish were intraperitoneally injected with two doses of crab extract, i.e. 50 and 500 μg/fish in 1 % DMSO as a vehicle, then challenged with 30 μg L-1 of CuSO4 for 48 h. All groups, but the negative control one, were challenged with 30 μg L-1 of CuSO4. Total antioxidant activity, as well as mRNA levels of proinflammatory markers and antioxidant enzyme genes were measured. The results showed richness of S. convolutum extract with various bioactive ingredients, including phenolic compounds, flavonoids, alkanes, fatty acids, sesquiterpenes, and pheromone-like substances. CuSO4 significantly induced the expected signals of inflammatory and oxidative stress, reducing both the antioxidant activity and increasing proinflammatory marker genes. However, CE, especially the low dose, showed significant capability to reduce proinflammatory markers and elevating the total antioxidant activity. Therefore, we concluded that S. convolutum can be a promising source for future efforts of drug discovery and a wide spectrum of pharmaceutical products.
Collapse
Affiliation(s)
- Khaled Mohammed-Geba
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt.
| | - Reham Salah ElShaarawy
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt
| | - AbdAllah Alian
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hany Mohammed Ibrahim
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt
| | - Asmaa Galal-Khallaf
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
9
|
Li Z, Li M, Li D, Chen Y, Feng W, Zhao T, Yang L, Mao G, Wu X. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system: Characterization methods, toxic effects and mechanisms. ENVIRONMENTAL RESEARCH 2024; 246:118010. [PMID: 38157964 DOI: 10.1016/j.envres.2023.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Environmental endocrine disrupting chemicals (EDCs), are a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Currently, in addition to neurological, endocrine, developmental and reproductive toxicity, ecotoxicology studies on immunotoxicity are receiving increasing attention. In this review, the composition of immune system of zebrafish, the common indicators of immunotoxicity, the immunotoxicity of EDCs and their molecular mechanism were summarized. We reviewed the immunotoxicity of EDCs on zebrafish mainly in terms of immune organs, immunocytes, immune molecules and immune functions, meanwhile, the possible molecular mechanisms driving these effects were elucidated in terms of endocrine disruption, dysregulation of signaling pathways, and oxidative damage. Hopefully, this review will provide a reference for further investigation of the immunotoxicity of EDCs.
Collapse
Affiliation(s)
- Zixu Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Muge Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Dan Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Campos-Sánchez JC, Serna-Duque JA, Alburquerque C, Guardiola FA, Esteban MÁ. Participation of Hepcidins in the Inflammatory Response Triggered by λ-Carrageenin in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:261-275. [PMID: 38353762 PMCID: PMC11043163 DOI: 10.1007/s10126-024-10293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/26/2024] [Indexed: 04/25/2024]
Abstract
The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Alburquerque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Dong F, Sun YL, Qian YX, Chen Q, He JL, Wang JT, Han T, Zhang XM, Deng YT. Integrated analysis of transcriptome and metabolome reveals the regulatory mechanism of largemouth bass (Micropterus salmoides) in response to Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109322. [PMID: 38128679 DOI: 10.1016/j.fsi.2023.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Nocardia seriolae is a severe bacterial pathogen that has seriously affected the development of aquaculture industry. Largemouth bass (Micropterus salmoides) is a commercially significant freshwater fish that suffers a variety of environmental threats, including bacterial pathogens. However, the immune responses and metabolic alterations of largemouth bass to N. seriolae infection remain largely unclear. We discovered that N. seriolae caused pathological alterations in largemouth bass and shifted the transcript of immune-related and apoptotic genes in head kidney after infection. To answer the aforementioned question, a combined transcriptome and metabolome analysis was employed to explore the alterations in genes, metabolites, and metabolic pathways in largemouth bass following bacterial infection. A total of 3579 genes and 1929 metabolites are significant differentially changed in the head kidney post infection. In response to N. seriolae infection, host modifies the PI3K-Akt signaling pathway, TCA cycle, glycolysis, and amino acid metabolism. The integrated analysis of transcriptome and metabolome suggested that with the arginine metabolism pathway as the core, multiple biomarkers (arg gene, arginine) are involved in the antibacterial and immune functions of largemouth bass. Thus, we hypothesized that arginine plays a crucial role in the immune responses of largemouth bass against N. seriolae infection, and increasing arginine levels suitably is beneficial for the host against bacterial infection. Our results shed light on the regulatory mechanism of largemouth bass resistance to N. seriolae infection and contributed to the development of more effective N. seriolae resistance strategies.
Collapse
Affiliation(s)
- Fen Dong
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yu-Long Sun
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuan-Xin Qian
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiang Chen
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jia-Le He
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ji-Teng Wang
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tao Han
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Xiu-Mei Zhang
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yu-Ting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
12
|
An X, Di S, Wang X, Cao C, Wang D, Chen L, Wang Y. Combined toxicity of aflatoxin B1 and tebuconazole to the embryo development of zebrafish (Danio rerio). CHEMOSPHERE 2024; 346:140612. [PMID: 37931711 DOI: 10.1016/j.chemosphere.2023.140612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Mycotoxins and pesticides are pervasive elements within the natural ecosystem. Furthermore, many environmental samples frequently exhibit simultaneous contamination by multiple mycotoxins and pesticides. Nevertheless, a significant portion of previous investigations has solely reported the occurrence and toxicological effects of individual chemicals. Global regulations have yet to consider the collective impacts of mycotoxins and pesticides. In our present study, we undertook a comprehensive analysis of multi-level endpoints to elucidate the combined toxicity of aflatoxin B1 (AFB1) and tebuconazole (TCZ) on zebrafish (Danio rerio). Our findings indicated that AFB1 (with a 10-day LC50 value of 0.018 mg L-1) exhibits higher toxicity compared to TCZ (with a 10-day LC50 value of 2.1 mg L-1) toward D. rerio. The co-exposure of AFB1 and TCZ elicited synergistic acute responses in zebrafish. The levels of GST, CYP450, SOD, and Casp-9 exhibited significant variations upon exposure to AFB1, TCZ, and their combined mixture, in contrast to the control group. Additionally, eight genes, namely cat, cxcl-cic, il-1β, bax, apaf-1, trβ, ugtlab, and vtg1, displayed marked alterations when exposed to the chemical mixture as opposed to individual substances. Therefore, further exploration of the underlying mechanisms governing joint toxicity is imperative to establish a scientific basis for evaluating the risk associated with the combined effects of AFB1 and TCZ. Moreover, it is essential to thoroughly elucidate the organ system toxicity triggered by the co-occurrence of mycotoxins and pesticides.
Collapse
Affiliation(s)
- Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
13
|
Xu J, Yang W, Wang D, Wang Z, Liu C, Li J. Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress. TOXICS 2023; 12:9. [PMID: 38250965 PMCID: PMC10819112 DOI: 10.3390/toxics12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L-1) and combined with METH (250 and 500 μg L-1) for 10 days. The results indicated that acute exposure to PS and PVC MPs induced lethal effects on zebrafish larvae (10-20%). Treatment with MPs markedly suppressed the locomotion of zebrafish, showing as the lengthy immobility (51-74%) and lower velocity (0.09-0.55 cm s-1) compared with the control (1.07 cm s-1). Meanwhile, histopathological analysis revealed pronounced depositions of MPs particles in fish's intestinal tract, triggering inflammatory responses (histological scores: 1.6-2.0). In the coexposure groups, obviously inflammatory responses were found. Furthermore, the up-regulations of the genes involved in the oxidative kinase gene and inflammation related genes implied that oxidative stress triggered by MPs on zebrafish larvae might be responsible for the mortality and locomotion retardant. The antagonistic and stimulatory effects of METH on the expression changes of genes found in PVC and PS groups implied the contrary combined toxicity of PS/PVC MPs and METH. This study for the first time estimated the different toxicity of PS and PVC MPs on fish and the joint effects with METH at high environmental levels. The results suggested PS showed stronger toxicity than PVC for fish larvae. The addition of METH stimulated the effects of PS but antagonized the effects of PVC, promoting control strategy development on MPs and METH in aquatic environments.
Collapse
Affiliation(s)
- Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Wenqi Yang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Dongyi Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
| | - Chuang Liu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Jiana Li
- Ningbo Academy of Ecological and Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
14
|
Espírito-Santo C, Guardiola FA, Ozório ROA, Magnoni LJ. Short-term swimming up-regulates pro-inflammatory mediators and cytokines in gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111487. [PMID: 37437802 DOI: 10.1016/j.cbpa.2023.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Aerobic swimming exercise in fish has been shown to improve robustness of some species. However, the optimal conditions to be applied and the mechanisms underlying remain unknown. We investigated the effects of 6 h of induced swimming on the immune response of gilthead seabream (Sparus aurata), by analysing markers related to immune status in plasma, skin mucus, gills, heart and head-kidney. Forty fish were individually exercised in swim tunnels by applying different water currents: steady low (SL, 0.8 body lengths (BL) s-1), steady high (SH, 2.3 BL s-1), oscillating low (OL, 0.2/0.8 BL s-1) and oscillating high (OH, 0.8/2.3 BL s-1) velocities, including a non-exercised group with minimal water flow (MF, <0.1 BL s-1). Swimming conditions did not trigger a stress response or anaerobic metabolism, suggested by similar levels of cortisol, lactate, and glucose in plasma among groups. Blood haemoglobin and innate immune parameters in plasma and skin mucus also remained unaltered. However, decreased blood haematocrit was observed in fish swimming on the OL condition. Interestingly, gene expression analysis revealed that the OL condition led to the up-regulation of pro-inflammatory mediators (nfκb1 and mapk3) and cytokines (tnfα, il1β and il6) in gills. A similar response occurred in heart, with an up-regulation of nfκb1, tnfα, il6 and cox2 in the OL condition. Gene expression of these cytokines was unaltered in the head-kidney. The inflammatory response in gills and heart of gilthead seabream triggered by the OL condition highlights the importance of establishing suitable rearing conditions to improve welfare of cultured fish.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences (FCUP), University of Porto, Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal.
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
15
|
Leiva-Rebollo R, Gémez-Mata J, Castro D, Borrego JJ, Labella AM. Immune response of DNA vaccinated-gilthead seabream ( Sparus aurata) against LCDV-Sa infection: relevance of the inflammatory process. Front Immunol 2023; 14:1209926. [PMID: 37346045 PMCID: PMC10279854 DOI: 10.3389/fimmu.2023.1209926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Lymphocystis disease is one of the main viral pathologies affecting cultured gilthead seabream (Sparus aurata) in the Mediterranean region. Recently, we have developed a DNA vaccine based on the major capsid protein (MCP) of the Lymphocystis disease virus 3 (LCDV-Sa). The immune response triggered by either LCDV-Sa infection or vaccination have been previously studied and seem to be highly related to the modulation of the inflammatory and the IFN response. However, a comprehensive evaluation of immune-related gene expression in vaccinated fish after viral infection to identify immunogenes involved in vaccine-induced protection have not been carried out to date. The present study aimed to fulfill this objective by analyzing samples of head-kidney, spleen, intestine, and caudal fin from fish using an OpenArray® platform containing targets related to the immune response of gilthead seabream. The results obtained showed an increase of deregulated genes in the hematopoietic organs between vaccinated and non-vaccinated fish. However, in the intestine and fin, the results showed the opposite trend. The global effect of fish vaccination was a significant decrease (p<0.05) of viral replication in groups of fish previously vaccinated, and the expression of the following immune genes related to viral recognition (tlr9), humoral and cellular response (rag1 and cd48), inflammation (csf1r, elam, il1β, and il6), antiviral response (isg15, mx1, mx2, mx3), cell-mediated cytotoxicity (nccrp1), and apoptosis (prf1). The exclusive modulation of the immune response provoked by the vaccination seems to control the progression of the infection in the experimentally challenged gilthead seabream.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro M. Labella
- Department of Microbiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| |
Collapse
|
16
|
Wang Y, Deng M, Chen C, Lv L, Zhu H, Chen L, Weng H. Interacted toxic mechanisms of ochratoxin A and tricyclazole on the zebrafish (Danio rerio). CHEMOSPHERE 2023; 326:138429. [PMID: 36933844 DOI: 10.1016/j.chemosphere.2023.138429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Despite the current efforts to identify the mixtures of chemical pollutants, they are often "binned" into their corresponding pollutant groups. Limited studies have investigated complex mixtures of chemical pollutants co-occurring across different groups. The combined toxic impacts of several substances become a critical consideration in toxicology because chemical combinations can exert a greater deleterious effect than the single components in the mixture. In the current work, we assessed the joint impacts of ochratoxin A and tricyclazole on the zebrafish (Danio rerio) embryos and explored their underlying signaling pathways. Ochratoxin A displayed higher toxicity than tricyclazole, with a 10-day LC50 of 0.16 mg L-1, whereas that for tricyclazole was 1.94 mg L-1. The combination of ochratoxin A and tricyclazole exhibited a synergistic impact on D. rerio. The activities of detoxification enzymes GST and CYP450, as well as apoptosis-associated enzyme caspase 3, were distinctly changed in most individual and mixture exposures comparing to the untreated group. Upon both individual and mixture exposures, more dramatic variations were detected in the expressions of nine genes, such as the apoptosis genes cas3 and bax, antioxidant gene mn-sod, immunosuppression gene il-1β, and the endocrine system genes trα, dio1, trβ, ugtlab, and crh, compared with the untreated group. These findings suggested that the simultaneous exposure to low doses of mycotoxins and pesticides in food commodities was more toxic than predicted from the individual chemicals. Considering the frequent co-occurrence of mycotoxins and pesticides in the diet, this synergy should be considered in future assessments.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan, 250012, Shandong, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Hongmei Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China.
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China.
| |
Collapse
|
17
|
Cang T, Wu C, Chen C, Liu C, Song W, Yu Y, Wang Y. Impacts of co-exposure to zearalenone and trifloxystrobin on the enzymatic activity and gene expression in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114860. [PMID: 37011514 DOI: 10.1016/j.ecoenv.2023.114860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Although humans and animals are usually exposed to combinations of toxic substances, little is known about the interactive toxicity of mycotoxins and farm chemicals. Therefore, we can not precisely evaluate the health risks of combined exposure. In the present work, using different approaches, we examined the toxic impacts of zearalenone and trifloxystrobin on zebrafish (Danio rerio). Our findings showed that the lethal toxicity of zearalenone to embryonic fish with a 10-day LC50 of 0.59 mg L-1 was lower than trifloxystrobin (0.037 mg L-1). Besides, the mixture of zearalenone and trifloxystrobin triggered acute synergetic toxicity to embryonic fish. Moreover, the contents of CAT, CYP450, and VTG were distinctly altered in most single and combined exposures. Transcriptional levels of 23 genes involved in the oxidative response, apoptosis, immune, and endocrine systems were determined. Our results implied that eight genes (cas9, apaf-1, bcl-2, il-8, trb, vtg1, erβ1, and tg) displayed greater changes when exposed to the mixture of zearalenone and trifloxystrobin compared with the corresponding individual chemicals. Our findings indicated that performing the risk assessment based on the combined impact rather than the individual dosage response of these chemicals was more accurate. Nevertheless, further investigations are still necessary to reveal the modes of action of mycotoxin and pesticide combinations and alleviate their effects on human health.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Changxing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| | - Caixiu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Wen Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yijun Yu
- Administration for Farmland Quality and Fertilizer of Zhejiang Province, Hangzhou 310020, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
18
|
Zhu R, Liu Z, Lu M, Wu X, Zhao X, Wang HH, Quan YN, Wu LF. The protective role of vitamin C on intestinal damage induced by high-dose glycinin in juvenile Rhynchocypris lagowskii Dybowski. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108589. [PMID: 36773713 DOI: 10.1016/j.fsi.2023.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
This study was to evaluate the mitigative effects of vitamin C (VC) on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. 270 healthy juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.04 g) were randomly divided into 3 treatments, and fed with control diet, 80 g/kg glycinin diet and 80 g/kg glycinin+200 mg/kg VC diet respectively for 8 weeks. The results showed that glycinin significantly decreased the weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05), while VC supplementation improved the growth performance and feed utilization efficiency, and reached a level similar to the control group. Similarly, VC significantly increased the crude protein content of muscle and whole-body, and hepatopancreas and intestinal protease activities of fish fed with glycinin diet (P < 0.05). The distal intestine of fish in glycinin group showed typical damage characteristics, including breakage and atrophy of intestinal mucosal fold, and increased intestinal mucosal permeability. However, fish fed the glycinin + VC diet showed an unimpaired normal intestinal morphology. Usefully, VC supplementation could also restore impaired immune function and antioxidant capacity. VC down-regulated the mRNA levels of pro-inflammatory cytokines TNF-α and IL-1β, and up-regulated the mRNA levels of anti-inflammatory cytokines IL-10 and TGF-β in the distal intestine of fish fed with glycinin. Furthermore, glycinin exposure could reduce the mRNA levels of HO-1, CAT and GPx by inhibiting the activation of Nrf2-Keap1 signaling pathway, while VC supplementation reversed this phenomenon and maintained the homeostasis of antioxidant defense system. Concluded, glycinin causes growth inhibition, digestive dysfunction and intestinal damage of Rhynchocypris lagowskii Dybowski, while sufficient VC intake is beneficial for fish to resist the adverse effects of glycinin.
Collapse
Affiliation(s)
- Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zongyu Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Minghui Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xueqin Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xueyuan Zhao
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Hong-He Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Ya-Nan Quan
- Jingyuetan Reservoir Management Office, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
19
|
Wang Y, Gao Z, Liu C, Mao L, Liu X, Ren J, Lu Z, Yao J, Liu X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44400-44414. [PMID: 36692725 DOI: 10.1007/s11356-023-25518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The interplay between pesticides plays a critical role in ecotoxicology since these chemicals rarely emerge as single substances but rather in mixtures with other chemicals. In the present work, we purposed to clarify the combined toxic impacts of pyraclostrobine (PYR) and metiram (MET) on the zebrafish by using numerous indicators. Results exhibited that the 4-day LC50 value of MET to fish embryos was 0.0025 mg a.i. L-1, which was lower compared with PYR (0.019 mg a.i. L-1). Combinations of PYR and MET presented a synergetic impact on fish embryos. Contents of POD, CYP450, and VTG were drastically increased in the plurality of the single and joint treatments relative to the baseline value. Three genes, including vtg1, crh, and il-8, related to the endocrine and immune systems, were also surprisingly up-regulated when fish were challenged by the individual and mixture pesticides compared with the baseline value. These results afforded valuable information on the latent toxicity mechanisms of co-exposure for PYR and MET in the early growth stage of fish. Moreover, our data also revealed that frequent application of these two pesticides might exert a potentially ecotoxicological hazard on aquatic ecosystems. Collectively, the present study provided valuable guidance for the risk evaluation of chemical combinations.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zhongwen Gao
- College of Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuande Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Jindong Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zeqi Lu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xuan Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
20
|
Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:431-440. [PMID: 36241002 DOI: 10.1016/j.fsi.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Many disease agents infect the central nervous system (CNS) of teleost fish causing severe losses for the fish farming sector. Yet, neurotropic fish pathogens remain poorly documented and immune responses in the teleost CNS essentially unknown. Previously thought to be devoid of an immune system, the mammalian CNS is now recognized to be protected from infection by diverse immune cells that mostly reside in the meningeal lymphatic system. Here we review the current body of work pertaining immune responses in the teleost CNS to infection. We identify important knowledge gaps with regards to CNS immunity in fish and make recommendations for rigorous experimentation and reporting in manuscripts so that fish immunologists can advance this burgeoning field.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
21
|
Collado-González M, Esteban MÁ. Chitosan-nanoparticles effects on mucosal immunity: A systematic review. FISH & SHELLFISH IMMUNOLOGY 2022; 130:1-8. [PMID: 36038102 DOI: 10.1016/j.fsi.2022.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles-based treatments is of utmost importance for aquaculture. In this scenario, chitosan-based nanoparticles have been proposed due to the properties of chitosan, which include mucoadhesiveness. Nevertheless, pivotal parameters of chitosan, such as degree of acetylation and molecular weight, are commonly underestimated in the available literature despite the influence they seem to have on the properties of chitosan-based nanoparticles. In this systematic review, the immunomodulator capacity of chitosan nanoparticles used as mucosal vaccines on teleost fish has been evaluated paying special attention to the chitosan properties. Four databases were used for literature search, yielding 486 documents, from which 14 meet the inclusion criteria. Only 21% of the available studies reported properly chitosan properties, which should be improved in future works to generate reproducible data as well as valuable information. To the best of our knowledge, this work objectively compares for the first time, by quantifying the mg of chitosan/g of fish applied in each study, the chitosan nanoparticle preparation and doses applied to fish, as well as the effects of the treatments applied on fish immune status.
Collapse
Affiliation(s)
- Mar Collado-González
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
22
|
Zhan W, Weng H, Liu F, Han M, Lou B, Wang Y. Joint toxic effects of phoxim and lambda-cyhalothrin on the small yellow croaker (Larimichthys polyactis). CHEMOSPHERE 2022; 307:136203. [PMID: 36037960 DOI: 10.1016/j.chemosphere.2022.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Although pesticides commonly exist as combinations in real-life situations of the aquatic ecosystem, the impact of the toxicity of their mixtures has remained largely unclear. In this study, we investigated the combined effects of two neurotoxic pesticides, including one organophosphate insecticide phoxim (PHO) and one pyrethroid insecticide lambda-cyhalothrin (LCY), on the embryos of the small yellow croaker (Larimichthys polyactis), and their potential pathways. LCY exhibited higher toxicity relative to PHO, with a 72-h LC50 value of 0.0074 mg a.i. L-1, while the corresponding value for PHO was 0.12 mg a.i. L-1. The mixture of PHO and LCY exerted a synergistic effect on the embryos of L. polyactis. The activities of antioxidant enzyme CAT and apoptotic enzyme caspase 3 were substantially changed in most single and combined exposure groups relative to the baseline value. Under both single and combined exposures, more significant changes were found in the mRNA expression of five genes, including the immunosuppression gene ngln2, the apoptosis gene P53, the endocrine system gene cyp19a1b, as well as neurodevelopment genes of ap and acp2, relative to the baseline value. Furthermore, the non-target metabolomic analysis demonstrated that hundreds of differential metabolites, including two bile acids (taurodeoxycholic acid and tauroursodeoxycholic acid), were significantly increased in the exposure groups. The bile acids were closely associated with the gut microbiota, and 16S rRNA sequencing results demonstrated dysfunction of the gut microbiota after exposure, especially in the combined exposure group. Our findings indicated that there might be a potential risk connected to the co-occurrence of these two pesticides in aquatic vertebrates. Consequently, future ecological risk assessments should incorporate synergistic mixtures because the current risk assessments do not consider them.
Collapse
Affiliation(s)
- Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
23
|
Sebo DJ, Fetsko AR, Phipps KK, Taylor MR. Functional identification of the zebrafish Interleukin-1 receptor in an embryonic model of Il-1β-induced systemic inflammation. Front Immunol 2022; 13:1039161. [PMID: 36389773 PMCID: PMC9643328 DOI: 10.3389/fimmu.2022.1039161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2023] Open
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory cytokine that plays a vital role in the innate immune system. To observe the innate immune response in vivo, several transgenic zebrafish lines have been developed to model IL-1β-induced inflammation and to visualize immune cell migration and proliferation in real time. However, our understanding of the IL-1β response in zebrafish is limited due to an incomplete genome annotation and a lack of functional data for the cytokine receptors involved in the inflammatory process. Here, we use a combination of database mining, genetic analyses, and functional assays to identify zebrafish Interleukin-1 receptor, type 1 (Il1r1). We identified putative zebrafish il1r1 candidate genes that encode proteins with predicted structures similar to human IL1R1. To examine functionality of these candidates, we designed highly effective morpholinos to disrupt gene expression in a zebrafish model of embryonic Il-1β-induced systemic inflammation. In this double transgenic model, ubb:Gal4-EcR, uas:il1βmat , the zebrafish ubiquitin b (ubb) promoter drives expression of the modified Gal4 transcription factor fused to the ecdysone receptor (EcR), which in turn drives the tightly-regulated expression and secretion of mature Il-1β only in the presence of the ecdysone analog tebufenozide (Teb). Application of Teb to ubb:Gal4-EcR, uas:il1βmat embryos causes premature death, fin degradation, substantial neutrophil expansion, and generation of reactive oxygen species (ROS). To rescue these deleterious phenotypes, we injected ubb:Gal4-EcR, uas:il1βmat embryos with putative il1r1 morpholinos and found that knockdown of only one candidate gene prevented the adverse effects caused by Il-1β. Mosaic knockout of il1r1 using the CRISPR/Cas9 system phenocopied these results. Taken together, our study identifies the functional zebrafish Il1r1 utilizing a genetic model of Il-1β-induced inflammation and provides valuable new insights to study inflammatory conditions specifically driven by Il-1β or related to Il1r1 function in zebrafish.
Collapse
Affiliation(s)
- Dylan J. Sebo
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Audrey R. Fetsko
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Kallie K. Phipps
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael R. Taylor
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
24
|
Zhu R, Wu XQ, Zhao XY, Qu ZH, Quan YN, Lu MH, Liu ZY, Wu LF. Taurine can improve intestinal function and integrity in juvenile Rhynchocypris lagowskii Dybowski fed high-dose glycinin. FISH & SHELLFISH IMMUNOLOGY 2022; 129:127-136. [PMID: 36055559 DOI: 10.1016/j.fsi.2022.08.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The present study evaluated the protective effect and the regulatory mechanism of taurine on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The control diets had no glycinin and taurine, the glycinin diets contained only 80 g/kg glycinin, and the glycinin + taurine diets contained 80 g/kg glycinin+10 g/kg taurine. Juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.03 g/tail) were respectively fed with these 3 diets for 8 weeks. The results showed that glycinin significantly decreased the final body weight, weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05). While taurine supplementation improved the growth performance and feed efficiency, but final body weight, weight gain rate, specific growth rate of the glycinin + taurine group were still significantly lower than the control group (P < 0.05). Compared with the glycinin group, taurine supplementation significantly increased whole-body and muscle crude protein content, and hepatopancreas and intestinal protease activities (P < 0.05). Distal intestinal villous dysplasia and mucosal damage, and increased intestinal mucosal permeability were observed in the glycinin group, while taurine supplementation alleviated these adverse effects. Usefully, taurine supplementation could also partially restore the impaired immune function and antioxidant capacity of fish fed glycinin diets. Compared with the glycinin group, taurine supplementation down-regulated pro-inflammatory cytokines TNF-α and IL-1β mRNA levels, and up-regulated anti-inflammatory cytokines IL-10 and TGF-β mRNA levels. Furthermore, taurine partially reversed the reduction of antioxidant genes Nrf2、HO-1, CAT and GPx mRNA levels in distal intestine induced by glycinin. Concluded, 80 g/kg glycinin led to intestinal damage, digestive dysfunction and increased intestinal mucosal permeability in juvenile Rhynchocypris lagowskii Dybowski, and these adverse effects were ultimately manifested in growth inhibition. But taurine supplementation could partially mitigate the negative effects induced by glycinin.
Collapse
Affiliation(s)
- Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xue-Yuan Zhao
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Zi-Hui Qu
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, 130119, China
| | - Ya-Nan Quan
- Jingyuetan Reservoir Management Office, Changchun, 130118, China
| | - Ming-Hui Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Zong-Yu Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
25
|
Hu G, Wang H, Shi H, Wan Y, Zhu J, Li X, Wang Q, Wang Y. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio). Chem Biol Interact 2022; 366:110150. [PMID: 36084721 DOI: 10.1016/j.cbi.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.
Collapse
Affiliation(s)
- Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, Jiangsu, China
| | - Yujie Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiahong Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
26
|
Zvolský M, Schaar M, Seeger S, Rakers S, Rafecas M. Development of a digital zebrafish phantom and its application to dedicated small-fish PET. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac71ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. We are developing a small-fish positron emission tomography (PET) scanner dedicated to small aquatic animals relevant for biomedical and biological research, e.g. zebrafish. We plan to use Monte Carlo simulations to optimize its configuration and the required water-filled imaging chambers. Our objectives were: (1) to create a digital 3D zebrafish phantom using conventional micro-CT, (2) include the phantom into a simulated PET environment based on the framework GATE, and (3) investigate the effects of the water environment on the reconstructed images. Approach. To create the phantom, we performed ex vivo measurements of zebrafish specimen using a tabletop micro-CT and compared three methods to fixate the specimen. From segmented micro-CT images we created digital emission and transmission phantoms which were incorporated in GATE via tessellated volumes. Two chamber sizes were considered. For reference, a simulation with the zebrafish in air was implemented. The simulated data were reconstructed using CASToR. For attenuation correction, we used the exact attenuation information or a uniform distribution (only water). Several realizations of each scenario were performed; the reconstructed images were quantitatively evaluated. Main results. Fixation in formalin led to the best soft-tissue contrast at the cost of some specimen deformation. After attenuation correction, no significant differences were found between the reconstructed images. The PET images reflected well the higher uptake simulated in the brain and heart, despite their small size and surrounding background activity; the swim bladder (no activity) was clearly identified. The simplified attenuation map, consisting only of water, slightly worsened the images. Significance. A conventional micro-CT can provide sufficient image quality to generate numerical phantoms of small fish without contrast media. Such phantoms are useful to evaluate in-silico small aquatic animal imaging concepts and develop imaging protocols. Our results support the feasibility of zebrafish PET with an aqueous environment.
Collapse
|
27
|
Park M, Joung M, Park JH, Ha SK, Park HY. Role of Postbiotics in Diet-Induced Metabolic Disorders. Nutrients 2022; 14:nu14183701. [PMID: 36145077 PMCID: PMC9503758 DOI: 10.3390/nu14183701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Although the prevalence of metabolic disorders has progressively increased over the past few decades, metabolic disorders can only be effectively treated with calorie restriction and improved physical activity. Recent research has focused on altering the gut microbiome using prebiotics, probiotics, and postbiotics because various metabolic syndromes are caused by gut microbial dysbiosis. Postbiotics, substances produced or released by microorganism metabolic activities, play an important role in maintaining and restoring host health. Because postbiotics have a small amount of literature on their consumption, there is a need for more experiments on short- and long-term intake. This review discusses current postbiotic research, categories of postbiotics, positive roles in metabolic syndromes, and potential therapeutic applications. It covers postbiotic pleiotropic benefits, such as anti-obesity, anti-diabetic, and anti-hypertensive qualities, that could aid in the management of metabolic disorders. Postbiotics are promising tools for developing health benefits and therapeutic goals owing to their clinical, technical, and economic properties. Postbiotic use is attractive for altering the microbiota; however, further studies are needed to determine efficacy and safety.
Collapse
|
28
|
Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:ijms23147838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
|
29
|
Bertocci F, Mannino G. Can Agri-Food Waste Be a Sustainable Alternative in Aquaculture? A Bibliometric and Meta-Analytic Study on Growth Performance, Innate Immune System, and Antioxidant Defenses. Foods 2022; 11:1861. [PMID: 35804678 PMCID: PMC9266230 DOI: 10.3390/foods11131861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022] Open
Abstract
The agri-food industry generates a large amount of waste every year, which is both an environmental and economic problem, especially for the countries in charge of its disposal. Over the years, there has been a growing interest especially in plant waste, since they are rich in compounds with high nutritional and nutraceutical value. As a result, several scientific disciplines are investigating their alternative use in the formulation of dietary supplements for human or animal use, or as biostimulants for agricultural purposes. In this review, using a meta-analytical approach, we summarize the main and most recent findings related to the use of plant waste as potential ingredients in dietary supplementation for fish grown under controlled experimental conditions. In particular, in this review, it has been highlighted that plant waste may have not only positive effects on growth performance, but also beneficial effects on modulation of the innate immune system and antioxidant defenses. Finally, the bibliometric study and a mapping provide an overview of the recent publications, showing the research strength across the country, the number of potential collaborations among institutions, and the main research focus, demonstrating how this topic is growing in interest, especially in Europe.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy;
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
30
|
Campos-Sánchez JC, Carrillo NG, Guardiola FA, Francisco DC, Esteban MÁ. Ultrasonography and X-ray micro-computed tomography characterization of the effects caused by carrageenin in the muscle of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 123:431-441. [PMID: 35337979 DOI: 10.1016/j.fsi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The current work aimed to carry out an in vivo study of the λ-carrageenin-induced inflammation in the skin of gilthead seabream (Sparus aurata). The fish were injected intramuscularly with phosphate-buffered saline (PBS, as control) or λ-carrageenin (1% in PBS), and the injection zone was evaluated by real-time ultrasonography (Vevo Lab, VisualSonics) at 1.5, 3, 6, 12, and 24 h post-injection (p.i.). Results demonstrated that the skin thickness was increased in fish injected with λ-carrageenin and sampled at 1.5, 3, and 6 h p.i. However, the skin thickness of the injected area decreased to the normal values in those fish sampled at 12 and 24 h p.i. In addition, fish injected with λ-carrageenin and analysed at 1.5, 3, and 6 h p.i. showed, in the underlying muscle at the injection place, several hyperechoic small foci surrounded by an anechoic area which were not observed in control fish. Furthermore, the fish were analysed by X-ray micro-computed tomography (micro-CT). The analysis of the micro-CT acquisitions revealed also a dark area in the place of the injection with λ-carrageenin at 1.5, 3, and 6 h. These areas were smaller in fish analysed at longer times (12 h p.i.) and were almost disappeared in fish sampled at 24 h p.i. These areas had an average density of -850 to -115 HU, which did not correspond with any tissue density of the rest of the body. Furthermore, similar dark areas at the injection zones were never observed in control fish. Present results support the use of both non-invasive techniques to study the inflammatory process in fish of commercial interest such as gilthead seabream.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Nuria García Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, 30120, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Diana Ceballos Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
31
|
Caballero-Solares A, Umasuthan N, Xue X, Katan T, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Taylor RG, Rise ML. Interacting Effects of Sea Louse (Lepeophtheirus salmonis) Infection and Formalin-Killed Aeromonas salmonicida on Atlantic Salmon Skin Transcriptome. Front Immunol 2022; 13:804987. [PMID: 35401509 PMCID: PMC8987027 DOI: 10.3389/fimmu.2022.804987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. In the present study, pre-adult L. salmonis-infected and non-infected salmon were intraperitoneally injected with either formalin-killed Aeromonas salmonicida bacterin (ASAL) or phosphate-buffered saline (PBS). Dorsal skin samples from each injection/infection group (PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice) were collected at 24 h post-injection and used for transcriptome profiling using a 44K salmonid microarray platform. Microarray results showed no clear inflammation gene expression signatures and revealed extensive gene repression effects by pre-adult lice (2,189 down and 345 up-regulated probes) in the PBS-injected salmon (PBS/lice vs. PBS/no lice), which involved basic cellular (e.g., RNA and protein metabolism) processes. Lice repressive effects were not observed within the group of ASAL-injected salmon (ASAL/lice vs. ASAL/no lice); on the contrary, the observed skin transcriptome changes –albeit of lesser magnitude (82 up and 1 down-regulated probes)– suggested the activation in key immune and wound healing processes (e.g., neutrophil degranulation, keratinocyte differentiation). The molecular skin response to ASAL was more intense in the lice-infected (ASAL/lice vs. PBS/lice; 272 up and 11 down-regulated probes) than in the non-infected fish (ASAL/no lice vs. PBS/no lice; 27 up-regulated probes). Regardless of lice infection, the skin’s response to ASAL was characterized by the putative activation of both antibacterial and wound healing pathways. The transcriptomic changes prompted by ASAL+lice co-stimulation (ASAL/lice vs. PBS/no lice; 1878 up and 3120 down-regulated probes) confirmed partial mitigation of lice repressive effects on fundamental cellular processes and the activation of pathways involved in innate (e.g., neutrophil degranulation) and adaptive immunity (e.g., antibody formation), as well as endothelial cell migration. The qPCR analyses evidenced immune-relevant genes co-stimulated by ASAL and lice in an additive (e.g., mbl2b, bcl6) and synergistic (e.g., hampa, il4r) manner. These results provided insight on the physiological response of the skin of L. salmonis-infected salmon 24 h after ASAL stimulation, which revealed immunostimulatory properties by the bacterin with potential applications in anti-lice treatments for aquaculture. As a simulated co-infection model, the present study also serves as a source of candidate gene biomarkers for sea lice and bacterial co-infection.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- *Correspondence: Albert Caballero-Solares,
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | | | - Zhiyu Chen
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- Fisheries and Marine Institute, Memorial University, St. John’s, NL, Canada
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
32
|
Early Immune Modulation in European Seabass (Dicentrarchus labrax) Juveniles in Response to Betanodavirus Infection. FISHES 2022. [DOI: 10.3390/fishes7020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The early host–pathogen interaction between European seabass (Dicentrarchus labrax) and Betanodavirus was examined by using juvenile fish infected intramuscularly with RGNNV (red-spotted grouper nervous necrosis virus). The time course selected for sampling (0–144 h post-infection (hpi)) covered the early stages of infection, with hematological, antioxidant and immunological responses examined. Early activation of the host’s immune system was seen in the first few hours post-infection (6 to 9 hpi), as evidenced by an increase in tnfα, cd28 and c3 expression in the head kidney of infected fish. Most hematological parameters that were examined showed significant differences between sampling times, including differences in the number of thrombocytes and various leukocyte populations. The plasma lysozyme concentration decreased significantly over the course of the trial, and most antioxidant parameters examined in the liver showed significant differences over the infection period. At 144 hpi, peak expression of tnfα and il-1β coincided with the appearance of disease symptoms, peak levels of virus in the brain and high levels of fish mortality. The results of the study show the importance of analyzing the early interactions between European seabass and Betanodavirus to establish early indicators of infection to prevent more severe outcomes of the infection from occurring.
Collapse
|
33
|
Chan JTH, Kadri S, Köllner B, Rebl A, Korytář T. RNA-Seq of Single Fish Cells - Seeking Out the Leukocytes Mediating Immunity in Teleost Fishes. Front Immunol 2022; 13:798712. [PMID: 35140719 PMCID: PMC8818700 DOI: 10.3389/fimmu.2022.798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.
Collapse
Affiliation(s)
- Justin T. H. Chan
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Safwen Kadri
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Regenerative Biology and Medicine, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Tomáš Korytář
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
34
|
Campos-Sánchez JC, Vitarelli E, Guardiola FA, Ceballos-Francisco D, García Beltrán JM, Ieni A, Esteban MÁ. Implication of mucus-secreting cells, acidophilic granulocytes and monocytes/macrophages in the resolution of skin inflammation caused by subcutaneous injection of λ/κ-carrageenin to gilthead seabream (Sparus aurata) specimens. JOURNAL OF FISH DISEASES 2022; 45:19-33. [PMID: 34549432 DOI: 10.1111/jfd.13528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
To date, the mechanisms of inflammation have been poorly studied in fish of commercial interest, due to the lack of development of appropriate experimental models. The current study evaluated a local inflammation triggered by a polymeric carrageenin mixture (a mucopolysaccharide derived from the red seaweed Chondrus crispus) in the skin of gilthead seabream (Sparus aurata). Fish were injected subcutaneously with phosphate-buffered saline (as control) or λ/κ-carrageenin (1%), and skin samples from the injection sites were collected 1.5, 3 and 6 hr post-injection, processed for inclusion in paraplast and stained with haematoxylin-eosin, Alcian blue or periodic acid-Schiff. Furthermore, immunohistochemistry and expression analyses of several cells' markers and proinflammatory genes were also analysed in samples of the injected sites. Microscopic results indicated an increased number of skin mucus-secreting cells and acidophilic granulocytes in the skin of fish studied at 1.5 hr and 3 hr post-injection with carrageenin, respectively, with respect to the data obtained in control fish. Otherwise, both the gene expression of the non-specific cytotoxic cell marker (granzyme B, grb) and the proinflammatory cytokine (interleukin-1β, il-1β) were up-regulated at 1.5 hr in the skin of fish injected with carrageenin compared with the control fish, whilst the gene expression of acidophilic granulocyte markers (NADPH oxidase subunit Phox22 and Phox40, phox22 and phox40) was up-regulated at 3 and 6 hr in the carrageenin group, compared with the control group. In addition, the gene expression of myeloperoxidase (mpo) was also up-regulated at 6 hr in the skin of fish injected with carrageenin in comparison with control samples. The present results indicate the chronological participation of two important immune cells involved in the resolution of the inflammation in the skin of gilthead seabream.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Enrica Vitarelli
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - Francisco A Guardiola
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - María Ángeles Esteban
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
35
|
Campos-Sánchez JC, Mayor-Lafuente J, González-Silvera D, Guardiola FA, Esteban MÁ. Acute inflammatory response in the skin of gilthead seabream (Sparus aurata) caused by carrageenin. FISH & SHELLFISH IMMUNOLOGY 2021; 119:623-634. [PMID: 34656758 DOI: 10.1016/j.fsi.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Although inflammation is a well-characterized process in mammals, few studies have dealt with the mechanisms involved in this process in fish. The present study evaluated the expression of inflammation-related genes in the skin of fish injected with carrageenin, which has previously been used in inflammatory models in mammals. In our case, fish were injected subcutaneously with PBS (as control) or carrageenin (1%), and skin samples from the injection site were collected 1.5, 3 and 6 h post-injection. The gene expression of inflammatory markers (csfr1, mhc-ii and phox40), several pro-inflammatory cytokines (il1b, tnfa, il6, il8 and il18) and other molecules related (such as myd88 and c-rel) were up-regulated at 1.5 and 3 h in fish injected with carrageenin compared with control levels. By contrast, the gene expression of anti-inflammatory molecules (nlrx1, nlrc5 isoform 1, ctsd and ctss) was down-regulated in fish injected with carrageenin and sampled 3 h post injection, again compared to the gene expression in control fish. According to our results, carrageenin can be considered not only a good stimulator to study skin inflammation in gilthead seabream but also this method might be use to study the modulation of fish inflammatory process caused by internal or external factors.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniel González-Silvera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
36
|
Balkrishna A, Tomer M, Manik M, Srivastava J, Dev R, Haldar S, Varshney A. Chyawanprash, An Ancient Indian Ayurvedic Medicinal Food, Regulates Immune Response in Zebrafish Model of Inflammation by Moderating Inflammatory Biomarkers. Front Pharmacol 2021; 12:751576. [PMID: 34867361 PMCID: PMC8633414 DOI: 10.3389/fphar.2021.751576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
The time-tested Ayurvedic medicinal food, Chyawanprash, has been a part of the Indian diet since ancient times. It is an extremely concentrated mixture of extracts from medicinal herbs and processed minerals, known for its immunity boosting, rejuvenating, and anti-oxidative effects. In this study, we have evaluated the anti-inflammatory potential of Patanjali Special Chyawanprash (PSCP) using the zebrafish model of inflammation. Zebrafish were fed on PSCP-infused pellets at stipulated doses for 13 days before inducing inflammation through lipopolysaccharide (LPS) injection. The test subjects were monitored for inflammatory pathologies like behavioral fever, hyperventilation, skin hemorrhage, locomotory agility, and morphological anomaly. PSCP exerted a strong prophylactic effect on the zebrafish that efficiently protected them from inflammatory manifestations at a human equivalent dose. Expression levels of pro-inflammatory cytokines, like interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β), were also reduced in the LPS-stimulated zebrafish fed on PSCP-infused pellets. Skin hemorrhage, hyperventilation, and loss of caudal fins are characteristics of LPS-induced inflammation in zebrafish. PSCP prophylactically ameliorated skin hemorrhage, restored normal respiration, and prevented loss of caudal fin in inflamed zebrafish. Under in vitro conditions, PSCP reduced IL-6 and TNF-α secretion by THP-1 macrophages in a dose-dependent manner by targeting NF-κB signaling, as evident from the secreted embryonic alkaline phosphatase (SEAP) reporter assay. These medicinal benefits of PSCP can be attributed to its constitutional bioactive components. Taken together, these observations provide in vivo validation of the anti-inflammatory property and in vitro insight into the mode-of-action of Chyawanprash, a traditionally described medicinal food.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Moumita Manik
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
37
|
Heylen L, Pham DH, De Meulemeester AS, Samarut É, Skiba A, Copmans D, Kazwiny Y, Vanden Berghe P, de Witte PAM, Siekierska A. Pericardial Injection of Kainic Acid Induces a Chronic Epileptic State in Larval Zebrafish. Front Mol Neurosci 2021; 14:753936. [PMID: 34720874 PMCID: PMC8551382 DOI: 10.3389/fnmol.2021.753936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common disorder of the brain characterized by spontaneous recurrent seizures, which develop gradually during a process called epileptogenesis. The mechanistic processes underlying the changes of brain tissue and networks toward increased seizure susceptibility are not fully understood. In rodents, injection of kainic acid (KA) ultimately leads to the development of spontaneous epileptic seizures, reflecting similar neuropathological characteristics as seen in patients with temporal lobe epilepsy (TLE). Although this model has significantly contributed to increased knowledge of epileptogenesis, it is technically demanding, costly to operate and hence not suitable for high-throughput screening of anti-epileptic drugs (AEDs). Zebrafish, a vertebrate with complementary advantages to rodents, is an established animal model for epilepsy research. Here, we generated a novel KA-induced epilepsy model in zebrafish larvae that we functionally and pharmacologically validated. KA was administered by pericardial injection at an early zebrafish larval stage. The epileptic phenotype induced was examined by quantification of seizure-like behavior using automated video recording, and of epileptiform brain activity measured via local field potential (LFP) recordings. We also assessed GFP-labeled GABAergic and RFP-labeled glutamatergic neurons in double transgenic KA-injected zebrafish larvae, and examined the GABA and glutamate levels in the larval heads by liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). Finally, KA-injected larvae were exposed to five commonly used AEDs by immersion for pharmacological characterization of the model. Shortly after injection, KA induced a massive damage and inflammation in the zebrafish brain and seizure-like locomotor behavior. An abnormal reorganization of brain circuits was observed, a decrease in both GABAergic and glutamatergic neuronal population and their associated neurotransmitters. Importantly, these changes were accompanied by spontaneous and continuous epileptiform brain discharges starting after a short latency period, as seen in KA rodent models and reminiscent of human pathology. Three out of five AEDs tested rescued LFP abnormalities but did not affect the seizure-like behavior. Taken together, for the first time we describe a chemically-induced larval zebrafish epilepsy model offering unique insights into studying epileptogenic processes in vivo and suitable for high-throughput AED screening purposes and rapid genetic investigations.
Collapse
Affiliation(s)
- Lise Heylen
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Duc-Hung Pham
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | | | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, QC, Canada.,Modelis Inc., Montreal, QC, Canada
| | - Adrianna Skiba
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Youcef Kazwiny
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
38
|
Balasch JC, Brandts I, Barría C, Martins MA, Tvarijonaviciute A, Tort L, Oliveira M, Teles M. Short-term exposure to polymethylmethacrylate nanoplastics alters muscle antioxidant response, development and growth in Sparus aurata. MARINE POLLUTION BULLETIN 2021; 172:112918. [PMID: 34526262 DOI: 10.1016/j.marpolbul.2021.112918] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Polymethylmethacrylate (PMMA) plastic fragments have been found abundant in the environment, but the knowledge regarding its effects on the physiology of aquatic animals is still poorly studied. Here the short-term (96 h) effects of waterborne exposure to PMMA nanoplastics (PMMA-NPs) on the muscle of gilthead sea bream (Sparus aurata) fingerlings was evaluated at a concentration range that includes 0.001 up to 10 mg/L. The expression of key transcripts related to cell stress, tissue repair, immune response, antioxidant status and muscle development, together with several biochemical endpoints and metabolic parameters. Results indicate that exposure to PMMA-NPs elicit mildly antioxidant responses, enhanced the acetylcholinesterase (AChE) activity, and inhibited key regulators of muscle development (growth hormone receptors ghr-1/ghr-2 and myostatin, mstn-1 transcripts). However, no effects on pro-inflammatory cytokines (interleukin 1β, il1β and tumor necrosis factor α, tnfα) expression nor on the levels of energetic substrates (glucose, triglycerides and cholesterol) were found.
Collapse
Affiliation(s)
- J C Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - I Brandts
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - C Barría
- Programa de doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - M A Martins
- Department of Physics & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
39
|
Campos-Sánchez JC, Mayor-Lafuente J, Guardiola FA, Esteban MÁ. In silico and gene expression analysis of the acute inflammatory response of gilthead seabream (Sparus aurata) after subcutaneous administration of carrageenin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1623-1643. [PMID: 34448108 PMCID: PMC8478728 DOI: 10.1007/s10695-021-00999-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
Inflammation is one of the main causes of loss of homeostasis at both the systemic and molecular levels. The aim of this study was to investigate in silico the conservation of inflammation-related proteins in the gilthead seabream (Sparus aurata L.). Open reading frames of the selected genes were used as input in the STRING database for protein-protein interaction network analysis, comparing them with other teleost protein sequences. Proteins of the large yellow croaker (Larimichthys crocea L.) presented the highest percentages of identity with the gilthead seabream protein sequence. The gene expression profile of these proteins was then studied in gilthead seabream specimens subcutaneously injected with carrageenin (1%) or phosphate-buffered saline (control) by analyzing skin samples from the injected zone 12 and 24 h after injection. Gene expression analysis indicated that the mechanisms necessary to terminate the inflammatory response to carrageenin and recover skin homeostasis were activated between 12 and 24 h after injection (at the tested dose). The gene analysis performed in this study could contribute to the identification of the main mechanisms of acute inflammatory response and validate the use of carrageenin as an inflammation model to elucidate these mechanisms in fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
40
|
Campos-Sánchez JC, Guardiola FA, García Beltrán JM, Ceballos-Francisco D, Esteban MÁ. Effects of subcutaneous injection of λ/κ-carrageenin on the immune and liver antioxidant status of gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1449-1462. [PMID: 34032302 DOI: 10.1111/jfd.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the acute inflammatory response induced by subcutaneous injection of carrageenin (1%) or phosphate-buffered saline (control) in gilthead seabream (Sparus aurata). Skin mucus, serum, head kidney (HK) and liver were sampled at 1.5, 3 and 6 hr post-injection (p.i.) to determine the immune and antioxidant status of this fish species. The skin mucus of the carrageenin group showed increased superoxide dismutase and peroxidase activities, lysozyme abundance, bactericidal activity against Vibrio anguillarum and Photobacterium damselae, and total immunoglobulins compared with those of the control group. However, the carrageenin-injected fish sampled at 6 hr p.i. showed decreased protease activity in the skin mucus and peroxidase activity in the HK leucocytes compared with the control. Moreover, the carrageenin injection had no effects on the systemic immune system, but it reduced the liver catalase activities at both 3 and 6 hr in the carrageenin group relative to those in the control group. The expression levels of several proinflammatory and cell marker genes in the HK and liver were also determined. In the HK, the expression levels of interleukin-1β and prostaglandin D synthase 1 were upregulated at 1.5 and 3 hr, respectively, in the carrageenin group compared with those in the control group. Contrarily, the expression of the NADPH oxidase subunit phox40 (an acidophilic granulocyte marker) in the carrageenin group at 6 hr was downregulated compared with that in the control group. These results suggested that subcutaneous injection of κ/λ-carrageenin in gilthead seabream triggered an acute skin inflammation characterized by the rapid recruitment of acidophilic granulocytes and the release of humoral mediators into the skin mucus.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
41
|
Polinas M, Padrós F, Merella P, Prearo M, Sanna MA, Marino F, Burrai GP, Antuofermo E. Stages of Granulomatous Response Against Histozoic Metazoan Parasites in Mullets (Osteichthyes: Mugilidae). Animals (Basel) 2021; 11:ani11061501. [PMID: 34064270 PMCID: PMC8224377 DOI: 10.3390/ani11061501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Parasitic diseases represent a common issue in fish and, when histozoic forms are present, this elicits a chronic inflammatory reaction leading to granuloma formation. Despite the large knowledge of granuloma formation due to parasites in visceral organs, little is known about the development and the evolutive stages of granulomas in naturally infected fish. Mullets (Osteichthyes: Mugilidae) are a widespread euryhaline fish species that harbor different parasites, thus representing a suitable model for the study of parasite-induced granulomas. Combining histopathology and immunohistochemical tools, we identified three developmental granuloma stages (pre-granuloma, intermediate, and late stage), that ranged from an intact parasite with mild signs of tissue reaction to the formation of a structured granuloma. The identified histological patterns could be reliable tools in the staging of the granulomatous response associated with histozoic parasites and are an attempt to broaden the knowledge of the inflammatory response in different host–parasite systems. Abstract Histozoic parasite–fish host interaction is a dynamic process that leads to the formation of a granuloma, a specific chronic inflammatory response with discernible histological features. Mullets (Osteichthyes: Mugilidae) represent a suitable model concerning the development of such lesions in the host–parasite interface. The present work aimed to identify granuloma developmental stages from the early to the late phase of the infection and to characterize the immune cells and non-inflammatory components of the granuloma in different stages. For this purpose, 239 mullets were collected from 4 Sardinian lagoons, and several organs were examined by combining histopathological, bacteriological, and immunohistochemical methods. Granulomas associated with trematode metacercariae and myxozoan parasites were classified into three developmental stages: (1) pre-granuloma stage, characterized by intact encysted parasite and with no or mild tissue reaction; (2) intermediate stage, with partially degenerated parasites, necrosis, and a moderate number of epithelioid cells (ECs); and (3) late stage, with a necrotic core and no detectable parasite with a high number of ECs and fibroblasts. The three-tier staging and the proposed morphological diagnosis make it conceivable that histopathology could be an essential tool to evaluate the granulomas associated with histozoic parasitic infection in fish.
Collapse
Affiliation(s)
- Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Correspondence: ; Tel.: +39-(079)-229566
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Barcelona, Catalonia, Spain;
| | - Paolo Merella
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
| | - Marino Prearo
- Fish Disease Laboratory, State Veterinary Institute of Piedmont, Liguria and Aosta Valley, 10154 Torino, Italy;
| | - Marina Antonella Sanna
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
| | - Fabio Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Mediterranean Center for Disease Control (MCDC), University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.M.); (M.A.S.); (G.P.B.); (E.A.)
- Mediterranean Center for Disease Control (MCDC), University of Sassari, 07100 Sassari, Italy
| |
Collapse
|