1
|
Li Z, Hao X, He T, Chen Y, Yang M, Rong C, Gu C, Xiao Q, Lin R, Zheng X. Bamboo vinegar regulates the phytoremediation efficiency of Perilla frutescens (L.) Britt. by reducing membrane lipid damage and increasing cadmium retention. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135155. [PMID: 38991637 DOI: 10.1016/j.jhazmat.2024.135155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The gap between serious soil heavy metals pollution and inefficient soil remediation threatens human health. This study proposed a method to improve the phytoremediation efficiency using bamboo vinegar (BV) solution and the potential mechanism was discussed. The results demonstrated that the application of BV increases the content of cadmium (Cd) in vacuole and cell wall hemicellulose 2 in leaves of Perilla frutescens. Simultaneously, it enhanced enzyme activities of superoxide dismutase and catalase in leaves. Therefore, this process alleviated the damage of Cd to functional tissues of Perilla frutescens, thus improving the tolerance of plants to Cd. Moreover, the BV application reduced the Cd content bound by root cell wall pectin fractions and insoluble phosphate, subsequently improving the ability of oxalic acids to carry Cd to the aerial parts. Consequently, the aerial parts obtained a larger amount of Cd enrichment. Overall, the Transfer Factor of Cd from roots to stems and enrichment of Cd in Perilla frutescens were maximally increased by 57.70 % and 54.03 % with the application of 50-fold and 300-fold diluted BV under 2 mg·L-1 Cd stress, respectively. The results can provide a theoretical basis for the promotion of phytoremediation of Cd-contaminated soil treatment technology.
Collapse
Affiliation(s)
- Zhenguo Li
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingyu Hao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianlian He
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Chen
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Rong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhen Gu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingtie Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiyu Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Yu XF, Zeng XX, Wang XY, Du J, Wang XH, Liu YJ, Chen ML, Zhang XY, Xiao X, Yang LJ, Lei T, Gao SP, Li X, Jiang MY, Tao Q. Integrated cell wall and transcriptomic analysis revealed the mechanism underlying zinc-induced alleviation of cadmium toxicity in Cosmos bipinnatus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108940. [PMID: 39024781 DOI: 10.1016/j.plaphy.2024.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Plant growth is severely harmed by cadmium (Cd) contamination, while the addition of zinc (Zn) can reduce the toxic effects of Cd. However, the interaction between Cd and Zn on the molecular mechanism and cell wall of Cosmosbipinnatus is unclear. In this study, a transcriptome was constructed using RNA-sequencing. In C. bipinnatus root transcriptome data, the expression of 996, 2765, and 3023 unigenes were significantly affected by Cd, Zn, and Cd + Zn treatments, respectively, indicating different expression patterns of some metal transporters among the Cd, Zn, and Cd + Zn treatments. With the addition of Zn, the damage to the cell wall was reduced, both the proportion and content of polysaccharides in the cell wall were changed, and Cd accumulation was decreased by 32.34%. In addition, we found that Cd and Zn mainly accumulated in pectins, the content of which increased by 30.79% and 61.4% compared to the CK treatment. Thus, Zn could alleviate the toxicity of Cd to C. bipinnatus. This study revealed the interaction between Cd and Zn at the physiological and molecular levels, broadening our understanding of the mechanisms of tolerance to Cd and Zn stress in cosmos.
Collapse
Affiliation(s)
- Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiao-Xuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Hao Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu-Jia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mao-Lin Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Yu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Juan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Su-Ping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
3
|
Wang Y, Cui T, Niu K, Ma H. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134727. [PMID: 38824780 DOI: 10.1016/j.jhazmat.2024.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China.
| |
Collapse
|
4
|
Zhong K, Zhang P, Wei X, Platre MP, He W, Zhang L, Małolepszy A, Cao M, Hu S, Tang S, Li B, Hu P, Busch W. Natural variation of TBR confers plant zinc toxicity tolerance through root cell wall pectin methylesterification. Nat Commun 2024; 15:5823. [PMID: 38992052 PMCID: PMC11239920 DOI: 10.1038/s41467-024-50106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Zinc (Zn) is an essential micronutrient but can be cytotoxic when present in excess. Plants have evolved mechanisms to tolerate Zn toxicity. To identify genetic loci responsible for natural variation of plant tolerance to Zn toxicity, we conduct genome-wide association studies for root growth responses to high Zn and identify 21 significant associated loci. Among these loci, we identify Trichome Birefringence (TBR) allelic variation determining root growth variation in high Zn conditions. Natural alleles of TBR determine TBR transcript and protein levels which affect pectin methylesterification in root cell walls. Together with previously published data showing that pectin methylesterification increase goes along with decreased Zn binding to cell walls in TBR mutants, our findings lead to a model in which TBR allelic variation enables Zn tolerance through modulating root cell wall pectin methylesterification. The role of TBR in Zn tolerance is conserved across dicot and monocot plant species.
Collapse
Affiliation(s)
- Kaizhen Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Małolepszy
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Baohai Li
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China.
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Shen C, Huang B, Hu L, Yuan H, Huang Y, Wang Y, Sun Y, Li Y, Zhang J, Xin J. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133365. [PMID: 38163407 DOI: 10.1016/j.jhazmat.2023.133365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.
Collapse
Affiliation(s)
- Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Lu Hu
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yanbin Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingfang Sun
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yi Li
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jirong Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
6
|
Zheng ZC, Chen HH, Yang H, Shen Q, Chen XF, Huang WL, Yang LT, Guo J, Chen LS. Citrus sinensis manganese tolerance: Insight from manganese-stimulated secretion of root exudates and rhizosphere alkalization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108318. [PMID: 38159548 DOI: 10.1016/j.plaphy.2023.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
We used manganese (Mn)-tolerant 'Xuegan' (Citrus sinensis) seedlings as materials and examined the characterization of Mn uptake and Mn-activated-release of root exudates under hydroponic conditions. We observed that root and shoot Mn bioaccumulation factor (BCF) reduced with the increase of Mn supply, and that Mn transfer factor (Tf) reduced greatly as Mn supply increased from 0 to 500 μM, beyond which Tf slightly increased with increasing Mn supply, suggesting that Mn supply reduced the ability to absorb and accumulate Mn in roots and shoots, as well as root-to-shoot Mn translocation. Without Mn, roots alkalized the solution pH from 5.0 to above 6.2, while Mn supply reduced root-induced alkalization. As Mn supply increased from 0 to 2000 μM, the secretion of root total phenolics (TPs) increased, while the solution pH decreased. Mn supply did not alter the secretion of root total free amino acids, total soluble sugars, malate, and citrate. Mn-activated-release of TPs was inhibited by low temperature and anion channel inhibitors, but not by protein biosynthesis inhibitor. Using widely targeted metabolome, we detected 48 upregulated [35 upregulated phenolic compounds + 13 other secondary metabolites (SMs)] and three downregulated SMs, and 39 upregulated and eight downregulated primary metabolites (PMs). These findings suggested that reduced ability to absorb and accumulate Mn in roots and shoots and less root-to-shoot Mn translocation in Mn-toxic seedlings, rhizosphere alkalization, and Mn-activated-release of root exudates (especially phenolic compounds) contributed to the high Mn tolerance of C. sinensis seedlings.
Collapse
Affiliation(s)
- Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hui Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Shen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Chen ZJ, Huang J, Li S, Shao JF, Shen RF, Zhu XF. Salylic acid minimize cadmium accumulation in rice through regulating the fixation capacity of the cell wall to cadmium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111839. [PMID: 37643701 DOI: 10.1016/j.plantsci.2023.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Although salylic acid (SA) has been linked to how plants react to cadmium (Cd) stress, the exact mechanism is still unknown. The endogenous SA concentration in the rice (Oryza sativa L.) roots was enhanced by Cd stress in the current investigation, and exogenous SA reduced the hemicellulose content in root cell wall, which in turn inhibited its Cd binding capacity. What's more, exogenous SA also decreased the transcription level of genes such as Natural Resistance-Associated Macrophage Protein 5 (OsNRAMP5) and a major facilitator superfamily gene-OsCd1 that responsible for root Cd absorption. Finally, less Cd was accumulated in the rice as a result of the higher expression of Heavy Metal ATPase 3 (OsHMA3), Cation/Ca exchanger 2 (OsCCX2) and Pleiotropic Drug Resistance 9 (OsPDR9/OsABCG36) that were responsible for separating Cd into vacuole and getting Cd out of cells, respectively. In contrast, mutant with low SA level accumulated more Cd. Additionally, SA enhanced endogenous nitric oxide (NO) levels, and its alleviatory effects were mimicked by a NO donor, sodium nitroprusside (SNP). In conclusion, SA enhanced rice's Cd resistance through regulating the binding capacity of the cell wall to Cd, a pathway that might dependent on the NO accumulation.
Collapse
Affiliation(s)
- Zhi Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Feng Shao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Zhou Y, Yao L, Huang X, Li Y, Wang C, Huang Q, Yu L, Pan C. Transcriptomics and metabolomics association analysis revealed the responses of Gynostemma pentaphyllum to cadmium. FRONTIERS IN PLANT SCIENCE 2023; 14:1265971. [PMID: 37877087 PMCID: PMC10591085 DOI: 10.3389/fpls.2023.1265971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Gynostemma pentaphyllum an important medicinal herb, can absorb high amounts of cadmium (Cd) which can lead to excessive Cd contamination during the production of medicines and tea. Hence, it is crucial to investigate the response mechanism of G. pentaphyllum under Cd stress to develop varieties with low Cd accumulation and high tolerance. Physiological response analysis, transcriptomics and metabolomics were performed on G. pentaphyllum seedlings exposed to Cd stress. Herein, G. pentaphyllum seedlings could significantly enhance antioxidant enzyme activities (POD, CAT and APX), proline and polysaccharide content subject to Cd stress. Transcriptomics analysis identified the secondary metabolites, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways associated with Cd stress, which mainly involved the XTH, EXP and GST genes. Metabolomics analysis identified 126 differentially expressed metabolites, including citric acid, flavonoid and amino acids metabolites, which were accumulated under Cd stress. Multi-omics integrative analysis unraveled that the phenylpropanoid biosynthesis, starch, and sucrose metabolism, alpha-linolenic acid metabolism, and ABC transporter were significantly enriched at the gene and metabolic levels in response to Cd stress in G. pentaphyllum. In conclusion, the genetic regulatory network sheds light on Cd response mechanisms in G. pentaphyllum.
Collapse
Affiliation(s)
- Yunyi Zhou
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xueyan Huang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Li
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chunli Wang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qinfen Huang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Liying Yu
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chunliu Pan
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
9
|
Han GH, Huang RN, Hong LH, Xu JX, Hong YG, Wu YH, Chen WW. The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2262-2278. [PMID: 37565550 DOI: 10.1111/jipb.13557] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Guang Hao Han
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ru Nan Huang
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Li Hong Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia Xi Xu
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yi Guo Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick, CV4 7AL, United Kingdom
| | - Yu Huan Wu
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei Wei Chen
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Yu X, Yang L, Fan C, Hu J, Zheng Y, Wang Z, Liu Y, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Pan Y, Li X, Gao S, Zhou Y. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115101. [PMID: 37290296 DOI: 10.1016/j.ecoenv.2023.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/08/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) pollution is a global problem affecting soil ecology and plant growth. Abscisic acid (ABA) acts as a growth and stress hormone, regulates cell wall synthesis, and plays an important role in plant responses to stress. There are few studies on the mechanisms behind abscisic acid alleviation of cadmium stress in Cosmos bipinnatus, especially in regards to regulation of the root cell wall. This study examined the effects of different concentrations of abscisic acid at different concentrations of cadmium stress. Through adding 5 μmol/L and 30 μmol/L cadmium, followed by spraying 10 μmol/L and 40 μmol/L ABA in a hydroponic experiment, it was found that under two concentrations of cadmium stress, low concentration of ABA improved root cell wall polysaccharide, Cd, and uronic acid content. Especially in pectin, after the application of low concentration ABA, the cadmium concentration was significantly increased by 1.5 times and 1.2 times compared with the Cd concentration under Cd5 and Cd30 treatment alone, respectively. Fourier-Transform Infrared spectroscopy (FTIR) demonstrated that cell wall functional groups such as -OH and -COOH were increased with exposure to ABA. Additionally, the exogenous ABA also increased expression of three kinds of antioxidant enzymes and plant antioxidants. The results of this study suggest that ABA could reduce Cd stress by increasing Cd accumulation, promoting Cd adsorption on the root cell wall, and activating protective mechanisms. This result could help promote application of C. bipinnatus for phytostabilization of cadmium-contaminated soil.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liu Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunyu Fan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiani Hu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunhao Zheng
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhiwen Wang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yujia Liu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xue Xiao
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Lei
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingyan Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Beibei Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanzhi Pan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suping Gao
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yonghong Zhou
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
11
|
Guo Y, Chen K, Lei S, Gao Y, Yan S, Yuan M. Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1981. [PMID: 37653898 PMCID: PMC10223583 DOI: 10.3390/plants12101981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
The cell wall (CW) is critical for the accumulation of heavy metals in metal-tolerant plants. Polysaccharides, the main component of the CW, contribute significantly to the immobilization of heavy metals. However, the mechanisms of rare earth elements (REEs) adsorption and detoxification by polysaccharides in the cell walls of Phytolacca americana L. (P. americana) remain unclear. In this work, we explored the binding sites of REEs and the modifications to polysaccharides in the cell walls of roots and leaves in P. americana, in order to elucidate the adsorption and fixation mechanism of REEs by the cell wall. Our findings indicated that up to 40.7% and 48.1% of cell-wall-bound REEs were present in the root and leaf pectin, respectively. The removal of pectin led to a 39.8% and 23.6% decrease in the maximum adsorption of REEs in the CW, suggesting that pectin was the main binding site for REEs in the cell walls of P. americana. Hydroxyl (-OH) and carboxyl (-COOH) groups in the cell wall interacted mainly with REEs ions under stress conditions, which played a key role in REEs binding. An obvious REEs fractionation was found during the various fractions of the CW, and all fractions of the root cell wall were enriched with HREEs, whereas all fractions of the leaf cell wall were enriched with LREEs. Moreover, P. americana modulated cell wall composition in reaction to REEs stress. In conclusion, cell wall pectin is the main binding site of REEs, and the functional groups on the cell wall play a significant role in the binding of REEs. At the same time, plants can control the selective adsorption and fixation of REEs by adjusting the composition of cell walls. This study offers valuable insights into the mechanisms of REEs adsorption and fixation in cell walls of P. americana, contributing to a theoretical basis for the bioremediation of REEs pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
12
|
Li L, Wang S, Wu S, Rao S, Li L, Cheng S, Cheng H. Morphological and Physiological Indicators and Transcriptome Analyses Reveal the Mechanism of Selenium Multilevel Mitigation of Cadmium Damage in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12081583. [PMID: 37111807 PMCID: PMC10141491 DOI: 10.3390/plants12081583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
An X, Totozafy JC, Peaucelle A, Jones CY, Willats WGT, Höfte H, Corso M, Verbruggen N. Contrasting Cd accumulation of Arabidopsis halleri populations: a role for (1→4)-β-galactan in pectin. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130581. [PMID: 37055986 DOI: 10.1016/j.jhazmat.2022.130581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) accumulation is highly variable among Arabidopsis halleri populations. To identify cell wall (CW) components that contribute to the contrasting Cd accumulation between PL22-H (Cd-hyperaccumulator) and I16-E (Cd-excluder), Cd absorption capacity of CW polysaccharides, CW mono- and poly- saccharides contents and CW glycan profiles were compared between these two populations. PL22-H pectin contained 3-fold higher Cd concentration than I16-E pectin in roots, and (1→4)-β-galactan pectic epitope showed the biggest difference between PL22-H and I16-E. CW-related differentially expressed genes (DEGs) between PL22-H and I16-E were identified and corresponding A. thaliana mutants were phenotyped for Cd tolerance and accumulation. A higher Cd translocation was observed in GALACTAN SYNTHASE1 A. thaliana knockout and overexpressor mutants, which both showed a lengthening of the RG-I sidechains after Cd treatment, contrary to the wild-type. Overall, our results support an indirect role for (1→4)-β-galactan in Cd translocation, possibly by a joint effect of regulating the length of RG-I sidechains, the pectin structure and interactions between polysaccharides in the CW. The characterization of other CW-related DEGs between I16-E and PL22-H selected allowed to identify a possible role in Zn translocation for BIIDXI and LEUNIG-HOMOLOG genes, which are both involved in pectin modification.
Collapse
Affiliation(s)
- Xinhui An
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium.
| | - Jean-Chrisologue Totozafy
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Alexis Peaucelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Catherine Yvonne Jones
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium; Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050 Brussels, Belgium.
| |
Collapse
|
14
|
Wang K, Yu H, Zhang X, Ye D, Huang H, Wang Y, Zheng Z, Li T. Hydrogen peroxide contributes to cadmium binding on root cell wall pectin of cadmium-safe rice line (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113526. [PMID: 35453023 DOI: 10.1016/j.ecoenv.2022.113526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Cell wall pectin is essential for cadmium (Cd) accumulation in rice roots and hydrogen peroxide (H2O2) plays an important role as a signaling molecule in cell wall modification. The role of H2O2 in Cd binding in cell wall pectin is unclear. D62B, a Cd-safe rice line, was found to show a greater Cd binding capacity in the root cell wall than a high Cd-accumulating rice line of Wujin4B. In this study, we further investigated the mechanism of the role of H2O2 in Cd binding in root cell wall pectin of D62B compared with Wujin4B. Cd treatment significantly increased the H2O2 concentration and pectin methyl esterase (PME) activity in the roots of D62B and Wujin4B by 22.45-42.44% and 12.15-15.07%, respectively. The H2O2 concentration and PME activity significantly decreased in the roots of both rice lines when H2O2 was scavenged by 4-hydroxy-Tempo. The PME activity of D62B was higher than that of Wujin4B. The concentrations of high and low methyl-esterified pectin in the roots of D62B significantly increased when exposed to Cd alone but significantly decreased when exposed to Cd and exogenous 4-hydroxy-Tempo. No significant difference was detected in Wujin4B. Exogenous 4-hydroxy-Tempo significantly decreased the Cd concentration in the cell wall pectin in both rice lines. The modification of H2O2 in Cd binding was further explored by adding H2O2. The maximum Cd adsorption amounts on the root cell walls of both rice lines were improved by exogenous H2O2·H2O2 treatment significantly influenced the relative peak area of the main functional groups (hydroxyl, carboxyl), and the groups intensely shifted after Cd adsorption in the root cell wall of D62B, while there was no significant difference in Wujin4B. In conclusion, Cd stress stimulated the production of H2O2, thus promoting pectin biosynthesis and demethylation and releasing relative functional groups involved in Cd binding on cell wall pectin, which is beneficial for Cd retention in the roots of Cd-safe rice line.
Collapse
Affiliation(s)
- Keji Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Zicheng Zheng
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
15
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
16
|
Zhang LD, Liu X, Wei MY, Guo ZJ, Zhao ZZ, Gao CH, Li J, Xu JX, Shen ZJ, Zheng HL. Ammonium has stronger Cd detoxification ability than nitrate by reducing Cd influx and increasing Cd fixation in Solanum nigrum L. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127947. [PMID: 34896722 DOI: 10.1016/j.jhazmat.2021.127947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal that affects the growth and development of plants. Nitrogen (N) is an essential nutrient for plants, and appropriate N management can improve Cd tolerance. The aim of our study was to explore the effects of different forms of N on the molecular and physiological responses of the hyperaccumulator Solanum nigrum to Cd toxicity. Measurement of biomass, photosynthetic parameters, and Cd2+ fluxes using non-invasive micro-test technique, Cd fluorescent dying, biochemical methods and quantitative real-time PCR analysis were performed in our study. Our results showed that ammonium (NH4+) has stronger Cd detoxification ability than nitrate (NO3-), which are likely attributed to the following three reasons: (1) NH4+ decreased the influx and accumulation of Cd2+ by regulating the transcription of Cd transport-related genes; (2) the ameliorative effects of NH4+ were accompanied by the increased retention of Cd in the cell walls of roots; and (3) NH4+ up-regulated SnExp expression.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China; Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Zhu Zhao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chang-Hao Gao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jian-Xin Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
17
|
Xiao Y, Dai MX, Zhang GQ, Yang ZX, He YM, Zhan FD. Effects of the Dark Septate Endophyte (DSE) Exophiala pisciphila on the Growth of Root Cell Wall Polysaccharides and the Cadmium Content of Zea mays L. under Cadmium Stress. J Fungi (Basel) 2021; 7:jof7121035. [PMID: 34947018 PMCID: PMC8708371 DOI: 10.3390/jof7121035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
This paper aims to investigate the mechanism by which dark septate endophytes (DSEs) enhance cadmium (Cd) tolerance in there host plants. Maize (Zea mays L.) was inoculated with a DSE, Exophiala pisciphila, under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg−1). The results show that, under 20 mg/kg Cd stress, DSE significantly increased maize biomass and plant height, indicating that DSE colonization can be utilized to increase the Cd tolerance of host plants. More Cd was retained in DSE-inoculated roots, especially that fixed in the root cell wall (RCW). The capability of DSE to induce a higher Cd holding capacity in the RCW is caused by modulation of the total sugar and uronic acid of DSE-colonized RCW, mainly the pectin and hemicellulose fractions. The fourier-transform spectroscopy analysis results show that carboxyl, hydroxyl, and acidic groups are involved in Cd retention in the DSE-inoculated RCW. The promotion of the growth of maize and improvement in its tolerance to Cd due to DSEs are related to restriction of the translocation of Cd from roots to shoots; resistance of Cd uptake Cd inside cells; and the increase in RCW-integrated Cd through modulating RCW polysaccharide components.
Collapse
|
18
|
Azam SK, Karimi N, Souri Z, Vaculík M. Multiple effects of silicon on alleviation of arsenic and cadmium toxicity in hyperaccumulator Isatis cappadocica Desv. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:177-187. [PMID: 34634643 DOI: 10.1016/j.plaphy.2021.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) and cadmium (Cd) belong to the group of major pollutants extremely toxic to plants. Metal hyperaccumulating plants play an important role in phytoextraction of heavy metals. Silicon (Si) plays an important role in the amelioration of heavy metal stress through physio-biochemical mechanisms, which remain poorly understood in hyperaccumulators. The main purpose of this study was to determine the impact of Si on growth and performance of As hyperaccumulator Isatis cappadocica Desv., exposed to As and Cd. Results showed that Si (especially at 1 mM level) alleviated the harmful impact of As/Cd and significantly increased the root and shoot biomass, root and shoot length and chlorophyll contents of I. cappadocica by enhancing the plant defense mechanisms. Between the two investigated harmful elements, As was accumulated in plant parts significantly more than Cd, however with considerably lower toxic growth effects. The As/Cd concentration, bioaccumulation and translocation factor and total As content both in roots and shoots of Si-supplied plant were significantly reduced as a protective mechanism, especially in Cd exposed plant. In comparison with single As/Cd treatment, Si supply reduced H2O2 content, increased total soluble protein content and enhanced glutathione S-transferase activity in shoots. The results of this study clearly showed that Si minimized As/Cd uptake and root to shoot translocation, and therefore Si cannot enhance the phytoextraction potential of this plant species. Additionally, Si-improved growth and reduced oxidative damages caused by excess of As and Cd suggested that the similar mechanisms of metal(loid) alleviation are adopted in hyperaccumulators as well as non-hyperaccumulating plants.
Collapse
Affiliation(s)
- Salimeh Khademi Azam
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| |
Collapse
|
19
|
A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PLoS Genet 2021; 17:e1009636. [PMID: 34181654 PMCID: PMC8270467 DOI: 10.1371/journal.pgen.1009636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MAN3-mediated mannose plays an important role in plant responses to cadmium (Cd) stress. However, the underlying mechanisms and signaling pathways involved are poorly understood. In this study, we showed that an Arabidopsis MYB4-MAN3-Mannose-MNB1 signaling cascade is involved in the regulation of plant Cd tolerance. Loss-of-function of MNB1 (mannose-binding-lectin 1) led to decreased Cd accumulation and tolerance, whereas overexpression of MNB1 significantly enhanced Cd accumulation and tolerance. Consistently, expression of the genes involved in the GSH-dependent phytochelatin (PC) synthesis pathway (such as GSH1, GSH2, PCS1, and PCS2) was significantly reduced in the mnb1 mutants but markedly increased in the MNB1-OE lines in the absence or presence of Cd stress, which was positively correlated with Cd-activated PC synthesis. Moreover, we found that mannose is able to bind to the GNA-related domain of MNB1, and that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance in Arabidopsis. Further analysis showed that MYB4 directly binds to the promoter of MAN3 to positively regulate the transcript of MAN3 and thus Cd tolerance via the GSH-dependent PC synthesis pathway. Consistent with these findings, overexpression of MAN3 rescued the Cd-sensitive phenotype of the myb4 mutant but not the mnb1 mutant, whereas overexpression of MNB1 rescued the Cd-sensitive phenotype of the myb4 mutant. Taken together, our results provide compelling evidence that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis through the GSH-dependent PC synthesis pathway. Cadmium (Cd) pollution in soils is recognized as an environmental problem worldwide, and phytoremediation is one of the important approaches for cleaning Cd-contaminated soils. However, the molecular mechanisms involved in Cd tolerance remains unclear. Here we demonstrated that overexpression of MNB1, which encodes a mannose-binding lectin, manifestly increased Cd tolerance, whereas loss-of-function of MNB1 led to enhanced Cd sensitivity. Further analysis showed that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance. Moreover, under Cd stress, MYB4 directly binds the promoter of MAN3 to positively regulate the expression of MAN3, and thus Cd tolerance via the glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway. Our results demonstrated that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates Cd tolerance through the GSH-dependent PC synthesis pathway in Arabidopsis.
Collapse
|
20
|
Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. CHEMOSPHERE 2021; 273:129690. [PMID: 33524757 DOI: 10.1016/j.chemosphere.2021.129690] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a primary contaminant in agricultural soils of the world. The ability of Cd uptake, transport, detoxification, and accumulation varies among different plant species and genotypes. Cd is translocated from soil to root by different transporters which are used for essential plant nutrient uptake. A number of strategies have been suggested for decreasing Cd toxicity in Cd contaminated soils. Recently, a lot of research have been carried out on minimizing Cd uptake through selenium (Se) and silicon (Si) applications. Both Se and Si have been reported to mitigate Cd toxicity in different crops. Vacuolar sequestration, formation of phytochelatins, and cell wall adsorption have been reported as effective mechanisms for Cd detoxification. The present review discussed past and current knowledge of literature to better understand Cd toxicity and its mitigation by adopting different feasible and practical approaches.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
21
|
Corso M, An X, Jones CY, Gonzalez-Doblas V, Schvartzman MS, Malkowski E, Willats WGT, Hanikenne M, Verbruggen N. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. THE NEW PHYTOLOGIST 2021; 230:669-682. [PMID: 33421150 DOI: 10.1111/nph.17173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/22/2020] [Indexed: 05/21/2023]
Abstract
Metallophytes constitute powerful models for the study of metal homeostasis, adaptation to extreme environments and the evolution of naturally selected traits. Arabidopsis halleri is a pseudometallophyte which shows constitutive zinc/cadmium (Zn/Cd) tolerance and Zn hyperaccumulation but high intraspecific variability in Cd accumulation. To examine the molecular basis of the variation in metal tolerance and accumulation, ionome, transcriptome and cell wall glycan array profiles were compared in two genetically close A. halleri populations from metalliferous and nonmetalliferous sites in Northern Italy. The metallicolous population displayed increased tolerance to and reduced hyperaccumulation of Zn, and limited accumulation of Cd, as well as altered metal homeostasis, compared to the nonmetallicolous population. This correlated well with the differential expression of transporter genes involved in trace metal entry and in Cd/Zn vacuolar sequestration in roots. Many cell wall-related genes were also more highly expressed in roots of the metallicolous population. Glycan array and histological staining analyses demonstrated that there were major differences between the two populations in terms of the accumulation of specific root pectin and hemicellulose epitopes. Our results support the idea that both specific cell wall components and regulation of transporter genes play a role in limiting accumulation of metals in A. halleri at contaminated sites.
Collapse
Affiliation(s)
- Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Xinhui An
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Catherine Yvonne Jones
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Verónica Gonzalez-Doblas
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Eugeniusz Malkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
22
|
Wang J, Chen X, Chu S, Hayat K, Chi Y, Zhi Y, Zhang D, Zhou P. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13955-13969. [PMID: 33201503 DOI: 10.1007/s11356-020-11505-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Solanum nigrum is a well-documented cadmium (Cd) hyperaccumulator; however, its Cd-induced tolerance capability and detoxification mechanism remain elusive. Hence, a short-term hydroponic experiment was performed in a multiplane glasshouse to determine the influence of Cd toxicity on subcellular distribution, chemical forms, and the physiological responses of cell wall towards Cd stress in a 4-week-old plant. The experiment was conducted following completely randomized design (CRD) with five treatments (n = 4 replicates). The results showed that Cd stress showed dose-dependent response towards growth inhibition. The subcellular distribution of Cd in S. nigrum was in the order of cell wall > soluble fractions > organelles, and Cd was predominantly extracted by 1 M NaCl (29.87~43.66%). The Cd contents in different plant tissues and cell wall components including pectin, hemicellulose 1 (HC1), hemicellulose 2 (HC2), and cellulose were increased with the increase in Cd concentrations; however, the percentage of Cd concentration decreased in pectin and cellulose. Results of the polysaccharide components such as uronic acid, total sugar contents, and pectin methylesterase (PME) activity showed Cd-induced dose-dependent increase relative to exposure Cd stress. The pectin methylesterase (PME) activity was significantly (p < 0.05) enhanced by 125.78% at 75 μM Cd in root, 105.78% and 73.63% at 100 μM Cd in stem and leaf, respectively. In addition, the esterification, amidation, and pectinase treatment of cell wall and Fourier transform infrared spectroscopy (FTIR) assay exhibited many functional groups that were involved in cell wall retention Cd, especially on carboxyl and hydroxyl groups of cell wall components that indicated that the -OH and -COOH groups of S. nigrum cell wall play a crucial role in Cd fixation. In summary, results of the current study will add a novel insight to understand mobilization/immobilization as well as detoxification mechanism of cadmium in S. nigrum.
Collapse
Affiliation(s)
- Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Huang Y, Chen J, Zhang D, Fang B, YangJin T, Zou J, Chen Y, Su N, Cui J. Enhanced vacuole compartmentalization of cadmium in root cells contributes to glutathione-induced reduction of cadmium translocation from roots to shoots in pakchoi (Brassica chinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111616. [PMID: 33396136 DOI: 10.1016/j.ecoenv.2020.111616] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Our previous studies showed that exogenous glutathione (GSH) decreased cadmium (Cd) concentration in shoots and alleviated the growth inhibition in pakchoi (Brassica chinensis L.) under Cd stress. Nevertheless, it is largely unknown how GSH decreases Cd accumulation in edible parts of pakchoi. This experiment mainly explored the mechanisms of GSH-induced reduction of Cd accumulation in shoot of pakchoi. The results showed that compared with sole Cd treatment, Cd + GSH treatment remarkably increased the expression of BcIRT1 and BcIRT2, and further enhanced the concentrations of Cd and Fe in root. By contrast, GSH application declined the concentration of Cd in the xylem sap. However, these results were not caused by xylem loading process because the expression of BcHMA2 and BcHMA4 had not significant difference between sole Cd treatment and Cd + GSH treatment. In addition, exogenous GSH significantly enhanced the expression of BcPCS1 and promoted the synthesis of PC2, PC3 and PC4 under Cd stress. At the same time, exogenous GSH also significantly improved the expression of BcABCC1 and BcABCC2 in the roots of seedling under Cd stress, suggesting that more PCs-Cd complexes may be sequestrated into vacuoles by ABCC1 and ABCC2 transporters. The results showed that exogenous GSH could up-regulate the expression of BcIRT1/2 to increase the Cd accumulation in root, and the improvement of PCs contents and the expression of BcABCC1/2 enhanced the compartmentalization of Cd in root vacuole of pakchoi under Cd stress. To sum up, exogenous GSH reduce the concentration of free Cd2+ in the cytoplast of root cells and then dropped the loading of Cd into the xylem, which eventually given rise to the reduction of Cd accumulation in edible portion of pakchoi.
Collapse
Affiliation(s)
- Yifan Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Derui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bo Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tsering YangJin
- College of Plant Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
24
|
Sun YH, Gu CX, Li GZ, Han AH, Hao L. Arbuscular mycorrhizal fungus-mediated amelioration of NO 2-induced phytotoxicity in tomato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111350. [PMID: 32961487 DOI: 10.1016/j.ecoenv.2020.111350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric nitrogen dioxide (NO2) negatively affects plant (crop) growth and development, as well the yield and quality in some regions or environments. Arbuscular mycorrhizal fungus (AMF)-mediated amelioration of NO2-induced plant damage has been reported, but the underlying mechanisms remained unclear. This study explored the beneficial effect of AMF symbiosis on tomato plant responses to NO2 at physiology, biochemistry, and gene expression, with an emphasis on nitrate metabolism, antioxidative defense, and photosynthetic performance. Pot-grown plants were used in the experiments, which were performed in laboratory from February to November 2019. NO2 fumigation with a dose of 10 ± 1 ppm was carried out after 50 d of plant growth, and data were collected following 8 h of fumigation. NO2 fumigation (+NO2) and AMF inoculation (+AMF), alone and especially in combination (NO2 + AMF), increased the gene expression of nitrate- and nitrite reductase, and their enzymatic activity in leaves, such as by 61%, 27%, and 126% for the activity of nitrate reductase, and by 95%, 37%, and 188% for nitrite reductase, respectively, in +NO2, +AMF, and AMF + NO2 plants relative the control (-NO2, -AMF) levels. Following NO2 exposure, +AMF leaves displayed stronger activities of superoxide dismutase, peroxidase and catalase, and higher content of glutathione and ratio of its reduced form to oxidized form, as compared with -AMF ones. Correspondingly, lesser oxidative damage was detected in +AMF than in -AMF plants, as indicated by the contents of H2O2 and malondialdehyde, electrolyte leakage, also by in situ visualization for the formation of H2O2, superoxide anion, and dead cells. The increased antioxidative capacity in +AMF plants was correlated with enhanced expression of antioxidation-related genes. Exposure to NO2 substantially impaired photosynthetic processes in both + AMF and -AMF plants, but an obvious mitigation was observed in the former than in the latter. For example, the total chlorophyll, net photosynthetic rate, stomatal conductance, and ribulose-1,5-bisphosphate carboxylase activity were 18%, 27%, 26%, and 40% higher, respectively, in +AMF than in -AMF plants under NO2 stress. The differential photosynthetic performance was also revealed by chlorophyll fluorescence imaging. We analyzed the expression patterns of some genes related to photosynthesis and carbon metabolisms, and found that all of them exclusively presented a higher expression level in +AMF plants relative to -AMF ones under NO2 stress. Taken together, this study provided evidence that AMF symbiosis played a positively regulatory role in host plant responses to NO2, probably by increasing leaf nitrate metabolism and antioxidative defense, and maintaining the photosynthetic efficiency to some extent, wherein the transcription regulation might be a main target.
Collapse
Affiliation(s)
- Yue-Hang Sun
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Chun-Xiu Gu
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Guang-Zhe Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Ai-Hong Han
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China.
| | - Lin Hao
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| |
Collapse
|
25
|
Wang L, Li R, Yan X, Liang X, Sun Y, Xu Y. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110369. [PMID: 32135380 DOI: 10.1016/j.ecoenv.2020.110369] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Polysaccharides are the main components of plant cell walls in which they make an important contribution to cadmium (Cd) fixation. However, knowledge regarding the role of root cell wall polysaccharides in Cd accumulation in low-Cd cultivars is limited. Here, we compared the differences in root cell wall polysaccharides between two cultivars of Brassica chinensis L. (pakchoi) with different Cd accumulation abilities. A hydroponic experiment was conducted using low- (Huajun 2) and high-Cd (Hanlv) pakchoi cultivars. We investigated Cd subcellular distribution and Cd accumulation in cell wall polysaccharides and examined polysaccharide modifications in root cell walls by Fourier transform infrared spectroscopy. A Cd adsorption kinetics experiment was conducted to examine the connection between Cd-induced polysaccharide modifications and Cd fixation by cell walls. Amounts of Cd were significantly higher and more Cd was bound to cell walls in the roots of Huajun 2 than in those of Hanlv. These results indicated that the greater Cd retention capacity of the root cell wall in Huajun 2 accounted for the low Cd accumulation in the shoot. Up to 79.4% and 32.1% of cell-wall-bound Cd was found in the pectin and hemicellulose 1, respectively, and higher amounts of Cd were found in these cell wall components of Huajun 2 than in those of Hanlv. Exposure to Cd significantly increased amounts of pectin and hemicellulose 1 in both pakchoi cultivars, but the pectin levels were significantly higher in Huajun 2 than in Hanlv. Huajun 2 had higher pectin methylesterase (PME) activity and a lower degree of pectin methyl-esterification (DM) than Hanlv, although Cd treatments resulted in increased PME activity and decreased DM in both cultivars. The higher Cd treatment (44.5 μM) resulted in enhanced Cd-binding capacity in root cell walls of the two cultivars with higher Cd adsorption levels in the root cell wall of Huajun 2. These results indicate that differences in the amount of cell wall polysaccharide and DM play key roles in establishing the genotypic differences underlying Cd accumulation in pakchoi. These findings conduce to a better understanding of the physiological mechanisms underlying low Cd accumulation in pakchoi and the breeding of new, low-Cd pakchoi cultivars.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ran Li
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiuxiu Yan
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
26
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
27
|
Zhu YX, Du WX, Fang XZ, Zhang LL, Jin CW. Knockdown of BTS may provide a new strategy to improve cadmium-phytoremediation efficiency by improving iron status in plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121473. [PMID: 31676164 DOI: 10.1016/j.jhazmat.2019.121473] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 05/21/2023]
Abstract
The identification of the key genes related to cadmium (Cd) tolerance and accumulation is a major element in genetically engineering improved plants for Cd phytoremediation. Owing to the similarity between the ionic hydrated radius of Cd2+ and Fe2+, this study investigated how the Cd tolerance and accumulation of Arabidopsis plants was affected by the knockdown of BTS, a gene that negatively regulates Fe nutrition. After exposure to 40 μM Cd, the BTS-knockdown mutant, bts-1, exhibited greater Fe nutrition and better growth than wild-type plants. In addition, the Cd concentration in both roots and shoots was approximately 50% higher in the bts-1 mutant than in wild-type plants. Consequently, the bts-1 mutant accumulated approximately 100% and 150% more Cd in the roots and shoots, respectively, than wild-type plants. Further study showed that Fe removal from the growth medium and inhibition of the Fe transporter gene, IRT1, removed the differences observed in the growth and Cd concentration of the bts-1 and wild-type plants, respectively. These results demonstrated that BTS knockdown improved Cd tolerance and accumulation in plants by improving Fe nutrition; thus, the knockdown of BTS via biotechnological pathways may represent a valuable strategy for the improvement in the efficiency of Cd phytoremediation.
Collapse
Affiliation(s)
- Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xian Zhi Fang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Lin Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Ren C, Qi Y, Huang G, Yao S, You J, Hu H. Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses. J Environ Sci (China) 2020; 88:209-216. [PMID: 31862062 DOI: 10.1016/j.jes.2019.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Cell wall polysaccharides play a vital role in binding with toxic metals such as copper (Cu) ions. However, it is still unclear whether the major binding site of Cu in the cell wall varies with different degrees of Cu stresses. Moreover, the contribution of each cell wall polysaccharide fraction to Cu sequestration with different degrees of Cu stresses also remains to be verified. The distribution of Cu in cell wall polysaccharide fractions of castor (Ricinus communis L.) root was investigated with various Cu concentrations in the hydroponic experiment. The results showed that the hemicellulose1 (HC1) fraction fixed 44.9%-67.8% of the total cell wall Cu under Cu stress. In addition, the pectin fraction and hemicelluloses2 (HC2) fraction also contributed to the Cu binding in root cell wall, accounting for 11.0%-25.9% and 14.1%-26.6% of the total cell wall Cu under Cu treatments, respectively. When the Cu levels were ≤25 μmol/L, pectin and HC2 contributed equally to Cu storage in root cell wall. However, when the Cu level was higher than 25 μmol/L, the ability of the pectin to bind Cu was easy to reach saturation. Much more Cu ions were bound on HC1 and HC2 fractions, and the HC2 played a much more important role in Cu binding than pectin. Combining fourier transform infrared (FT-IR) and two-dimensional correlation analysis (2D-COS) techniques, the hemicellulose components were showed not only to accumulate most of Cu in cell wall, but also respond fastest to Cu stress.
Collapse
Affiliation(s)
- Chao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongbo Qi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoyong Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyuan Yao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinwei You
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Yu H, Guo J, Li Q, Zhang X, Huang H, Huang F, Yang A, Li T. Characteristics of cadmium immobilization in the cell wall of root in a cadmium-safe rice line (Oryza sativa L.). CHEMOSPHERE 2020; 241:125095. [PMID: 31683432 DOI: 10.1016/j.chemosphere.2019.125095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
Cultivating cadmium (Cd)-safe rice lines, which show low Cd accumulation in brown rice, is generally beneficial to ensure food safety. The Cd retention in root of Cd-safe rice line D62B plays an important role in its low Cd translocation from root to shoot. To understand the mechanism of Cd retention in root, a hydroponic experiment was conducted to investigate the subcellular distribution of Cd and the contribution of polysaccharides to Cd binding to the root cell wall of a Cd-safe rice line D62B with a common rice line Luhui17 as a control material. D62B retained more Cd in the root by sequestrated a higher proportion of Cd in the cell wall, further it transferred less Cd to shoot. Close to half of the Cd in the root cell wall of D62B was accumulated in the hemicellulose 1 (HC1), and the proportions of HC1 in it were 1.2-1.7 times higher than these of Luhui17. The proportion of Cd in the pectin showed a dose-dependent increase in two rice lines. D62B contained significantly higher uronic acid concentrations of the pectin and greater pectin methyl esterase (PME) activities than Luhui17 in the root cell wall. These results indicated that a superior Cd binding capacity of the cell wall polysaccharides in D62B played an important role in its Cd retention in root.
Collapse
Affiliation(s)
- Haiying Yu
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Jingyi Guo
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Qin Li
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Fu Huang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Anqi Yang
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resource Science & Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
30
|
Siddiqui H, Sami F, Hayat S. Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydr Res 2019; 487:107884. [PMID: 31811968 DOI: 10.1016/j.carres.2019.107884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023]
Abstract
Sugars are metabolic substrates playing a part in modulating various processes in plants during different phases of development. Thus, modulating the sugar metabolism can have intense effects on the plant metabolism. Glucose is a soluble sugar, found throughout the plant kingdom. Apart from being a universal carbon source, glucose also operates as a signaling molecule modulating various metabolic processes in plants. From germination to senescence, wide range of processes in plants is regulated by glucose. The effect of glucose is found to be concentration dependent. Photosynthesis and its related attributes, respiration and nitrogen metabolism are influenced by glucose application. Endogenous content of glucose increases upon exposure of plant to various abiotic stresses and also when glucose is supplied exogenously. Glucose accumulation alleviates the damaging effects of stress by enhancing production of antioxidants and compounds similar to that of photosynthetic CO2 fixation which act as an osmoticum by maintaining osmotic pressure inside the cell, pH homeostasis regulator and reduce membrane permeability during stress. Glucose interaction with various phytohormones has also been discussed in this review.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
31
|
Wang YY, Wang Y, Li GZ, Hao L. Salicylic acid-altering Arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:645-653. [PMID: 30496997 DOI: 10.1016/j.ecoenv.2018.11.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Previous studies have demonstrated that the genetic modification of basal salicylic acid (SA) level changed Arabidopsis plant response to cadmium (Cd) stress, but the mechanisms remain evaluated. In this study, Arabidopsis wild type (WT) and its SA-reducing transgenic line nahG (naphthalene hydroxylase G), SA-accumulating mutant snc1 (suppressor of nonexpressor of PR gene, constitutive 1) were exposed to 50 μM Cd2+ for 48 h or 7 d (just for assessing plant growth). The Cd treatment increased the expression levels of SA biosynthesis-related genes leading to enhanced SA accumulations in plant leaves, which was further confirmed by the expression patterns of SA marker genes. Cadmium accumulation was much higher in the Cd-exposed roots than in leaves, but was not affected by SA levels. Exposure to Cd inhibited plant growth of both aerial parts and roots, to a greater degree in snc1, and a lesser extent in nahG as compared with WT. Although Cd treatment increased plant antioxidative capacity, oxidative damage happened, especially to snc1 plants. Photoinhibition occurred in Cd-stressed plants leading to a decrease in photosynthetic activity, with a greater degree in snc1, while a lesser in nahG, as indicated by the changes of several key photosynthetic parameters. We comprehensively analyzed the expression profiles of photosynthesis-related genes, and observed a positive correlation between Cd tolerance and gene expression levels, wherein the transcription levels of two electron transport-related genes and two amylase-encoding genes were all up-regulated in nahG plants after Cd treatment, implying a significance of the related processes in this genotype against Cd stress.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Yu Wang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Guang-Zhe Li
- College of Life Science, Shenyang Normal University, Shenyang 110034, China.
| | - Lin Hao
- College of Life Science, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
32
|
Bayçu G, Moustaka J, Gevrek N, Moustakas M. Chlorophyll Fluorescence Imaging Analysis for Elucidating the Mechanism of Photosystem II Acclimation to Cadmium Exposure in the Hyperaccumulating Plant Noccaea caerulescens. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2580. [PMID: 30567339 PMCID: PMC6315512 DOI: 10.3390/ma11122580] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
We provide new data on the mechanism of Noccaea caerulescens acclimation to Cd exposure by elucidating the process of photosystem II (PSII) acclimation by chlorophyll fluorescence imaging analysis. Seeds from the metallophyte N. caerulescens were grown in hydroponic culture for 12 weeks before exposure to 40 and 120 μM Cd for 3 and 4 days. At the beginning of exposure to 40 μM Cd, we observed a spatial leaf heterogeneity of decreased PSII photochemistry, that later recovered completely. This acclimation was achieved possibly through the reduced plastoquinone (PQ) pool signaling. Exposure to 120 μM Cd under the growth light did not affect PSII photochemistry, while under high light due to a photoprotective mechanism (regulated heat dissipation for protection) that down-regulated PSII quantum yield, the quantum yield of non-regulated energy loss in PSII (ΦNO) decreased even more than control values. Thus, N. caerulescens plants exposed to 120 μM Cd for 4 days exhibited lower reactive oxygen species (ROS) production as singlet oxygen (¹O₂). The response of N. caerulescens to Cd exposure fits the 'Threshold for Tolerance Model', with a lag time of 4 d and a threshold concentration of 40 μM Cd required for the induction of the acclimation mechanism.
Collapse
Affiliation(s)
- Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey.
| | - Julietta Moustaka
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Nurbir Gevrek
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey.
| | - Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
33
|
Kong X, Li C, Zhang F, Yu Q, Gao S, Zhang M, Tian H, Zhang J, Yuan X, Ding Z. Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:2449-2462. [PMID: 29869796 DOI: 10.1111/pce.13361] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd) stress is one of the most serious heavy metal stresses limiting plant growth and development. However, the molecular mechanisms underlying Cd-induced root growth inhibition remain unclear. Here, we found that ethylene signalling positively regulates Cd-induced root growth inhibition. Arabidopsis seedlings pretreated with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid exhibited enhanced Cd-induced root growth inhibition, whereas the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine decreased Cd-induced root growth inhibition. Consistently, ethylene-insensitive mutants, such as ein4-1, ein3-1 eil1-1 double mutant, and EBF1ox, displayed an increased tolerance to Cd. Furthermore, we also observed that Cd inhibited EIN3 protein degradation, a process that was regulated by ethylene signalling. Genetic and biochemical analyses showed that EIN3 enhanced root growth inhibition under Cd stress through direct binding to the promoters and regulating the expression of XTH33 and LSU1, which encode key regulators of cell wall extension and sulfur metabolic process, respectively. Collectively, our study demonstrates that ethylene plays a positive role in Cd-regulated root growth inhibition through EIN3-mediated transcriptional regulation of XTH33 and LSU1 and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant root growth.
Collapse
Affiliation(s)
- Xiangpei Kong
- Shandong University, The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Jinan, China
| | - Cuiling Li
- Shandong University, The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Jinan, China
| | - Feng Zhang
- Shandong University, The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Jinan, China
| | - Qianqian Yu
- Liaocheng University, College of Life Sciences, Liaocheng, Shandong, China
| | - Shan Gao
- Qilu Normal University, College of Life Sciences, Jinan, Shandong, China
| | - Maolin Zhang
- Shandong University, The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Jinan, China
| | - Huiyu Tian
- Shandong University, The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Jinan, China
| | - Jian Zhang
- Shandong University, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Jinan, Shandong, China
| | - Xianzheng Yuan
- Shandong University, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Jinan, Shandong, China
| | - Zhaojun Ding
- Shandong University, The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Jinan, China
| |
Collapse
|
34
|
Yao X, Cai Y, Yu D, Liang G. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:691-702. [PMID: 29667322 DOI: 10.1111/jipb.12658] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Cd is a non-essential heavy metal that is toxic to both plants and animals. Here, we reveal that the transcription factor bHLH104 positively regulates Cd tolerance in Arabidopsis thaliana. We show that Fe deficiency-responsive genes were induced by Cd treatment, and that their upregulation was suppressed in bhlh104 loss-of-function mutants, but enhanced upon overexpression of bHLH104. Correspondingly, the bhlh104 mutants displayed sensitivity to Cd stress, whereas plants overexpressing bHLH104 exhibited enhanced Cd tolerance. Further analysis suggested that bHLH104 positively regulates four heavy metal detoxification-associated genes, IREG2, MTP3, HMA3 and NAS4, which play roles in Cd sequestration and tolerance. The bHLH104 overexpression plants accumulated high levels of Cd in the root but low levels of Cd in the shoot, which might contribute to the Cd tolerance in those lines. The present study thus points to bHLH104 as a potentially useful tool for genetic engineering of plants with enhanced Cd tolerance.
Collapse
Affiliation(s)
- Xiani Yao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuerong Cai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
35
|
Xu ZR, Cai SW, Huang WX, Liu RX, Xiong ZT. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations of Rumex dentatus under copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:17-25. [PMID: 28822946 DOI: 10.1016/j.ecoenv.2017.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Acid invertase activities in roots and young seeds of a metalliferous population (MP) of Rumex dentatus were previously observed to be significantly higher than those of a non-metalliferous population (NMP) under Cu stress. To date, no acid invertase gene has been cloned from R. dentatus. Here, we isolated four full-length cDNAs from the two populations of R. dentatus, presumably encoding cell wall (RdnCIN1 and RdmCIN1 from the NMP and MP, respectively) and vacuolar invertases (RdnVIN1 and RdmVIN1 from the NMP and MP, respectively). Unexpectedly, RdnCIN1 and RdmCIN1 most likely encode special defective invertases with highly attenuated sucrose-hydrolyzing capacity. The transcript levels of RdmCIN1 were significantly higher than those of RdnCIN1 in roots and young seeds under Cu stress, whereas under control conditions, the former was initially lower than the latter. Unexpected high correlations were observed between the transcript levels of RdnCIN1 and RdmCIN1 and the activity of cell wall invertase, even though RdnCIN1 and RdmCIN1 do not encode catalytically active invertases. Similarly, the transcript levels of RdmVIN1 in roots and young seeds were increased under Cu stress, whereas those of RdnVIN1 were decreased. The high correlations between the transcript levels of RdnVIN1 and RdmVIN1 and the activity of vacuolar invertase indicate that RdnVIN1 and RdmVIN1 might control distinct vacuolar invertase activities in the two populations. Moreover, a possible indirect role for acid invertases in Cu tolerance, mediated by generating a range of sugars used as nutrients and signaling molecules, is discussed.
Collapse
Affiliation(s)
- Zhong-Rui Xu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shen-Wen Cai
- College of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou, People's Republic of China
| | - Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Rong-Xiang Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Ting Xiong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Yu R, Li D, Du X, Xia S, Liu C, Shi G. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 2017; 18:587. [PMID: 28789614 PMCID: PMC5549386 DOI: 10.1186/s12864-017-3973-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Background Cadmium translocation from roots to shoots is a complex biological process that is controlled by gene regulatory networks. Pak choi exhibits wide cultivar variations in Cd accumulation. However, the molecular mechanism involved in cadmium translocation and accumulation is still unclear. To isolate differentially expressed genes (DEGs) involved in transporter-mediated regulatory mechanisms of Cd translocation in two contrasting pak choi cultivars, Baiyewuyueman (B, high Cd accumulator) and Kuishan’aijiaoheiye (K, low Cd accumulator), eight cDNA libraries from the roots of two cultivars were constructed and sequenced by RNA-sequencing. Results A total of 244,190 unigenes were obtained. Of them, 6827 DEGs, including BCd10 vs. BCd0 (690), KCd10 vs. KCd0 (2733), KCd0 vs. BCd0 (2919), and KCd10 vs. BCd10 (3455), were identified. Regulatory roles of these DEGs were annotated and clarified through GO and KEEG enrichment analysis. Interestingly, 135 DEGs encoding ion transport (i.e. ZIPs, P1B-type ATPase and MTPs) related proteins were identified. The expression patterns of ten critical genes were validated using RT-qPCR analysis. Furthermore, a putative model of cadmium translocation regulatory network in pak choi was proposed. Conclusions High Cd cultivar (Baiyewuyueman) showed higher expression levels in plasma membrane-localized transport genes (i.e., ZIP2, ZIP3, IRT1, HMA2 and HMA4) and tonoplast-localized transport genes (i.e., CAX4, HMA3, MRP7, MTP3 and COPT5) than low Cd cultivar (Kuishan’aijiaoheiye). These genes, therefore, might be involved in root-to-shoot Cd translocation in pak choi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3973-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Dan Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Shenglan Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Caifeng Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China.
| |
Collapse
|
37
|
Wang Y, Wang X, Wang C, Peng F, Wang R, Xiao X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. Transcriptomic Profiles Reveal the Interactions of Cd/Zn in Dwarf Polish Wheat ( Triticum polonicum L.) Roots. Front Physiol 2017; 8:168. [PMID: 28386232 PMCID: PMC5362637 DOI: 10.3389/fphys.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Different intra- or interspecific wheat show different interactions of Cd/Zn. Normally, Zn has been/being widely utilized to reduce the Cd toxicity. In the present study, the DPW seedlings exhibited strong Cd tolerance. Zn and Cd mutually inhibited their uptake in the roots, showed antagonistic Cd/Zn interactions. However, Zn promoted the Cd transport from the roots to shoots, showed synergistic. In order to discover the interactive molecular responses, a transcriptome, including 123,300 unigenes, was constructed using RNA-Sequencing (RNA-Seq). Compared with CK, the expression of 1,269, 820, and 1,254 unigenes was significantly affected by Cd, Zn, and Cd+Zn, respectively. Only 381 unigenes were co-induced by these three treatments. Several metal transporters, such as cadmium-transporting ATPase and plant cadmium resistance 4, were specifically regulated by Cd+Zn. Other metal-related unigenes, such as ABC transporters, metal chelator, nicotianamine synthase (NAS), vacuolar iron transporters (VIT), metal-nicotianamine transporter YSL (YSL), and nitrate transporter (NRT), were regulated by Cd, but were not regulated by Cd+Zn. These results indicated that these transporters participated in the mutual inhibition of the Cd/Zn uptake in the roots, and also participated in the Cd transport, accumulation and detoxification. Meanwhile, some unigenes involved in other processes, such as oxidation-reduction, auxin metabolism, glutathione (GSH) metabolism nitrate transport, played different and important roles in the detoxification of these heavy metals.
Collapse
Affiliation(s)
- Yi Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xiaolu Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Fan Peng
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Ruijiao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University Wenjiang, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| |
Collapse
|
38
|
Dai C, Cui W, Pan J, Xie Y, Wang J, Shen W. Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa. J Proteomics 2017; 152:109-120. [DOI: 10.1016/j.jprot.2016.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
|
39
|
Wang Y, Wang X, Wang C, Wang R, Peng F, Xiao X, Zeng J, Fan X, Kang H, Sha L, Zhang H, Zhou Y. Proteomic Profiling of the Interactions of Cd/Zn in the Roots of Dwarf Polish Wheat (Triticum polonicum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1378. [PMID: 27683584 PMCID: PMC5021758 DOI: 10.3389/fpls.2016.01378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/30/2016] [Indexed: 05/23/2023]
Abstract
Cd and Zn have been shown to interact antagonistically or synergistically in various plants. In the present study of dwarf polish wheat (DPW)roots, Cd uptake was inhibited by Zn, and Zn uptake was inhibited by Cd, suggesting that Cd and Zn interact antagonistically in this plant. A study of proteomic changes showed that Cd, Zn, and Cd+Zn stresses altered the expression of 206, 303, and 190 proteins respectively. Among these, 53 proteins were altered significantly in response to all these stresses (Cd, Zn, and Cd+Zn), whereas 58, 131, and 47 proteins were altered in response to individual stresses (Cd, Zn, and Cd+Zn, respectively). Sixty-one differentially expressed proteins (DEPs) were induced in response to both Cd and Zn stresses; 33 proteins were induced in response to both Cd and Cd+Zn stresses; and 57 proteins were induced in response to both Zn and Cd+Zn stresses. These results indicate that Cd and Zn induce differential molecular responses, which result in differing interactions of Cd/Zn. A number of proteins that mainly participate in oxidation-reduction and GSH, SAM, and sucrose metabolisms were induced in response to Cd stress, but not Cd+Zn stress. This result indicates that these proteins participate in Zn inhibition of Cd uptake and ultimately cause Zn detoxification of Cd. Meanwhile, a number of proteins that mainly participate in sucrose and organic acid metabolisms and oxidation-reduction were induced in response to Zn stress but not Cd+Zn stress. This result indicates that these proteins participate in Cd inhibition of Zn uptake and ultimately cause the Cd detoxification of Zn. Other proteins induced in response to Cd, Zn, or Cd+Zn stress, participate in ribosome biogenesis, DNA metabolism, and protein folding/modification and may also participate in the differential defense mechanisms.
Collapse
Affiliation(s)
- Yi Wang
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Xiaolu Wang
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Ruijiao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Fan Peng
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural UniversitySichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversitySichuan, China
| |
Collapse
|
40
|
Kan Q, Wu W, Yu W, Zhang J, Xu J, Rengel Z, Chen L, Cui X, Chen Q. Nitrate reductase-mediated NO production enhances Cd accumulation in Panax notoginseng roots by affecting root cell wall properties. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:64-70. [PMID: 26956919 DOI: 10.1016/j.jplph.2016.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 05/09/2023]
Abstract
Panax notoginseng (Burk) F. H. Chen is a traditional medicinal herb in China. However, the high capacity of its roots to accumulate cadmium (Cd) poses a potential risk to human health. Although there is some evidence for the involvement of nitric oxide (NO) in mediating Cd toxicity, the origin of Cd-induced NO and its function in plant responses to Cd remain unknown. In this study, we examined NO synthesis and its role in Cd accumulation in P. notoginseng roots. Cd-induced NO production was significantly decreased by application of the nitrate reductase inhibitor tungstate but not the nitric oxide synthase inhibitor L-NAME (N(G)-methyl-l-arginine acetate), indicating that nitrate reductase is the major contributor to Cd-induced NO production in P. notoginseng roots. Under conditions of Cd stress, sodium nitroprusside (SNP, an NO donor) increased Cd accumulation in root cell walls but decreased Cd translocation to the shoot. In contrast, the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and tungstate both significantly decreased NO-increased Cd retention in root cell walls. The amounts of hemicellulose 1 and pectin, together with pectin methylesterase activity, were increased with the addition of SNP but were decreased by cPTIO and tungstate. Furthermore, increases or decreases in hemicellulose 1 and pectin contents as well as pectin methylesterase activity fit well with the increased or decreased retention of Cd in the cell walls of P. notoginseng roots. The results suggest that nitrate reductase-mediated NO production enhances Cd retention in P. notoginseng roots by modulating the properties of the cell wall.
Collapse
Affiliation(s)
- Qi Kan
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenwei Wu
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenqian Yu
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiarong Zhang
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin Xu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6000, Australia
| | - Limei Chen
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Chen
- Faculty of Life Science and Biotechnology, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|