1
|
Wang W, Chi M, Liu S, Zhang Y, Song J, Xia G, Liu S. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39601645 DOI: 10.1111/jipb.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
One mechanism plants use to tolerate high salinity is the deposition of cutin and suberin to form apoplastic barriers that limit the influx of ions. However, the mechanism underlying barrier formation under salt stress is unclear. Here, we characterized the glycerol-3-phosphate acyltransferase (GPAT) family gene TaGPAT6, encoding a protein involved in cutin and suberin biosynthesis for apoplastic barrier formation in wheat (Triticum aestivum). TaGPAT6 has both acyltransferase and phosphatase activities, which are responsible for the synthesis of sn-2-monoacylglycerol (sn-2 MAG), the precursor of cutin and suberin. Overexpressing TaGPAT6 promoted the deposition of cutin and suberin in the seed coat and the outside layers of root tip cells and enhanced salt tolerance by reducing sodium ion accumulation within cells. By contrast, TaGPAT6 knockout mutants showed increased sensitivity to salt stress due to reduced cutin and suberin deposition and enhanced sodium ion accumulation. Yeast-one-hybrid and electrophoretic mobility shift assays identified TaABI5 as the upstream regulator of TaGPAT6. TaABI5 knockout mutants showed suppressed expression of TaGPAT6 and decreased barrier formation in the seed coat. These results indicate that TaGPAT6 is involved in cutin and suberin biosynthesis and the resulting formation of an apoplastic barrier that enhances salt tolerance in wheat.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Menghan Chi
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiawang Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Li S, Chen X, Guo M, Zhu X, Huang W, Guo C, Shu Y. Genome-Wide Identification and Expression Analysis of the Alfalfa ( Medicago sativa L.) U-Box Gene Family in Response to Abiotic Stresses. Int J Mol Sci 2024; 25:12324. [PMID: 39596388 PMCID: PMC11595061 DOI: 10.3390/ijms252212324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
E3 ubiquitin ligases known as plant U-box (PUB) proteins regulate a variety of aspects of plant growth, development, and stress response. However, the functions and characteristics of the PUB gene family in alfalfa remain unclear. This work involved a genome-wide examination of the alfalfa U-box E3 ubiquitin ligase gene. In total, 210 members were identified and divided into five categories according to their homology with the members of the U-box gene family in Arabidopsis thaliana. The phylogenetic analysis, conserved motifs, chromosomal localization, promoters, and regulatory networks of this gene were investigated. Chromosomal localization and covariance analyses indicated that the MsPUB genes expanded MsPUB gene family members through gene duplication events during evolution. MsPUB genes may be involved in the light response, phytohormone response, growth, and development of several biological activities, according to cis-acting element analysis of promoters. In addition, transcriptome analysis and expression analysis by qRT-PCR indicated that most MsPUB genes were significantly upregulated under cold stress, drought stress, and salt stress treatments. Among them, MsPUBS106 and MsPUBS185 were significantly and positively correlated with cold resistance in alfalfa. MsPUBS110, MsPUBS067, MsPUBS111 and MsPUB155 were comprehensively involved in drought stress, low temperature, and salt stress resistance. All things considered, these discoveries offer fresh perspectives on the composition, development, and roles of the PUB gene family in alfalfa. They also provide theoretical guidance for further investigations into the mechanisms regulating the development, evolution, and stress tolerance of MsPUB.
Collapse
Affiliation(s)
- Shuaixian Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Meiyan Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Xiaoyue Zhu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| |
Collapse
|
3
|
Su Y, Ngea GLN, Wang K, Lu Y, Godana EA, Ackah M, Yang Q, Zhang H. Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2811-2843. [PMID: 38864414 PMCID: PMC11536463 DOI: 10.1111/pbi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.
Collapse
Affiliation(s)
- Yingying Su
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Institute of Fisheries Sciences, University of DoualaDoualaCameroon
| | - Kaili Wang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Yuchun Lu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Esa Abiso Godana
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Michael Ackah
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Qiya Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Hongyin Zhang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
4
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Liu S, Liu R, Chen P, Chu B, Gao S, Yan L, Gou Y, Tian T, Wen S, Zhao C, Sun S. Genome-wide identification and expression analysis of the U-box gene family related to biotic and abiotic stresses in Coffea canephora L. BMC Genomics 2024; 25:916. [PMID: 39354340 PMCID: PMC11443674 DOI: 10.1186/s12864-024-10745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Plant U-box genes play an important role in the regulation of plant hormone signal transduction, stress tolerance, and pathogen resistance; however, their functions in coffee (Coffea canephora L.) remain largely unexplored. In this study, we identified 47 CcPUB genes in the C. canephora L. genome, clustering them into nine groups via phylogenetic tree. The CcPUB genes were unevenly distributed across the 11 chromosomes of C. canephora L., with the majority (11) on chromosome 2 and none on chromosome 8. The cis-acting elements analysis showed that CcPUB genes were involved in abiotic and biotic stresses, phytohormone responsive, and plant growth and development. RNA-seq data revealed diverse expression patterns of CcPUB genes across leaves, stems, and fruits tissues. qRT-PCR analyses under dehydration, low temperature, SA, and Colletotrichum stresses showed significant up-regulation of CcPUB2, CcPUB24, CcPUB34, and CcPUB40 in leaves. Furthermore, subcellular localization showed CcPUB2 and CcPUB34 were located in the plasma membrane and nucleus, and CcPUB24 and CcPUB40 were located in the nucleus. This study provides valuable insights into the roles of PUB genes in stress responses and phytohormone signaling in C. canephora L., and provided basis for functional characterization of PUB genes in C. canephora L.
Collapse
Affiliation(s)
- Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Ruibing Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Pengyun Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bo Chu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Lin Yan
- Key Laboratory of Genetic Resource Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, 571533, China
| | - Yafeng Gou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Tian Tian
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Siwei Wen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Shiwei Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China.
| |
Collapse
|
6
|
Qiao L, Li Y, Wang L, Gu C, Luo S, Li X, Yan J, Lu C, Chang Z, Gao W, Zhang X. Identification of Salt-Stress-Responding Genes by Weighted Gene Correlation Network Analysis and Association Analysis in Wheat Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2642. [PMID: 39339617 PMCID: PMC11435117 DOI: 10.3390/plants13182642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The leaf is not only the main site of photosynthesis, but also an important organ reflecting plant salt tolerance. Discovery of salt-stress-responding genes in the leaf is of great significance for the molecular improvement of salt tolerance in wheat varieties. In this study, transcriptome sequencing was conducted on the leaves of salt-tolerant wheat germplasm CH7034 seedlings at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on weighted gene correlation network analysis of differentially expressed genes (DEGs) under salt stress, 12 co-expression modules were obtained, of which, 9 modules containing 4029 DEGs were related to the salt stress time-course. These DEGs were submitted to the Wheat Union database, and a total of 904,588 SNPs were retrieved from 114 wheat germplasms, distributed on 21 wheat chromosomes. Using the R language package and GAPIT program, association analysis was performed between 904,588 SNPs and leaf salt injury index of 114 wheat germplasms. The results showed that 30 single nucleotide polymorphisms (SNPs) from 15 DEGs were associated with salt tolerance. Then, nine candidate genes, including four genes (TaBAM, TaPGDH, TaGluTR, and TaAAP) encoding enzymes as well as five genes (TaB12D, TaS40, TaPPR, TaJAZ, and TaWRKY) encoding functional proteins, were identified by converting salt tolerance-related SNPs into Kompetitive Allele-Specifc PCR (KASP) markers for validation. Finally, interaction network prediction was performed on TaBAM and TaAAP, both belonging to the Turquoise module. Our results will contribute to a further understanding of the salt stress response mechanism in plant leaves and provide candidate genes and molecular markers for improving salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linyi Qiao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yijuan Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liujie Wang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunxia Gu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shiyin Luo
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinlong Yan
- Millet Research Institute, Shanxi Agricultural University, Changzhi 046011, China
| | - Chengda Lu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhijian Chang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wei Gao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
7
|
Li Q, Zhao X, Wu J, Shou H, Wang W. The F-Box Protein TaFBA1 Positively Regulates Drought Resistance and Yield Traits in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:2588. [PMID: 39339563 PMCID: PMC11434774 DOI: 10.3390/plants13182588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Environmental stresses, including drought stress, seriously threaten food security. Previous studies reported that wheat F-box protein, TaFBA1, responds to abiotic stresses in tobacco. Here, we generated transgenic wheat with enhanced (overexpression, OE) or suppressed (RNA interference, RNAi) expression of TaFBA1. The TaFBA1-OE seedlings showed enhanced drought tolerance, as measured by survival rate and fresh weight under severe drought stress, whereas the RNAi plants showed the opposite phenotype. Furthermore, the OE plants had stronger antioxidant capacity compared to WT and RNAi plants and maintained stomatal opening, which resulted in higher water loss under drought stress. However, stronger water absorption capacity in OE roots contributed to higher relative water contents in leaves under drought stress. Moreover, the postponed stomatal closure in OE lines helped to maintain photosynthesis machinery to produce more photoassimilate and ultimately larger seed size. Transcriptomic analyses conducted on WT and OE plants showed that genes involved in antioxidant, fatty acid and lipid metabolism and cellulose synthesis were significantly induced by drought stress in the leaves of OE lines. Together, our studies determined that the F-box protein TaFBA1 modulated drought tolerance and affected yield in wheat and the TaFBA1 gene could provide a desirable target for further breeding of wheat.
Collapse
Affiliation(s)
- Qinxue Li
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining 314400, China;
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| | - Xiaoyu Zhao
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| | - Jiajie Wu
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| | - Huixia Shou
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining 314400, China;
| | - Wei Wang
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| |
Collapse
|
8
|
Miao F, Chen W, Zhao Y, Zhao P, Sang X, Lu J, Wang H. The RING-Type E3 Ubiquitin Ligase Gene GhDIRP1 Negatively Regulates Verticillium dahliae Resistance in Cotton ( Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:2047. [PMID: 39124165 PMCID: PMC11314081 DOI: 10.3390/plants13152047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Cotton is one of the world's most important economic crops. Verticillium wilt is a devastating cotton disease caused by Verticillium dahliae, significantly impacting cotton yield and quality. E3 ubiquitin ligases are essential components of the ubiquitin-mediated 26S proteasome system, responsible for recognizing ubiquitinated target proteins and promoting their degradation, which play a crucial regulatory role in plant immune responses. In this study, on the basis of the confirmation of differential expression of GhDIRP1, a RING-type E3 ubiquitin ligase encoding gene, in two cotton varieties resistant (Zhongzhimian 2) or susceptible (Jimian 11) to V. dahliae, we demonstrated that GhDIRP1 is a negative regulator of V. dahliae resistance because silencing GhDIRP1 in cotton and heterogeneously overexpressing the gene in Arabidopsis enhanced and compromised resistance to V. dahliae, respectively. The GhDIRP1-mediated immune response seemed to be realized through multiple physiological pathways, including hormone signaling, reactive oxygen species, and lignin biosynthesis. Based on the sequences of GhDIRP1 isolated from Zhongzhimian 2 and Jimian 11, we found that GhDIRP1 had identical coding but different promoter sequences in the two varieties, with the promoter of Zhongzhimian 2 being more active than that of Jimian 11 because the former drove a stronger expression of GUS and LUC reporter genes. The results link the ubiquitination pathway to multiple physiological pathways acting in the cotton immune response and provide a candidate gene for breeding cotton varieties resistant to V. dahliae.
Collapse
Affiliation(s)
- Fenglin Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Wei Chen
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Yunlei Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Pei Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Xiaohui Sang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
9
|
Chen C, Zhang Z, Lei Y, Chen W, Zhang Z, Dai H. The transcription factor MdERF023 negatively regulates salt tolerance by modulating ABA signaling and Na +/H + transport in apple. PLANT CELL REPORTS 2024; 43:187. [PMID: 38958739 DOI: 10.1007/s00299-024-03272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE MdERF023 is a transcription factor that can reduce salt tolerance by inhibiting ABA signaling and Na+/H+ homeostasis. Salt stress is one of the principal environmental stresses limiting the growth and productivity of apple (Malus × domestica). The APETALA2/ethylene response factor (AP2/ERF) family plays key roles in plant growth and various stress responses; however, the regulatory mechanism involved has not been fully elucidated. In the present study, we identified an AP2/ERF transcription factor (TF), MdERF023, which plays a negative role in apple salt tolerance. Stable overexpression of MdERF023 in apple plants and calli significantly decreased salt tolerance. Biochemical and molecular analyses revealed that MdERF023 directly binds to the promoter of MdMYB44-like, a positive modulator of ABA signaling-mediated salt tolerance, and suppresses its transcription. In addition, MdERF023 downregulated the transcription of MdSOS2 and MdAKT1, thereby reducing the Na+ expulsion, K+ absorption, and salt tolerance of apple plants. Taken together, these results suggest that MdERF023 reduces apple salt tolerance by inhibiting ABA signaling and ion transport, and that it could be used as a potential target for breeding new varieties of salt-tolerant apple plants via genetic engineering.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingying Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Kou H, Zhang X, Jia J, Xin M, Wang J, Mao L, Baltaevich AM, Song X. Research Progress in the Regulation of the ABA Signaling Pathway by E3 Ubiquitin Ligases in Plants. Int J Mol Sci 2024; 25:7120. [PMID: 39000226 PMCID: PMC11241352 DOI: 10.3390/ijms25137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
E3 ubiquitin ligases (UBLs), as enzymes capable of specifically recognizing target proteins in the process of protein ubiquitination, play crucial roles in regulating responses to abiotic stresses such as drought, salt, and temperature. Abscisic acid (ABA), a plant endogenous hormone, is essential to regulating plant growth, development, disease resistance, and defense against abiotic stresses, and acts through a complex ABA signaling pathway. Hormone signaling transduction relies on protein regulation, and E3 ubiquitin ligases play important parts in regulating the ABA pathway. Therefore, this paper reviews the ubiquitin-proteasome-mediated protein degradation pathway, ABA-related signaling pathways, and the regulation of ABA-signaling-pathway-related genes by E3 ubiquitin ligases, aiming to provide references for further exploration of the relevant research on how plant E3 ubiquitin ligases regulate the ABA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
11
|
Zhang Z, Xia Z, Zhou C, Wang G, Meng X, Yin P. Insights into Salinity Tolerance in Wheat. Genes (Basel) 2024; 15:573. [PMID: 38790202 PMCID: PMC11121000 DOI: 10.3390/genes15050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Salt stress has a detrimental impact on food crop production, with its severity escalating due to both natural and man-made factors. As one of the most important food crops, wheat is susceptible to salt stress, resulting in abnormal plant growth and reduced yields; therefore, damage from salt stress should be of great concern. Additionally, the utilization of land in coastal areas warrants increased attention, given diminishing supplies of fresh water and arable land, and the escalating demand for wheat. A comprehensive understanding of the physiological and molecular changes in wheat under salt stress can offer insights into mitigating the adverse effects of salt stress on wheat. In this review, we summarized the genes and molecular mechanisms involved in ion transport, signal transduction, and enzyme and hormone regulation, in response to salt stress based on the physiological processes in wheat. Then, we surveyed the latest progress in improving the salt tolerance of wheat through breeding, exogenous applications, and microbial pathways. Breeding efficiency can be improved through a combination of gene editing and multiple omics techniques, which is the fundamental strategy for dealing with salt stress. Possible challenges and prospects in this process were also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Z.Z.); (Z.X.); (C.Z.); (G.W.); (X.M.)
| |
Collapse
|
12
|
Sun D, Xu J, Wang H, Guo H, Chen Y, Zhang L, Li J, Hao D, Yao X, Li X. Genome-Wide Identification and Expression Analysis of the PUB Gene Family in Zoysia japonica under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:788. [PMID: 38592813 PMCID: PMC10974829 DOI: 10.3390/plants13060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The U-box protein family of ubiquitin ligases is important in the biological processes of plant growth, development, and biotic and abiotic stress responses. Plants in the genus Zoysia are recognized as excellent warm-season turfgrass species with drought, wear and salt tolerance. In this study, we conducted the genome-wide identification of plant U-box (PUB) genes in Zoysia japonica based on U-box domain searching. In total, 71 ZjPUB genes were identified, and a protein tree was constructed of AtPUBs, OsPUBs, and ZjPUBs, clustered into five groups. The gene structures, characteristics, cis-elements and protein interaction prediction network were analyzed. There were mainly ABRE, ERE, MYB and MYC cis-elements distributed in the promoter regions of ZjPUBs. ZjPUBs were predicted to interact with PDR1 and EXO70B1, related to the abscisic acid signaling pathway. To better understand the roles of ZjPUBs under salt stress, the expression levels of 18 ZjPUBs under salt stress were detected using transcriptome data and qRT-PCR analysis, revealing that 16 ZjPUBs were upregulated in the roots under salt treatment. This indicates that ZjPUBs might participate in the Z. japonica salt stress response. This research provides insight into the Z. japonica PUB gene family and may support the genetic improvement in the molecular breeding of salt-tolerant zoysiagrass varieties.
Collapse
Affiliation(s)
- Daojin Sun
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jingya Xu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiang Yao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
13
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Zhou X, Li Y, Wang J, Zhao Y, Wang H, Han Y, Lin X. Genome-wide identification of U-box gene family and expression analysis in response to saline-alkali stress in foxtail millet ( Setaria italica L. Beauv). Front Genet 2024; 15:1356807. [PMID: 38435060 PMCID: PMC10904469 DOI: 10.3389/fgene.2024.1356807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I-VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes.
Collapse
Affiliation(s)
- Xiaoke Zhou
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuxue Zhao
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Huimin Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yucui Han
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
15
|
Liu Y, Li C, Qin A, Deng W, Chen R, Yu H, Wang Y, Song J, Zeng L. Genome-wide identification and transcriptome profiling expression analysis of the U-box E3 ubiquitin ligase gene family related to abiotic stress in maize (Zea mays L.). BMC Genomics 2024; 25:132. [PMID: 38302871 PMCID: PMC10832145 DOI: 10.1186/s12864-024-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.
Collapse
Affiliation(s)
- Yongle Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- College of Life Sciences, Nanjing University, Nanjing, 210095, People's Republic of China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Wenli Deng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
16
|
Wang W, Zhang G, Wang W, Wang Z, Lv Y, Guo F, Di Y, Zhang J, Wang Y, Wang W, Li Y, Hao Q. Wheat cis-zeatin-O-glucosyltransferase cZOGT1 interacts with the Ca2+-dependent lipid binding protein TaZIP to regulate senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6619-6630. [PMID: 37668322 DOI: 10.1093/jxb/erad346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Premature senescence is an important factor affecting wheat yield and quality. Wheat yield can be increased by delaying senescence and prolonging the effective photosynthetic time. Previously, we found that the cis-zeatin-O-glucosyltransferase (cZOGT1) gene plays an important role in the stay-green wheat phenotype. In this study, cZOGT1-overexpressing lines exhibited a delayed senescence phenotype, despite a significant reduction in the total cytokinin content. Further, we found that cZOGT1 interacted with the Ca2+-dependent lipid binding protein TaZIP (cZOGT1-interacting protein), and that a high level of cZOGT1 expression led to the suppression of TaZIP expression, which in turn, reduced abscisic acid (ABA) content. The synergistic reduction in cytokinins and ABA levels eventually caused the stay-green phenotype in cZOGT1-overexpressing lines. This study provides a new theoretical basis to explain the mechanism underlying the wheat stay-green phenotype and provides a genetic resource for wheat molecular-design breeding.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
- Spring Valley Agriscience Co., Ltd., Jinan, Shandong, China
| | - Gaungqiang Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhigang Wang
- Spring Valley Agriscience Co., Ltd., Jinan, Shandong, China
| | - Yuelin Lv
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fenxia Guo
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yindi Di
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Jifa Zhang
- Spring Valley Agriscience Co., Ltd., Jinan, Shandong, China
| | - Yuhai Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanyuan Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| |
Collapse
|
17
|
Kim JH, Lim SD, Jung KH, Jang CS. Overexpression of a C3HC4-type E3-ubiquitin ligase contributes to salinity tolerance by modulating Na + homeostasis in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e14075. [PMID: 38148225 DOI: 10.1111/ppl.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
Soil salinity has a negative effect on crop yield. Therefore, plants have evolved many strategies to overcome decreases in yield under saline conditions. Among these, E3-ubiquitin ligase regulates salt tolerance. We characterized Oryza sativa Really Interesting New Gene (RING) Finger C3HC4-type E3 ligase (OsRFPHC-4), which plays a positive role in improving salt tolerance. The expression of OsRFPHC-4 was downregulated by high NaCl concentrations and induced by abscisic acid (ABA) treatment. GFP-fused OsRFPHC-4 was localized to the plasma membrane of rice protoplasts. OsRFPHC-4 encodes a cellular protein with a C3HC4-RING domain with E3 ligase activity. However, its variant OsRFPHC-4C161A does not possess this activity. OsRFPHC-4-overexpressing plants showed enhanced salt tolerance due to low accumulation of Na+ in both roots and leaves, low Na+ transport in the xylem sap, high accumulation of proline and soluble sugars, high activity of reactive oxygen species (ROS) scavenging enzymes, and differential regulation of Na+ /K+ transporter expression compared to wild-type (WT) and osrfphc-4 plants. In addition, OsRFPHC-4-overexpressing plants showed higher ABA sensitivity under exogenous ABA treatment than WT and osrfphc-4 plants. Overall, these results suggest that OsRFPHC-4 contributes to the improvement of salt tolerance and Na+ /K+ homeostasis via the regulation of changes in Na+ /K+ transporters.
Collapse
Affiliation(s)
- Jong Ho Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung Don Lim
- Molecular Plant Physiology Laboratory, Department of Plant Life & Resource Sciences, Sangji University, Wonju, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
18
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Li J, Wang J, Pang Q, Yan X. Analysis of N 6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111794. [PMID: 37459955 DOI: 10.1016/j.plantsci.2023.111794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Salinity is an important environmental factor in crop growth and development. N6-methyladenosine (m6A) is an essential epigenetic modification that regulates plant-environment interaction. Sugar beet is a major sugar-yielding crop that has a certain tolerance to salt, but the dynamic response elicited by the m6A modification of transcripts under salt stress remains unknown. In this study, sugar beet was exposed to 300 mM NaCl to investigate its physiological response to high salinity and transcriptome-wide m6A modification profile. After the salt treatment, 7737 significantly modified m6A sites and 4981 differentially expressed genes (DEGs) were identified. Among the 312 m6A-modified DEGs, 113 hypomethylated DEGs were up-regulated and 99 hypermethylated DEGs were down-regulated, indicating a negative correlation between m6A modification and gene expression. Well-known salt tolerance genes (e.g., sodium/hydrogen exchanger 1, choline monooxygenase, and nucleoredoxin 2) and phospholipid signaling pathway genes (phosphoinositol-specific phospholipase C, phospholipase D, diacylglycerol kinase 1, etc.) were also among the m6A-modified genes. Further analysis showed that m6A modification may regulate salt-tolerant related gene expression by controlling mRNA stability. Therefore, changes in m6A modification may negatively regulate the expression of the salt-resistant genes in sugar beet, at least in part by modulating the stability of the mRNA via demethylase BvAlkbh10B. These findings could provide a better understanding of the epigenetic mechanisms of salt tolerance in sugar beets and uncover new candidate genes for improving the production of sugar beets planted in high-salinity soil.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China; Post-doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| | - Qiuying Pang
- Post-doctoral Research Stations, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China.
| |
Collapse
|
20
|
Wang K, Zhai M, Cui D, Han R, Wang X, Xu W, Qi G, Zeng X, Zhuang Y, Liu C. Genome-Wide Analysis of the Amino Acid Permeases Gene Family in Wheat and TaAAP1 Enhanced Salt Tolerance by Accumulating Ethylene. Int J Mol Sci 2023; 24:13800. [PMID: 37762108 PMCID: PMC10530925 DOI: 10.3390/ijms241813800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Amino acid permeases (AAPs) are proteins of the integral membrane that play important roles in plant growth, development, and responses to various stresses. The molecular functions of several AAPs were characterized in Arabidopsis and rice, but there is still limited information on wheat. Here, we identified 51 AAP genes (TaAAPs) in the wheat genome, classified into six groups based on phylogenetic and protein structures. The chromosome location and gene duplication analysis showed that gene duplication events played a crucial role in the expansion of the TaAAPs gene family. Collinearity relationship analysis revealed several orthologous AAPs between wheat and other species. Moreover, cis-element analysis of promoter regions and transcriptome data suggested that the TaAAPs can respond to salt stress. A TaAAP1 gene was selected and transformed in wheat. Overexpressing TaAAP1 enhanced salt tolerance by increasing the expression of ethylene synthesis genes (TaACS6/TaACS7/TaACS8) and accumulating more ethylene. The present study provides an overview of the AAP family in the wheat genome as well as information on systematics, phylogenetics, and gene duplication, and shows that overexpressing TaAAP1 enhances salt tolerance by regulating ethylene production. These results serve as a theoretical foundation for further functional studies on TaAAPs in the future.
Collapse
Affiliation(s)
- Kai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Mingjuan Zhai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Dezhou Cui
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Wenjing Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Guang Qi
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Xiaoxue Zeng
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Yamei Zhuang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China; (K.W.); (D.C.); (R.H.); (X.W.); (W.X.); (G.Q.); (X.Z.); (Y.Z.)
| |
Collapse
|
21
|
Yang XQ, Li W, Ren ZY, Zhao JJ, Li XY, Wang XX, Pei XY, Liu YG, He KL, Zhang F, Ma XF, Yang DG. GhSINA1, a SEVEN in ABSENTIA ubiquitin ligase, negatively regulates fiber development in Upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107853. [PMID: 37385030 DOI: 10.1016/j.plaphy.2023.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Protein ubiquitination is essential for plant growth and responses to the environment. The SEVEN IN ABSENTIA (SINA) ubiquitin ligases have been extensively studied in plants, but information on their roles in fiber development is limited. Here, we identified GhSINA1 in Upland cotton (Gossypium hirsutum), which has a conserved RING finger domain and SINA domain. Quantitative real-time PCR (qRT-PCR) analysis showed that GhSINA1 was preferentially expressed during fiber initiation and elongation, especially during initiation in the fuzzless-lintless cotton mutant. Subcellular localization experiments indicated that GhSINA1 localized to the nucleus. In vitro ubiquitination analysis revealed that GhSINA1 has E3 ubiquitin ligase activity. Ectopic overexpression of GhSINA1 in Arabidopsis thaliana reduced the number and length of root hairs and trichomes. Yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), and bimolecular fluorescence complementation (BiFC) assays demonstrated that the GhSINA1 proteins could interact with each other to form homodimers and heterodimers. Overall, these results suggest that GhSINA1 may act as a negative regulator in cotton fiber development through homodimerization and heterodimerization.
Collapse
Affiliation(s)
- Xiao-Qing Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Zhong-Ying Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jun-Jie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xin-Yang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xing-Xing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao-Yu Pei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Gai Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun-Lun He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiong-Feng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Dai-Gang Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
22
|
Cui J, Ren G, Bai Y, Gao Y, Yang P, Chang J. Genome-wide identification and expression analysis of the U-box E3 ubiquitin ligase gene family related to salt tolerance in sorghum ( Sorghum bicolor L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1141617. [PMID: 37008506 PMCID: PMC10063820 DOI: 10.3389/fpls.2023.1141617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Plant U-box (PUB) E3 ubiquitin ligases play essential roles in many biological processes and stress responses, but little is known about their functions in sorghum (Sorghum bicolor L.). In the present study, 59 SbPUB genes were identified in the sorghum genome. Based on the phylogenetic analysis, the 59 SbPUB genes were clustered into five groups, which were also supported by the conserved motifs and structures of these genes. SbPUB genes were found to be unevenly distributed on the 10 chromosomes of sorghum. Most PUB genes (16) were found on chromosome 4, but there were no PUB genes on chromosome 5. Analysis of cis-acting elements showed that SbPUB genes were involved in many important biological processes, particularly in response to salt stress. From proteomic and transcriptomic data, we found that several SbPUB genes had diverse expressions under different salt treatments. To verify the expression of SbPUBs, qRT-PCR analyses also were conducted under salt stress, and the result was consistent with the expression analysis. Furthermore, 12 SbPUB genes were found to contain MYB-related elements, which are important regulators of flavonoid biosynthesis. These results, which were consistent with our previous multi-omics analysis of sorghum salt stress, laid a solid foundation for further mechanistic study of salt tolerance in sorghum. Our study showed that PUB genes play a crucial role in regulating salt stress, and might serve as promising targets for the breeding of salt-tolerant sorghum in the future.
Collapse
Affiliation(s)
- Jianghui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding, China
| | - Genzeng Ren
- College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding, China
| | - Yuzhe Bai
- College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding, China
| | - Yukun Gao
- College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding, China
| | - Puyuan Yang
- College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding, China
| | - Jinhua Chang
- College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding, China
| |
Collapse
|
23
|
Xu T, Meng S, Zhu X, Di J, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na +/K + balance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1004477. [PMID: 36777542 PMCID: PMC9910287 DOI: 10.3389/fpls.2022.1004477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Salt stress is one of the main abiotic stresses affecting crop yield and quality. Barley has strong salt tolerance, however, the underlying genetic basis is not fully clear, especially in the seedling stage. This study examined the ionic changes in barley core germplasms under the control and salt conditions. Genome-wide association study (GWAS) analysis revealed 54 significant SNPs from a pool of 25,342 SNPs distributed in 7 chromosomes (Chr) of the Illumina Barley 50K SNP array. These SNPs are associated with ion homeostasis traits, sodium (Na+) and potassium (K+) content, and Na+/K+ ratio representing five genomic regions on Chr 2, 4, 5, 6, and 7 in the leaves of worldwide barley accessions. And there are 3 SNP peaks located on the Chr 4, 6, and 7, which could be the "hot spots" regions for mining and identifying candidate genes for salt tolerance. Furthermore, 616 unique candidate genes were screened surrounding the significant SNPs, which are associated with transport proteins, protein kinases, binding proteins, and other proteins of unknown function. Meanwhile, transcriptomic analysis (RNA-Seq) was carried out to compare the salt-tolerant (CM72) and salt-sensitive (Gairdner) genotypes subjected to salt stress. And there was a greater accumulation of differentially expressed genes(DEGs) in Gairdner compared to CM72, mainly enriched in metabolic pathway, biosynthesis of secondary metabolites, photosynthesis, signal transduction,emphasizing the different transcriptional response in both genotypes following salt exposure. Combined GWAS and RNA-Seq analysis revealed 5 promising salt-responding genes (PGK2, BASS3, SINAT2, AQP, and SYT3) from the hot spot regions, which were verified between the salt-tolerant and salt-sensitive varieties by qRT-PCR. In all, these results provide candidate SNPs and genes responsible for salinity responding in barley, and a new idea for studying such genetic basis in similar crops.
Collapse
|
24
|
Li Z, Zhong F, Guo J, Chen Z, Song J, Zhang Y. Improving Wheat Salt Tolerance for Saline Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14989-15006. [PMID: 36442507 DOI: 10.1021/acs.jafc.2c06381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Crops have evolved various strategies to facilitate survival and production of harvestable yield under salinity stress. Wheat (Triticum aestivum L.) is the main crop in arid and semiarid land areas, which are often affected by soil salinity. In this review, we summarize the conventional approaches to enhance wheat salt tolerance, including cross-breeding, exogenous application of chemical compounds, beneficial soil microorganisms, and transgenic engineering. We also propose several new breeding techniques for increasing salt tolerance in wheat, such as identifying new quantitative trait loci or genes related to salt tolerance, gene stacking and multiple genome editing, and wheat wild relatives and orphan crops domestication. The challenges and possible countermeasures in enhancing wheat salinity tolerance are also discussed.
Collapse
Affiliation(s)
- Zihan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fan Zhong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
25
|
Trono D, Pecchioni N. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233358. [PMID: 36501397 PMCID: PMC9737347 DOI: 10.3390/plants11233358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it very difficult to fulfil this demand. In light of this, the tolerance of wheat to abiotic stresses has become a key objective of genetic improvement, as an effective strategy to ensure high yields without increasing the cultivated land. Genetic erosion related to modern agriculture, whereby elite, high-yielding wheat varieties are the product of high selection pressure, has reduced the overall genetic diversity, including the allelic diversity of genes that could be advantageous for adaptation to adverse environmental conditions. This makes traditional breeding a less effective or slower approach to generating new stress-tolerant wheat varieties. Either mining for the diversity of not-adapted large germplasm pools, or generating new diversity, are the mainstream approaches to be pursued. The advent of genetic engineering has opened the possibility to create new plant variability and its application has provided a strong complement to traditional breeding. Genetic engineering strategies such as transgenesis and genome editing have then provided the opportunity to improve environmental tolerance traits of agronomic importance in cultivated species. As for wheat, several laboratories worldwide have successfully produced transgenic wheat lines with enhanced tolerance to abiotic stresses, and, more recently, significant improvements in the CRISPR/Cas9 tools available for targeted variations within the wheat genome have been achieved. In light of this, the present review aims to provide successful examples of genetic engineering applications for the improvement of wheat adaptation to drought, salinity and extreme temperatures, which represent the most frequent and most severe events causing the greatest losses in wheat production worldwide.
Collapse
|
26
|
Kim MS, Kim JH, Amoah JN, Seo YW. Wheat (Triticum aestivum. L) Plant U-box E3 ligases TaPUB2 and TaPUB3 enhance ABA response and salt stress resistance in Arabidopsis. FEBS Lett 2022; 596:3037-3050. [PMID: 36349399 DOI: 10.1002/1873-3468.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
Plant U-box E3 ligases (PUBs) are important regulators of responses to various abiotic stress conditions. In this study, we found that wheat (Triticum aestivum. L) PUBs TaPUB2 and TaPUB3 enhanced abscisic acid (ABA) responses and salt tolerance in Arabidopsis. We generated transgenic Arabidopsis lines overexpressing TaPUB2 and TaPUB3 and performed various plant physiological experiments. Overexpression of TaPUB2 and TaPUB3 increased tolerance to salinity stress in an ABA-dependent manner in transgenic plants, as evidenced by germination and survival rates, root length, stomatal aperture regulation, membrane peroxidation, photosynthetic activities, reactive oxygen species scavenging activities and expression of various ABA and salinity stress-related genes. These results demonstrate the functions of PUBs under ABA and salinity stress conditions and provide valuable information for the development of salinity stress-tolerant crop species.
Collapse
Affiliation(s)
- Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Korea
| | - Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Korea
| | | | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Korea.,Ojeong Plant Breeding Research Center, Korea University, Seoul, Korea
| |
Collapse
|
27
|
Wang W, Zhang J, Guo F, Di Y, Wang Y, Li W, Sun Y, Wang Y, Ni F, Fu D, Wang W, Hao Q. Role of reactive oxygen species in lesion mimic formation and conferred basal resistance to Fusarium graminearum in barley lesion mimic mutant 5386. FRONTIERS IN PLANT SCIENCE 2022; 13:1020551. [PMID: 36699849 PMCID: PMC9869871 DOI: 10.3389/fpls.2022.1020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the barley lesion mimic mutant (LMM) 5386, evidenced by a leaf brown spot phenotype localized on the chromosome 3H, and its conferred basal resistance to Fusarium graminearum. RNA-seq analysis identified 1453 genes that were differentially expressed in LMM 5386 compared to those in the wild type. GO and KEGG functional annotations suggested that lesion mimic formation was mediated by pathways involving oxidation reduction and glutathione metabolism. Additionally, reactive oxygen species (ROS) accumulation in brown spots was substantially higher in LMM 5386 than in the wild-type plant; therefore, antioxidant competence, which is indicated by ROS accumulation, was significantly lower in LMM 5386. Furthermore, the reduction of glycine in LMM 5386 inhibited glutathione biosynthesis. These results suggest that the decrease in antioxidant competence and glutathione biosynthesis caused considerable ROS accumulation, leading to programmed cell death, which eventually reduced the yield components in LMM 5386.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Shandong Shofine Seed Technology Co., Ltd., Jining, China
| | - Jifa Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Spring Valley Agriscience Co., Ltd., Jinan, China
| | - Fenxia Guo
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yindi Di
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yuhui Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Wankun Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yali Sun
- Qihe Bureau of Agriculture and Rural, Qihe, China
| | - Yuhai Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Spring Valley Agriscience Co., Ltd., Jinan, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
28
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
29
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
30
|
Yang Y, Karthikeyan A, Yin J, Jin T, Ren R, Fang F, Cai H, Liu M, Wang D, Li K, Zhi H. The E3 Ligase GmPUB21 Negatively Regulates Drought and Salinity Stress Response in Soybean. Int J Mol Sci 2022; 23:6893. [PMID: 35805901 PMCID: PMC9266294 DOI: 10.3390/ijms23136893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
E3-ubiquitin ligases are known to confer abiotic stress responses in plants. In the present study, GmPUB21, a novel U-box E3-ubiquitin ligase-encoding gene, was isolated from soybean and functionally characterized. The expression of GmPUB21, which possesses E3-ubiquitin ligase activity, was found to be significantly up-regulated by drought, salinity, and ABA treatments. The fusion protein GmPUB21-GFP was localized in the cytoplasm, nucleus, and plasma membrane. Transgenic lines of the Nicotiana benthamiana over-expressing GmPUB21 showed more sensitive to osmotic, salinity stress and ABA in seed germination and inhibited mannitol/NaCl-mediated stomatal closure. Moreover, higher reactive oxygen species accumulation was observed in GmPUB21 overexpressing plants after drought and salinity treatment than in wild-type (WT) plants. Contrarily, silencing of GmPUB21 in soybean plants significantly enhanced the tolerance to drought and salinity stresses. Collectively, our results revealed that GmPUB21 negatively regulates the drought and salinity tolerance by increasing the stomatal density and aperture via the ABA signaling pathway. These findings improved our understanding of the role of GmPUB21 under drought and salinity stresses in soybean.
Collapse
Affiliation(s)
- Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Rui Ren
- Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China;
| | - Fei Fang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Han Cai
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Mengzhuo Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Dagang Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| |
Collapse
|
31
|
Xia-Yu G, Meng Z, Ming-Dong Z, Ji-Rui L, Zhong-Wei W, Jian-Wu L, Bin Z, Zhi-Yong A, Hua-Feng D. Comparative transcriptomic analysis of the super hybrid rice Chaoyouqianhao under salt stress. BMC PLANT BIOLOGY 2022; 22:233. [PMID: 35525915 PMCID: PMC9077912 DOI: 10.1186/s12870-022-03586-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Soil salinization is a threat to food security. China is rich in saline land resources for potential and current utilization. The cultivation and promotion of salt-tolerant rice varieties can greatly improve the utilization of this saline land. The super hybrid rice Chaoyouqianhao (CY1000) is one of the most salt-tolerant rice varieties and is widely used, but the molecular mechanism underlying its salt tolerance is not clear. RESULTS In this study, the characteristics of CY1000 and its parents were evaluated in the field and laboratory. The results showed that aboveground parts of CY1000 were barely influenced by salt stress, while the roots were less affected than those of its parents. A comparative transcriptomic strategy was used to analyze the differences in the response to salt stress among the male and female parents of CY1000 at the seedling stage and the model indica rice 93-11. We found that the salt tolerance of CY1000 was mainly inherited from its male parent R900, and its female parent GX24S showed hardly any salt tolerance. To adapt to salt stress, CY1000 and R900 upregulated the expression of genes associated with soluble component synthesis and cell wall synthesis and other related genes and downregulated the expression of most genes related to growth material acquisition and consumption. In CY1000 and R900, the expression of genes encoding some novel key proteins in the ubiquitination pathway was significantly upregulated. After treatment with MG-132, the salt tolerance of CY1000 and R900 was significantly decreased and was almost the same as that of the wild type after salt stress treatment, indicating that ubiquitination played an important role in the salt tolerance mechanism of CY1000. At the same time, we found that some transcription factors were also involved in the salt stress response, with some transcription factors responding only in hybrid CY1000, suggesting that salt tolerance heterosis might be regulated by transcription factors in rice. CONCLUSION Our results revealed that the ubiquitination pathway is important for salt tolerance in rice, and several novel candidate genes were identified to reveal a novel salt tolerance regulation network. Additionally, our work will help clarify the mechanism of heterosis in rice. Further exploration of the molecular mechanism underlying the salt tolerance of CY1000 can provide a theoretical basis for breeding new salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Guo Xia-Yu
- College of Agronomy, Hunan Agricultural University, Changsha, 410125 P. R. China
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000 P. R. China
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Zhang Meng
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 P. R. China
| | - Zhu Ming-Dong
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha, 410125 P. R. China
| | - Long Ji-Rui
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Wei Zhong-Wei
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Li Jian-Wu
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Zhou Bin
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha, 410125 P. R. China
| | - Ai Zhi-Yong
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000 P. R. China
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Deng Hua-Feng
- College of Agronomy, Hunan Agricultural University, Changsha, 410125 P. R. China
- Hunan Academy of Agricultural Sciences, Changsha, 410125 P. R. China
| |
Collapse
|
32
|
Al-Saharin R, Hellmann H, Mooney S. Plant E3 Ligases and Their Role in Abiotic Stress Response. Cells 2022; 11:cells11050890. [PMID: 35269512 PMCID: PMC8909703 DOI: 10.3390/cells11050890] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, as sessile organisms, have limited means to cope with environmental changes. Consequently, they have developed complex regulatory systems to ameliorate abiotic stresses im-posed by environmental changes. One such system is the ubiquitin proteasome pathway, which utilizes E3 ligases to target proteins for proteolytic degradation via the 26S proteasome. Plants ex-press a plethora of E3 ligases that are categorized into four major groups depending on their structure. They are involved in many biological and developmental processes in plants, such as DNA repair, photomorphogenesis, phytohormones signaling, and biotic stress. Moreover, many E3 ligase targets are proteins involved in abiotic stress responses, such as salt, drought, heat, and cold. In this review, we will provide a comprehensive overview of E3 ligases and their substrates that have been connected with abiotic stress in order to illustrate the diversity and complexity of how this pathway enables plant survival under stress conditions.
Collapse
Affiliation(s)
- Raed Al-Saharin
- Department of Applied Biology, Tafila Technical University, At-Tafilah 66110, Jordan
- Correspondence:
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA; (H.H.); (S.M.)
| | - Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA; (H.H.); (S.M.)
| |
Collapse
|
33
|
Liu S, Ou Y, Li Y, Sulaiman K, Tao M, Shawky E, Tian J, Zhu W. Tandem mass tag-based proteomic analysis of endoplasmic reticulum proteins in mulberry leaves under ultraviolet-B and dark stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13667. [PMID: 35289407 DOI: 10.1111/ppl.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Mulberry leaves have been used in traditional Chinese medicine due to their antioxidant, antidiabetic, and antihyperlipidemic properties. A previous study showed that ultraviolet-B radiation followed by dark incubation could improve the contents of active ingredients in mulberry leaves, such as moracin N and chalcomoracin. The endoplasmic reticulum (ER) serves as a protein quality control center and the location for protein synthesis, which is involved in the response to the environmental stress in plants. To investigate the mechanisms in response to ultraviolet-B radiation followed by dark incubation (UV + D), ER proteomics was performed on mulberry leaves. The ER protein markers, glucose-regulated protein (GRP78), and calnexin (CNX), were significantly higher in the ER fraction than in the total protein fraction, indicating that the ER was purified. Compared to the control, the abundance of protein disulfide isomerase, UDP-glucose glycoprotein glucosyltransferase, CNX, and calreticulin proteins decreased, while of the abundance of heat shock-related proteins increased under stress. P450 enzyme system-related proteins and ribosomal proteins showed significant increases. These results suggest that under UV + D stress, mulberry leaves activated the cell redox and ER quality control systems, enhancing protein synthesis and weakening N-glycan biosynthesis in the ER to resist the damage.
Collapse
Affiliation(s)
- Shengzhi Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuting Ou
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kaisa Sulaiman
- The Xinjiang Uygur Autonomous Region National Institute of Traditional Chinese Medicine, Urumchi, China
| | - Minglei Tao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
34
|
How Many Faces Does the Plant U-Box E3 Ligase Have? Int J Mol Sci 2022; 23:ijms23042285. [PMID: 35216399 PMCID: PMC8875423 DOI: 10.3390/ijms23042285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ubiquitination is a major type of post-translational modification of proteins in eukaryotes. The plant U-Box (PUB) E3 ligase is the smallest family in the E3 ligase superfamily, but plays a variety of essential roles in plant growth, development and response to diverse environmental stresses. Hence, PUBs are potential gene resources for developing climate-resilient crops. However, there is a lack of review of the latest advances to fully understand the powerful gene family. To bridge the gap and facilitate its use in future crop breeding, we comprehensively summarize the recent progress of the PUB family, including gene evolution, classification, biological functions, and multifarious regulatory mechanisms in plants.
Collapse
|
35
|
Song Y, Li S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui N. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:201-216. [PMID: 34633473 DOI: 10.1007/s00122-021-03960-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/29/2021] [Indexed: 05/23/2023]
Abstract
bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
36
|
Liang XD, Shalapy M, Zhao SF, Liu JH, Wang JY. A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat. PLANTA 2021; 254:130. [PMID: 34817644 DOI: 10.1007/s00425-021-03770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
A Populus euphratica NAC gene regulates (1,3; 1,4)-β-D-glucan content in oat developing seed and improves the spikelet number and grain number per spike in transgenic oat under salinity conditions Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.
Collapse
Affiliation(s)
- Xiao-Dong Liang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Beijing, 100081, China
| | - Mohamed Shalapy
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
| | - Shi-Feng Zhao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Jing-Hui Liu
- Inner Mongolia Agriculture University, No. 275 Xue Yuan East Street, Hohhot, 010019, China.
| | - Jun-Ying Wang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China.
| |
Collapse
|
37
|
Qin Y, Cui S, Cui P, Zhang B, Quan X. TaFLZ2D enhances salinity stress tolerance via superior ability for ionic stress tolerance and ROS detoxification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:516-525. [PMID: 34794100 DOI: 10.1016/j.plaphy.2021.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress severely affects plant growth and crop productivity. FCS-like zinc finger family genes (FLZ) play important roles in plant growth and stress responses. But most information of this family obtained was involved in sucrose signaling, limited function has been known in response to salinity stress. In this study, a novel FLZ gene TaFLZ2D has been isolated and characterized in response to salinity stress in wheat. TaFLZ2D was induced by both salinity stress and exogenous abscisic acid (ABA). Its transcript level was substantially higher in the salt resistant wheat cultivar SR3 than in its closely related but salt sensitive cultivar JN177. Transient expression in Nicotiana benthamiana leaf epidermal cells demonstrated TaFLZ2D was localized both in the cytoplasm membrane and nucleus. Constitutive expression of TaFLZ2D in Arabidopsis thaliana improved salinity stress tolerance and ABA sensitivity. Phenotype analysis under KCl and mannitol treatment demonstrated TaFLZ2D increased salinity stress tolerance mainly due to the superior ability to cope with ionic stress. TaFLZ2D over-expressing lines increased abscisic acid synthesis, peroxidase activity and reduced rate of water loss. Transcriptomic analysis demonstrated over-expression of TaFLZ2D regulated ABA-dependent and independent signaling pathway related genes expression and activated antioxidant related genes expression under normal condition and Ca2+ signaling related genes expression under NaCl treatmemt. Taken together, TaFLZ2D is a positive regulator of salinity stress tolerance, which contributes to salinity stress mainly through superior ability for ionic stress tolerance and ROS detoxification.
Collapse
Affiliation(s)
- Yuxiang Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China.
| | - Shoufu Cui
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Ping Cui
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Bao Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| |
Collapse
|
38
|
Marathe D, Singh A, Raghunathan K, Thawale P, Kumari K. Current available treatment technologies for saline wastewater and land-based treatment as an emerging environment-friendly technology: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2461-2504. [PMID: 34453764 DOI: 10.1002/wer.1633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Different industrial activities such as agro-food processing and manufacturing, leather manufacturing, and paper and pulp production generate highly saline wastewater. Direct discharge of saline wastewater has resulted in pollution of waterbodies by very high magnitudes. Consequently, an enormous number of pollutants such as heavy metals, salts, and organic matter are also released into the environment threatening the survival of human and biota. Saline wastewater also has significant effects on survival of plants, agricultural activities, and groundwater systems. Several treatments and disposal technologies are available for saline wastewater, but the selection of the most appropriate treatment and disposal technology still remains a major challenge with respect to the economic or technical constraints. Considering the sustainable management of saline wastewater, the present review is an attempt to compile the existing and emerging technologies for the treatment of saline wastewater. Among all the individual and hybrid technologies, land-based treatment systems are proven to be the most efficient technologies considering the energy demands, economic, and treatment efficiencies. Likewise, new and sustainable technologies are the need of hour integrating both the treatment and management and the resource recovery factors along with the ultimate goal of the protection in terms of human health and environmental aspect. PRACTITIONER POINTS: Physico-chemical treatment technologies for saline wastewater. Combined/Hybrid technologies for the treatment of saline wastewater. Land-based treatments as the environment friendly and sustainable method for saline wastewater treatment and disposal. Role of phytoremediation in land-based treatment.
Collapse
Affiliation(s)
- Deepak Marathe
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Thawale
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kanchan Kumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700 107, India
| |
Collapse
|
39
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
40
|
Evolutionary and Characteristic Analysis of RING-DUF1117 E3 Ubiquitin Ligase Genes in Gossypium Discerning the Role of GhRDUF4D in Verticillium dahliae Resistance. Biomolecules 2021; 11:biom11081145. [PMID: 34439811 PMCID: PMC8392396 DOI: 10.3390/biom11081145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Verticillium wilt, primarily induced by the soil-borne fungus Verticillium dahliae, is a serious threat to cotton fiber production. There are a large number of really interesting new gene (RING) domain-containing E3 ubiquitin ligases in Arabidopsis, of which three (At2g39720 (AtRHC2A), At3g46620 (AtRDUF1), and At5g59550 (AtRDUF2)) have a domain of unknown function (DUF) 1117 domain in their C-terminal regions. This study aimed to detect and characterize the RDUF members in cotton, to gain an insight into their roles in cotton’s adaptation to environmental stressors. In this study, a total of 6, 7, 14, and 14 RDUF (RING-DUF1117) genes were detected in Gossypium arboretum, G. raimondii, G. hirsutum, and G. barbadense, respectively. These RDUF genes were classified into three groups. The genes in each group were highly conserved based on gene structure and domain analysis. Gene duplication analysis revealed that segmental duplication occurred during cotton evolution. Expression analysis revealed that the GhRDUF genes were widely expressed during cotton growth and under abiotic stresses. Many cis-elements related to hormone response and environment stressors were identified in GhRDUF promoters. The predicted target miRNAs and transcription factors implied that GhRDUFs might be regulated by gra-miR482c, as well as by transcription factors, including MYB, C2H2, and Dof. The GhRDUF genes responded to cold, drought, and salt stress and were sensitive to jasmonic acid, salicylic acid, and ethylene signals. Meanwhile, GhRDUF4D expression levels were enhanced after V. dahliae infection. Subsequently, GhRDUF4D was verified by overexpression in Arabidopsis and virus-induced gene silencing treatment in upland cotton. We observed that V. dahliae resistance was significantly enhanced in transgenic Arabidopsis, and weakened in GhRDUF4D silenced plants. This study conducted a comprehensive analysis of the RDUF genes in Gossypium, hereby providing basic information for further functional studies.
Collapse
|
41
|
Zhang G, Yang J, Zhao X, Li Q, Wu Y, Li F, Wang Y, Hao Q, Wang W. Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110913. [PMID: 34134840 DOI: 10.1016/j.plantsci.2021.110913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Abscisic acid (ABA) is an important regulator of plant growth, development, and biotic and abiotic stress responses. Ubiquitination plays important roles in regulating ABA signaling. E3 ligase, a key member in ubiquitination, actively participates in the regulation of biosynthesis, de-repression, and activation of ABA response and degradation of signaling components. In this study, we found that that overexpression of wheat E3 ligase TaPUB1 decreased the sensitivity of wheat seedlings to ABA, whereas TaPUB1-RNA interference (TaPUB1-RNAi) lines increased wheat sensitivity to ABA during germination, root growth, and stomatal opening. TaPUB1 influenced the expression of several ABA-responsive genes, and also interacted with TaPYL4 and TaABI5, which are involved in ABA signal transduction, and promoted their degradation. Additionally, we observed that TaPUB1-OE lines resulted in lower single-split grain numbers, larger seed size, and higher thousand kernel weight, when compared with the WT lines. Contrasting results were obtained for TaPUB1-RNAi lines. It suggests that TaPUB1 acts as a negative regulator in the ABA signaling pathway by interacting with TaPYL4 and TaABI5, subsequently affecting seed development in wheat. In addition, the enhanced abiotic tolerance of overexpression lines due to enhanced photosynthesis and root development may be related to the degradation of TaABI5 by TaPUB1.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, PR China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Fangyuan Li
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, PR China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
42
|
Genome-wide identification and expression analysis of U-box gene family in wild emmer wheat (Triticum turgidum L. ssp. dicoccoides). Gene 2021; 799:145840. [PMID: 34274467 DOI: 10.1016/j.gene.2021.145840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
In this study, 82 U-box genes were identified in wild emmer wheat (TdPUBs) through a genome-search method. Phylogenetic analysis classified them into seven groups and the genes belonging to the same group shared the similar exon-intron structure, motif organization and cis-element compositions. Synteny analysis of the U-box genes between different species revealed that segmental duplication and polyploidization mainly contributed to the expansion of TdPUBs. Furthermore, the genetic variations of U-box were investigated in wild emmer, domesticated emmer and durum wheat. Results showed that significant genetic bottleneck has occurred during domestication process of tetraploid emmer wheat. Meanwhile, 12 TdPUBs were co-located with known domestication related QTLs. Finally, the tissue-specific and stress-responsive TdPUB genes were identified through RNA-seq analysis. Combined with qPCR validation of 19 salt-responsive TdPUBs, the candidates involving in salt response were obtained. It lays the foundation to better understand the regulatory roles of U-box family in emmer wheat and beyond.
Collapse
|
43
|
Zhang G, Yang J, Zhang M, Li Q, Wu Y, Zhao X, Zhang H, Wang Y, Wu J, Wang W. Wheat TaPUB1 Regulates Cd Uptake and Tolerance by Promoting the Degradation of TaIRT1 and TaIAA17. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5818-5829. [PMID: 34018722 DOI: 10.1021/acs.jafc.0c08042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) accumulation in agricultural soils is an increasingly serious problem, as plants absorb Cd, which inhibits their growth and development. Nonetheless, the molecular mechanisms underlying Cd detoxification and accumulation in wheat (Triticum aestivum L.) are unclear. Here, we isolated the U-box E3 ligase TaPUB1 from wheat and reported the functional characterization of TaPUB1 in Cd uptake and tolerance in wheat. Under Cd stress, TaPUB1 overexpression lines displayed higher photosynthetic rates than the wild type; opposite results were observed in the TaPUB1-RNAi lines. In addition, TaPUB1 overexpression lines showed reduced Cd uptake and accumulation, whereas RNAi plants exhibited a significant increase in Cd accumulation after Cd treatment. We further found that TaPUB1 enhanced the resistance of wheat to Cd stress in three ways. First, TaPUB1 interacts with and ubiquitinates TaIRT1, resulting in the inhibition of Cd uptake. Second, TaPUB1 interacts directly with and ubiquitinates TaIAA17, facilitates its degradation, and results in primary root elongation by activating the Aux signaling pathway under Cd stress. Moreover, TaPUB1 decreases ROS accumulation by regulating antioxidant-related gene expression and antioxidant enzyme activity under Cd stress. Thus, a molecular mechanism by which TaPUB1 regulates Cd uptake and tolerance by modulating the stability of TaIRT1 and TaIAA17 proteins was revealed.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Meng Zhang
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Huifei Zhang
- College of Agricultural, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Jiajie Wu
- College of Agricultural, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
44
|
Quan X, Liu J, Zhang N, Xie C, Li H, Xia X, He W, Qin Y. Genome-Wide Association Study Uncover the Genetic Architecture of Salt Tolerance-Related Traits in Common Wheat ( Triticum aestivum L.). Front Genet 2021; 12:663941. [PMID: 34093656 PMCID: PMC8172982 DOI: 10.3389/fgene.2021.663941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
Soil salinity is a serious threat to wheat yield affecting sustainable agriculture. Although salt tolerance is important for plant establishment at seedling stage, its genetic architecture remains unclear. In the present study, we have evaluated eight salt tolerance-related traits at seedling stage and identified the loci for salt tolerance by genome-wide association study (GWAS). This GWAS panel comprised 317 accessions and was genotyped with the wheat 90 K single-nucleotide polymorphism (SNP) chip. In total, 37 SNPs located at 16 unique loci were identified, and each explained 6.3 to 18.6% of the phenotypic variations. Among these, six loci were overlapped with previously reported genes or quantitative trait loci, whereas the other 10 were novel. Besides, nine loci were detected for two or more traits, indicating that the salt-tolerance genetic architecture is complex. Furthermore, five candidate genes were identified for salt tolerance-related traits, including kinase family protein, E3 ubiquitin-protein ligase-like protein, and transmembrane protein. SNPs identified in this study and the accessions with more favorable alleles could further enhance salt tolerance in wheat breeding. Our results are useful for uncovering the genetic mechanism of salt tolerance in wheat at seeding stage.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Zhang
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunjuan Xie
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hongmei Li
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxing He
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuxiang Qin
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
45
|
Wang W, Yang Y, Deng Y, Wang Z, Yuan Y, Yang S, Qi J, Wu J, Fu D, Wang W, Hao Q. Overexpression of isochorismate synthase enhances salt tolerance in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:139-149. [PMID: 33677226 DOI: 10.1016/j.plaphy.2021.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Isochorismate synthase (ICS) is a key enzyme for the synthesis of salicylic acid (SA) in plants. SA plays an important role in the response of plants to abiotic stress. In this study, transgenic barley was constructed to evaluate the function of ICS under salt stress. ICSOE lines showed obvious salt stress tolerance, this results from the increased outward Na+ flux and inward K+ flux in roots, thereby maintaining a lower cytosolic Na+/K+ ratio under salt stress. Overexprssion of ICS also improved Na+ sequestration in shoots under salt stress. In addition, ICSOE lines displayed less accumulation of reactive oxygen species and oxidative damage, accompanied by higher activity of antioxidant enzymes. The improved Na+/K+ ratio, Na+ sequestration, and antioxidative competence play an important role in the enhanced salt tolerance of ICSOE lines. These findings help to elucidate the abiotic stress resistance of the ICS pathway in barley.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China; State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Yang Yang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yanmei Deng
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Zhigang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Yuchao Yuan
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Shenlin Yang
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China; State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
46
|
Genome Wide Analysis of U-Box E3 Ubiquitin Ligases in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22052699. [PMID: 33800063 PMCID: PMC7962133 DOI: 10.3390/ijms22052699] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
U-box E3 ligase genes play specific roles in protein degradation by post-translational modification in plant signaling pathways, developmental stages, and stress responses; however, little is known about U-box E3 genes in wheat. We identified 213 U-box E3 genes in wheat based on U-box and other functional domains in their genome sequences. The U-box E3 genes were distributed among 21 chromosomes and most showed high sequence homology with homoeologous U-box E3 genes. Synteny analysis of wheat U-box E3 genes was conducted with other plant species such as Brachypodium distachyon, barley, rice, Triricum uratu, and Aegilops tauschii. A total of 209 RNA-seq samples representing 22 tissue types, from grain, root, leaf, and spike samples across multiple time points, were analyzed for clustering of U-box E3 gene expression during developmental stages, and the genes responded differently in various tissues and developmental stages. In addition, expression analysis of U-box E3 genes under abiotic stress, including drought, heat, and both heat and drought, and cold conditions, was conducted to provide information on U-box E3 gene expression under specific stress conditions. This analysis of U-box E3 genes could provide valuable information to elucidate biological functions for a better understanding of U-box E3 genes in wheat.
Collapse
|
47
|
Chen X, Wang T, Rehman AU, Wang Y, Qi J, Li Z, Song C, Wang B, Yang S, Gong Z. Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:494-509. [PMID: 33347703 DOI: 10.1111/jipb.13058] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 05/06/2023]
Abstract
Both plant receptor-like protein kinases (RLKs) and ubiquitin-mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U-BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)-mediated drought responses. PUB11 interacts with and ubiquitinates two receptor-like protein kinases, LEUCINE RICH REPEAT PROTEIN 1 (LRR1) and KINASE 7 (KIN7), and mediates their degradation during plant responses to drought stress in vitro and in vivo. pub11 mutants were more tolerant, whereas lrr1 and kin7 mutants were more sensitive, to drought stress than the wild type. Genetic analyses show that the pub11 lrr1 kin7 triple mutant exhibited similar drought sensitivity as the lrr1 kin7 double mutant, placing PUB11 upstream of the two RLKs. Abscisic acid and drought treatment promoted the accumulation of PUB11, which likely accelerates LRR1 and KIN7 degradation. Together, our results reveal that PUB11 negatively regulates plant responses to drought stress by destabilizing the LRR1 and KIN7 RLKs.
Collapse
Affiliation(s)
- Xuexue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tingting Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Amin Ur Rehman
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, 250000, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 100193, China
| |
Collapse
|
48
|
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How Plant Hormones Mediate Salt Stress Responses. TRENDS IN PLANT SCIENCE 2020; 25:1117-1130. [PMID: 32675014 DOI: 10.1016/j.tplants.2020.06.008] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Salt stress is one of the major environmental stresses limiting plant growth and productivity. To adapt to salt stress, plants have developed various strategies to integrate exogenous salinity stress signals with endogenous developmental cues to optimize the balance of growth and stress responses. Accumulating evidence indicates that phytohormones, besides controlling plant growth and development under normal conditions, also mediate various environmental stresses, including salt stress, and thus regulate plant growth adaptation. In this review, we mainly discuss and summarize how plant hormones mediate salinity signals to regulate plant growth adaptation. We also highlight how, in response to salt stress, plants build a defense system by orchestrating the synthesis, signaling, and metabolism of various hormones via multiple crosstalks.
Collapse
Affiliation(s)
- Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiangbo Duan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Lu Luo
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
49
|
Yang J, Zhang G, An J, Li Q, Chen Y, Zhao X, Wu J, Wang Y, Hao Q, Wang W, Wang W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110596. [PMID: 32771153 DOI: 10.1016/j.plantsci.2020.110596] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Expansins loosen plant cell walls and are involved in cell enlargement and various abiotic stresses. In previous studies, we cloned the expansin gene TaEXPA2 from the wheat cultivar HF9703. Here, we studied its function and regulation in wheat drought stress tolerance. The results indicated that TaEXPA2-overexpressing wheat plants (OE) exhibited drought tolerant phenotypes, whereas down-regulation of TaEXPA2 by RNA interference (RNAi) resulted in elevated drought sensitivity, as measured by survival rate, photosynthetic rate and water containing ability under drought stress. Overexpression of TaEXPA2 enhanced the antioxidant capacity in wheat plants, via elevation of antioxidant enzyme activity and the increase of the transcripts of some ROS scavenging enzyme-related genes. Further investigation revealed that TaEXPA2 positively influenced lateral root formation under drought conditions. A MYB transcription factor of wheat named TaMPS activates TaEXPA2 expression directly by binding to its promoter. Overexpression of TaMPS in Arabidopsis conferred drought tolerance associated with improved lateral root number, and the close homolog genes of TaEXPA2 were up-regulated in Arabidopsis roots overexpressing TaMPS, which suggest that TaMPS may function as one of the regulator of TaEXPA2 gene expression in the root lateral development under drought stress. These findings suggest that TaEXPA2 positively regulates drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Junjiao Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jie An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Wenqiang Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
50
|
An J, Li Q, Yang J, Zhang G, Zhao Z, Wu Y, Wang Y, Wang W. Wheat F-box Protein TaFBA1 Positively Regulates Plant Drought Tolerance but Negatively Regulates Stomatal Closure. FRONTIERS IN PLANT SCIENCE 2019; 10:1242. [PMID: 31649704 PMCID: PMC6795708 DOI: 10.3389/fpls.2019.01242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/06/2019] [Indexed: 05/24/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates plant growth and development, as well as responses to various stresses, such as salt and drought. The wheat TaFBA1 gene, which encodes an F-box protein, was previously identified in our laboratory by homologous cloning. We previously found that TaFBA1 expression was induced by ABA and drought stress. In this study, wild-type (WT), TaFBA1 over-expressing (OEs), TaFBA1 homologous gene mutants, and TaFBA1 recovery (Rs) Arabidopsis plants were used. We found that the germination rate, the cotyledon greening rate, the root length, and the photosynthetic performance of TaFBA1 OE plants were better than those of WT under drought and ABA conditions, but mutant plants showed the opposite trend, and overexpression of TaFBA1 in mutants can recover their phenotype. In addition, TaFBA1 was found to be a negative regulator of ABA-induced stoma movement; mRNA transcription of certain ABA signaling-related genes was lower in TaFBA1 OE plants than in WT plants following ABA treatment. Further, we found that TaFBA1 can interact with RCAR1 (an ABA receptor) and ABI5. BiFC assay showed that TaFBA1 may interact with RCAR1 in the plasma membrane. In addition, accumulation of ROS and MDA in TaFBA1 OE plants was lower than that in the WT plants after ABA and drought treatments. Based on these results, we suggest that TaFBA1-regulated ABA insensitivity may be dependent on regulating ABA-mediated gene expression through interacting with RCAR1 and ABI5. Increased antioxidant competence and decreased ROS accumulation may be an important mechanism that underlies improved drought tolerance in TaFBA1 OE plants.
Collapse
|