1
|
Zhu X, Chen W, Thirupathi A. Sprint Interval Training Improves Brain-Derived Neurotropic Factor-Induced Benefits in Brain Health-A Possible Molecular Signaling Intervention. BIOLOGY 2024; 13:562. [PMID: 39194500 DOI: 10.3390/biology13080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Physical exercise can significantly impact our bodies, affecting our functional capacity, structure establishment, and molecular makeup. The magnitude of these changes depends on the specific exercise protocols used. For instance, low-to-moderate-intensity exercise can activate important molecular targets in the short term, such as BDNF-mediated signaling, while high-intensity exercise can maintain these signaling molecules in the active state for a longer term. This makes it challenging to recommend specific exercises for obtaining BDNF-induced benefits. Additionally, exercise-induced molecular signaling targets can have positive and negative effects, with some exercises blunting these targets and others activating them. For example, increasing BDNF concentration through exercise can be beneficial for brain health, but it may also have a negative impact on conditions such as bipolar disorder. Therefore, a deeper understanding of a specific exercise-mediated mechanistic approach is required. This review will delve into how the sprint exercise-mediated activation of BDNF could help maintain brain health and explore potential molecular interventions.
Collapse
Affiliation(s)
- Xueqiang Zhu
- School of Competitive Sports, Shandong Sport University, Rizhao 276826, China
| | - Wenjia Chen
- School of Physical Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Liang G, Kow ASF, Yusof R, Tham CL, Ho YC, Lee MT. Menopause-Associated Depression: Impact of Oxidative Stress and Neuroinflammation on the Central Nervous System-A Review. Biomedicines 2024; 12:184. [PMID: 38255289 PMCID: PMC10813042 DOI: 10.3390/biomedicines12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side effects. The development of agents targeting the specific pathologies of perimenopausal depression has been relatively slow. The erratic fluctuations in estrogen and progesterone levels during the perimenopausal stage expose women to the risk of developing perimenopausal-associated depression. These hormonal changes trigger the production of proinflammatory mediators and induce oxidative stress, leading to progressive neuronal damage. This review serves as a comprehensive overview of the underlying mechanisms contributing to perimenopausal depression. It aims to shed light on the complex relationship between perimenopausal hormones, neurotransmitters, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression. By summarizing the intricate interplay between hormonal fluctuations, neurotransmitter activity, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression, this review aims to stimulate further research in this field. The hope is that an increased understanding of these mechanisms will pave the way for the development of more effective therapeutic targets, ultimately reducing the risk of depression during the menopausal stage for the betterment of psychological wellbeing.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Centre of Research for Mental Health and Well-Being, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Metaxakis A, Pavlidis M, Tavernarakis N. Neuronal atg1 Coordinates Autophagy Induction and Physiological Adaptations to Balance mTORC1 Signalling. Cells 2023; 12:2024. [PMID: 37626835 PMCID: PMC10453232 DOI: 10.3390/cells12162024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The mTORC1 nutrient-sensing pathway integrates metabolic and endocrine signals into the brain to evoke physiological responses to food deprivation, such as autophagy. Nevertheless, the impact of neuronal mTORC1 activity on neuronal circuits and organismal metabolism remains obscure. Here, we show that mTORC1 inhibition acutely perturbs serotonergic neurotransmission via proteostatic alterations evoked by the autophagy inducer atg1. Neuronal ATG1 alters the intracellular localization of the serotonin transporter, which increases the extracellular serotonin and stimulates the 5HTR7 postsynaptic receptor. 5HTR7 enhances food-searching behaviour and ecdysone-induced catabolism in Drosophila. Along similar lines, the pharmacological inhibition of mTORC1 in zebrafish also stimulates food-searching behaviour via serotonergic activity. These effects occur in parallel with neuronal autophagy induction, irrespective of the autophagic activity and the protein synthesis reduction. In addition, ectopic neuronal atg1 expression enhances catabolism via insulin pathway downregulation, impedes peptidergic secretion, and activates non-cell autonomous cAMP/PKA. The above exert diverse systemic effects on organismal metabolism, development, melanisation, and longevity. We conclude that neuronal atg1 aligns neuronal autophagy induction with distinct physiological modulations, to orchestrate a coordinated physiological response against reduced mTORC1 activity.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece;
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Crete, Greece
| |
Collapse
|
5
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
6
|
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Aluminum neurotoxicity and autophagy: a mechanistic view. Neurol Res 2023; 45:216-225. [PMID: 36208459 DOI: 10.1080/01616412.2022.2132727] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
It is strongly believed that aluminum is one of the insalubrious agents because of its neurotoxicity effects and influences on amyloid β (Aβ) production and tau protein hyperphosphorylation following oxidative stress, as one of the initial events in neurotoxicity. The autophagy process plays a considerable role in neurons in preserving intracellular homeostasis and recycling organelles and proteins, especially Aβ and soluble tau. Thus, autophagy is suggested to ameliorate aluminum neurotoxicity effects, and dysfunction of this process can lead to an increase in detrimental proteins. However, the relationship between aluminum neurotoxicity and autophagy dysregulation in some dimensions remains unclear. In the present review, we want to give an overview of the autophagy roles in aluminum neurotoxicity and how dysregulation of autophagy can affect aluminum neurotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
8
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
9
|
Ye M, Huang J, Mou Q, Luo J, Hu Y, Lou X, Yao K, Zhao B, Duan Q, Li X, Zhang H, Zhao Y. CD82 protects against glaucomatous axonal transport deficits via mTORC1 activation in mice. Cell Death Dis 2021; 12:1149. [PMID: 34897284 PMCID: PMC8665930 DOI: 10.1038/s41419-021-04445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive optic nerve degeneration and retinal ganglion cell loss. Axonal transport deficits have been demonstrated to be the earliest crucial pathophysiological changes underlying axonal degeneration in glaucoma. Here, we explored the role of the tetraspanin superfamily member CD82 in an acute ocular hypertension model. We found a transient downregulation of CD82 after acute IOP elevation, with parallel emergence of axonal transport deficits. The overexpression of CD82 with an AAV2/9 vector in the mouse retina improved optic nerve axonal transport and ameliorated subsequent axon degeneration. Moreover, the CD82 overexpression stimulated optic nerve regeneration and restored vision in a mouse optic nerve crush model. CD82 exerted a protective effect through the upregulation of TRAF2, which is an E3 ubiquitin ligase, and activated mTORC1 through K63-linked ubiquitylation and intracellular repositioning of Raptor. Therefore, our study offers deeper insight into the tetraspanin superfamily and demonstrates a potential neuroprotective strategy in glaucoma treatment.
Collapse
Affiliation(s)
- Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA, USA
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Mitochondrial Biogenesis in Neurons: How and Where. Int J Mol Sci 2021; 22:ijms222313059. [PMID: 34884861 PMCID: PMC8657637 DOI: 10.3390/ijms222313059] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Neurons rely mostly on mitochondria for the production of ATP and Ca2+ homeostasis. As sub-compartmentalized cells, they have different pools of mitochondria in each compartment that are maintained by a constant mitochondrial turnover. It is assumed that most mitochondria are generated in the cell body and then travel to the synapse to exert their functions. Once damaged, mitochondria have to travel back to the cell body for degradation. However, in long cells, like motor neurons, this constant travel back and forth is not an energetically favourable process, thus mitochondrial biogenesis must also occur at the periphery. Ca2+ and ATP levels are the main triggers for mitochondrial biogenesis in the cell body, in a mechanism dependent on the Peroxisome-proliferator-activated γ co-activator-1α-nuclear respiration factors 1 and 2-mitochondrial transcription factor A (PGC-1α-NRF-1/2-TFAM) pathway. However, even though of extreme importance, very little is known about the mechanisms promoting mitochondrial biogenesis away from the cell body. In this review, we bring forward the evoked mechanisms that are at play for mitochondrial biogenesis in the cell body and periphery. Moreover, we postulate that mitochondrial biogenesis may vary locally within the same neuron, and we build upon the hypotheses that, in the periphery, local protein synthesis is responsible for giving all the machinery required for mitochondria to replicate themselves.
Collapse
|
11
|
Bensalem J, Fourrier C, Hein LK, Hassiotis S, Proud CG, Sargeant TJ. Inhibiting mTOR activity using AZD2014 increases autophagy in the mouse cerebral cortex. Neuropharmacology 2021; 190:108541. [PMID: 33794244 DOI: 10.1016/j.neuropharm.2021.108541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is a catabolic process that collects and degrades damaged or unwanted cellular materials such as protein aggregates. Defective brain autophagy has been linked to diseases such as Alzheimer's disease. Autophagy is regulated by the protein kinase mTOR (mechanistic target of rapamycin). Although already demonstrated in vitro, it remains contentious whether inhibiting mTOR can enhance autophagy in the brain. To address this, mice were intraperitoneally injected with the mTOR inhibitor AZD2014 for seven days. mTOR complex 1 (mTORC1) activity was decreased in liver and brain. Autophagic activity was increased by AZD2014 in both organs, as measured by immunoblotting for LC3 (microtubule-associated proteins-1A/1B light chain 3B) and measurement of autophagic flux in the cerebral cortex of transgenic mice expressing the EGFP-mRFP-LC3B transgene. mTOR activity was shown to correlate with changes in LC3. Thus, we show it is possible to promote autophagy in the brain using AZD2014, which will be valuable in tackling conditions associated with defective autophagy, especially neurodegeneration.
Collapse
Affiliation(s)
- Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Leanne K Hein
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Sofia Hassiotis
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Christopher G Proud
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia.
| |
Collapse
|
12
|
Ranganayaki S, Jamshidi N, Aiyaz M, Rashmi SK, Gayathri N, Harsha PK, Padmanabhan B, Srinivas Bharath MM. Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration. Sci Rep 2021; 11:1483. [PMID: 33452321 PMCID: PMC7810707 DOI: 10.1038/s41598-020-79339-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1-methyl-4-phenylpyridinium (MPP+) and 3-nitropropionic acid (3-NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down-stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome-wide transcriptomics of N27 neuronal cells exposed to 3-NPA, compared with MPP+ and Mn revealed varied transcriptomic profile. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway differentially regulated in the 3-NPA model with implications for neuronal survival. This pathway was unique to 3-NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3-NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor (BDNF), which was elevated in the 3-NPA model could confer neuroprotection against 3-NPA. We propose that, different downstream events are activated upon neurotoxin-dependent CII inhibition compared to other neurotoxins, with implications for movement disorders and regulation of autophagy could potentially offer neuroprotection.
Collapse
Affiliation(s)
- Sathyanarayanan Ranganayaki
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Neema Jamshidi
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095, USA
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd., 2/13, Balaji Complex, 80 feet Road, RMV 2nd Stage, Bangalore, Karnataka, 560094, India
| | - Santhosh-Kumar Rashmi
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Narayanappa Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Pulleri Kandi Harsha
- Department of Neurovirology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | | | - Muchukunte Mukunda Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
13
|
Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, Samuel F, Ma G, Geurts JMW. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021; 13:nu13010199. [PMID: 33435231 PMCID: PMC7828103 DOI: 10.3390/nu13010199] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimize neurodevelopment early in life can have profound long-term implications for both mental health and quality of life. Although the first 1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous systems continue to develop and change throughout life. All this time, development and functioning depend on many factors, including adequate nutrition. In this review, we outline the role of nutrients in cognitive, emotional, and neural development in infants and young children with special attention to the emerging roles of polar lipids and high quality (available) protein. Furthermore, we discuss the dynamic nature of the gut-brain axis and the importance of microbial diversity in relation to a variety of outcomes, including brain maturation/function and behavior are discussed. Finally, the promising therapeutic potential of psychobiotics to modify gut microbial ecology in order to improve mental well-being is presented. Here, we show that the individual contribution of nutrients, their interaction with other micro- and macronutrients and the way in which they are organized in the food matrix are of crucial importance for normal neurocognitive development.
Collapse
Affiliation(s)
- Kathrin Cohen Kadosh
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
| | - Leilani Muhardi
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Panam Parikh
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Melissa Basso
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Titis Prawitasari
- Nutrition and Metabolic Diseases Working Group, Indonesian Pediatric Society, Jakarta 10310, Indonesia;
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusomo National Referral Hospital Jakarta, Jakarta 10430, Indonesia
| | - Folake Samuel
- Department of Human Nutrition, University of Ibadan, Ibadan 200284, Nigeria;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
- Laboratory of Toxicological Research and Risk assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| | - Jan M. W. Geurts
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-6-53310499
| |
Collapse
|
14
|
Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson TH, Mclachlan E, Freiwald A, La Montanara P, Shkura K, Puttagunta R, Di Giovanni S. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab 2020; 2:918-933. [PMID: 32778834 DOI: 10.1038/s42255-020-0252-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Elisabeth Serger
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Thomas H Hutson
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Eilidh Mclachlan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Paolo La Montanara
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Kirill Shkura
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Radhika Puttagunta
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Yamada S, Kamata T, Nawa H, Sekijima T, Takei N. AMPK activation, eEF2 inactivation, and reduced protein synthesis in the cerebral cortex of hibernating chipmunks. Sci Rep 2019; 9:11904. [PMID: 31417118 PMCID: PMC6695389 DOI: 10.1038/s41598-019-48172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
During hibernation, mammalian cells are exposed to severe environmental stressors such as low temperature, lowered O2 supply, and glucose deficiency. The cellular metabolic rate is markedly reduced for adapting to these conditions. AMP-activated protein kinase (AMPK) senses the cellular energy status and regulates metabolism. Therefore, we examined AMPK signaling in several brain regions and peripheral tissues in hibernating chipmunk. Eukaryotic elongation factor 2 (eEF2) is a downstream target of AMPK. Phosphorylation of eEF2, indicating its inactivation, is enhanced in the cerebral cortex of hibernating chipmunks. The study indicated that the sequential regulation of AMPK-mammalian target of rapamycin complex 1-eEF2 signaling was altered and protein synthesis ability was reduced in the cerebral cortex of hibernating chipmunks.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 951-8585, Japan
| | - Taito Kamata
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tsuneo Sekijima
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 951-8585, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
16
|
Wang Y, Liu B, Yang Y, Wang Y, Zhao Z, Miao Z, Zhu J. Metformin exerts antidepressant effects by regulated DNA hydroxymethylation. Epigenomics 2019; 11:655-667. [PMID: 30760033 DOI: 10.2217/epi-2018-0187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: We aim to study the antidepressant mechanism of metformin. Materials & methods: Tail suspension test and forced swimming test were used to detect the depression-like behavior; the expressions of target protein were examined by western blot; the levels of target genes were tested by quantitative PCR; the content of α-ketoglutarate and 5hmC were detected by ELISA kit. Results: We showed that metformin can improve the depression-like behavior in spatial restraint stress model; then we found that metformin through AMPK/Tet2 pathway increasing the expression of BDNF to antidepression. Conclusion: Our study provided evidences that metformin plays a role of antidepressant effects through the AMPK/Tet2/BDNF pathway.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Beibei Liu
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Yong Yang
- Department of psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yamin Wang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| |
Collapse
|
17
|
Sanders SS, De Simone FI, Thomas GM. mTORC1 Signaling Is Palmitoylation-Dependent in Hippocampal Neurons and Non-neuronal Cells and Involves Dynamic Palmitoylation of LAMTOR1 and mTOR. Front Cell Neurosci 2019; 13:115. [PMID: 31001086 PMCID: PMC6454084 DOI: 10.3389/fncel.2019.00115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 11/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) controls growth and proliferation of non-neuronal cells, while during neuronal development mTORC1 responds to glutamate and neurotrophins to promote neuronal migration and dendritic arborization. Recent studies reveal that mTORC1 signaling complexes are assembled on lysosomal membranes, but how mTORC1 membrane targeting is regulated is not fully clear. Our examination of palmitoyl-proteomic databases and additional bioinformatic analyses revealed that several mTORC1 proteins are predicted to undergo covalent modification with the lipid palmitate. This process, palmitoylation, can dynamically target proteins to specific membranes but its roles in mTORC1 signaling are not well described. Strikingly, we found that acute pharmacological inhibition of palmitoylation prevents amino acid-dependent mTORC1 activation in HEK293T cells and brain-derived neurotrophic factor (BDNF)-dependent mTORC1 activation in hippocampal neurons. We sought to define the molecular basis for this finding and found that the mTORC1 proteins LAMTOR1 and mTOR itself are directly palmitoylated, while several other mTORC1 proteins are not palmitoylated, despite strong bioinformatic prediction. Interestingly, palmitoylation of LAMTOR1, whose anchoring on lysosomal membranes is important for mTORC1 signaling, was rapidly increased prior to mTORC1 activation. In contrast, mTOR palmitoylation was decreased by stimuli that activate mTORC1. These findings reveal that specific key components of the mTOR pathway are dynamically palmitoylated, suggesting that palmitoylation is not merely permissive for mTOR activation but is instead actively involved in mTORC1-dependent signaling.
Collapse
Affiliation(s)
- Shaun S Sanders
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Francesca I De Simone
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
19
|
Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. J Neurosci 2018; 38:5122-5139. [PMID: 29760184 DOI: 10.1523/jneurosci.3652-17.2018] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023] Open
Abstract
Axon degeneration can arise from metabolic stress, potentially a result of mitochondrial dysfunction or lack of appropriate substrate input. In this study, we investigated whether the metabolic vulnerability observed during optic neuropathy in the DBA/2J (D2) model of glaucoma is due to dysfunctional mitochondria or impaired substrate delivery to axons, the latter based on our observation of significantly decreased glucose and monocarboxylate transporters in D2 optic nerve (ON), human ON, and mice subjected to acute glaucoma injury. We placed both sexes of D2 mice destined to develop glaucoma and mice of a control strain, the DBA/2J-Gpnmb+, on a ketogenic diet to encourage mitochondrial function. Eight weeks of the diet generated mitochondria, improved energy availability by reversing monocarboxylate transporter decline, reduced glial hypertrophy, protected retinal ganglion cells and their axons from degeneration, and maintained physiological signaling to the brain. A robust antioxidant response also accompanied the response to the diet. These results suggest that energy compromise and subsequent axon degeneration in the D2 is due to low substrate availability secondary to transporter downregulation.SIGNIFICANCE STATEMENT We show axons in glaucomatous optic nerve are energy depleted and exhibit chronic metabolic stress. Underlying the metabolic stress are low levels of glucose and monocarboxylate transporters that compromise axon metabolism by limiting substrate availability. Axonal metabolic decline was reversed by upregulating monocarboxylate transporters as a result of placing the animals on a ketogenic diet. Optic nerve mitochondria responded capably to the oxidative phosphorylation necessitated by the diet and showed increased number. These findings indicate that the source of metabolic challenge can occur upstream of mitochondrial dysfunction. Importantly, the intervention was successful despite the animals being on the cusp of significant glaucoma progression.
Collapse
|
20
|
Garza-Lombó C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. CURRENT OPINION IN TOXICOLOGY 2018; 8:102-110. [PMID: 30417160 PMCID: PMC6223325 DOI: 10.1016/j.cotox.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) and the adenosine monophosphate-activated protein kinase (AMPK) regulate cell survival and metabolism in response to diverse stimuli such as variations in amino acid content, changes in cellular bioenergetics, oxygen levels, neurotrophic factors and xenobiotics. This Opinion paper aims to discuss the current state of knowledge regarding how mTOR and AMPK regulate the metabolism and survival of brain cells and the close interrelationship between both signaling cascades. It is now clear that both mTOR and AMPK pathways regulate cellular homeostasis at multiple levels. Studies so far demonstrate that dysregulation in these two pathways is associated with neuronal injury, degeneration and neurotoxicity, but the mechanisms involved remain unclear. Most of the work so far has been focused on their antagonistic regulation of autophagy, but recent findings highlight that changes in protein synthesis, metabolism and mitochondrial function are likely to play a role in the regulatory effects of both mTOR and AMPK on neuronal health. Understanding the role and relationship between these two master regulators of cell metabolism is crucial for future therapeutic approaches to counteract alterations in cell metabolism and survival in brain injury and disease.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México 04510
| | - Annika Schroder
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Elsa M. Reyes-Reyes
- University of Arizona College of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Tucson, AZ 85724
| | - Rodrigo Franco
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
21
|
Salehpour M, Khodagholi F, Zeinaddini Meymand A, Nourshahi M, Ashabi G. Exercise training with concomitant nitric oxide synthase inhibition improved anxiogenic behavior, spatial cognition, and BDNF/P70S6 kinase activation in 20-month-old rats. Appl Physiol Nutr Metab 2017; 43:45-53. [PMID: 28854337 DOI: 10.1139/apnm-2017-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study aimed to investigate the effect of exercise and nitric oxide synthase (NOS) inhibition on memory, anxiety, and protein levels of brain-derived neurotrophic factor (BDNF) and P70S6 kinase (P70S6K). Twenty-month-old rats were divided into 6 groups: a control group, 2 groups treated with l-nitro-arginine methyl ester (L-NAME) (25 or 100 mg/kg) for 63 days, 2 groups treated with L-NAME (25 or 100 mg/kg) for 63 days plus 2 months of exercise, and 1 group treated with exercise. Behavioral tests were conducted to determine the anxiolytic and memory-improving role of exercise and NOS inhibition. BDNF, P70S6K, and cleaved caspase-3 protein levels in the hippocampus and prefrontal cortex were evaluated by Western blotting. Exercise and L-NAME (25 mg/kg) or their combination had an anxiolytic effect and improved spatial memory in old rats compared with the control or exercised group, respectively. Exercise and treatment with a low dose of L-NAME (25 mg/kg) each increased BDNF and P70S6K in the hippocampus and prefrontal cortex compared with levels in control rats. In comparison with exercise alone, co-treatment with exercise and a low dose of L-NAME (25 mg/kg) also increased BDNF and P70S6K in the hippocampus. The neuronal level of cleaved caspase-3 was reduced in the L-NAME (25 mg/kg) + exercise group compared with the exercised group. The L-NAME (100 mg/kg) + exercise treatment had no positive behavioral or molecular effects compared with exercise alone. The protective role of NOS inhibition and aerobic exercise against aging is probably modulated via BDNF and P70S6K in the brain.
Collapse
Affiliation(s)
- Mojtaba Salehpour
- a Department of Sport Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, PO box 16875-163, Tehran, Iran
| | - Fariba Khodagholi
- b NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, PO box 19615-1178, Tehran, Iran
| | - Arman Zeinaddini Meymand
- c Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, PO box 19615-1178, Tehran, Iran
| | - Maryam Nourshahi
- d Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Shahid Beheshti University, PO box 19839-6113, Tehran, Iran
| | - Ghorbangol Ashabi
- e Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO box 141761-3151, Tehran, Iran
| |
Collapse
|
22
|
Furukawa K, Fuse I, Iwakura Y, Sotoyama H, Hanyu O, Nawa H, Sone H, Takei N. Advanced glycation end products induce brain-derived neurotrophic factor release from human platelets through the Src-family kinase activation. Cardiovasc Diabetol 2017; 16:20. [PMID: 28178976 PMCID: PMC5299653 DOI: 10.1186/s12933-017-0505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) exerts beneficial effects not only on diabetic neuropathies but also on cardiovascular injury. There is argument regarding the levels of serum BDNF in patients with diabetes mellitus (DM). Because BDNF in peripheral blood is rich in platelets, this may represent dysregulation of BDNF release from platelets. Here we focused on advanced glycation end products (AGEs), which are elevated in patients with DM and have adverse effects on cardiovascular functions. The aim of this study is to elucidate the role of AGEs in the regulation of BDNF release from human platelets. Methods Platelets collected from peripheral blood of healthy volunteers were incubated with various concentrations of AGE (glycated-BSA) at 37 °C for 5 min with or without BAPTA-AM, a cell permeable Ca2+ chelator, or PP2, a potent inhibitor of Src family kinases (SFKs). Released and cellular BDNF were measured by ELISA and calculated. Phosphorylation of Src and Syk, a downstream kinase of SFKs, in stimulated platelets was examined by Western blotting and immunoprecipitation. Results AGE induced BDNF release from human platelets in a dose-dependent manner, which was dependent on intracellular Ca2+ and SFKs. We found that AGE induced phosphorylation of Src and Syk. Conclusions AGE induces BDNF release from human platelets through the activation of the Src-Syk-(possibly phospholipase C)-Ca2+ pathway. Considering the toxic action of AGEs and the protective roles of BDNF, it can be hypothesized that AGE-induced BDNF release is a biological defense system in the early phase of diabetes. Chronic elevation of AGEs may induce depletion or downregulation of BDNF in platelets during the progression of DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0505-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuo Furukawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan.,Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Ichiro Fuse
- Japanese Red Cross Niigata Blood Center, Niigata, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan
| | - Osamu Hanyu
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi, Niigata, 951-8585, Japan.
| |
Collapse
|
23
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
24
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
25
|
Barger SW. Gene regulation and genetics in neurochemistry, past to future. J Neurochem 2016; 139 Suppl 2:24-57. [PMID: 27747882 DOI: 10.1111/jnc.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/01/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
26
|
Ghadernezhad N, Khalaj L, Pazoki-Toroudi H, Mirmasoumi M, Ashabi G. Metformin pretreatment enhanced learning and memory in cerebral forebrain ischaemia: the role of the AMPK/BDNF/P70SK signalling pathway. PHARMACEUTICAL BIOLOGY 2016; 54:2211-2219. [PMID: 26960058 DOI: 10.3109/13880209.2016.1150306] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Metformin induced AMP-activated protein kinase (AMPK) and protected neurons in cerebral ischaemia. Objective This study examined pretreatment with metformin and activation of AMPK in molecular and behavioral levels associated with memory. Materials and methods Rats were pretreated with metformin (200 mg/kg) for 2 weeks and 4-vessels occlusion global cerebral ischaemia was induced. Three days after ischaemia, memory improvement was done by passive avoidance task and neurological scores were evaluated. The amount of Brain-Derived Neurotropic Factor (BDNF) and phosphorylated and total P70S6 kinase (P70S6K) were measured. Results Pretreatment with metformin (met) in the met + ischaemia/reperfusion (I/R) group reduced latency time for enter to dark chamber compared with the sham group (p < 0.001) and increased latency time compared with the I/R group (p < 0.001). Injection of Compound C (CC) (as an AMPK inhibitor) concomitant with metformin reduced latency time in I/R rats compared with the I/R + met group (p < 0.05). Neurological scores were reduced in met treated rats compared with the sham group. Pretreatment with metformin in I/R animals reduced levels of pro-BDNF compared with the I/R group (p < 0.001) but increased that compared with the sham group (p < 0.001). The level of pro-BDNF decreased in the met + CC + I/R group compared with the met + I/R group (p < 0.01). Pretreatment with metformin in I/R animals significantly increased P70S6K compared with the I/R group (p < 0.001). Conclusion Short-term memory in ischaemic rats treated with metformin increased step-through latency; sensory-motor evaluation was applied and a group of ischaemia rats that were pretreated with metformin showed high levels of BDNF, P70S6K that seemed to be due to increasing AMPK.
Collapse
Affiliation(s)
- Negar Ghadernezhad
- a Neurobiology Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Leila Khalaj
- b Medical School, Alborz University of Medical Sciences , Alborz , Iran
| | - Hamidreza Pazoki-Toroudi
- c Physiology Research Center and Department of Physiology, Faculty of Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Masoumeh Mirmasoumi
- d Neuroscience Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ghorbangol Ashabi
- e Physiology Research Center and Department of Physiology, School of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
27
|
Genzer Y, Dadon M, Burg C, Chapnik N, Froy O. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF). Mol Cell Endocrinol 2016; 430:49-55. [PMID: 27113028 DOI: 10.1016/j.mce.2016.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high.
Collapse
Affiliation(s)
- Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Maayan Dadon
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Chen Burg
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Metformin Protects Cells from Mutant Huntingtin Toxicity Through Activation of AMPK and Modulation of Mitochondrial Dynamics. Neuromolecular Med 2016; 18:581-592. [PMID: 27225841 DOI: 10.1007/s12017-016-8412-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/14/2016] [Indexed: 01/08/2023]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease caused by the pathological elongation of the CAG repeats in the huntingtin gene. Caloric restriction (CR) has been the most reproducible environmental intervention to improve health and prolong life span. We have demonstrated that CR delayed onset and slowed disease progression in a mouse model of HD. Metformin, an antidiabetic drug, mimics CR by acting on cell metabolism at multiple levels. Long-term administration of metformin improved health and life span in mice. In this study, we showed that metformin rescued cells from mutant huntingtin (HTT)-induced toxicity, as indicated by reduced lactate dehydrogenase (LDH) release from cells and preserved ATP levels in cells expressing mutant HTT. Further mechanistic study indicated that metformin activated AMP-activated protein kinase (AMPK) and that inhibition of AMPK activation reduced its protective effects on mutant HTT toxicity, suggesting that AMPK mediates the protection of metformin in HD cells. Furthermore, metformin treatment prevented mitochondrial membrane depolarization and excess fission and modulated the disturbed mitochondrial dynamics in HD cells. We confirmed that metformin crossed the blood-brain barrier after oral administration and activated AMPK in the mouse brain. Our results urge further evaluation of the clinical potential for use of metformin in HD treatment.
Collapse
|
29
|
Stehle JH, Rawashdeh O. Ribosomal RNA - a tail wagging the dog? J Neurochem 2016; 136:673-676. [PMID: 29968925 DOI: 10.1111/jnc.13499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023]
Abstract
It is an intriguing hypothesis that the complex organization of neuronal dynamics important for a memory engram is largely underpinned by the regulation of nucleolar functioning. This Editorial highlights a study by Capitano and coworkers in this issue of the Journal of Neurochemistry, in which the authors tackle this hypothesis with a behavioral approach. The study investigates the role of axo-dendritic mRNAs within learning-induced plasticity and in vivo modulation of rRNA transcription in response to spatial learning. The authors confirm with their in vivo approach what is known from many earlier in vitro experiments: efficient learning and memory requires a proper homeostasis of hippocampal neurons in general, which, however, depends crucially on proper integrity of the nucleolus. Read the highlighted article 'RNA polymerase I transcription is modulated by spatial learning in different brain regions' on page 706.
Collapse
Affiliation(s)
- Jörg H Stehle
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe-University, D-60590, Frankfurt, Germany
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, St Lucia/Queensland-4072, Australia
| |
Collapse
|
30
|
Gardner TW, Abcouwer SF, Losiewicz MK, Fort PE. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis. Am J Physiol Endocrinol Metab 2015; 309. [PMID: 26199279 PMCID: PMC4572451 DOI: 10.1152/ajpendo.00180.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1.
Collapse
Affiliation(s)
- Thomas W Gardner
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan; and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Steven F Abcouwer
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan; and
| | - Mandy K Losiewicz
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan; and
| | - Patrice E Fort
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
31
|
The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:352723. [PMID: 26171115 PMCID: PMC4485995 DOI: 10.1155/2015/352723] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid-beta (Aβ)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Aβ plaques. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau hyperphosphorylation. Several studies have shown that the autophagic pathway in neurons is important under physiological and pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the relationship between oxidative stress, tau protein hyperphosphorylation, autophagy dysregulation, and neuronal cell death in AD remains unclear. Here, we review the latest progress in AD, with a special emphasis on oxidative stress, tau hyperphosphorylation, and autophagy. We also discuss the relationship of these three factors in AD.
Collapse
|
32
|
Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki A. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 2015; 30:747-54. [PMID: 25413451 DOI: 10.1007/s11011-014-9632-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022]
Abstract
Global cerebral ischemia arises in patients who have a variety of clinical conditions including cardiac arrest, shock and asphyxia. In spite of advances in understanding of the brain ischemia and stroke etiology, therapeutic approaches to improve ischemic injury still remain limited. It has been established that metformin can attenuate cell death in cerebral ischemia. One of the main functions of metformin is proposed to be conducted via AMP-activated protein kinase (AMPK)-dependent pathway in the experimental cerebral ischemia model. It is also established that metformin can suppress inflammation and activate Nuclear factor erythroid 2-related factor (Nrf2) pathways in neurons. In the current study, the role of metformin in regulating inflammatory and antioxidant pathways in the global cerebral ischemia was investigated. Our results indicated that pretreatment of rats by metformin attenuated cellular levels of nuclear factor-κB, Tumor Necrosis Factor alpha and Cyclooxygenase-2 which are considered as three important proteins involved in the inflammation pathway. Pretreatment by metformin increased the level of Nrf2 and heme oxygenase-1 in the hippocampus of ischemic rats compared with untreated ischemic group. Moreover, pretreatment by metformin enhanced the level of glutathione and catalase activities compared with them in ischemic group. Such protective changes detected by metformin pretreatment were reversed by injecting compound c, an AMPK inhibitor. These findings suggested that metformin might protect cells through modulating inflammatory and antioxidant pathways via induction of AMPK. However, more experimental and clinical trial studies regarding neuroprotective potential of metformin and the involved mechanisms, especially in the context of cerebral ischemic injuries, are necessary.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Jundishapour Medical Sciences University, Ahwaz, Iran
| | | | | | | | | |
Collapse
|
33
|
Histone deacetylase mediates the decrease in drebrin cluster density induced by amyloid beta oligomers. Neurochem Int 2014; 76:114-21. [DOI: 10.1016/j.neuint.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 01/05/2023]
|
34
|
Takei N, Furukawa K, Hanyu O, Sone H, Nawa H. A possible link between BDNF and mTOR in control of food intake. Front Psychol 2014; 5:1093. [PMID: 25309497 PMCID: PMC4174734 DOI: 10.3389/fpsyg.2014.01093] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022] Open
Abstract
Food intake is intricately regulated by glucose, amino acids, hormones, neuropeptides, and trophic factors through a neural circuit in the hypothalamus. Brain-derived neurotrophic factor (BDNF), the most prominent neurotrophic factor in the brain, regulates differentiation, maturation, and synaptic plasticity throughout life. Among its many roles, BDNF exerts an anorexigenic function in the brain. However, the intracellular signaling induced by BDNF to control food intake is not fully understood. One candidate for the molecule involved in transducing the anorexigenic activity of BDNF is the mammalian target of rapamycin (mTOR). mTOR senses extracellular amino acids, glucose, growth factors, and neurotransmitters, and regulates anabolic reactions response to these signals. Activated mTOR increases protein and lipid synthesis and inhibits protein degradation. In the hypothalamus, mTOR activation is thought to reduce food intake. Here we summarize recent findings regarding BDNF- and mTOR-mediated feeding control, and propose a link between these molecules in eating behavior.
Collapse
Affiliation(s)
- Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata Japan
| | - Kazuo Furukawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata Japan ; Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata Japan
| | - Osamu Hanyu
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata Japan
| |
Collapse
|
35
|
Li Y, Wang S, Wang Z, Qian X, Fan J, Zeng X, Sun Y, Song P, Feng M, Ju D. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells. NANOTECHNOLOGY 2014; 25:365101. [PMID: 25140534 DOI: 10.1088/0957-4484/25/36/365101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers are proposed as one of the most promising nanomaterials for biomedical applications because of their unique tree-like structure, monodispersity and tunable properties. In this study, we found that PAMAM dendrimers could induce the formation of autophagosomes and the conversion of microtubule-associated protein 1 light chain 3 (LC3) in hepatocellular carcinoma HepG2 cells, while the inhibition of the Akt/mTOR and activation of the Erk 1/2 signaling pathways were involved in autophagy-induced by PAMAM dendrimers. We also investigated the suppression of autophagy with the obviously enhanced cytotoxicity of PAMAM dendrimers. Moreover, the blockage of a reactive oxygen species (ROS) could enhance the growth inhibition and apoptosis of hepatocellular carcinoma cells, induced by PAMAM dendrimers through reducing autophagic effects. Taken together, these findings explored the role and mechanism of autophagy induced by PAMAM dendrimers in HepG2 cells, provided new insight into the effect of autophagy on drug delivery nanomaterials and tumor cells and contributed to the use of a drug delivery vehicle for hepatocellular carcinoma treatment.
Collapse
|
36
|
Li Y, Zeng X, Wang S, Sun Y, Wang Z, Fan J, Song P, Ju D. Inhibition of autophagy protects against PAMAM dendrimers-induced hepatotoxicity. Nanotoxicology 2014; 9:344-55. [PMID: 24983897 DOI: 10.3109/17435390.2014.930533] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxicity of nanomaterials is one of the biggest challenges in their medicinal applications. Although toxicities of nanomaterials have been widely reported, the exact mechanisms of toxicities are still not well elucidated. Consequently, the exploration of approaches to attenuate toxicities of nanomaterials is limited. In this study, we reported that poly-amidoamine (PAMAM) dendrimers, a widely used nanomaterial in the pharmaceutical industry, caused toxicity of human liver cells by inducing cell growth inhibition, mitochondria damage, and apoptosis. Meanwhile, autophagy was activated in PAMAM dendrimers-induced toxicity and inhibition of autophagy-rescued viability of hepatic cells, indicating that autophagy played a key role in PAMAM dendriemrs-induced hepatotoxicity. To further explore approaches to attenuate PAMAM dendrimers-induced liver injury, effects of autophagic inhibitors on PAMAM dendrimers' hepatotoxicity were investigated in an in vivo model. Autophagy blockage in PAMAM dendrimers-administered mice led to weight restoration, damage reversion of liver tissue, and protection against changes of serum biochemistry parameters. Moreover, inhibition of Akt/mTOR and activation of Erk1/2 signaling pathways were involved in PAMAM dendrimers-induced autophagy. Collectively, these findings indicated that autophagy was associated with PAMAM dendrimers-induced hepatotoxicity, and supported the possibility that autophagy inhibitors could be used to reduce hepatotoxicity of PAMAM dendrimers.
Collapse
Affiliation(s)
- Yubin Li
- Department of Biosynthesis & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , Shanghai , PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wahane SD, Hellbach N, Prentzell MT, Weise SC, Vezzali R, Kreutz C, Timmer J, Krieglstein K, Thedieck K, Vogel T. PI3K-p110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC2. J Neurochem 2014; 130:255-67. [PMID: 24645666 DOI: 10.1111/jnc.12718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 01/31/2023]
Abstract
Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFβ) and insulin-like growth factor 1 (IGF1) have a central role. The TGFβ- and IGF1-pathways cross-talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down-stream molecules of TGFβ and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5-derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5-derived cells. TGFβ has little effect at E13.5. It does not activate the PI3K- and mTOR-signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5-derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K-p110-alpha signalling. PI3K-p110-beta signalling activates mTORC2 in E16.5-derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms. Within developing cortical cells TGFβ- and IGF-signalling activities are timely separated. TGFβ dominates in E16.5-derived cells and drives neuronal differentiation. IGF influences survival, proliferation and neuronal differentiation in E13.5-derived cells. mTORC2-signalling in E16.5-derived cells influences survival, proliferation and differentiation, activated through PI3K-p110-alpha. PI3K-p110-beta-signalling activates a different mTORC2. Both PI3K/mTORC2-signalling pathways are required but not directly activated in TGFβ-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Shalaka Dhanraj Wahane
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 2014; 7:28. [PMID: 24795562 PMCID: PMC4005960 DOI: 10.3389/fnmol.2014.00028] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022] Open
Abstract
Target of rapamycin (TOR) was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mammalian TOR (mTOR). mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid) synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development.
Collapse
Affiliation(s)
- Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| |
Collapse
|