1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Wu H, Yan M, Wu T, Han X. MC-LR disrupts dopamine synthesis in the substantia nigra of midbrain by enhancing the chaperone-mediated autophagy pathway through direct binding to ERK2. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136181. [PMID: 39413523 DOI: 10.1016/j.jhazmat.2024.136181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Microcystins are environmental toxins produced by freshwater cyanobacteria. Microcystin-LR (MC-LR) is one of the most abundant and harmful isomers. MC-LR poses a serious threat to human health. MC-LR could penetrate the blood-brain barrier of mice and accumulate in the substantia nigra (SN) of the midbrain, leading to a reduction in dopamine levels and Parkinson's disease (PD)-like motor dysfunction in mice. The reduction in dopamine levels is a key factor contributing to movement disorders in humans with PD. Dopamine is synthesized in the dopaminergic neurons of the SN by the actions of tyrosine hydroxylase (TH) and dihydroxyphenylalanine decarboxylase (DDC). In this study, we found that MC-LR could enter dopaminergic neurons in the SN and directly bound to extracellular signal-regulated kinase 2 (ERK2), enhancing ERK2 stability. ERK2 further enhanced the transcriptional activity of Heat Shock Protein Family A Member 8 (HSPA8) and promoted the expression of Heat shock cognate 71 kDa protein (HSC70), which in turn amplified the chaperone-mediated autophagy (CMA) pathway and accelerated the degradation of TH and DDC. This affected the dopamine synthesis process, resulting in a significant reduction in dopamine levels. The study is the first to reveal that ERK2 was a direct target of MC-LR, and further enhanced CMA affecting dopamine synthesis, which has important theoretical and practical significance for environmental safety management.
Collapse
Affiliation(s)
- Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
3
|
Gwon G, Jung Y, Hong H, Cho H, Kim H, Kim KH, Kim NH. Real-Time Monitoring of Molecules in Aqueous Solution via a Surface-Functionalized Ag-Anodic Aluminum Oxide Surface-Enhanced Raman Scattering Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53123-53131. [PMID: 39313356 DOI: 10.1021/acsami.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Real-time monitoring of molecular species in aqueous solutions is crucial for diverse scientific applications, from biomedical diagnostics to environmental analysis. In this study, we investigate the selective detection and discrimination of specific molecules in aqueous solution samples using a Ag-coated anodized aluminum oxide (Ag-AAO) surface functionalized with thiol molecules. Our investigation harnesses the power of surface-enhanced Raman scattering (SERS) synergized with principal component analysis (PCA) to elucidate the distinctive signatures of aqueous dopamine and l-tyrosine molecules. By scrutinizing the Raman spectra of surface-treated molecules, we unveil nuanced variations driven by the unique functional groups of the thiol molecules and their dynamic interactions with the target molecules in solution. Notably, we observe different alterations in the SERS spectra of Ag-AAO surface-functionalized boronic acid molecules for detection of dopamine and l-tyrosine, even at a concentration as low as 10-8 M. Moreover, the spectral PCA elucidates the discrimination of dopamine and l-tyrosine within the aqueous environment attributed to the different molecular interactions near SERS-active hotspots. Our findings facilitate real-time monitoring of minute analytes with exceptional molecular selectivity, ushering in an era of precise chemical analysis in aqueous solutions.
Collapse
Affiliation(s)
- Geunyeol Gwon
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yujin Jung
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyowon Hong
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Heeyeong Cho
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyunwoo Kim
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyoung-Ho Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nam Hoon Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
4
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Peng L, Wang T. Histamine synthesis and transport are coupled in axon terminals via a dual quality control system. EMBO J 2024; 43:4472-4491. [PMID: 39242788 PMCID: PMC11480334 DOI: 10.1038/s44318-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.
Collapse
Affiliation(s)
- Lei Peng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
6
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
7
|
Epifane-de-Assunção MC, Bispo AG, Ribeiro-Dos-Santos Â, Cavalcante GC. Molecular Alterations in Core Subunits of Mitochondrial Complex I and Their Relation to Parkinson's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04526-5. [PMID: 39331353 DOI: 10.1007/s12035-024-04526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Among the myriad of neurodegenerative diseases, mitochondrial dysfunction represents a nexus regarding their pathogenic processes, in which Parkinson's disease (PD) is notable for inherent vulnerability of the dopaminergic pathway to energy deficits and oxidative stress. Underlying this dysfunction, the occurrence of defects in complex I (CI) derived from molecular alterations in its subunits has been described in the literature. However, the mechanistic understanding of the processes mediating the occurrence of mitochondrial dysfunction mediated by CI deficiency in PD remains uncertain and subject to some inconsistencies. Therefore, this review analyzed existing evidence that may explain the relationship between molecular alterations in the core subunits of CI, recognized for their direct contribution to its enzymatic performance, and the pathogenesis of PD. As a result, we discussed 47 genetic variants in the 14 core subunits of CI, which, despite some discordant results, were predominantly associated with varying degrees of deficiency in complex enzymatic activity, as well as defects in supercomplex biogenesis and CI itself. Finally, we hypothesized about the relationship of the described alterations with the pathogenesis of PD and offered some suggestions that may aid in the design of future studies aimed at elucidating the relationship between such alterations and PD.
Collapse
Affiliation(s)
- Matheus Caetano Epifane-de-Assunção
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil
| | - Ana Gabrielle Bispo
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
- Laboratório de Metabolismo Energético, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
8
|
Zheng D, Kashif MF, Piscopo L, Collard L, Ciracì C, De Vittorio M, Pisanello F. Tunable Nanoislands Decorated Tapered Optical Fibers Reveal Concurrent Contributions in Through-Fiber SERS Detection. ACS PHOTONICS 2024; 11:3774-3783. [PMID: 39310299 PMCID: PMC11413926 DOI: 10.1021/acsphotonics.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology. Ultimately, this limits the design of the best-performance remote SERS sensing probe. Here we employ a tunable solid-state dewetting method to create densely packed monolayer Au nanoislands with varied geometric parameters in direct contact with the silica TF surface. These patterns exhibit analyzable nanoparticle sizes, densities, and uniform distribution across the entire taper surface, enabling a systematic investigation of particle size, density, and analyte effects on the SERS performance of the through-fiber detection system. The study is focused on the SERS response of a widely employed benchmark molecule, rhodamine 6G (R6G), and serotonin, a highly relevant neurotransmitter for the neuroscience field. The numerical simulations and limit of detection (LOD) experiments on R6G show that the increase of the total near-field enhancement volume promotes the SERS sensitivity of the probe. However, we observed a different behavior for serotonin linked to its interaction with the nanoparticle's surface. The obtained LOD is as low as 10-7 M, a value not achieved so far in a through-fiber detection scheme. Therefore, our work offers a strategy to design nanoparticle-based remote SERS sensing probes and provides new clues to discover and understand intricate plasmonic-driven chemical reactions.
Collapse
Affiliation(s)
- Di Zheng
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- State
Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Fayyaz Kashif
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Linda Piscopo
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
| | - Liam Collard
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Cristian Ciracì
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Ferruccio Pisanello
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| |
Collapse
|
9
|
Verbovaya ER, Kadnikov IA, Logvinov IO, Antipova TA, Voronin MV, Seredenin SB. In vitro modelling of Parkinson's disease using 6-OHDA is associated with increased NQO2 activity. Toxicol In Vitro 2024; 101:105940. [PMID: 39271030 DOI: 10.1016/j.tiv.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The pathogenesis of Parkinson's disease (PD) involves abnormalities in the metabolism of catecholamines. The enzyme quinone reductase 2 (NQO2) reduces quinone derivatives of catecholamines, which promotes the formation of reactive oxygen species (ROS), suggesting a role for NQO2 in the development of cellular damage typical of PD. In the present study, we investigated the relationship between 6-hydroxydophamine (6-OHDA) induced cellular damage and NQO2 activity and its levels in SH-SY5Y cell culture to establish an experimental model to evaluate the pharmacological properties of NQO2 inhibitors. Cellular damage was evaluated using the MTT and comet assays. It was shown that oxidative damage of SH-SY5Y cells upon incubation with 6-OHDA for 6, 12 and 24 h was accompanied by an increase in NQO2 activity. The increase in NQO2 protein level in SH-SY5Y cells was observed 24 h after incubation with 6-OHDA at concentrations of 50 and 100 μM. Oxidative damage of SH-SY5Y cells upon 1 h incubation with 6-OHDA is increased in the presence of the selective enzyme co-substrate 1-benzyl-1,4-dihydronicotinamide (BNAH), but is not accompanied by changes in NQO2 activity and protein levels. The data obtained demonstrate the contribution of NQO2 to the cytotoxic mechanism of 6-OHDA action.
Collapse
Affiliation(s)
- Ekaterina R Verbovaya
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia.
| | - Ilya A Kadnikov
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Ilya O Logvinov
- Laboratory of Molecular Pharmacology, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Tatyana A Antipova
- Laboratory of Molecular Pharmacology, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Mikhail V Voronin
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Sergei B Seredenin
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| |
Collapse
|
10
|
El Safadi M, Wilson KA, Strudwicke IJ, O'Mara ML, Bhadbhade M, Rawling T, McDonagh AM. Amphetamine-like Deferiprone and Clioquinol Derivatives as Iron Chelating Agents. Molecules 2024; 29:4213. [PMID: 39275060 PMCID: PMC11397356 DOI: 10.3390/molecules29174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
The accumulation of iron in dopaminergic neurons can cause oxidative stress and dopaminergic neuron degeneration. Iron chelation therapy may reduce dopaminergic neurodegeneration, but chelators should be targeted towards dopaminergic cells. In this work, two series of compounds based on 8-hydroxyquinoline and deferiprone, iron chelators that have amphetamine-like structures, have been designed, synthesized and characterized. Each of these compounds chelated iron ions in aqueous solution. The hydroxyquinoline-based compounds exhibited stronger iron-binding constants than those of the deferiprone derivatives. The hydroxyquinoline-based compounds also exhibited greater free radical scavenging activities compared to the deferiprone derivatives. Molecular dynamics simulations showed that the hydroxyquinoline-based compounds generally bound well within human dopamine transporter cavities. Thus, these compounds are excellent candidates for future exploration as drugs against diseases that are affected by iron-induced dopaminergic neuron damage, such as Parkinson's disease.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Katie A Wilson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Indigo J Strudwicke
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Andrew M McDonagh
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Gahtani RM, Shoaib S, Hani U, Jayachithra R, Alomary MN, Chauhan W, Jahan R, Tufail S, Ansari MA. Combating Parkinson's disease with plant-derived polyphenols: Targeting oxidative stress and neuroinflammation. Neurochem Int 2024; 178:105798. [PMID: 38950626 DOI: 10.1016/j.neuint.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder predominantly affecting the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra. Reactive oxygen species (ROS) generation plays a central role in the pathogenesis of PD and other neurodegenerative diseases. An imbalance between cellular antioxidant activity and ROS production leads to oxidative stress, contributing to disease progression. Dopamine metabolism, mitochondrial dysfunction, and neuroinflammation in dopaminergic neurons have been implicated in the pathogenesis of Parkinson's disease. Consequently, there is a pressing need for therapeutic interventions capable of scavenging ROS. Current pharmacological approaches, such as L-dihydroxyphenylalanine (levodopa or L-DOPA) and other drugs, provide symptomatic relief but are limited by severe side effects. Researchers worldwide have been exploring alternative compounds with less toxicity to address the multifaceted challenges associated with Parkinson's disease. In recent years, plant-derived polyphenolic compounds have gained significant attention as potential therapeutic agents. These compounds exhibit neuroprotective effects by targeting pathophysiological responses, including oxidative stress and neuroinflammation, in Parkinson's disease. The objective of this review is to summarize the current understanding of the neuroprotective effects of various polyphenols in Parkinson's disease, focusing on their antioxidant and anti-inflammatory properties, and to discuss their potential as therapeutic candidates. This review highlights the progress made in elucidating the molecular mechanisms of action of these polyphenols, identifying potential therapeutic targets, and optimizing their delivery and bioavailability. Well-designed clinical trials are necessary to establish the efficacy and safety of polyphenol-based interventions in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Reem M Gahtani
- Department of clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shoaib Shoaib
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA.
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - R Jayachithra
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saba Tufail
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
12
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
13
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
14
|
Lyu Z, Xiao G, Xie D, Huang D, Chen Y, Wu C, Lai Y, Song Z, Huang L, Ming H, Jiang Y, Wang J, Chen R, Luo W. The protective effects of repetitive transcranial magnetic stimulation with different high frequencies on motor functions in MPTP/probenecid induced Parkinsonism mouse models. Brain Behav 2024; 14:e3605. [PMID: 38956819 PMCID: PMC11219284 DOI: 10.1002/brb3.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1β in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.
Collapse
Affiliation(s)
- Zhimai Lyu
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Guodong Xiao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dingyi Xie
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Dandan Huang
- Department of Basic Medical SciencesGannan Medical UniversityGanzhouChina
| | - Yanjun Chen
- Department of International Exchange and CooperationJiangxi University of Chinese MedicineNanchangChina
| | - Chunmei Wu
- Department of Health Statistics, School of Public Health & Health ManagementGannan Medical UniversityGanzhouChina
| | - Yanwei Lai
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Zitan Song
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Lijuan Huang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Hui Ming
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Yichen Jiang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Jinwei Wang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Rixin Chen
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
15
|
Huenchuguala S, Segura-Aguilar J. Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson's Disease According to the Single-Neuron Degeneration Model. Biomolecules 2024; 14:673. [PMID: 38927076 PMCID: PMC11201619 DOI: 10.3390/biom14060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson's disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson's disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
16
|
James D, Smith J, Lane E, Thomas R, Brown S, Seage H. Adherence to Parkinson's disease medication: A case study to illustrate reasons for non-adherence, implications for practice and engaging under-represented participants in research. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2024; 14:100450. [PMID: 38800618 PMCID: PMC11127522 DOI: 10.1016/j.rcsop.2024.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease which primarily presents with the core symptoms of rigidity, postural instability, tremor, and bradykinesia. Non-adherence to prescribed PD treatments can have significant ramifications, such as poor symptom control and greater disease burden. Reasons for poor adherence are multifaceted, particularly when medication regimens are complex and often based on perceptual and practical barriers. Additionally, engaging fully non-adherent patients in research is challenging since they may have dropped out of service provision, yet their contribution is vital to fully understand the rationale for non-adherence. This paper aims to present a case study on the perspectives of one person with PD, a participant in a previously published qualitative study investigating the barriers and facilitators to medication adherence in PD. In this paper, the participant's diagnostic journey is described, and experiences of medical consultations are summarised to explain their reasons for not adhering to any of the standard UK PD treatments prescribed. The participant's preferences for using Vitamin B1 (thiamine) injections to manage the symptoms are reported and the rationale for doing so is discussed. We consider the case through the lens of a behavioural science approach, drawing on health psychology theory, the Theoretical Domains Framework (TDF), to inform the review and the practical challenges faced when analysing the data for this participant. Implications for pharmacy practice, in particular, are also put forward with view to ensuring that patients such as Mr. Wilkinson are provided with the opportunity to discuss treatment choices and self-management of long-term conditions such as PD. We also discuss the importance of reaching under-represented members of the population in medication adherence research, which embraces the principles of equality, diversity, and inclusion in research.
Collapse
Affiliation(s)
- Delyth James
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff CF5 2YB, Wales, UK
| | - Joshua Smith
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff CF5 2YB, Wales, UK
| | - Emma Lane
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VIIth Avenue, Cardiff CF10 3NB, Wales, UK
| | - Rhian Thomas
- Swansea University Medical School, Swansea University, Grove Building, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Sarah Brown
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff CF5 2YB, Wales, UK
| | - Heidi Seage
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff CF5 2YB, Wales, UK
| |
Collapse
|
17
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Kamiński P, Lorek M, Baszyński J, Tadrowski T, Gorzelańczyk EJ, Feit J, Tkaczenko H, Owoc J, Woźniak A, Kurhaluk N. Role of antioxidants in the neurobiology of drug addiction: An update. Biomed Pharmacother 2024; 175:116604. [PMID: 38692055 DOI: 10.1016/j.biopha.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Relationships between protective enzymatic and non-enzymatic pro-antioxidant mechanisms and addictive substances use disorders (SUDs) are analyzed here, based on the results of previous research, as well as on the basis of our current own studies. This review introduces new aspects of comparative analysis of associations of pro-antixidant and neurobiological effects in patients taking psychoactive substances and complements very limited knowledge about relationships with SUDs from different regions, mainly Europe. In view of the few studies on relations between antioxidants and neurobiological processes acting in patients taking psychoactive substances, this review is important from the point of view of showing the state of knowledge, directions of diagnosis and treatment, and further research needed explanation. We found significant correlations between chemical elements, pro-antioxidative mechanisms, and lipoperoxidation in the development of disorders associated with use of addictive substances, therefore elements that show most relations (Pr, Na, Mn, Y, Sc, La, Cr, Al, Ca, Sb, Cd, Pb, As, Hg, Ni) may be significant factors shaping SUDs. The action of pro-antioxidant defense and lipid peroxidation depends on the pro-antioxidative activity of ions. We explain the strongest correlations between Mg and Sb, and lipoperoxidation in addicts, which proves their stimulating effect on lipoperoxidation and on the induction of oxidative stress. We discussed which mechanisms and neurobiological processes change susceptibility to SUDs. The innovation of this review is to show that addicted people have lower activity of dismutases and peroxidases than healthy ones, which indicates disorders of antioxidant system and depletion of enzymes after long-term tolerance of stressors. We explain higher level of catalases, reductases, ceruloplasmin, bilirubin, retinol, α-tocopherol and uric acid of addicts. In view of poorly understood factors affecting addiction, analysis of interactions allows for more effective understanding of pathogenetic mechanisms leading to formation of addiction and development the initiation of directed, more effective treatment (pharmacological, hormonal) and may be helpful in the diagnosis of psychoactive changes.
Collapse
Affiliation(s)
- Piotr Kamiński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland; University of Zielona Góra, Faculty of Biological Sciences, Institute of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran St. 1, Zielona Góra PL 65-516, Poland.
| | - Małgorzata Lorek
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Jędrzej Baszyński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Tadeusz Tadrowski
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Dermatology and Venereology, Faculty of Medicine M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Edward Jacek Gorzelańczyk
- Kazimierz Wielki University in Bydgoszcz, Institute of Philosophy, M.K. Ogińskiego St. 16, Bydgoszcz PL 85-092, Poland; Adam Mickiewicz University in Poznań, Faculty of Mathematics and Computer Science, Uniwersyt Poznański St, 4, Poznań PL 61-614, Poland; Primate Cardinal Stefan Wyszyński Provincial Hospital in Sieradz, Psychiatric Centre in Warta, Sieradzka St. 3, Warta PL 98-290, Poland; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Faculty of Pharmacy, Jagiellońska St. 15, Bydgoszcz PL 85-067, Poland
| | - Julia Feit
- Pallmed sp. z o.o., W. Roentgen St. 3, Bydgoszcz PL 85-796, Poland
| | - Halina Tkaczenko
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| | - Jakub Owoc
- National Institute of Geriatrics, Rheumatology and Rehabilitation named after prof. dr hab. Eleonora Reicher, MD, Spartańska St. 1, Warszawa PL 02-637, Poland
| | - Alina Woźniak
- Nicholaus Copernicus University, Collegium Medicum in Bydgoszcz, Department of Medical Biology and Biochemistry, M. Karłowicz St. 24, Bydgoszcz PL 85-092, Poland
| | - Natalia Kurhaluk
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| |
Collapse
|
19
|
Zou M, Wu Y, Lan Y, Xie H, Sun H, Liu W, Feng F, Jiang X. Identification and optimization of nitrophenolic analogues as dopamine metabolic enzyme inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 148:107488. [PMID: 38797066 DOI: 10.1016/j.bioorg.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Progressive loss of dopaminergic neurons leads to the depletion of the striatal neurotransmitter dopamine, which is the main cause of Parkinson's disease (PD) motor symptoms. Simultaneous inhibition of the two key dopamine metabolic enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAO-B), could potentially be a breakthrough in achieving clinical efficacy. Representative compound C12 exhibits good COMT inhibitory activity (IC50 = 0.37 μM), metal chelation ability, and BBB permeability. Furthermore, results from in vivo biological activity evaluations indicate that C12 can improve dopamine levels and ameliorate MPTP-induced PD symptoms in mice. Preliminary in vivo and in vitro study results highlight the potential of compound C12 in PD treatment.
Collapse
Affiliation(s)
- Manxing Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yulu Wu
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yudan Lan
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huanfang Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Nanjing Medical University, Nanjing 211198, China
| | - Xueyang Jiang
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
20
|
Huang Z, Song E, Chen Z, Yu P, Chen W, Lin H. Integrated bioinformatics analysis for exploring potential biomarkers related to Parkinson's disease progression. BMC Med Genomics 2024; 17:133. [PMID: 38760670 PMCID: PMC11100188 DOI: 10.1186/s12920-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China.
| | - En'peng Song
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Zhijie Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Peng Yu
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Weiwen Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Huiqin Lin
- Guangzhou BiDa Biological Technology CO., LTD, Guangzhou, 510530, Guangdong, China
| |
Collapse
|
21
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2024:S2090-1232(24)00124-3. [PMID: 38579985 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Mascotte-Cruz JU, Vera A, Leija L, Lopez-Salas FE, Gradzielski M, Koetz J, Gatica-García B, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Escobedo L, Reyes-Corona D, Gutierrez-Castillo ME, Maldonado-Berny M, Espadas-Alvarez AJ, Orozco-Barrios CE, Martinez-Fong D. Focused ultrasound on the substantia nigra enables safe neurotensin-polyplex nanoparticle-mediated gene delivery to dopaminergic neurons intranasally and by blood circulation. DISCOVER NANO 2024; 19:60. [PMID: 38564106 PMCID: PMC10987469 DOI: 10.1186/s11671-024-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 μL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.
Collapse
Affiliation(s)
- Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Arturo Vera
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Lorenzo Leija
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Instituto de Investigaciones Biomédicas, Ciudad de Mexico, México
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam, Potsdam, Germany
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | | | - M E Gutierrez-Castillo
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Carlos E Orozco-Barrios
- CONAHCYT - Unidad de Investigaciones Médicas en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.
- Nanoparticle Therapy Institute, Aguascalientes, México.
| |
Collapse
|
24
|
Zhang W, Zhu F, Zhu J, Liu K. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases. Anal Cell Pathol (Amst) 2024; 2024:6681911. [PMID: 38487684 PMCID: PMC10940030 DOI: 10.1155/2024/6681911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Rademacher K, Nakamura K. Role of dopamine neuron activity in Parkinson's disease pathophysiology. Exp Neurol 2024; 373:114645. [PMID: 38092187 DOI: 10.1016/j.expneurol.2023.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Neural activity is finely tuned to produce normal behaviors, and disruptions in activity likely occur early in the course of many neurodegenerative diseases. However, how neural activity is altered, and how these changes influence neurodegeneration is poorly understood. Here, we focus on evidence that the activity of dopamine neurons is altered in Parkinson's disease (PD), either as a compensatory response to degeneration or as a result of circuit dynamics or pathologic proteins, based on available human data and studies in animal models of PD. We then discuss how this abnormal activity may augment other neurotoxic phenomena in PD, including mitochondrial deficits, protein aggregation and spread, dopamine toxicity, and excitotoxicity. A more complete picture of how activity is altered and the resulting effects on dopaminergic neuron health and function may inform future therapeutic interventions to target and protect dopamine neurons from degeneration.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, California, 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA.
| |
Collapse
|
26
|
Chagraoui A, Anouar Y, De Deurwaerdere P, Arias HR. To what extent may aminochrome increase the vulnerability of dopaminergic neurons in the context of Parkinson's disease. Int J Biochem Cell Biol 2024; 168:106528. [PMID: 38246261 DOI: 10.1016/j.biocel.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France.
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
27
|
Huenchuguala S, Segura-Aguilar J. Single-neuron neurodegeneration as a degenerative model for Parkinson's disease. Neural Regen Res 2024; 19:529-535. [PMID: 37721280 PMCID: PMC10581573 DOI: 10.4103/1673-5374.380878] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
The positive effect of levodopa in the treatment of Parkinson's disease, although it is limited in time and has severe side effects, has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons. Successful preclinical studies with coenzyme Q10, mitoquinone, isradipine, nilotinib, TCH346, neurturin, zonisamide, deferiprone, prasinezumab, and cinpanemab prompted clinical trials. However, these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease, despite its severe side effects after 4-6 years of chronic treatment. The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson's disease treatment is a big problem. In our opinion, the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, that induce a very fast, massive and expansive neurodegenerative process, which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons. The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's patients is due to (i) a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron, (ii) a neurotoxic event that is not expansive and (iii) the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons. The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome, since it (i) is generated within neuromelanin-containing dopaminergic neurons, (ii) does not cause an expansive neurotoxic effect and (iii) triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's disease. In conclusion, based on the hypothesis that the neurodegenerative process of idiopathic Parkinson's disease corresponds to a single-neuron neurodegeneration model, we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2. It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomedicas (ICBM), Faculty of medicine, University of Chile, Independencia, Santiago, Chile
| |
Collapse
|
28
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
29
|
Burtscher J, Duderstadt Y, Gatterer H, Burtscher M, Vozdek R, Millet GP, Hicks AA, Ehrenreich H, Kopp M. Hypoxia Sensing and Responses in Parkinson's Disease. Int J Mol Sci 2024; 25:1759. [PMID: 38339038 PMCID: PMC10855464 DOI: 10.3390/ijms25031759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Yves Duderstadt
- Division of Cardiology and Angiology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Department of Sports Science, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Roman Vozdek
- Institute for Biomedicine, Eurac Research, Via Alessandro Volta 21, 39100 Bolzano, Italy; (R.V.); (A.A.H.)
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Via Alessandro Volta 21, 39100 Bolzano, Italy; (R.V.); (A.A.H.)
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany;
- Experimental Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| |
Collapse
|
30
|
Bao Y, Zhou W, Miao W, Jia G, Li C. Dopamine oxidation promoted by human telomeric DNA models in the presence of a Cu(II) terpyridine chelate. Chem Commun (Camb) 2024; 60:1172-1175. [PMID: 38193540 DOI: 10.1039/d3cc05530b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We found that under oxidative stress conditions, the coexistence of human telomeric DNA (HT-DNA) and a copper-terpyridine metallodrug can accelerate dopamine oxidation. The unwinding of HT-DNA from a duplex to cytosine-rich (C-rich) and guanine-rich (G-rich) single strands promotes dopamine oxidation in a general order of C-rich > G-rich > duplex. Along with dopamine oxidation, HT-DNA also undergoes severe damage.
Collapse
Affiliation(s)
- Yu Bao
- School of Physical Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Shanghai, 201210, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | - Wenqin Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| |
Collapse
|
31
|
Hua S, Wang B, Ding CF, Yan Y. A novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes for specific capture of phosphopeptides and exosomes. Talanta 2024; 266:125139. [PMID: 37659233 DOI: 10.1016/j.talanta.2023.125139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The analysis of low abundance phosphopeptides in organisms and specific capture exosomes are crucial for unraveling the pathogenesis of diseases. For this reason, titanium-zirconium ions and highly biocompatible dopamine and polyimide tubes (PITs) were introduced, and a novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes (HMCT), denoted as G@C@Ti-Zr-HMCT, comes into being after high-temperature calcination. Attributing to the tightly bound titanium and zirconium ions to HMCT and the high carbon content of the polydopamine carbonaceous layer, G@C@Ti-Zr-HMCT displays satisfactory capability of enriching phosphopeptides with satisfactory detection limit (0.2 fmol), extraordinary selectivity (1:2000), and good loading capacity (100 μg/mg). In addition, 25 phosphopeptides related to 25 phosphoproteins from the serum of Parkinson's disease (PD) patients and 30 phosphopeptides attributed to 26 phosphoproteins from the serum of healthy individuals were enriched by G@C@Ti-Zr-HMCT, respectively. In addition, bioinformatics analysis of the above results revealed that PD were associated with serine, threonine, and leucine of high frequency, blood coagulation in BP, Golgi apparatus and mitochondrial outer membrane in CC, and heparin binding in MF. Moreover, the phospholipid bilayer of exosomes and metallic titanium and zirconium ions interact to produce the following results: this highly biocompatible carbon-based material was successfully applied to capture exosomes, which offers a promising platform for isolating exosomes. To sum up, these delightful results confirmed without doubt that G@C@Ti-Zr-HMCT has enjoyed a splendiferous future in the specific capture of phosphopeptides and exosomes isolation.
Collapse
Affiliation(s)
- Shuwen Hua
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
32
|
Indelicato E, Boesch S, Mencacci NE, Ghezzi D, Prokisch H, Winkelmann J, Zech M. Dystonia in ATP Synthase Defects: Reconnecting Mitochondria and Dopamine. Mov Disord 2024; 39:29-35. [PMID: 37964479 DOI: 10.1002/mds.29657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Niccolo' E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
33
|
Xiao X, Xu L, Lu H, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, Ge Q, Zhuang Y, Geng X, Chen X, Lan Y, He J, Sun W. Untargeted Metabolomic Analyses of Body Fluids to Differentiate TBI DOC and NTBI DOC. Curr Mol Med 2024; 24:1183-1193. [PMID: 37817528 DOI: 10.2174/0115665240249826230928104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To investigate the metabolomic differences between Traumatic brain injury (TBI) disorder of consciousness (DOC) patients and non-traumatic brain injury (NTBI) DOC patients by using cerebrospinal fluid (CSF), serum and urine samples beneficial to understand the pathological mechanism differences between the two etiologies, provide potential clues for the subsequent treatment and prognosis, and investigate the metabolome differences and similarities between TBI and NTBI among three different body fluids. METHODS In total, 24 TBI DOC subjects and 29 NTBI DOC subjects were enrolled. CSF, serum and urine samples from TBI DOC and NTBI DOC patients were collected and analyzed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarkers and altered metabolic functions. RESULTS When comparing TBI DOC and NTBI DOC, 36, 31 and 52 differential metabolites were obtained in CSF, serum and urine, respectively. The functional analysis of differential metabolites obtained in CSF, serum and urine were all related to amino acid metabolism. Except for amino acid metabolism, metabolic biomarkers in CSF, serum and urine mainly focus on central function, cognitive function, necrosis and apoptosis and neurological function, respectively. In CSF, the highest AUC was 0.864 (Isoproturon) and 0.816 (Proline betaine). Then, the AUC of NFurfurylformamide in serum was 0.941, while the AUC of Dihydronepetalactone and Doxepin N-oxide glucuronide were 1.0 in urine. CONCLUSION CSF, serum and urine metabolomic analyses could differentiate TBI DOC from NTBI DOC and functional analyses showed a metabolic change difference between TBI DOC and NTBI DOC.
Collapse
Affiliation(s)
- Xiaoping Xiao
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Medical College, Beijing, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| |
Collapse
|
34
|
Rasool A, Manzoor R, Ullah K, Afzal R, Ul-Haq A, Imran H, Kaleem I, Akhtar T, Farrukh A, Hameed S, Bashir S. Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:852-864. [PMID: 37303175 DOI: 10.2174/1871527322666230609141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/13/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress triggers the vicious cycle leading to the degeneration of dopaminergic neurons in the nigra pars compacta. ROS produced during the metabolism of dopamine is immediately neutralized by the endogenous antioxidant defense system (EADS) under physiological conditions. Aging decreases the vigilance of EADS and makes the dopaminergic neurons more vulnerable to oxidative stress. As a result, ROS left over by EADS oxidize the dopamine-derived catechols and produces a number of reactive dopamine quinones, which are precursors to endogenous neurotoxins. In addition, ROS causes lipid peroxidation, uncoupling of the electron transport chain, and DNA damage, which lead to mitochondrial dysfunction, lysosomal dysfunction, and synaptic dysfunction. The mutations in genes such as DNAJC6, SYNJ1, SH3GL2, LRRK2, PRKN, and VPS35 caused by ROS have been associated with synaptic dysfunction and the pathogenesis of Parkinson's disease (PD). The available drugs that are used against PD can only delay the progression of the disease, but they produce various side effects. Through their antioxidant activity, flavonoids can substantiate the EADS of dopaminergic neurons and disrupt the vicious cycle incepted by oxidative stress. In this review, we show how the oxidative metabolism of dopamine generates ROS and dopamine-quinones, which then exert unrestrained OS, causing mutations in several genes involved in the proper functioning of mitochondrion, synapse, and lysosome. Besides, we also present some examples of approved drugs used for the treatment of PD, therapies in the clinical trial phase, and an update on the flavonoids that have been tested to boost the EADS of dopaminergic neurons.
Collapse
Affiliation(s)
- Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
- Faculty of Marine Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal 90050, Pakistan
| | - Kaleem Ullah
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Ramsha Afzal
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hadia Imran
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | - Anum Farrukh
- Department of General Medicine, Fauji Foundation Hospital (FFH), Rawalpindi, Pakistan
| | - Sahir Hameed
- National Institute for Genomics and Advanced Biotechnology (N.I.G.A.B.) National Agriculture Research Centre Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| |
Collapse
|
35
|
Song P, Peng W, Sauve V, Fakih R, Xie Z, Ysselstein D, Krainc T, Wong YC, Mencacci NE, Savas JN, Surmeier DJ, Gehring K, Krainc D. Parkinson's disease-linked parkin mutation disrupts recycling of synaptic vesicles in human dopaminergic neurons. Neuron 2023; 111:3775-3788.e7. [PMID: 37716354 DOI: 10.1016/j.neuron.2023.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Parkin-mediated mitophagy has been studied extensively, but whether mutations in parkin contribute to Parkinson's disease pathogenesis through alternative mechanisms remains unexplored. Using patient-derived dopaminergic neurons, we found that phosphorylation of parkin by Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) at Ser9 leads to activation of parkin in a neuronal-activity-dependent manner. Activated parkin ubiquitinates synaptojanin-1, facilitating its interaction with endophilin A1 and synaptic vesicle recycling. Neurons from PD patients with mutant parkin displayed defective recycling of synaptic vesicles, leading to accumulation of toxic oxidized dopamine that was attenuated by boosting endophilin A1 expression. Notably, combined heterozygous parkin and homozygous PTEN-induced kinase 1 (PINK1) mutations led to earlier disease onset compared with homozygous mutant PINK1 alone, further underscoring a PINK1-independent role for parkin in contributing to disease. Thus, this study identifies a pathway for selective activation of parkin at human dopaminergic synapses and highlights the importance of this mechanism in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Pingping Song
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wesley Peng
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Veronique Sauve
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Ysselstein
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Talia Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yvette C Wong
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
36
|
Ye P, Fang Q, Hu X, Zou W, Huang M, Ke M, Li Y, Liu M, Cai X, Zhang C, Hua N, Al-Sheikh U, Liu X, Yu P, Jiang P, Pan PY, Luo J, Jiang LH, Xu S, Fang EF, Su H, Kang L, Yang W. TRPM2 as a conserved gatekeeper determines the vulnerability of DA neurons by mediating ROS sensing and calcium dyshomeostasis. Prog Neurobiol 2023; 231:102530. [PMID: 37739206 DOI: 10.1016/j.pneurobio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.
Collapse
Affiliation(s)
- Peiwu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuyuan Fang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xupang Hu
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Miaodan Huang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Minjing Ke
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yunhao Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobo Cai
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Congyi Zhang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ning Hua
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xingyu Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peiran Jiang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Sino-UK Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453000, China; University of Leeds, Leeds LS2 9JT, UK
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lijun Kang
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
37
|
Huenchuguala S, Segura-Aguilar J. On the Role of Iron in Idiopathic Parkinson's Disease. Biomedicines 2023; 11:3094. [PMID: 38002094 PMCID: PMC10669582 DOI: 10.3390/biomedicines11113094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The transition metal characteristics of iron allow it to play a fundamental role in several essential aspects of human life such as the transport of oxygen through hemoglobin or the transport of electrons in the mitochondrial respiratory chain coupled to the synthesis of ATP. However, an excess or deficiency of iron is related to certain pathologies. The maintenance of iron homeostasis is essential to avoid certain pathologies related to iron excess or deficiency. The existence of iron deposits in postmortem tissues of Parkinson's patients has been interpreted as evidence that iron plays a fundamental role in the degenerative process of the nigrostriatal system in this disease. The use of iron chelators has been successful in the treatment of diseases such as transfusion-dependent thalassemia and pantothenate kinase-associated neurodegeneration. However, a clinical study with the iron chelator deferiprone in patients with Parkinson's disease has not shown positive effects but rather worsened clinical symptoms. This suggests that iron may not play a role in the degenerative process of Parkinson's disease.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
38
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
39
|
López-Aguirre M, Matarazzo M, Blesa J, Monje MHG, Rodríguez-Rojas R, Sánchez-Ferro A, Obeso JA, Pineda-Pardo JA. Dopaminergic denervation and associated MRI microstructural changes in the nigrostriatal projection in early Parkinson's disease patients. NPJ Parkinsons Dis 2023; 9:144. [PMID: 37852988 PMCID: PMC10584921 DOI: 10.1038/s41531-023-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and a profound reduction of striatal dopamine are two hallmarks of Parkinson's disease (PD). However, it's unclear whether degeneration starts at the neuronal soma or the striatal presynaptic terminals, and how microstructural degeneration is linked to dopaminergic loss is also uncertain. In this study, thirty de novo PD patients and twenty healthy subjects (HS) underwent 6-[18F]-fluoro-L-dopa (FDOPA) PET and MRI studies no later than 12 months from clinical diagnosis. FDOPA uptake rate (Ki), fractional volume of free-water (FW), and iron-sensitive R2* relaxometry were quantified within nigrostriatal regions. Inter-group differences (PD vs HS) were studied using non-parametric statistics and complemented with Cohen's d effect sizes and Bayesian statistics. Correlation analyses were performed exploring biomarker dependencies and their association with bradykinesia scores. PD patients exhibited a significant decline in nigrostriatal dopaminergic activity, being post-commissural putamen (-67%) and posterolateral SNc (-11.7%) the most affected subregions within striatum and SNc respectively. Microstructural alterations (FW) were restricted to the hemisphere corresponding to the most affected side and followed similar spatial gradients as FDOPA Ki (+20% in posterior putamen and +11% in posterolateral SNc). R2* revealed no relevant significant changes. FDOPA and FW were correlated within the posterolateral SNc, and clinical severity was associated with FDOPA Ki loss. The asymmetry between striatal and SNc changes for both dopaminergic depletion and microstructural degeneration biomarkers is consistent with a neurodegenerative process that begins in the striatal terminals before progressing toward the cell bodies in the SNc.
Collapse
Affiliation(s)
- M López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Physics, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - M Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - J Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - M H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - R Rodríguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - A Sánchez-Ferro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, University Hospital 12 de Octubre, Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - J A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- University CEU-San Pablo, Madrid, Spain
| | - J A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- University CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
40
|
Franco R, Serrano-Marín J, Navarro G, Rivas-Santisteban R. The NADPH Link between the Renin Angiotensin System and the Antioxidant Mechanisms in Dopaminergic Neurons. Antioxidants (Basel) 2023; 12:1869. [PMID: 37891948 PMCID: PMC10604245 DOI: 10.3390/antiox12101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The renin angiotensin system (RAS) has several components including signaling peptides, enzymes, and membrane receptors. The effort in characterizing this system in the periphery has led to the approval of a class of antihypertensives. Much less is known about RAS in the central nervous system. The production of RAS peptides and the expression of several RAS enzymes and receptors in dopaminergic neurons of the substantia nigra has raised expectations in the therapy of Parkinson's disease, a neurodegenerative condition characterized by lack of dopamine in the striatum, the motor control region of the mammalian brain. On the one hand, dopamine production requires reducing power. On the other hand, reducing power is required by mechanisms involved in REDOX homeostasis. This review focuses on the potential role of RAS in the regulation of neuronal/glial expression of glucose-6-phosphate dehydrogenase, which produces the NADPH required for dopamine synthesis and for reactive oxygen species (ROS) detoxification. It is known that transgenic expression of the gene coding for glucose-6-phosphate dehydrogenase prevents the death of dopaminergic nigral neurons. Signaling via angiotensin II G protein-coupled receptors, AT1 or AT2, leads to the activation of protein kinase A and/or protein kinase C that in turn can regulate glucose-6- phosphate dehydrogenase activity, by Ser/Thr phosphorylation/dephosphorylation events. Long-term effects of AT1 or AT2 receptor activation may also impact on the concentration of the enzyme via activation of transcription factors that participate in the regulation of gene expression in neurons (or glia). Future research is needed to determine how the system can be pharmacologically manipulated to increase the availability of NADPH to neurons degenerating in Parkinson's disease and to neuroprotective glia.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28029 Madrid, Spain;
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Serrano-Marín
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28029 Madrid, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed, Network Center for Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28029 Madrid, Spain;
- Campus Bellaterra, Autonomous University of Barcelona, Cerdanyola del Vallés, 08193 Barcelona, Spain
| |
Collapse
|
41
|
Apryatin SA, Traktirov DS, Karpenko MN, Ivleva IS, Pestereva NS, Bolshakova MV, Trofimov AN, Fesenko ZS, Klimenko VM. Antioxidant system alterations and physiological characteristics of neonatal and juvenile DAT-KO rats. J Neurosci Res 2023; 101:1651-1661. [PMID: 37394966 DOI: 10.1002/jnr.25228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
Dopamine transporter knockout (DAT-KO) rats represent a valuable rodent model for studying the molecular and phenotypical outcomes of the effects of excessive dopamine accumulation in the synaptic cleft and the prolonged action of dopamine on neurons. Animals with DAT deficiency are characterized by hyperactivity, stereotypy, cognitive deficits, and impairments in behavioral and biochemical indicators. Several key pathophysiological mechanisms are known to be common to psychiatric, neurodegenerative, metabolic, and other diseases. Among these mechanisms, oxidative stress systems play a particularly important role. One of the main antioxidant systems in the brain is glutathione: specifically, glutathione S-transferase, glutathione reductase, and catalase play a significant role in the regulation of vital oxidative processes, and their dysfunction has been shown in Parkinson's disease, Alzheimer's disease, and other neurodegenerative diseases. The current study aimed to analyze the dynamics of the activity levels of glutathione reductase and glutathione S-transferase in erythrocytes, as well as catalase in the blood plasma, of DAT-deficient, homo- and heterozygous, neonatal and juvenile rats (both male and female). Their behavioral and physiological parameters were evaluated at the age of 1.5 months. For the first time, changes in physiological and biochemical parameters were shown in DAT-KO rats at 1.5 months of postnatal life. The key role of glutathione S-transferase, glutathione reductase, and catalase in the regulation of oxidative stress in DAT-KO rats at the 5th week of life was demonstrated. A positive effect of a slightly increased dopamine level on memory function was shown in DAT-heterozygous animals.
Collapse
Affiliation(s)
- S A Apryatin
- Institute of Experimental Medicine, St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg, Russia
| | - D S Traktirov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - M N Karpenko
- Institute of Experimental Medicine, St. Petersburg, Russia
- Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia
| | - I S Ivleva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - N S Pestereva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - M V Bolshakova
- Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia
| | - A N Trofimov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Z S Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg, Russia
| | - V M Klimenko
- Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
42
|
Smith J, Seage C, Lane E, James D. Using the theoretical domains framework to determine the barriers and facilitators to medication adherence in Parkinson's disease. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2023; 11:100309. [PMID: 37583935 PMCID: PMC10423922 DOI: 10.1016/j.rcsop.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Patient medication adherence in Parkinson's Disease (PD) is often suboptimal. This may lead to poor symptom management, greater disease burden, decreased quality of life and increased healthcare costs. Use of psychological theory such as the Theoretical Domains Framework (TDF) has effectively captured barriers and facilitators to medication adherence in other long-term conditions. Applying this framework to medication adherence in PD could provide a better understanding of the challenges to inform the development of effective interventions. Objectives The aim of the study was to apply the TDF to determine the barriers and facilitators to medication adherence in people with PD. Methodology This qualitative study employed online interviews to explore medication adherence in a small group of people with PD recruited via Parkinson's UK and social media. A semi-structured interview schedule was designed informed by the 14 TDF domains. All interviews were audio-recorded, transcribed verbatim and mapped to the TDF using Framework Analysis. Results Twelve participants diagnosed with PD were interviewed, 11 of whom were currently taking prescribed medication plus another self-medicating with Vitamin B1. All TDF domains were evident in the data. Predominant facilitators were Domains 1 - Knowledge, 6 - Social Influence, and 12 - Beliefs about Consequences and barriers were 7 - Reinforcement, 10 - Memory, Attention and Decision Processes, and 11 - Environmental Context and Resources. Other themes were not related to medication adherence. Conclusion In this small group, all data relating to the barriers and facilitators for medication adherence in PD were successfully mapped onto the TDF. This indicates the utility of the framework for determining and structuring the factors to consider when providing medication support for this patient population in an accessible and coherent way. Further quantitative studies are needed to determine the extent to which these factors can be generalised to other PD patients.
Collapse
Affiliation(s)
- J.C. Smith
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff, Wales CF5 2YB, UK
| | - C.H. Seage
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff, Wales CF5 2YB, UK
| | - E. Lane
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VIIth Avenue, Cardiff, Wales CF10 3NB, UK
| | - D.H. James
- Department of Applied Psychology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, 200 Western Avenue, Cardiff, Wales CF5 2YB, UK
| |
Collapse
|
43
|
Figueiredo F, Sárkány Z, Silva A, Vilasboas-Campos D, Maciel P, Teixeira-Castro A, Martins PM, Macedo-Ribeiro S. Drug repurposing of dopaminergic drugs to inhibit ataxin-3 aggregation. Biomed Pharmacother 2023; 165:115258. [PMID: 37549460 DOI: 10.1016/j.biopha.2023.115258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.
Collapse
Affiliation(s)
- Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
44
|
Khashab R, Gutman-Sharabi N, Shabtai Z, Landau R, Halperin R, Fay-Karmon T, Leibowitz A, Sharabi Y. Dihydroxyphenylacetaldehyde Lowering Treatment Improves Locomotor and Neurochemical Abnormalities in the Rat Rotenone Model: Relevance to the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:12522. [PMID: 37569897 PMCID: PMC10419703 DOI: 10.3390/ijms241512522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease centers on accumulation of 3,4-dihydroxyphenylacetaldehyde (DOPAL) in dopaminergic neurons. To test the hypothesis, it is necessary to reduce DOPAL and assess if this improves locomotor abnormalities. Systemic administration of rotenone to rats reproduces the motor and central neurochemical abnormalities characterizing Parkinson's disease. In this study, we used the monoamine oxidase inhibitor (MAOI) deprenyl to decrease DOPAL production, with or without the antioxidant N-acetylcysteine (NAC). Adult rats received subcutaneous vehicle, rotenone (2 mg/kg/day via a minipump), or rotenone with deprenyl (5 mg/kg/day i.p.) with or without oral NAC (1 mg/kg/day) for 28 days. Motor function tests included measures of open field activity and rearing. Striatal tissue was assayed for contents of dopamine, DOPAL, and other catechols. Compared to vehicle, rotenone reduced locomotor activity (distance, velocity and rearing); increased tissue DOPAL; and decreased dopamine concentrations and inhibited vesicular sequestration of cytoplasmic dopamine and enzymatic breakdown of cytoplasmic DOPAL by aldehyde dehydrogenase (ALDH), as indicated by DA/DOPAL and DOPAC/DOPAL ratios. The addition of deprenyl to rotenone improved all the locomotor indices, increased dopamine and decreased DOPAL contents, and corrected the rotenone-induced vesicular uptake and ALDH abnormalities. The beneficial effects were augmented when NAC was added to deprenyl. Rotenone evokes locomotor and striatal neurochemical abnormalities found in Parkinson's disease, including DOPAL buildup. Administration of an MAOI attenuates these abnormalities, and NAC augments the beneficial effects. The results indicate a pathogenic role of DOPAL in the rotenone model and suggest that treatment with MAOI+NAC might be beneficial for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Rawan Khashab
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naama Gutman-Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zehava Shabtai
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Regev Landau
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Reut Halperin
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tsviya Fay-Karmon
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avshalom Leibowitz
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yehonatan Sharabi
- Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5265601, Israel; (R.K.); (N.G.-S.); (Z.S.); (R.L.); (R.H.); (T.F.-K.); (A.L.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
45
|
Yoo J, Han J, Lim MH. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol 2023; 4:548-563. [PMID: 37547459 PMCID: PMC10398360 DOI: 10.1039/d3cb00052d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways. Recent studies have highlighted the significant role of transition metal ions, including Cu(i/ii), Zn(ii), and Fe(ii/iii), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing field of interest in understanding signal dysfunction. This review outlines the physiological functions of transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational changes of neurotransmitters induced by redox-active metal ions, such as Cu(i/ii) and Fe(ii/iii), and briefly describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations have important implications for neurodegeneration and emphasize the need for further research to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
46
|
Huang Y, Chen P, Zhou L, Zheng J, Wu H, Liang J, Xiao A, Li J, Guan BO. Plasmonic Coupling on an Optical Microfiber Surface: Enabling Single-Molecule and Noninvasive Dopamine Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304116. [PMID: 37342974 DOI: 10.1002/adma.202304116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Optical fibers can be effective biosensors when employed in early-stage diagnostic point-of-care devices as they can avoid interference from molecules with similar redox potentials. Nevertheless, their sensitivity needs to be improved for real-world applications, especially for small-molecule detection. This work demonstrates an optical microfiber biosensor for dopamine (DA) detection based on the DA-binding-induced aptamer conformational transitions that occur at plasmonic coupling sites on a double-amplified nanointerface. The sensor exhibits ultrahigh sensitivity when detecting DA molecules at the single-molecule level; additionally, this work provides an approach for overcoming optical device sensitivity limits, further extending optical fiber single-molecule detection to a small molecule range (e.g., DA and metal ions). The selective energy enhancement and signal amplification at the binding sites effectively avoid nonspecific amplification of the whole fiber surface which may lead to false-positive results. The sensor can detect single-molecule DA signals in body-fluids. It can detect the released extracellular DA levels and monitor the DA oxidation process. An appropriate aptamer replacement allows the sensor to be used for the detection of other target small molecules and ions at the single-molecule level. This technology offers alternative opportunities for developing noninvasive early-stage diagnostic point-of-care devices and flexible single-molecule detection techniques in theoretical research.
Collapse
Affiliation(s)
- Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Luyan Zhou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Jiaying Zheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Haotian Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Aoxiang Xiao
- Department of Neurology and Stroke Center, The first Affiliated Hospital, & Clinical Neuroscience Institute, Jinan University, Guangzhou, 510630, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- Department of Neurology and Stroke Center, The first Affiliated Hospital, & Clinical Neuroscience Institute, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
47
|
Feng L, Sharma A, Wang Z, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Li C, Zhang Z, Lin C, Huang H, Manzhulo I, Wiklund L, Sharma HS. Nanowired delivery of dl-3-n-butylphthalide with antibodies to alpha synuclein potentiated neuroprotection in Parkinson's disease with emotional stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:47-82. [PMID: 37783563 DOI: 10.1016/bs.irn.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Stress is one of the most serious consequences of life leading to several chronic diseases and neurodegeneration. Recent studies show that emotional stress and other kinds of anxiety and depression adversely affects Parkinson's disease symptoms. However, the details of how stress affects Parkinson's disease is still not well known. Traumatic brain injury, stroke, diabetes, post-traumatic stress disorders are well known to modify the disease precipitation, progression and persistence. However, show stress could influence Parkinson's disease is still not well known. The present investigation we examine the role of immobilization stress influencing Parkinson's disease brain pathology in model experiments. In ore previous report we found that mild traumatic brain injury exacerbate Parkinson's disease brain pathology and nanodelivery of dl-3-n-butylphthalide either alone or together with mesenchymal stem cells significantly attenuated Parkinson's disease brain pathology. In this chapter we discuss the role of stress in exacerbating Parkinson's disease pathology and nanowired delivery of dl-3-n-butylphthalide together with monoclonal antibodies to alpha synuclein (ASNC) is able to induce significant neuroprotection. The possible mechanisms of dl-3-n-butylphthalide and ASNC induced neuroprotection and suitable clinical therapeutic strategy is discussed.
Collapse
Affiliation(s)
- Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co. Ltd., Economic and Technological Development Zone, Shijiazhuang City, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guangdong, P.R. China
| | - Ziquiang Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guangdong, P.R. China
| | - Chen Lin
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
48
|
Ma C, Feng Y, Li X, Sun L, He Z, Gan J, He M, Zhang X, Chen X. Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:127-144. [PMID: 36637699 DOI: 10.1007/s11481-022-10057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Long Sun
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Zhao He
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Jin Gan
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Minjie He
- Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan Province, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China.
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| |
Collapse
|
49
|
Mitra R, Premraj L, Khoo TK. Neuromelanin: Its role in the pathogenesis of idiopathic Parkinson's disease and potential as a therapeutic target. Parkinsonism Relat Disord 2023:105448. [PMID: 37236833 DOI: 10.1016/j.parkreldis.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Parkinson's disease is an increasingly prevalent condition that involves the marked loss of dopaminergic neurons in the substantia nigra pars compacta. These neurons pigmented with neuromelanin along with other regions of the brain are almost exclusively victims of neurodegeneration in the disease. The link between neuromelanin and Parkinson's disease has been widely studied for decades. While many studies have outlined the pigment's neuroprotective function as a potent free radical scavenger, antioxidant, and ion-chelator, it has also been observed to play a role in cell death due to mitochondrial dysfunction and oxidative stress, especially in the parkinsonian disease state. This is due to the damaging effects of neuromelanin precursors, neuromelanin-related ion dysregulation and intra- and extraneuronal neuromelanin accumulation. Current and emerging therapeutic endeavours guided by these pathological processes may include antioxidant therapy, proteostasis enhancement, ion chelation and neuromelanin-targeted immunotherapy to prevent the accumulation, formation and effects of neuromelanin and oxidative neuromelanin precursors. Some of these therapeutic strategies are already in nascent stages, while others have produced mixed results in clinical trials. This review aims to provide an update on how neuromelanin and neuromelanin-related substances may be linked to the pathogenesis of Parkinson's disease and how future therapeutic strategies may be able to hamper or prevent neuromelanin-related pathological processes and ultimately modify disease progression in Parkinson's.
Collapse
Affiliation(s)
- Ritoban Mitra
- College of Medicine and Public Health, Flinders University, South Australia, Australia.
| | - Lavienraj Premraj
- School of Medicine & Dentistry, Griffith University, Queensland, Australia
| | - Tien K Khoo
- School of Medicine & Dentistry, Griffith University, Queensland, Australia; Graduate School of Medicine, University of Wollongong, New South Wales, Australia
| |
Collapse
|
50
|
Ravenhill SM, Evans AH, Crewther SG. Escalating Bi-Directional Feedback Loops between Proinflammatory Microglia and Mitochondria in Ageing and Post-Diagnosis of Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12051117. [PMID: 37237983 DOI: 10.3390/antiox12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive age-related neurodegenerative disease affecting up to 3% of the global population over 65 years of age. Currently, the underlying physiological aetiology of PD is unknown. However, the diagnosed disorder shares many common non-motor symptoms associated with ageing-related neurodegenerative disease progression, such as neuroinflammation, microglial activation, neuronal mitochondrial impairment, and chronic autonomic nervous system dysfunction. Clinical PD has been linked to many interrelated biological and molecular processes, such as escalating proinflammatory immune responses, mitochondrial impairment, lower adenosine triphosphate (ATP) availability, increasing release of neurotoxic reactive oxygen species (ROS), impaired blood brain barrier integrity, chronic activation of microglia, and damage to dopaminergic neurons consistently associated with motor and cognitive decline. Prodromal PD has also been associated with orthostatic hypotension and many other age-related impairments, such as sleep disruption, impaired gut microbiome, and constipation. Thus, this review aimed to present evidence linking mitochondrial dysfunction, including elevated oxidative stress, ROS, and impaired cellular energy production, with the overactivation and escalation of a microglial-mediated proinflammatory immune response as naturally occurring and damaging interlinked bidirectional and self-perpetuating cycles that share common pathological processes in ageing and PD. We propose that both chronic inflammation, microglial activation, and neuronal mitochondrial impairment should be considered as concurrently influencing each other along a continuum rather than as separate and isolated linear metabolic events that affect specific aspects of neural processing and brain function.
Collapse
Affiliation(s)
| | - Andrew Howard Evans
- Department of Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Epworth Hospital, Richmond 3121, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne 3050, Australia
| | | |
Collapse
|