1
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
2
|
Ikeda Y, Fujii J. The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023; 12:2831. [PMID: 38132151 PMCID: PMC10741565 DOI: 10.3390/cells12242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City 990-9585, Japan
| |
Collapse
|
3
|
Gajewski MP, Barger SW. Design, synthesis, and characterization of novel system x C- transport inhibitors: inhibition of microglial glutamate release and neurotoxicity. J Neuroinflammation 2023; 20:292. [PMID: 38057869 PMCID: PMC10702053 DOI: 10.1186/s12974-023-02972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system xC- (SxC-) cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the SxC- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the SxC- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. To confirm that the compounds were inhibitors of SxC-, two of them were further tested for the ability to inhibit cystine uptake. Finally, these agents were shown to protect primary cortical neurons from the toxicity exhibited by activated microglia. These agents may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions, such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariusz P Gajewski
- Department of Physical and Earth Sciences, Arkansas Tech University, McEver Building, 1701 N Boulder Ave, Russellville, AR, 72801, USA.
| | - Steven W Barger
- Departments of Geriatrics and Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
4
|
Sahasrabudhe SA, Terluk MR, Kartha RV. N-acetylcysteine Pharmacology and Applications in Rare Diseases-Repurposing an Old Antioxidant. Antioxidants (Basel) 2023; 12:1316. [PMID: 37507857 PMCID: PMC10376274 DOI: 10.3390/antiox12071316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylcysteine (NAC), a precursor of cysteine and, thereby, glutathione (GSH), acts as an antioxidant through a variety of mechanisms, including oxidant scavenging, GSH replenishment, antioxidant signaling, etc. Owing to the variety of proposed targets, NAC has a long history of use as a prescription product and in wide-ranging applications that are off-label as an over-the-counter (OTC) product. Despite its discovery in the early 1960s and its development for various indications, systematic clinical pharmacology explorations of NAC pharmacokinetics (PK), pharmacodynamic targets, drug interactions, and dose-ranging are sorely limited. Although there are anecdotal instances of NAC benefits in a variety of diseases, a comprehensive review of the use of NAC in rare diseases does not exist. In this review, we attempt to summarize the existing literature focused on NAC explorations in rare diseases targeting mitochondrial dysfunction along with the history of NAC usage, approved indications, mechanisms of action, safety, and PK characterization. Further, we introduce the research currently underway on other structural derivatives of NAC and acknowledge the continuum of efforts through pre-clinical and clinical research to facilitate further therapeutic development of NAC or its derivatives for rare diseases.
Collapse
Affiliation(s)
- Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, Rm 4-214, McGuire Translational Research Facility, 2001 6th St. SE, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Gajewski M, Barger S. Design, synthesis, and characterization of novel Xc- transport inhibitors: Inhibition of microglial glutamate release and neurotoxicity. RESEARCH SQUARE 2023:rs.3.rs-2932128. [PMID: 37292591 PMCID: PMC10246248 DOI: 10.21203/rs.3.rs-2932128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system Xc- cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the Xc- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the Xc- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. Two of these were further tested for the ability to inhibit death of primary cortical neurons in the presence of activated microglia. While both showed some neuroprotective activity, they were quantitatively distinct with a compound we refer to as "35DBTA7" showing the greatest effi cacy. This agent may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.
Collapse
|
6
|
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, Liu Z. Novel Insight into Ferroptosis in Kidney Diseases. Am J Nephrol 2023; 54:184-199. [PMID: 37231767 DOI: 10.1159/000530882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Various kidney diseases such as acute kidney injury, chronic kidney disease, polycystic kidney disease, renal cancer, and kidney stones, are an important part of the global burden, bringing a huge economic burden to people around the world. Ferroptosis is a type of nonapoptotic iron-dependent cell death caused by the excess of iron-dependent lipid peroxides and accompanied by abnormal iron metabolism and oxidative stress. Over the past few decades, several studies have shown that ferroptosis is associated with many types of kidney diseases. Studying the mechanism of ferroptosis and related agonists and inhibitors may provide new ideas and directions for the treatment of various kidney diseases. SUMMARY In this review, we discuss the differences between ferroptosis and other types of cell death such as apoptosis, necroptosis, pyroptosis, cuprotosis, pathophysiological features of the kidney, and ferroptosis-induced kidney injury. We also provide an overview of the molecular mechanisms involved in ferroptosis and events that lead to ferroptosis. Furthermore, we summarize the possible clinical applications of this mechanism among various kidney diseases. KEY MESSAGE The current research suggests that future therapeutic efforts to treat kidney ailments would benefit from a focus on ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China,
- Henan Province Research Center for Kidney Disease, Zhengzhou, China,
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
7
|
Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci 2023; 24:ijms24098044. [PMID: 37175751 PMCID: PMC10179188 DOI: 10.3390/ijms24098044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys-GSH axis is essentially common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic processes concerning the Cys-GSH axis, we provide an overview and discuss the significance of GSH-related compounds in the nervous system.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
8
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
9
|
Aloi MS, Thompson SJ, Quartapella N, Noebels JL. Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-KO mice. Cell Rep 2022; 41:111696. [PMID: 36417872 PMCID: PMC9753929 DOI: 10.1016/j.celrep.2022.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/29/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Slc7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events.
Collapse
Affiliation(s)
- Macarena S Aloi
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA
| | - Samantha J Thompson
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA
| | - Nicholas Quartapella
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA; Department of BioSciences, Rice University, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA.
| |
Collapse
|
10
|
Mizera J, Pomierny B, Sadakierska-Chudy A, Bystrowska B, Pomierny-Chamiolo L. Disruption of Glutamate Homeostasis in the Brain of Rat Offspring Induced by Prenatal and Early Postnatal Exposure to Maternal High-Sugar Diet. Nutrients 2022; 14:nu14112184. [PMID: 35683984 PMCID: PMC9182612 DOI: 10.3390/nu14112184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high-calorie diet has contributed greatly to the prevalence of overweight and obesity worldwide for decades. These conditions also affect pregnant women and have a negative impact on the health of both the woman and the fetus. Numerous studies indicate that an unbalanced maternal diet, rich in sugars and fats, can influence the in utero environment and, therefore, the future health of the child. It has also been shown that prenatal exposure to an unbalanced diet might permanently alter neurotransmission in offspring. In this study, using a rat model, we evaluated the effects of a maternal high-sugar diet on the level of extracellular glutamate and the expression of key transporters crucial for maintaining glutamate homeostasis in offspring. Glutamate concentration was assessed in extracellular fluid samples collected from the medial prefrontal cortex and hippocampus of male and female offspring. Analysis showed significantly increased glutamate levels in both brain structures analyzed, regardless of the sex of the offspring. These changes were accompanied by altered expression of the EAAT1, VGLUT1, and xc− proteins in these brain structures. This animal study further confirms our previous findings that a maternal high-sugar diet has a detrimental effect on the glutamatergic system.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (B.P.); (B.B.)
| | - Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (B.P.); (B.B.)
| | - Lucyna Pomierny-Chamiolo
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
- Correspondence: ; Tel.: +48-(12)-620-56-30
| |
Collapse
|
11
|
Fang XL, Ding SY, Du XZ, Wang JH, Li XL. Ferroptosis—A Novel Mechanism With Multifaceted Actions on Stroke. Front Neurol 2022; 13:881809. [PMID: 35481263 PMCID: PMC9035991 DOI: 10.3389/fneur.2022.881809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
As a neurological disease with high morbidity, disability, and mortality, the pathological mechanism underlying stroke involves complex processes such as neuroinflammation, oxidative stress, apoptosis, autophagy, and excitotoxicity; but the related research on these molecular mechanisms has not been effectively applied in clinical practice. As a form of iron-dependent regulated cell death, ferroptosis was first discovered in the pathological process of cancer, but recent studies have shown that ferroptosis is closely related to the onset and development of stroke. Therefore, a deeper understanding of the relationship between ferroptosis and stroke may lead to more effective treatment strategies. Herein, we reviewed the mechanism(s) underlying the onset of ferroptosis in stroke, the potential role of ferroptosis in stroke, and the crosstalk between ferroptosis and other pathological mechanisms. This will further deepen our understanding of ferroptosis and provide new approaches to the treatment of stroke.
Collapse
Affiliation(s)
- Xiao-Ling Fang
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shao-Yun Ding
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiao-Zheng Du
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- *Correspondence: Xiao-Zheng Du
| | - Jin-Hai Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Lanzhou University, Lanzhou, China
- Jin-Hai Wang
| | - Xing-Lan Li
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
12
|
Abstract
Ferroptosis is a novel form of cell death characterized by the iron-dependent accumulation of lipid peroxides and is different from other types of cell death. The mechanisms of ferroptosis are discussed in the review, including System Xc-, Glutathione Peroxidase 4 pathway, Ferroptosis Suppressor Protein 1 and Dihydroorotate Dehydrogenase pathway. Ferroptosis is associated with the occurrence of various diseases, including sepsis. Research in recent years has displayed that ferroptosis is involved in sepsis occurrence and development. Iron chelators can inhibit the development of sepsis and improve the survival rate of septic mice. The ferroptotic cells can release damage-associated molecular patterns and lipid peroxidation, which further mediate inflammatory responses. Ferroptosis inhibitors can resist sepsis-induced multiple organ dysfunction and inflammation. Finally, we reviewed ferroptosis, an iron-dependent form of cell death that is different from other types of cell death in biochemistry, morphology, and major regulatory mechanisms, which is involved in multiple organ injuries caused by sepsis. Exploring the relationship between sepsis and ferroptosis may yield new treatment targets for sepsis.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongbin Wu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| |
Collapse
|
13
|
Zeng X, Dong X, Xiao Q, Yao J. Vitamin C Inhibits Ubiquitination of Glutamate Transporter 1 (GLT-1) in Astrocytes by Downregulating HECTD1. ACS Chem Neurosci 2022; 13:676-687. [PMID: 35148069 DOI: 10.1021/acschemneuro.1c00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Excitatory neurotoxicity caused by the accumulation of glutamate in the synaptic cleft is an important cause of Parkinson's disease (PD). Astrocyte glutamate transporter 1 (GLT-1) is the main transporter responsible for transporting glutamate, and investigations toward the regulation of GLT-1 in astrocytes can reveal important insights. Vitamin C (VC) has important protective effects on the brain, but its effect on the regulation of GLT-1 expression is unclear. The purpose of this study was to explore any regulatory effect of VC on GLT-1 expression in astrocytes and to clarify the possible mechanism of such regulation. We found that GLT-1 expression was impaired in 1-methyl-4-phenylpyridinium iodide (MPP+)-treated astrocytes, and the transport capacity for glutamate was significantly reduced. Pretreatment with VC restored the GLT-1 expression in the MPP+-treated astrocytes. Intraperitoneal VC administration in a PD murine model confirmed that GLT-1 expression was restored in midbrain tissue. The VC-dependent rescue of GLT-1 expression in the MPP+-treated astrocytes was shown to be due to inhibition of GLT-1 ubiquitination. Transcriptome sequence analysis revealed a number of differentially expressed genes as a result of VC treatment on MPP+-treated astrocytes, including the downregulation of HECT Domain E3 ubiquitin protein ligase 1 (Hectd1). After knocking down Hectd1, the impaired GLT-1 expression caused by MPP+ was alleviated, while overexpression of Hectd1 significantly reduced the expression of GLT-1. After overexpression of Hectd1, VC could no longer increase GLT-1 expression of MPP+-treated astrocytes, indicating that HECTD1 is essential for VC regulation of GLT-1. Thus, VC reduces the ubiquitination of GLT-1 in astrocytes by inhibiting the expression of HECTD1. Our findings have identified a novel mechanism by which VC regulates the expression of GLT-1 in astrocytes.
Collapse
Affiliation(s)
- Xiaokang Zeng
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300 Guangdong, China
| | - Xinhuai Dong
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300 Guangdong, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300 Guangdong, China
| | - Jie Yao
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, 528300 Guangdong, China
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, 528300 Guangdong, China
| |
Collapse
|
14
|
Hampe CS, Mitoma H. A Breakdown of Immune Tolerance in the Cerebellum. Brain Sci 2022; 12:brainsci12030328. [PMID: 35326284 PMCID: PMC8946792 DOI: 10.3390/brainsci12030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cerebellar dysfunction can be associated with ataxia, dysarthria, dysmetria, nystagmus and cognitive deficits. While cerebellar dysfunction can be caused by vascular, traumatic, metabolic, genetic, inflammatory, infectious, and neoplastic events, the cerebellum is also a frequent target of autoimmune attacks. The underlying cause for this vulnerability is unclear, but it may be a result of region-specific differences in blood–brain barrier permeability, the high concentration of neurons in the cerebellum and the presence of autoantigens on Purkinje cells. An autoimmune response targeting the cerebellum—or any structure in the CNS—is typically accompanied by an influx of peripheral immune cells to the brain. Under healthy conditions, the brain is protected from the periphery by the blood–brain barrier, blood–CSF barrier, and blood–leptomeningeal barrier. Entry of immune cells to the brain for immune surveillance occurs only at the blood-CSF barrier and is strictly controlled. A breakdown in the barrier permeability allows peripheral immune cells uncontrolled access to the CNS. Often—particularly in infectious diseases—the autoimmune response develops because of molecular mimicry between the trigger and a host protein. In this review, we discuss the immune surveillance of the CNS in health and disease and also discuss specific examples of autoimmunity affecting the cerebellum.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-554-9181
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-0023, Japan;
| |
Collapse
|
15
|
Zhang W, Wang C, Zhu W, Liu F, Liu Y. Ferrostatin-1 alleviates cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis. Bioengineered 2022; 13:6163-6172. [PMID: 35200065 PMCID: PMC9208497 DOI: 10.1080/21655979.2022.2042143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cobalt is the main component of metal prostheses in hip arthroplasty. Studies have shown that metal particles mainly composed of cobalt nanoparticles (CoNPs) can cause systemic and local toxic reactions due to various physical and chemical factors. Therefore, elucidating the underlying mechanisms of metal prosthesis action, coupled with identification of effective detoxification drugs are imperative to minimizing postoperative complications and prolonging the service life of these clinical tools. In this study, we treated Balb/3T3 mouse fibroblast cell line with CoNPs and ferrostatin-1, then measured cell viability via the CCK-8 assay. Next, we determined levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), cobalt and iron contents, as well as glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) expression in each group. Finally, we employed transmission electron microscopy (TEM) to detect changes in the ultrastructure of each group of cells. Exposure of cells to CoNPs significantly suppressed their viability, and downregulated expression of GSH, GPX4, and SLC7A11 proteins. Conversely, this treatment mediated a significant increase in ROS, MDA, cobalt, and iron levels in the cells. TEM images revealed a marked increase in density of the mitochondrial membrane of cells in the CoNPs group, while the outer membrane was broken. Notably, treatment with ferroptosis inhibitor Ferrostatin-1 alleviated the cytotoxic response caused by CoNPs. These findings suggest that CoNP-induced cytotoxicity may be closely related to ferroptosis, indicating that inhibition of ferroptosis is a potential therapeutic strategy for reducing CoNP toxicity.
Collapse
Affiliation(s)
- Weinan Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chen Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wenfeng Zhu
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
16
|
Rogóż Z, Kamińska K, Lech MA, Lorenc-Koci E. N-Acetylcysteine and Aripiprazole Improve Social Behavior and Cognition and Modulate Brain BDNF Levels in a Rat Model of Schizophrenia. Int J Mol Sci 2022; 23:ijms23042125. [PMID: 35216241 PMCID: PMC8877560 DOI: 10.3390/ijms23042125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Treatment of negative symptoms and cognitive disorders in patients with schizophrenia is still a serious clinical problem. The aim of our study was to compare the efficacy of chronic administration of the atypical antipsychotic drug aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl] butoxy}-3,4-dihydro-2(1H)-quinolinone; ARI) and the well-known antioxidant N-acetylcysteine (NAC) both in alleviating schizophrenia-like social and cognitive deficits and in reducing the decreases in the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC) and hippocampus (HIP) of adult Sprague-Dawley rats, that have been induced by chronic administration of the model compound L-buthionine-(S, R)-sulfoximine (BSO) during the early postnatal development (p5–p16). ARI was administered at doses of 0.1 and 0.3 mg/kg while NAC at doses of 10 and 30 mg/kg, alone or in combination. Administration of higher doses of ARI or NAC alone, or co-treatment with lower, ineffective doses of these drugs significantly improved social and cognitive performance as assessed in behavioral tests. Both doses of NAC and 0.3 mg/kg of ARI increased the expression of BDNF mRNA in the PFC, while all doses of these drugs and their combinations enhanced the levels of BDNF protein in this brain structure. In the HIP, only 0,3 mg/kg ARI increased the levels of both BDNF mRNA and its protein. These data show that in the rat BSO-induced neurodevelopmental model of schizophrenia, ARI and NAC differently modulated BDNF levels in the PFC and HIP.
Collapse
Affiliation(s)
- Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (Z.R.); (K.K.); (M.A.L.)
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (Z.R.); (K.K.); (M.A.L.)
| | - Marta Anna Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (Z.R.); (K.K.); (M.A.L.)
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: ; Tel.: +48-126-623-272
| |
Collapse
|
17
|
Beckers P, Lara O, Belo do Nascimento I, Desmet N, Massie A, Hermans E. Validation of a System xc– Functional Assay in Cultured Astrocytes and Nervous Tissue Samples. Front Cell Neurosci 2022; 15:815771. [PMID: 35095428 PMCID: PMC8793334 DOI: 10.3389/fncel.2021.815771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Disruption of the glutamatergic homeostasis is commonly observed in neurological diseases and has been frequently correlated with the altered expression and/or function of astrocytic high-affinity glutamate transporters. There is, however, a growing interest for the role of the cystine-glutamate exchanger system xc– in controlling glutamate transmission. This exchanger is predominantly expressed in glial cells, especially in microglia and astrocytes, and its dysregulation has been documented in diverse neurological conditions. While most studies have focused on measuring the expression of its specific subunit xCT by RT-qPCR or by Western blotting, the activity of this exchanger in tissue samples remains poorly examined. Indeed, the reported use of sulfur- and carbon-radiolabeled cystine in uptake assays shows several drawbacks related to its short radioactive half-life and its relatively high cost. We here report on the elaborate validation of a method using tritiated glutamate as a substrate for the reversed transport mediated by system xc–. The uptake assay was validated in primary cultured astrocytes, in transfected cells as well as in crude synaptosomes obtained from fresh nervous tissue samples. Working in buffers containing defined concentrations of Na+, allowed us to differentiate the glutamate uptake supported by system xc– or by high-affinity glutamate transporters, as confirmed by using selective pharmacological inhibitors. The specificity was further demonstrated in primary astrocyte cultures from transgenic mice lacking xCT or in cell lines where xCT expression was genetically induced or reduced. As such, this assay appears to be a robust and cost-efficient solution to investigate the activity of this exchanger in physiological and pathological conditions. It also provides a reliable tool for the screening and characterization of new system xc– inhibitors which have been frequently cited as valuable drugs for nervous disorders and cancer.
Collapse
Affiliation(s)
- Pauline Beckers
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Olaya Lara
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ines Belo do Nascimento
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie Desmet
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emmanuel Hermans
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Emmanuel Hermans,
| |
Collapse
|
18
|
Bentea E, De Pauw L, Verbruggen L, Winfrey LC, Deneyer L, Moore C, Albertini G, Sato H, Van Eeckhaut A, Meshul CK, Massie A. Aged xCT-Deficient Mice Are Less Susceptible for Lactacystin-, but Not 1-Methyl-4-Phenyl-1,2,3,6- Tetrahydropyridine-, Induced Degeneration of the Nigrostriatal Pathway. Front Cell Neurosci 2022; 15:796635. [PMID: 34975413 PMCID: PMC8718610 DOI: 10.3389/fncel.2021.796635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
The astrocytic cystine/glutamate antiporter system x c - (with xCT as the specific subunit) imports cystine in exchange for glutamate and has been shown to interact with multiple pathways in the brain that are dysregulated in age-related neurological disorders, including glutamate homeostasis, redox balance, and neuroinflammation. In the current study, we investigated the effect of genetic xCT deletion on lactacystin (LAC)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of the nigrostriatal pathway, as models for Parkinson's disease (PD). Dopaminergic neurons of adult xCT knock-out mice (xCT-/-) demonstrated an equal susceptibility to intranigral injection of the proteasome inhibitor LAC, as their wild-type (xCT+/+) littermates. Contrary to adult mice, aged xCT-/- mice showed a significant decrease in LAC-induced degeneration of nigral dopaminergic neurons, depletion of striatal dopamine (DA) and neuroinflammatory reaction, compared to age-matched xCT+/+ littermates. Given this age-related protection, we further investigated the sensitivity of aged xCT-/- mice to chronic and progressive MPTP treatment. However, in accordance with our previous observations in adult mice (Bentea et al., 2015a), xCT deletion did not confer protection against MPTP-induced nigrostriatal degeneration in aged mice. We observed an increased loss of nigral dopaminergic neurons, but equal striatal DA denervation, in MPTP-treated aged xCT-/- mice when compared to age-matched xCT+/+ littermates. To conclude, we reveal age-related protection against proteasome inhibition-induced nigrostriatal degeneration in xCT-/- mice, while xCT deletion failed to protect nigral dopaminergic neurons of aged mice against MPTP-induced toxicity. Our findings thereby provide new insights into the role of system x c - in mechanisms of dopaminergic cell loss and its interaction with aging.
Collapse
Affiliation(s)
- Eduard Bentea
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lise Verbruggen
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lila C Winfrey
- Neurocytology Laboratory, Veterans Affairs Medical Center, Research Services, Portland, OR, United States
| | - Lauren Deneyer
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cynthia Moore
- Neurocytology Laboratory, Veterans Affairs Medical Center, Research Services, Portland, OR, United States
| | - Giulia Albertini
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata, Japan
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charles K Meshul
- Neurocytology Laboratory, Veterans Affairs Medical Center, Research Services, Portland, OR, United States.,Department of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
Verbruggen L, Ates G, Lara O, De Munck J, Villers A, De Pauw L, Ottestad-Hansen S, Kobayashi S, Beckers P, Janssen P, Sato H, Zhou Y, Hermans E, Njemini R, Arckens L, Danbolt NC, De Bundel D, Aerts JL, Barbé K, Guillaume B, Ris L, Bentea E, Massie A. Lifespan extension with preservation of hippocampal function in aged system x c--deficient male mice. Mol Psychiatry 2022; 27:2355-2368. [PMID: 35181756 PMCID: PMC9126817 DOI: 10.1038/s41380-022-01470-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.
Collapse
Affiliation(s)
- Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gamze Ates
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jolien De Munck
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Université de Mons (UMONS), Mons, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sigrid Ottestad-Hansen
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sho Kobayashi
- grid.268394.20000 0001 0674 7277Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Pauline Beckers
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Niigata University, Niigata, Japan
| | - Yun Zhou
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Rose Njemini
- grid.8767.e0000 0001 2290 8069Frailty in Ageing research Department, VUB, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Niels C. Danbolt
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dimitri De Bundel
- grid.8767.e0000 0001 2290 8069Pharmaceutical Chemistry, Drug Analysis and Drug Information, C4N, VUB, Brussels, Belgium
| | - Joeri L. Aerts
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kurt Barbé
- grid.8767.e0000 0001 2290 8069The Biostatistics and Medical Informatics Department, VUB, Brussels, Belgium
| | | | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Université de Mons (UMONS), Mons, Belgium
| | - Eduard Bentea
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
20
|
Berry T, Abohamza E, Moustafa AA. Treatment-resistant schizophrenia: focus on the transsulfuration pathway. Rev Neurosci 2021; 31:219-232. [PMID: 31714892 DOI: 10.1515/revneuro-2019-0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia.,Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney 2751, New South Wales, Australia
| |
Collapse
|
21
|
Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment. Int J Mol Sci 2021; 22:ijms22189718. [PMID: 34575878 PMCID: PMC8466274 DOI: 10.3390/ijms22189718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc− is related to glutamate-release regulation. Patients with schizophrenia were recently discovered to exhibit downregulation of xc− subunits—the solute carrier (SLC) family 3 member 2 and the SLC family 7 member 11. We searched for relevant studies from 1980, when Bannai and Kitamura first identified the protein subunit system xc− in lung fibroblasts, with the aim of compiling the biological, functional, and pharmacological characteristics of antiporter xc−, which consists of several subunits. Some of them can significantly stimulate the human brain through the glutamate pathway. Initially, extracellular cysteine activates neuronal xc−, causing glutamate efflux. Next, excitatory amino acid transporters enhance the unidirectional transportation of glutamate and sodium. These two biochemical pathways are also crucial to the production of glutathione, a protective agent for neural and glial cells and astrocytes. Investigation of the expression of system xc− genes in the peripheral white blood cells of patients with schizophrenia can facilitate better understanding of the mental disorder and future development of novel biomarkers and treatments for schizophrenia. In addition, the findings further support the hypoglutamatergic hypothesis of schizophrenia.
Collapse
|
22
|
Fernández-Rodríguez S, Esposito-Zapero C, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals (Basel) 2021; 14:ph14060593. [PMID: 34203104 PMCID: PMC8233914 DOI: 10.3390/ph14060593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper, we set out to assess both the potential involvement of the glutamate metabotropic receptors (mGluR) in the possible dual effect of NAC administered at two different doses and NAC's effect on ethanol-induced activation. To this aim, 30 or 120 mg/kg of NAC was intraperitoneally administered to rats with the presence or absence of the negative allosteric modulator of mGluR5 (MTEP 0.1 mg/kg). Thereafter, the cFOS IR-cell expression was analyzed. Secondly, we explored the effect of 120 mg/kg of NAC on the neurochemical and behavioral activation induced by intra-VTA ethanol administration (150 nmol). Our results showed that the high NAC dose stimulated cFOS expression in the NAcc, and that this effect was suppressed in the presence of MTEP, thus suggesting the implication of mGluR5. Additionally, high doses could attenuate the ethanol-induced increase in cFOS-expression in the NAcc, probably due to a phenomenon based on the long-term depression of the MSNs. Additional experiments are required to corroborate our hypothesis.
Collapse
|
23
|
Cystine-glutamate antiporter deletion accelerates motor recovery and improves histological outcomes following spinal cord injury in mice. Sci Rep 2021; 11:12227. [PMID: 34108554 PMCID: PMC8190126 DOI: 10.1038/s41598-021-91698-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
xCT is the specific subunit of System xc-, an antiporter importing cystine while releasing glutamate. Although xCT expression has been found in the spinal cord, its expression and role after spinal cord injury (SCI) remain unknown. The aim of this study was to characterize the role of xCT on functional and histological outcomes following SCI induced in wild-type (xCT+/+) and in xCT-deficient mice (xCT−/−). In the normal mouse spinal cord, slc7a11/xCT mRNA was detected in meningeal fibroblasts, vascular mural cells, astrocytes, motor neurons and to a lesser extent in microglia. slc7a11/xCT gene and protein were upregulated within two weeks post-SCI. xCT−/− mice recovered muscular grip strength as well as pre-SCI weight faster than xCT+/+ mice. Histology of xCT−/− spinal cords revealed significantly more spared motor neurons and a higher number of quiescent microglia. In xCT−/− mice, inflammatory polarization shifted towards higher mRNA expression of ym1 and igf1 (anti-inflammatory) while lower levels of nox2 and tnf-a (pro-inflammatory). Although astrocyte polarization did not differ, we quantified an increased expression of lcn2 mRNA. Our results show that slc7a11/xCT is overexpressed early following SCI and is detrimental to motor neuron survival. xCT deletion modulates intraspinal glial activation by shifting towards an anti-inflammatory profile.
Collapse
|
24
|
N-acetylcysteine in substance use disorder: a lesson from preclinical and clinical research. Pharmacol Rep 2021; 73:1205-1219. [PMID: 34091880 PMCID: PMC8460563 DOI: 10.1007/s43440-021-00283-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Substance use disorder (SUD) is a chronic brain condition, with compulsive and uncontrollable drug-seeking that leads to long-lasting and harmful consequences. The factors contributing to the development of SUD, as well as its treatment settings, are not fully understood. Alterations in brain glutamate homeostasis in humans and animals implicate a key role of this neurotransmitter in SUD, while the modulation of glutamate transporters has been pointed as a new strategy to diminish the excitatory glutamatergic transmission observed after drugs of abuse. N-acetylcysteine (NAC), known as a safe mucolytic agent, is involved in the regulation of this system and may be taken into account as a novel pharmacotherapy for SUD. In this paper, we summarize the current knowledge on the ability of NAC to reduce drug-seeking behavior induced by psychostimulants, opioids, cannabinoids, nicotine, and alcohol in animals and humans. Preclinical studies showed a beneficial effect in animal models of SUD, while the clinical efficacy of NAC has not been fully established. In summary, NAC will be a small add-on to usual treatment and/or psychotherapy for SUD, however, further studies are required.
Collapse
|
25
|
Zhang Y, Lu X, Tai B, Li W, Li T. Ferroptosis and Its Multifaceted Roles in Cerebral Stroke. Front Cell Neurosci 2021; 15:615372. [PMID: 34149358 PMCID: PMC8209298 DOI: 10.3389/fncel.2021.615372] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a unique regulated cell death defined by the intracellular iron overload and distinct biological features compared with other well-known programmed cell death. Ferroptosis can be triggered by many causes including decreased expression of glutathione (GSH), inhibition of the function of glutathione-dependent peroxidase 4 (GPX4), and system xc–, all of which finally lead to the over-accumulation of lipid peroxides in the cell. Ferroptosis has been reported to play an important role in the pathophysiological process of various cancers. In recent years, much evidence also proved that ferroptosis is involved in the progress of cerebral stroke. In this review, we summarized the characteristics of ferroptosis and the potential relationship between ferroptosis and ischemic and hemorrhagic stroke, to provide new targets and ideas for the therapy of stroke.
Collapse
Affiliation(s)
- Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyang Lu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Bai Tai
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Weijia Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunhua Hospital, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
26
|
Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C, Massie A. Chronic Sulfasalazine Treatment in Mice Induces System x c - - Independent Adverse Effects. Front Pharmacol 2021; 12:625699. [PMID: 34084129 PMCID: PMC8167035 DOI: 10.3389/fphar.2021.625699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite ample evidence for the therapeutic potential of inhibition of the cystine/glutamate antiporter system xc− in neurological disorders and in cancer, none of the proposed inhibitors is selective. In this context, a lot of research has been performed using the EMA- and FDA-approved drug sulfasalazine (SAS). Even though this molecule is already on the market for decades as an anti-inflammatory drug, serious side effects due to its use have been reported. Whereas for the treatment of the main indications, SAS needs to be cleaved in the intestine into the anti-inflammatory compound mesalazine, it needs to reach the systemic circulation in its intact form to allow inhibition of system xc−. The higher plasma levels of intact SAS (or its metabolites) might induce adverse effects, independent of its action on system xc−. Some of these effects have however been attributed to system xc− inhibition, calling into question the safety of targeting system xc−. In this study we chronically treated system xc− - deficient mice and their wildtype littermates with two different doses of SAS (160 mg/kg twice daily or 320 mg/kg once daily, i.p.) and studied some of the adverse effects that were previously reported. SAS had a negative impact on the survival rate, the body weight, the thermoregulation and/or stress reaction of mice of both genotypes, and thus independent of its inhibitory action on system xc−. While SAS decreased the total distance travelled in the open-field test the first time the mice encountered the test, it did not influence this parameter on the long-term and it did not induce other behavioral changes such as anxiety- or depressive-like behavior. Finally, no major histological abnormalities were observed in the spinal cord. To conclude, we were unable to identify any undesirable system xc−-dependent effect of chronic administration of SAS.
Collapse
Affiliation(s)
- Lise Verbruggen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsay Sprimont
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Eduard Bentea
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Azzedine Gharib
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olaya Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata, Japan
| | - Charles Nicaise
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Kinoshita C, Aoyama K. The Role of Non-Coding RNAs in the Neuroprotective Effects of Glutathione. Int J Mol Sci 2021; 22:ijms22084245. [PMID: 33921907 PMCID: PMC8073493 DOI: 10.3390/ijms22084245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The establishment of antioxidative defense systems might have been mandatory for most living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well as comparably high-energy consumption compared to other organs that results in ROS release from mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants-particularly glutathione (GSH), which is one of the most important antioxidants in the human body-caused oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the brain. GSH plays crucial roles not only as an antioxidant but also as an enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. The levels of GSH are precisely regulated by uptake systems for GSH precursors as well as GSH biosynthesis and metabolism. The rapid advance of RNA sequencing technologies has contributed to the discovery of numerous non-coding RNAs with a wide range of functions. Recent lines of evidence show that several types of non-coding RNAs, including microRNA, long non-coding RNA and circular RNA, are abundantly expressed in the brain, and their activation or inhibition could contribute to neuroprotection through the regulation of GSH synthesis and/or metabolism. Interestingly, these non-coding RNAs play key roles in gene regulation and growing evidence indicates that non-coding RNAs interact with each other and are co-regulated. In this review, we focus on how the non-coding RNAs modulate the level of GSH and modify the oxidative stress states in the brain.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-1211 (K.A.)
| | - Koji Aoyama
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-1211 (K.A.)
| |
Collapse
|
28
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
29
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Abstract
Purpose of Review Substance use disorders (SUD) affect differentially women and men. Although the prevalence has been reported higher in men, those women with addictive disorders present a more vulnerable profile and are less likely to enter treatment than men. The aim of this paper is to present an overview of how sex and gender may influence epidemiology, clinical manifestations, social impact, and the neurobiological basis of these differences of women with SUD, based on human research. Recent Findings The differences in prevalence rates between genders are getting narrower; also, women tend to increase the amount of consumption more rapidly than men, showing an accelerated onset of the SUD (telescoping effect). In respect to clinical features, the most important differences are related to the risk of experience psychiatric comorbidity, the exposure to intimate partner violence, and the associated high risks in sexual and reproductive health; and those who are mothers and addicted to substances are at risk of losing the custody of children accumulating more adverse life events. Some of these differences can be based on neurobiological differences: pharmacokinetic response to substances, sensitivity to gonadal hormones, differences in neurobiological systems as glutamate, endocannabinoids, and genetic differences. Summary Specific research in women who use drugs is very scarce and treatments are not gender-sensitive oriented. For these reasons, it is important to guarantee access to the appropriate treatment of women who use drugs and a need for a gender perspective in the treatment and research of substance use disorders.
Collapse
|
31
|
Hewett SJ, Prado VF, Robinson MB. The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochem Int 2021; 144:104980. [PMID: 33524471 DOI: 10.1016/j.neuint.2021.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active and passive transporters constitute a gene family of approximately 2000 members. These proteins are required for import and export across the blood brain barrier, clearance of neurotransmitters, inter-cellular solute transfer, and transport across the membranes of subcellular organelles. Neurologic, neurodevelopmental, and psychiatric diseases have been linked to alterations in function and/or mutations in every one of these types of transporters, and many of the transporters are targeted by therapeutics. This is the 4th biennial special edition of Neurochemistry International that originates from a scientific meeting devoted to studies of transporters and their relationship to brain function and to neurodevelopmental, neurologic, and psychiatric disorders. This meeting provides the only international forum for the presentation and discussion of cutting-edge research on brain transporters covering fundamental aspects of transporter structure, function, and trafficking. Scientists describe the novel approaches being used to link this information to physiology/circuit function and behavior. The meeting also addresses translational topics surrounding mouse models of brain transporter disorders, novel human brain disorders arising from transporter mutations, and innovative therapeutic approaches centered on modification of transporter function. This special issue includes a sampling of review articles that address timely questions of the field and several primary research articles.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, 13210, United States
| | - Vania F Prado
- Departments of Anatomy and Cell Biology, and Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario London, ON, N6A5B7, Canada
| | - Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
32
|
Bentea E, Villers A, Moore C, Funk AJ, O’Donovan SM, Verbruggen L, Lara O, Janssen P, De Pauw L, Declerck NB, DePasquale EAK, Churchill MJ, Sato H, Hermans E, Arckens L, Meshul CK, Ris L, McCullumsmith RE, Massie A. Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol Psychiatry 2021; 26:4754-4769. [PMID: 32366950 PMCID: PMC7609546 DOI: 10.1038/s41380-020-0751-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.
Collapse
Affiliation(s)
- Eduard Bentea
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Cynthia Moore
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Adam J. Funk
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Noemi B. Declerck
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erica A. K. DePasquale
- grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH USA
| | - Madeline J. Churchill
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Faculty of Medicine, Laboratory of Biochemistry and Molecular Biology, Niigata University, Niigata, Japan
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven, Belgium
| | - Charles K. Meshul
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR USA
| | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
33
|
Kazama M, Kato Y, Kakita A, Noguchi N, Urano Y, Masui K, Niida-Kawaguchi M, Yamamoto T, Watabe K, Kitagawa K, Shibata N. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology 2020; 40:587-598. [PMID: 33305472 DOI: 10.1111/neup.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
A vast body of evidence implicates increased oxidative stress and extracellular glutamate accumulation in the pathomechanism of sporadic amyotrophic lateral sclerosis (ALS). Cystine/glutamate antiporter (xCT) carries extracellular cystine uptake and intracellular glutamate release (cystine/glutamate exchange) in the presence of oxidative stress. The aim of the present study was to determine the involvement of xCT in ALS. Immunohistochemical observations in the spinal cord sections demonstrated that xCT was mainly expressed in astrocytes, with staining more intense in 12 sporadic ALS patients as compared to 12 age-matched control individuals. Western blot and densitometric analyses of the spinal cord samples revealed that the relative value of xCT/β-actin optical density ratio was significantly higher in the ALS group as compared to the control group. Next, we conducted cell culture experiments using a human astrocytoma-derived cell line (1321N1) and a mouse motor neuron/neuroblastoma hybrid cell line (NSC34). In 1321N1 cells, the normalized xCT expression levels in cell lysates were significantly increased by H2 O2 treatment. Glutamate concentrations in 1321 N1 cell culture-conditioned media were significantly elevated by H2 O2 treatment, and the H2 O2 -driven elevations were completely canceled by the xCT inhibitor erastin pretreatment. In motor neuron-differentiated NSC34 cells (NSC34d cells), both the normalized xCT expression levels in the cell lysates and glutamate concentrations in the cell-conditioned media were constant with or without H2 O2 treatment. The present results provide in vivo and in vitro evidence that astrocytes upregulate xCT expression to release glutamate in response to increased oxidative stress associated with ALS, contributing to extracellular glutamate accumulation.
Collapse
Affiliation(s)
- Miku Kazama
- Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kenta Masui
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoko Niida-Kawaguchi
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoko Yamamoto
- Division of Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuhiko Watabe
- Department of Medical Technology, Kyorin University, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
34
|
Yin J, Lu Y, Yu S, Dai Z, Zhang F, Yuan J. Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment. Hereditas 2020; 157:43. [PMID: 33158463 PMCID: PMC7648395 DOI: 10.1186/s41065-020-00158-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR. Results The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group. Conclusion The up-regulation of RELN mRNA expression was current in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.
Collapse
Affiliation(s)
- Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China
| | - Yana Lu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Shui Yu
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China
| | - Zhanzhan Dai
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P.R. China.
| | - Jianmin Yuan
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China.
| |
Collapse
|
35
|
Smaga I, Gawlińska K, Frankowska M, Wydra K, Sadakierska-Chudy A, Suder A, Piechota M, Filip M. Extinction Training after Cocaine Self-Administration Influences the Epigenetic and Genetic Machinery Responsible for Glutamatergic Transporter Gene Expression in Male Rat Brain. Neuroscience 2020; 451:99-110. [PMID: 33065231 DOI: 10.1016/j.neuroscience.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Glutamate is a key excitatory neurotransmitter in the central nervous system. The balance of glutamatergic transporter proteins allows long-term maintenance of glutamate homeostasis in the brain, which is impaired during cocaine use disorder. The aim of this study was to investigate changes in the gene expression of SLC1A2 (encoding GLT-1), and SLC7A11 (encoding xCT), in rat brain structures after short-term (3 days) and long-term (10 days) extinction training using microarray analysis and quantitative real-time PCR. Furthermore, we analyzed the expression of genes encoding transcription factors, i.e., NFKB1 and NFKB2 (encoding NF-κB), PAX6, (encoding Pax6), and NFE2L2 (encoding Nrf2), to verify the correlation between changes in glutamatergic transporters and changes in their transcriptional factors and microRNAs (miRNAs; miR-124a, miR-543-3p and miR-342-3p) and confirm the epigenetic mechanism. We found reduced GLT-1 transcript and mRNA level in the prefrontal cortex (PFCTX) and dorsal striatum (DSTR) in rats that had previously self-administered cocaine after 3 days of extinction training, which was associated with downregulation of PAX6 (transcript and mRNA) and NFKB2 (mRNA) level in the PFCTX and with upregulation of miR-543-3p and miR-342-3p in the DSTR. The xCT mRNA level was reduced in the PFCTX and DSTR, and NFE2L2 transcript level in the PFCTX was decreased on the 3rd day of extinction training. In conclusion, 3-day drug-free period modulates GLT-1 and xCT gene expression through genetic and epigenetic mechanisms, and such changes in expression seem to be potential molecular targets for developing a treatment for cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland.
| | - Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Karolina Wydra
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Anna Sadakierska-Chudy
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Agata Suder
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, Smętna 12, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
36
|
Lei J, Chen Z, Song S, Sheng C, Song S, Zhu J. Insight Into the Role of Ferroptosis in Non-neoplastic Neurological Diseases. Front Cell Neurosci 2020; 14:231. [PMID: 32848622 PMCID: PMC7424047 DOI: 10.3389/fncel.2020.00231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis is an iron-dependent form of cell death characterized by the accumulation of intracellular lipid reactive oxygen species (ROS). Ferroptosis is significantly different from other types of cell death including apoptosis, autophagy, and necrosis, both in morphology and biochemical characteristics. The mechanisms that are associated with ferroptosis include iron metabolism, lipid oxidation, and other pathophysiological changes. Ferroptosis inducers or inhibitors can influence its occurrence through different pathways. Ferroptosis was initially discovered in tumors, though recent studies have confirmed that it is also closely related to a variety of neurological diseases including neurodegenerative disease [Alzheimer’s disease (AD), Parkinson’s disease (PD), etc.] and stroke. This article reviews the definition and characteristics of ferroptosis, the potential mechanisms associated with its development, inducers/inhibitors, and its role in non-neoplastic neurological diseases. We hope to provide a theoretical basis and novel treatment strategies for the treatment of central nervous system diseases by targeting ferroptosis.
Collapse
Affiliation(s)
- Jianwei Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihua Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuxin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunpeng Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sihui Song
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Nehser M, Dark J, Schweitzer D, Campbell M, Zwicker J, Hitt DM, Little H, Diaz-Correa A, Holley DC, Patel SA, Thompson CM, Bridges RJ. System X c- Antiporter Inhibitors: Azo-Linked Amino-Naphthyl-Sulfonate Analogues of Sulfasalazine. Neurochem Res 2020; 45:1375-1386. [PMID: 31754956 PMCID: PMC10688270 DOI: 10.1007/s11064-019-02901-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023]
Abstract
The cystine/glutamate antiporter system Xc- (SXc-) mediates the exchange of intracellular L-glutamate (L-Glu) with extracellular L-cystine (L-Cys2). Both the import of L-Cys2 and the export of L-Glu take on added significance in CNS cells, especially astrocytes. When the relative activity of SXc- overwhelms the regulatory capacity of the EAATs, the efflux of L-Glu through the antiporter can be significant enough to trigger excitotoxic pathology, as is thought to occur in glioblastoma. This has prompted considerable interest in the pharmacological specificity of SXc- and the development of inhibitors. The present study explores a series of analogues that are structurally related to sulfasalazine, a widely employed inhibitor of SXc-. We identify a number of novel aryl-substituted amino-naphthylsulfonate analogues that inhibit SXc- more potently than sulfasalazine. Interestingly, the inhibitors switch from a competitive to noncompetitive mechanism with increased length and lipophilic substitutions, a structure-activity relationship that was previously observed with aryl-substituted isoxazole. These results suggest that the two classes of inhibitors may interact with some of the same domains on the antiporter protein and that the substrate and inhibitor binding sites may be in close proximity to one another. Molecular modeling is used to explore this possibility.
Collapse
Affiliation(s)
- M Nehser
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - J Dark
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - D Schweitzer
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - M Campbell
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - J Zwicker
- Deciphera Pharmaceuticals, Lawrence, KA, 66044, USA
| | - D M Hitt
- Chemistry Department, Carroll College, Helena, MT, 56925, USA
| | - H Little
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - A Diaz-Correa
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - D C Holley
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - S A Patel
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - C M Thompson
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA
| | - R J Bridges
- Department of Biomedical and Pharmaceutical Science, Center for Structural and Functional Neuroscience, Skaggs School of Pharmacy, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
38
|
Lesner NP, Gokhale AS, Kota K, DeBerardinis RJ, Mishra P. α-ketobutyrate links alterations in cystine metabolism to glucose oxidation in mtDNA mutant cells. Metab Eng 2020; 60:157-167. [PMID: 32330654 PMCID: PMC7310915 DOI: 10.1016/j.ymben.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 11/08/2022]
Abstract
Pathogenic mutations in the mitochondrial genome (mtDNA) impair organellar ATP production, requiring mutant cells to activate metabolic adaptations for survival. Understanding how metabolism adapts to clinically relevant mtDNA mutations may provide insight into cellular strategies for metabolic flexibility. In this study, we use 13C isotope tracing and metabolic flux analysis to investigate central carbon and amino acid metabolic reprogramming in isogenic cells containing mtDNA mutations. We identify alterations in glutamine and cystine transport which indirectly regulate mitochondrial metabolism and electron transport chain function. Metabolism of cystine can promote glucose oxidation through the transsulfuration pathway and the production of α-ketobutyrate. Intriguingly, activating or inhibiting α-ketobutyrate production is sufficient to modulate both glucose oxidation and mitochondrial respiration in mtDNA mutant cells. Thus, cystine-stimulated transsulfuration serves as an adaptive mechanism linking glucose oxidation and amino acid metabolism in the setting of mtDNA mutations.
Collapse
Affiliation(s)
- Nicholas P Lesner
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amrita S Gokhale
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalyani Kota
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
39
|
Skórkowska A, Maciejska A, Pomierny B, Krzyżanowska W, Starek-Świechowicz B, Bystrowska B, Broniowska Ż, Kazek G, Budziszewska B. Effect of Combined Prenatal and Adult Benzophenone-3 Dermal Exposure on Factors Regulating Neurodegenerative Processes, Blood Hormone Levels, and Hematological Parameters in Female Rats. Neurotox Res 2020; 37:683-701. [PMID: 31970650 PMCID: PMC7062666 DOI: 10.1007/s12640-020-00163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Benzophenone-3 (BP-3), the most widely used UV chemical filter, is absorbed well through the skin and gastrointestinal tract and can affect some body functions, including the survival of nerve cells. Previously, we showed that BP-3 evoked a neurotoxic effect in male rats, but since the effects of this compound are known to depend on gender, the aim of the present study was to show the concentration and potential neurotoxic action of this compound in the female rat brain. BP-3 was administered dermally to female rats during pregnancy, and then in the 7th and 8th weeks of age to their female offspring. The effect of BP-3 exposure on short-term and spatial memory, its concentrations in blood, the liver, the frontal cortex, and the hippocampus, and the effect on selected markers of brain damage were determined. Also, the impact of BP-3 on sex and thyroid hormone levels in blood and hematological parameters was examined. It has been found that this compound was present in blood and brain structures in females at a lower concentration than in males. BP-3 in both examined brain structures increased extracellular glutamate concentration and enhanced lipid peroxidation, but did not induce the apoptotic process. The tested compound also evoked hyperthyroidism and decreased the blood progesterone level and the number of erythrocytes. The presented data indicated that, after the same exposure to BP-3, this compound was at a lower concentration in the female brain than in that of the males. Although BP-3 did not induce apoptosis in the hippocampus and frontal cortex, the increased extracellular glutamate concentration and lipid peroxidation, as well as impaired spatial memory, suggested that this compound also had adverse effects in the female brain yet was weaker than in males. In contrast to the weaker effects of the BP-3 on females than the brain of males, this compound affected the endocrine system and evoked a disturbance in hematological parameters more strongly than in male rats.
Collapse
Affiliation(s)
- Alicja Skórkowska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Alicja Maciejska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Weronika Krzyżanowska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Beata Starek-Świechowicz
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Beata Bystrowska
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Żaneta Broniowska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
40
|
Abstract
In the peripheral nervous system, the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves. Axons within the nerves are in close contact with myelinating glia, the Schwann cells that are ideally placed to respond to, and possibly shape, axonal activity. The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells, as well as signalling via diffusible substances. Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves. Two types of experimental findings support this idea: first, glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves; second, axons and Schwann cells in the peripheral nerves express glutamate receptors. Yet, the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing. Remarkably, in the central nervous system, axons and myelinating glia are involved in glutamatergic signalling. This signalling occurs via different mechanisms, the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells. Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation, migration, and differentiation of oligodendrocyte precursor cells, survival of oligodendrocytes, and re-myelination of axons after damage. Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves? What is the functional role of glutamate receptors in the peripheral nerves? Is activation of glutamate receptors in the nerves beneficial or harmful during diseases? In this review, we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves. We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.
Collapse
Affiliation(s)
- Ting-Jiun Chen
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Centre, Washington, DC, USA
| | - Maria Kukley
- Group of Neuron Glia Interaction, University of Tübingen; Research Institute of Ophthalmology, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
41
|
Gallagher M. The System xc- Cystine/Glutamate Antiporter: An Exciting Target for Antiepileptogenic Therapy? Epilepsy Curr 2020; 20:39-42. [PMID: 31893940 PMCID: PMC7020536 DOI: 10.1177/1535759719891983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anticonvulsant and Antiepileptogenic Effects of System xc-Inactivation in Chronic Epilepsy Models Leclercq K, Liefferinge JV, Albertini G, et al. Epilepsia. 2019. doi:10.1111/epi.16055. Epub ahead of print. PMID: 31179549 Objective: The cystine/glutamate antiporter system xc- could represent a new target for antiepileptogenic treatments due to its crucial roles in glutamate homeostasis and neuroinflammation. To demonstrate this, we compared epilepsy development and seizure susceptibility in xCT knockout mice (xCT−/−) and in littermate controls (xCT+/+) in different chronic models of epilepsy. Methods: Mice were surgically implanted with electrodes in the basolateral amygdala and chronically stimulated to develop self-sustained status epilepticus (SSSE); continuous video-electroencephalography monitoring was performed for 28 days after SE and hippocampal histopathology was assessed. Corneal kindling was induced by twice daily electrical stimulation at 6 Hz and maintenance of the fully kindled state was evaluated. Next, messenger RNA (mRNA) and protein levels of xCT and of the proteins involved in the phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase 3β (GSK-3β)/eukaryotic initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway were measured at different time points during epileptogenesis in Naval Medical Research Institute mice treated with pilocarpine. Finally, the anticonvulsant effect of sulfasalazine (SAS), a nonselective system xc-inhibitor, was assessed against 6 Hz-evoked seizures in pilocarpine-treated mice. Results: In the SSSE model, xCT−/− mice displayed a significant delayed epileptogenesis, a reduced number of spontaneous recurrent seizures, and less pronounced astrocytic and microglial activation. Moreover, xCT−/− mice showed reduced seizure severity during 6 Hz kindling development and a lower incidence of generalized seizures during the maintenance of the fully kindled state. In pilocarpine-treated mice, protein levels of the PI3K/Akt/GSK-3β/eIF2α/ATF4 pathway were increased during the chronic phase of the model, consistent with previous findings in the hippocampus of patients with epilepsy. Finally, repeated administration of SAS protected pilocarpine-treated mice against acute 6 Hz seizure induction, in contrast to sham controls, in which system xc- is not activated. Significance: Inhibition of system xc- could be an attractive target for the development of new therapies with a potential for disease modification in epilepsy. Decreased Epileptogenesis in Mice Lacking the System xc—Transporter Occurs in Association With a Reduction in AMPA Receptor Subunit GluA1 Sears SMS, Hewett JA, Hewett SJ. Epilepsia Open. 2019;4(1):133-143. doi:10.1002/epi4.12307. eCollection 2019 March. PMID: 30868123. Objective: Although the cystine/glutamate antiporter system xc—(Sxc-) plays a permissive role in glioma-associated seizures, its contribution to other acquired epilepsies has not been determined. As such, the present study investigates whether and how Sxc—contributes to the pentylenetetrazole (PTZ) chemical kindling model of epileptogenesis. Methods: Male Sxc—null (sut/sut) mice and their wild-type littermates were administered PTZ (intraperitoneal) daily for up to 21 days (kindling paradigm). Seizure severity was scored on a 5-point behavioral scale. Mossy fiber sprouting, cellular degeneration, and Sxc—light chain (xCT) messenger RNA (mRNA) were explored using Timm staining, thionin staining, and real-time quantitative polymerase chain reaction, respectively. Levels of reduced and oxidized glutathione and cysteine were determined via high-performance liquid chromatography. Plasma membrane protein levels of glutamate and γ-aminobutyric acid (GABA) receptor subunits as well as the K+/Cl− co-transporter KCC2 were quantified via Western blot analysis. Results: Repeated administration of PTZ produced chemical kindling in only 50% of Sxc—null mice as compared to 82% of wild-type littermate control mice. Kindling did not result in any changes in xCT mRNA levels assessed in wild-type mice. No cellular degeneration or mossy fiber sprouting was discernible in either genotype. Except for a small, but significant, decrease in oxidized cysteine in the hippocampus, no other change in measured redox couples was determined in Sxc - null mice. Cortical levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 were decreased in Sxc - null mice as compared to wild-type littermates, whereas all other proteins tested showed no difference between genotypes. Significance: This study provides the first evidence that Sxc-signaling contributes to epileptogenesis in the PTZ kindling model of acquired epilepsy. Further data indicate that a reduction in AMPA receptor signaling could underlie the resistance to PTZ kindling uncovered in Sxc-null mice.
Collapse
|
42
|
Zhang Y, Fan BY, Pang YL, Shen WY, Wang X, Zhao CX, Li WX, Liu C, Kong XH, Ning GZ, Feng SQ, Yao X. Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons. Neural Regen Res 2020; 15:1539-1545. [PMID: 31997820 PMCID: PMC7059591 DOI: 10.4103/1673-5374.274344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The iron chelator deferoxamine has been shown to inhibit ferroptosis in spinal cord injury. However, it is unclear whether deferoxamine directly protects neurons from ferroptotic cell death. By comparing the survival rate and morphology of primary neurons and SH-SY5Y cells exposed to erastin, it was found that these cell types respond differentially to the duration and concentration of erastin treatment. Therefore, we studied the mechanisms of ferroptosis using primary cortical neurons from E16 mouse embryos. After treatment with 50 μM erastin for 48 hours, reactive oxygen species levels increased, and the expression of the cystine/glutamate antiporter system light chain and glutathione peroxidase 4 decreased. Pretreatment with deferoxamine for 12 hours inhibited these changes, reduced cell death, and ameliorated cellular morphology. Pretreatment with the apoptosis inhibitor Z-DEVD-FMK or the necroptosis inhibitor necrostain-1 for 12 hours did not protect against erastin-induced ferroptosis. Only deferoxamine protected the primary cortical neurons from ferroptosis induced by erastin, confirming the specificity of the in vitro ferroptosis model. This study was approved by the Animal Ethics Committee at the Institute of Radiation Medicine of the Chinese Academy of Medical Sciences, China (approval No. DWLL-20180913) on September 13, 2018.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Bao-You Fan
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yi-Lin Pang
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Wen-Yuan Shen
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xu Wang
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chen-Xi Zhao
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Wen-Xiang Li
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Xiao-Hong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Guang-Zhi Ning
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xue Yao
- Department of Orthopedics, General Hospital of Tianjin Medical University; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| |
Collapse
|
43
|
Fujii J, Homma T, Kobayashi S. Ferroptosis caused by cysteine insufficiency and oxidative insult. Free Radic Res 2019; 54:969-980. [PMID: 31505959 DOI: 10.1080/10715762.2019.1666983] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Free iron has long been assumed to be a deteriorating factor in an oxidative insult and was recently found to be directly associated with ferroptosis, a specific type of cell death. The free iron-involved production of lipid peroxides activates the fatal pathway, resulting in nonapoptotic, programed cell death. Lipid peroxides appear to destroy membrane integrity, leading to cell rupture. Glutathione (GSH) is a major redox molecule that functions to protect against ferroptosis by its ability to donate an electron to glutathione peroxidase 4 (GPX4), the sole enzyme that reduces phospholipid hydroperoxides. The availability of free cysteine (Cys) determines the levels of GSH synthesis, and, hence, its deprivation causes ferroptosis. Free iron is provided via ferritinophagy, the chaperone-mediated autophagic degradation of ferritin, but GPX4 also undergoes degradation via chaperone-mediated autophagy. Activated Nrf2 and ATF4 induce the expression of the cystine transporter xCT to cope with ferroptosis. To the contrary, the excessive activation of p53 induces ferroptosis by suppressing the expression of xCT in genetic and nongenetic manners. It therefore appears that xCT functions as the gatekeeper for determining cellular survival by regulating the availability of Cys in the cell. The issue of the extent of involvement of ferroptosis in an in vivo situation largely remains ambiguous. Establishing tools for specifying ferroptotic cells in situ would facilitate our understanding of its roles in pathogenesis.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata City, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata City, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata City, Japan
| |
Collapse
|
44
|
Pomierny B, Krzyżanowska W, Broniowska Ż, Strach B, Bystrowska B, Starek-Świechowicz B, Maciejska A, Skórkowska A, Wesołowska J, Walczak M, Budziszewska B. Benzophenone-3 Passes Through the Blood-Brain Barrier, Increases the Level of Extracellular Glutamate, and Induces Apoptotic Processes in the Hippocampus and Frontal Cortex of Rats. Toxicol Sci 2019; 171:485-500. [PMID: 31368502 DOI: 10.1093/toxsci/kfz160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Benzophenone-3 is the most commonly used UV filter. It is well absorbed through the skin and gastrointestinal tract. Its best-known side effect is the impact on the function of sex hormones. Little is known about the influence of BP-3 on the brain. The aim of this study was to show whether BP-3 crosses the blood-brain barrier (BBB), to determine whether it induces nerve cell damage in susceptible brain structures, and to identify the mechanism of its action in the central nervous system. BP-3 was administered dermally during the prenatal period and adulthood to rats. BP-3 effect on short-term and spatial memory was determined by novel object and novel location recognition tests. BP-3 concentrations were assayed in the brain and peripheral tissues. In brain structures, selected markers of brain damage were measured. The study showed that BP-3 is absorbed through the rat skin, passes through the BBB. BP-3 raised oxidative stress and induced apoptosis in the brain. BP-3 increased the concentration of extracellular glutamate in examined brain structures and changed the expression of glutamate transporters. BP-3 had no effect on short-term memory but impaired spatial memory. The present study showed that dermal BP-3 exposure may cause damage to neurons what might be associated with the increase in the level of extracellular glutamate, most likely evoked by changes in the expression of GLT-1 and xCT glutamate transporters. Thus, exposure to BP-3 may be one of the causes that increase the risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Beata Bystrowska
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | | | | | | - Julita Wesołowska
- Laboratory for In vivo and In Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Maria Walczak
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | |
Collapse
|
45
|
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol Psychiatry 2019; 24:995-1012. [PMID: 30214042 DOI: 10.1038/s41380-018-0239-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a pervasive problem in the United States and worldwide, as the number of diagnosed individuals is increasing yearly and there are no efficacious therapeutic interventions. A large number of patients suffer with cognitive disabilities and psychiatric conditions after TBI, especially anxiety and depression. The constellation of post-injury cognitive and behavioral symptoms suggest permanent effects of injury on neurotransmission. Guided in part by preclinical studies, clinical trials have focused on high-yield pathophysiologic mechanisms, including protein aggregation, inflammation, metabolic disruption, cell generation, physiology, and alterations in neurotransmitter signaling. Despite successful treatment of experimental TBI in animal models, clinical studies based on these findings have failed to translate to humans. The current international effort to reshape TBI research is focusing on redefining the taxonomy and characterization of TBI. In addition, as the next round of clinical trials is pending, there is a pressing need to consider what the field has learned over the past two decades of research, and how we can best capitalize on this knowledge to inform the hypotheses for future innovations. Thus, it is critically important to extend our understanding of the pathophysiology of TBI, particularly to mechanisms that are associated with recovery versus development of chronic symptoms. In this review, we focus on the pathology of neurotransmission after TBI, reflecting on what has been learned from both the preclinical and clinical studies, and we discuss new directions and opportunities for future work.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA.,Neurotrauma Center, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, 45219, USA
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
46
|
Alcoreza O, Tewari BP, Bouslog A, Savoia A, Sontheimer H, Campbell SL. Sulfasalazine decreases mouse cortical hyperexcitability. Epilepsia 2019; 60:1365-1377. [PMID: 31211419 PMCID: PMC6771750 DOI: 10.1111/epi.16073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Objective Currently prescribed antiepileptic drugs (AEDs) are ineffective in treating approximately 30% of epilepsy patients. Sulfasalazine (SAS) is an US Food and Drug Administration (FDA)–approved drug for the treatment of Crohn disease that has been shown to inhibit the cystine/glutamate antiporter system xc‐ (SXC) and decrease tumor‐associated seizures. This study evaluates the effect of SAS on distinct pharmacologically induced network excitability and determines whether it can further decrease hyperexcitability when administered with currently prescribed AEDs. Methods Using in vitro cortical mouse brain slices, whole‐cell patch‐clamp recordings were made from layer 2/3 pyramidal neurons. Epileptiform activity was induced with bicuculline (bic), 4‐aminopyridine (4‐AP) and magnesium‐free (Mg2+‐free) solution to determine the effect of SAS on epileptiform events. In addition, voltage‐sensitive dye (VSD) recordings were performed to characterize the effect of SAS on the spatiotemporal spread of hyperexcitable network activity and compared to currently prescribed AEDs. Results SAS decreased evoked excitatory postsynaptic currents (eEPSCs) and increased the decay kinetics of evoked inhibitory postsynaptic currents (eIPSCs) in layer 2/3 pyramidal neurons. Although application of SAS to bic and Mg2+‐free–induced epileptiform activity caused a decrease in the duration of epileptiform events, SAS completely blocked 4‐AP–induced epileptiform events. In VSD recordings, SAS decreased VSD optical signals induced by 4‐AP. Co‐application of SAS with the AED topiramate (TPM) caused a significantly further decrease in the spatiotemporal spread of VSD optical signals. Significance Taken together this study provides evidence that inhibition of SXC by SAS can decrease network hyperexcitability induced by three distinct pharmacologic agents in the superficial layers of the cortex. Furthermore, SAS provided additional suppression of 4‐AP–induced network activity when administered with the currently prescribed AED TPM. These findings may serve as a foundation to assess the potential for SAS or other compounds that selectively target SXC as an adjuvant treatment for epilepsy.
Collapse
Affiliation(s)
- Oscar Alcoreza
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Tech, Roanoke, Virginia
| | - Bhanu P Tewari
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease and Cancer, Virginia Tech, Roanoke, Virginia
| | - Allison Bouslog
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Tech, Roanoke, Virginia
| | - Andrew Savoia
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Harald Sontheimer
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease and Cancer, Virginia Tech, Roanoke, Virginia.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Susan L Campbell
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia.,Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
47
|
Demuyser T, Deneyer L, Bentea E, Albertini G, Femenia T, Walrave L, Sato H, Danbolt NC, De Bundel D, Michotte A, Lindskog M, Massie A, Smolders I. Slc7a11 (xCT) protein expression is not altered in the depressed brain and system xc- deficiency does not affect depression-associated behaviour in the corticosterone mouse model. World J Biol Psychiatry 2019; 20:381-392. [PMID: 28882088 DOI: 10.1080/15622975.2017.1371332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objectives: The cystine/glutamate antiporter (system xc-) is believed to contribute to nonvesicular glutamate release from glial cells in various brain areas. Although recent investigations implicate system xc- in mood disorders, unambiguous evidence has not yet been established. Therefore, we evaluated the possible role of system xc- in the depressive state. Methods: We conducted a protein expression analysis of the specific subunit of system xc- (xCT) in brain regions of the corticosterone mouse model, Flinders Sensitive Line rat model and post-mortem tissue of depressed patients. We next subjected system xc- deficient mice to the corticosterone model and analysed their behaviour in several tests. Lastly, we subjected additional cohorts of xCT-deficient and wild-type mice to N-acetylcysteine treatment to unveil whether the previously reported antidepressant-like effects are dependent upon system xc-. Results: We did not detect any changes in xCT expression levels in the animal models or patients compared to proper controls. Furthermore, loss of system xc- had no effect on depression- and anxiety-like behaviour. Finally, the antidepressant-like effects of N-acetylcysteine are not mediated via system xc-. Conclusions: xCT protein expression is not altered in the depressed brain and system xc- deficiency does not affect depression-associated behaviour in the corticosterone mouse model.
Collapse
Affiliation(s)
- Thomas Demuyser
- a Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information , Center for Neurosciences (C4N), Vrije Universiteit Brussel , Brussels , Belgium
| | - Lauren Deneyer
- b Department of Pharmaceutical Biotechnology and Molecular Biology , C4N, Vrije Universiteit Brussel , Brussels , Belgium
| | - Eduard Bentea
- b Department of Pharmaceutical Biotechnology and Molecular Biology , C4N, Vrije Universiteit Brussel , Brussels , Belgium
| | - Giulia Albertini
- a Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information , Center for Neurosciences (C4N), Vrije Universiteit Brussel , Brussels , Belgium
| | - Teresa Femenia
- c Department of Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Laura Walrave
- a Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information , Center for Neurosciences (C4N), Vrije Universiteit Brussel , Brussels , Belgium
| | - Hideyo Sato
- d Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology , Niigata University , Niigata , Japan
| | - Niels C Danbolt
- e Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Dimitri De Bundel
- a Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information , Center for Neurosciences (C4N), Vrije Universiteit Brussel , Brussels , Belgium
| | - Alex Michotte
- f Experimental Pathology and Neuropathology , University Hospital Brussels, Vrije Universiteit Brussel , Brussels , Belgium
| | - Maria Lindskog
- c Department of Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Ann Massie
- b Department of Pharmaceutical Biotechnology and Molecular Biology , C4N, Vrije Universiteit Brussel , Brussels , Belgium
| | - Ilse Smolders
- a Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information , Center for Neurosciences (C4N), Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
48
|
System x c- in microglia is a novel therapeutic target for post-septic neurological and psychiatric illness. Sci Rep 2019; 9:7562. [PMID: 31101857 PMCID: PMC6525204 DOI: 10.1038/s41598-019-44006-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/07/2019] [Indexed: 01/17/2023] Open
Abstract
Post-septic neurological and psychiatric illness (PSNPI) including dementia and depression may be observed after sepsis. However, the etiology of PSNPI and therapeutic treatment of PSNPI are unclear. We show that glutamate produced from microglia through the activity of system xc− plays a role in PSNPI. We established a mouse model of PSNPI by lipopolysaccharide (LPS) treatment that shows a disturbance of short/working memory and depression-like hypoactivity. Glutamate receptor antagonists (MK801 and DNQX) reduced these phenotypes, and isolated microglia from LPS-treated mice released abundant glutamate. We identified system xc− as a source of the extracellular glutamate. xCT, a component of system xc−, was induced and expressed in microglia after LPS treatment. In xCT knockout mice, PSNPI were decreased compared to those in wildtype mice. Moreover, TNF-α and IL-1β expression in wildtype mice was increased after LPS treatment, but inhibited in xCT knockout mice. Thus, system xc− in microglia may be a therapeutic target for PSNPI. The administration of sulfasalazine, an inhibitor of xCT, in symptomatic and post-symptomatic mice improved PSNPI. Our results suggest that glutamate released from microglia through system xc− plays a critical role in the manifestations of PSNPI and that system xc− may be a therapeutic target for PSNPI.
Collapse
|
49
|
Loewen JL, Albertini G, Dahle EJ, Sato H, Smolders IJ, Massie A, Wilcox KS. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp Neurol 2019; 318:50-60. [PMID: 31022385 DOI: 10.1016/j.expneurol.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
The contribution of glial transporters to glutamate movement across the membrane has been identified as a potential target for anti-seizure therapies. Two such glutamate transporters, GLT-1 and system xc-, are expressed on glial cells, and modulation of their expression and function have been identified as a means by which seizures, neuronal injury, and gliosis can be reduced in models of brain injury. While GLT-1 is responsible for the majority of glutamate uptake in the brain, system xc- releases glutamate in the extracellular cleft in exchange for cystine and represents as such the major source of hippocampal extracellular glutamate. Using the Theiler's Murine Encephalomyelitis Virus (TMEV) model of viral-induced epilepsy, we have taken two well-studied approaches, one pharmacological, one genetic, to investigate the potential role(s) of GLT-1 and system xc- in TMEV-induced pathology. Our findings suggest that the methods we utilized to modulate these glial transporters, while effective in other models, are not sufficient to reduce the number or severity of behavioral seizures in TMEV-infected mice. However, genetic knockout of xCT, the specific subunit of system xc-, may have cellular effects, as we observed a slight decrease in neuronal injury caused by TMEV and an increase in astrogliosis in the CA1 region of the hippocampus. Furthermore, xCT knockout caused an increase in GLT-1 expression selectively in the cortex. These findings have significant implications for both the characterization of the TMEV model as well as for future efforts to discover novel and effective anti-seizure drugs.
Collapse
Affiliation(s)
- Jaycie L Loewen
- Department of Pharmacology and Toxicology, University of Utah, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Belgium
| | - E Jill Dahle
- Department of Pharmacology and Toxicology, University of Utah, USA
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Japan
| | - Ilse J Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Belgium
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, C4N, Vrije Universiteit Brussel, Belgium
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, USA; Interdepartmental Program in Neuroscience, University of Utah, USA.
| |
Collapse
|
50
|
Corsi L, Mescola A, Alessandrini A. Glutamate Receptors and Glioblastoma Multiforme: An Old "Route" for New Perspectives. Int J Mol Sci 2019; 20:ijms20071796. [PMID: 30978987 PMCID: PMC6479730 DOI: 10.3390/ijms20071796] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant tumor of the central nervous system, with poor survival in both treated and untreated patients. Recent studies began to explain the molecular pathway, comprising the dynamic structural and mechanical changes involved in GBM. In this context, some studies showed that the human glioblastoma cells release high levels of glutamate, which regulates the proliferation and survival of neuronal progenitor cells. Considering that cancer cells possess properties in common with neural progenitor cells, it is likely that the functions of glutamate receptors may affect the growth of cancer cells and, therefore, open the road to new and more targeted therapies.
Collapse
Affiliation(s)
- Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy.
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.
- Department of Physics, Informatics e Mathematics, Via G. Campi 213/a, 41125 Modena, Italy.
| |
Collapse
|