1
|
Xu Z, Tang J, Gong Y, Zhang J, Zou Y. Atomistic Insights into the Stabilization of TDP-43 Protofibrils by ATP. J Chem Inf Model 2024; 64:7639-7649. [PMID: 39292611 DOI: 10.1021/acs.jcim.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The aberrant accumulation of the transactive response deoxyribonucleic acid (DNA)-binding protein of 43 kDa (TDP-43) aggregates in the cytoplasm of motor neurons is the main pathological hallmark of amyotrophic lateral sclerosis (ALS). Previous experiments reported that adenosine triphosphate (ATP), the universal energy currency for all living cells, could induce aggregation and enhance the folding of TDP-43 fibrillar aggregates. However, the significance of ATP on TDP-43 fibrillation and the mechanism behind it remain elusive. In this work, we conducted multiple atomistic molecular dynamics (MD) simulations totaling 20 μs to search the critical nucleus size of TDP-43282-360 and investigate the impact of ATP molecules on preformed protofibrils. The results reveal that the trimer is the critical nucleus for TDP-43282-360 fibril formation and the tetramer is the minimal stable nucleus. When ATP molecules bind to the TDP-43282-360 trimer and tetramer, they can consolidate the TDP-43282-360 protofibrils by increasing the content of the β-sheet structure and promoting the formation of hydrogen bonds (H-bonds). Binding site analyses show that the N-terminus of TDP-43282-360 protofibrils is the main binding site of ATP, and R293 dominates the direct binding of ATP. Further analyses reveal that the π-π, cation-π, salt bridge, and H-bonding interactions together contribute to the binding of ATP to TDP-43282-360 protofibrils. This study decoded the detailed stabilization mechanism of protofibrillar TDP-43282-360 oligomers by ATP, and may provide new avenues for the development of drug design against ALS.
Collapse
Affiliation(s)
- Zhengdong Xu
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- General Education Center, Westlake University, 600 Dunyu Road, Hangzhou 310030, People's Republic of China
| | - Jianxin Zhang
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| |
Collapse
|
2
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Ozdinler PH. Sleep Apnea and Amyotrophic Lateral Sclerosis: Cause, Correlation, Any Relation? Brain Sci 2024; 14:978. [PMID: 39451992 PMCID: PMC11505663 DOI: 10.3390/brainsci14100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with progressive neurodegeneration, affecting both the cortical and the spinal component of the motor neuron circuitry in patients. The cellular and molecular basis of selective neuronal vulnerability is beginning to emerge. Yet, there are no effective cures for ALS, which affects more than 200,000 people worldwide each year. Recent studies highlight the importance of the glymphatic system and its proper function for the clearance of the cerebral spinal fluid, which is achieved mostly during the sleep period. Therefore, a potential link between problems with sleep and neurodegenerative diseases has been postulated. This paper discusses the present understanding of this potential correlation.
Collapse
Affiliation(s)
- P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Tourtourikov I, Todorov T, Angelov T, Chamova T, Tournev I, Mitev V, Todorova A. Genetic Modifiers of ALS: The Impact of Chromogranin B P413L in a Bulgarian ALS Cohort. Genes (Basel) 2024; 15:1197. [PMID: 39336788 PMCID: PMC11431727 DOI: 10.3390/genes15091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the role of the CHGB P413L variant (rs742710) in sporadic amyotrophic lateral sclerosis (sALS) within the Bulgarian population. We analyzed 150 patients with sALS (85 male and 65 female) for the presence of this variant, its potential impact on disease susceptibility, and age of onset. Genotyping was performed using PCR amplification and direct Sanger sequencing. Statistical analyses included comparisons with control data from GnomAD v2.1.1, one-way ANOVA, and Kaplan-Meier survival analysis. Results revealed a higher frequency of the minor T allele in patients with sALS compared to all control groups and a statistically significant increase in carrier genotypes compared to non-Finnish Europeans (χ2 = 15.4572, p = 0.000440). However, the impact on age of onset was less clear, with no statistically significant differences observed across genotypes or between carriers and non-carriers of the T allele. Kaplan-Meier analysis suggested a potential 2.5-year-earlier onset in T allele carriers, but the small sample size of carriers limits the reliability of this finding. Our study provides evidence for an association between the CHGB P413L variant and sALS susceptibility in the Bulgarian population, while its effect on age of onset remains uncertain, highlighting the need for further research in larger, diverse cohorts.
Collapse
Affiliation(s)
- Ivan Tourtourikov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Teodor Angelov
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Teodora Chamova
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Clinic of Nervous Diseases, Medical University of Sofia, UMBAL Aleksandrovska, 1431 Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| |
Collapse
|
5
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
7
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
8
|
Katsube M, Ishimoto T, Fukushima Y, Kagami A, Shuto T, Kato Y. Ergothioneine promotes longevity and healthy aging in male mice. GeroScience 2024; 46:3889-3909. [PMID: 38446314 PMCID: PMC11226696 DOI: 10.1007/s11357-024-01111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.
Collapse
Affiliation(s)
- Makoto Katsube
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan
| | | | - Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
9
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Heywood A, Stocks J, Schneider JA, Arfanakis K, Bennett DA, Beg MF, Wang L. In vivo effect of LATE-NC on integrity of white matter connections to the hippocampus. Alzheimers Dement 2024; 20:4401-4410. [PMID: 38877688 PMCID: PMC11247713 DOI: 10.1002/alz.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION TAR DNA-binding protein 43 (TDP-43) is a highly prevalent proteinopathy that is involved in neurodegenerative processes, including axonal damage. To date, no ante mortem biomarkers exist for TDP-43, and few studies have directly assessed its impact on neuroimaging measures utilizing pathologic quantification. METHODS Ante mortem diffusion-weighted images were obtained from community-dwelling older adults. Regression models calculated the relationship between post mortem TDP-43 burden and ante mortem fractional anisotropy (FA) within each voxel in connection with the hippocampus, controlling for coexisting Alzheimer's disease and demographics. RESULTS Results revealed a significant negative relationship (false discovery rate [FDR] corrected p < .05) between post mortem TDP-43 and ante mortem FA in one cluster within the left medial temporal lobe connecting to the parahippocampal cortex, entorhinal cortex, and cingulate, aligning with the ventral subdivision of the cingulum. FA within this cluster was associated with cognition. DISCUSSION Greater TDP-43 burden is associated with lower FA within the limbic system, which may contribute to impairment in learning and memory. HIGHLIGHTS Post mortem TDP-43 pathological burden is associated with reduced ante mortem fractional anisotropy. Reduced FA located in the parahippocampal portion of the cingulum. FA in this area was associated with reduced episodic and semantic memory. FA in this area was associated with increased inward hippocampal surface deformation.
Collapse
Affiliation(s)
- Ashley Heywood
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jane Stocks
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Suite, Chicago, Illinois, USA
- Department of Diagnostic Radiology, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Mirza Faisal Beg
- Simon Fraser University, School of Engineering Science, 8888 University Drive, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Health, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
11
|
Ramos S, Lee JC. Raman spectroscopy in the study of amyloid formation and phase separation. Biochem Soc Trans 2024; 52:1121-1130. [PMID: 38666616 PMCID: PMC11346453 DOI: 10.1042/bst20230599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, share a common pathological feature of amyloid structure accumulation. However, the structure-function relationship between these well-ordered, β-sheet-rich, filamentous protein deposits and disease etiology remains to be defined. Recently, an emerging hypothesis has linked phase separation, a process involved in the formation of protein condensates, to amyloid formation, suggesting that liquid protein droplets serve as loci for amyloid initiation. To elucidate how these processes contribute to disease progression, tools that can directly report on protein secondary structural changes are needed. Here, we review recent studies that have demonstrated Raman spectroscopy as a powerful vibrational technique for interrogating amyloid structures; one that offers sensitivity from the global secondary structural level to specific residues. This probe-free technique is further enhanced via coupling to a microscope, which affords structural data with spatial resolution, known as Raman spectral imaging (RSI). In vitro and in cellulo applications of RSI are discussed, highlighting studies of protein droplet aging, cellular internalization of fibrils, and Raman imaging of intracellular water. Collectively, utilization of the myriad Raman spectroscopic methods will contribute to a deeper understanding of protein conformational dynamics in the complex cellular milieu and offer potential clinical diagnostic capabilities for protein misfolding and aggregation processes in disease states.
Collapse
Affiliation(s)
- Sashary Ramos
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jennifer C. Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
12
|
López-Carbonero JI, García-Toledo I, Fernández-Hernández L, Bascuñana P, Gil-Moreno MJ, Matías-Guiu JA, Corrochano S. In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use. Transl Neurodegener 2024; 13:29. [PMID: 38831349 PMCID: PMC11149336 DOI: 10.1186/s40035-024-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.
Collapse
Affiliation(s)
- Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Laura Fernández-Hernández
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pablo Bascuñana
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - María J Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jordi A Matías-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
13
|
Droppelmann CA, Campos-Melo D, Noches V, McLellan C, Szabla R, Lyons TA, Amzil H, Withers B, Kaplanis B, Sonkar KS, Simon A, Buratti E, Junop M, Kramer JM, Strong MJ. Mitigation of TDP-43 toxic phenotype by an RGNEF fragment in amyotrophic lateral sclerosis models. Brain 2024; 147:2053-2068. [PMID: 38739752 PMCID: PMC11146434 DOI: 10.1093/brain/awae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/16/2024] Open
Abstract
Aggregation of the RNA-binding protein TAR DNA binding protein (TDP-43) is a hallmark of TDP-proteinopathies including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As TDP-43 aggregation and dysregulation are causative of neuronal death, there is a special interest in targeting this protein as a therapeutic approach. Previously, we found that TDP-43 extensively co-aggregated with the dual function protein GEF (guanine exchange factor) and RNA-binding protein rho guanine nucleotide exchange factor (RGNEF) in ALS patients. Here, we show that an N-terminal fragment of RGNEF (NF242) interacts directly with the RNA recognition motifs of TDP-43 competing with RNA and that the IPT/TIG domain of NF242 is essential for this interaction. Genetic expression of NF242 in a fruit fly ALS model overexpressing TDP-43 suppressed the neuropathological phenotype increasing lifespan, abolishing motor defects and preventing neurodegeneration. Intracerebroventricular injections of AAV9/NF242 in a severe TDP-43 murine model (rNLS8) improved lifespan and motor phenotype, and decreased neuroinflammation markers. Our results demonstrate an innovative way to target TDP-43 proteinopathies using a protein fragment with a strong affinity for TDP-43 aggregates and a mechanism that includes competition with RNA sequestration, suggesting a promising therapeutic strategy for TDP-43 proteinopathies such as ALS and FTD.
Collapse
Affiliation(s)
- Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Veronica Noches
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Crystal McLellan
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Robert Szabla
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Taylor A Lyons
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Hind Amzil
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Benjamin Withers
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Brianna Kaplanis
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Kirti S Sonkar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy
| | - Anne Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario N6A 5B7, Canada
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy
| | - Murray Junop
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
14
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Xin J, Huang S, Wen J, Li Y, Li A, Satyanarayanan SK, Yao X, Su H. Drug Screening and Validation Targeting TDP-43 Proteinopathy for Amyotrophic Lateral Sclerosis. Aging Dis 2024:AD.2024.0440. [PMID: 38739934 DOI: 10.14336/ad.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.
Collapse
Affiliation(s)
- Jiaqi Xin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
16
|
Calenda S, Catarzi D, Varano F, Vigiani E, Volpini R, Lambertucci C, Spinaci A, Trevisan L, Grieco I, Federico S, Spalluto G, Novello G, Salmaso V, Moro S, Colotta V. Structural Investigations on 2-Amidobenzimidazole Derivatives as New Inhibitors of Protein Kinase CK1 Delta. Pharmaceuticals (Basel) 2024; 17:468. [PMID: 38675428 PMCID: PMC11054282 DOI: 10.3390/ph17040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.
Collapse
Affiliation(s)
- Sara Calenda
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Daniela Catarzi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Flavia Varano
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Erica Vigiani
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Letizia Trevisan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Gianluca Novello
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Vittoria Colotta
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| |
Collapse
|
17
|
Wang X, Hu Y, Xu R. The pathogenic mechanism of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis. Neural Regen Res 2024; 19:800-806. [PMID: 37843214 PMCID: PMC10664110 DOI: 10.4103/1673-5374.382233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 10/17/2023] Open
Abstract
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex, basal ganglia, brainstem, and spinal cord, and commonly involves the muscles of the upper and/or lower extremities, and the muscles of the bulbar and/or respiratory regions. However, as the disease progresses, it affects the adjacent body regions, leading to generalized muscle weakness, occasionally along with memory, cognitive, behavioral, and language impairments; respiratory dysfunction occurs at the final stage of the disease. The disease has a complicated pathophysiology and currently, only riluzole, edaravone, and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries. The TAR DNA-binding protein 43 inclusions are observed in 97% of those diagnosed with amyotrophic lateral sclerosis. This review provides a preliminary overview of the potential effects of TAR DNA-binding protein 43 in the pathogenesis of amyotrophic lateral sclerosis, including the abnormalities in nucleoplasmic transport, RNA function, post-translational modification, liquid-liquid phase separation, stress granules, mitochondrial dysfunction, oxidative stress, axonal transport, protein quality control system, and non-cellular autonomous functions (e.g., glial cell functions and prion-like propagation).
Collapse
Affiliation(s)
- Xinxin Wang
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yushu Hu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
18
|
Mitra J, Dharmalingam P, Kodavati MM, Guerrero EN, Rao KS, Garruto R, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. RESEARCH SQUARE 2024:rs.3.rs-3879966. [PMID: 38343852 PMCID: PMC10854316 DOI: 10.21203/rs.3.rs-3879966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ∆NLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43. This variant is either expressed conditionally in whole mice or specifically in the motor neurons. The mice exhibit loss of nuclear Tdp-43 concomitant with its cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation and DNA damage-associated cellular senescence. Notably, unlike WT Tdp43 which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43∆NLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mice brain. The mutant mice also exhibit myogenic degeneration in limb muscles and distinct motor deficits, consistent with the characteristics of MND. Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43∆NLS mutant, independent of TDP-43 overexpression or other confounding etiological factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to further characterize the early-stage progression of MND and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
|
19
|
Arribas V, Onetti Y, Ramiro-Pareta M, Villacampa P, Beck H, Alberola M, Esteve-Codina A, Merkel A, Sperandio M, Martínez-Estrada OM, Schmid B, Montanez E. Endothelial TDP-43 controls sprouting angiogenesis and vascular barrier integrity, and its deletion triggers neuroinflammation. JCI Insight 2024; 9:e177819. [PMID: 38300714 PMCID: PMC11143933 DOI: 10.1172/jci.insight.177819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that regulates gene expression, and its malfunction in neurons has been causally associated with multiple neurodegenerative disorders. Although progress has been made in understanding the functions of TDP-43 in neurons, little is known about its roles in endothelial cells (ECs), angiogenesis, and vascular function. Using inducible EC-specific TDP-43-KO mice, we showed that TDP-43 is required for sprouting angiogenesis, vascular barrier integrity, and blood vessel stability. Postnatal EC-specific deletion of TDP-43 led to retinal hypovascularization due to defects in vessel sprouting associated with reduced EC proliferation and migration. In mature blood vessels, loss of TDP-43 disrupted the blood-brain barrier and triggered vascular degeneration. These vascular defects were associated with an inflammatory response in the CNS with activation of microglia and astrocytes. Mechanistically, deletion of TDP-43 disrupted the fibronectin matrix around sprouting vessels and reduced β-catenin signaling in ECs. Together, our results indicate that TDP-43 is essential for the formation of a stable and mature vasculature.
Collapse
Affiliation(s)
- Víctor Arribas
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Yara Onetti
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Mariona Alberola
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angelika Merkel
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| |
Collapse
|
20
|
Eck RJ, Stair JG, Kraemer BC, Liachko NF. Simple models to understand complex disease: 10 years of progress from Caenorhabditis elegans models of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Front Neurosci 2024; 17:1300705. [PMID: 38239833 PMCID: PMC10794587 DOI: 10.3389/fnins.2023.1300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
The nematode Caenorhabditis elegans are a powerful model system to study human disease, with numerous experimental advantages including significant genetic and cellular homology to vertebrate animals, a short lifespan, and tractable behavioral, molecular biology and imaging assays. Beginning with the identification of SOD1 as a genetic cause of amyotrophic lateral sclerosis (ALS), C. elegans have contributed to a deeper understanding of the mechanistic underpinnings of this devastating neurodegenerative disease. More recently this work has expanded to encompass models of other types of ALS and the related disease frontotemporal lobar degeneration (FTLD-TDP), including those characterized by mutation or accumulation of the proteins TDP-43, C9orf72, FUS, HnRNPA2B1, ALS2, DCTN1, CHCHD10, ELP3, TUBA4A, CAV1, UBQLN2, ATXN3, TIA1, KIF5A, VAPB, GRN, and RAB38. In this review we summarize these models and the progress and insights from the last ten years of using C. elegans to study the neurodegenerative diseases ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Randall J. Eck
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole F. Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| |
Collapse
|
21
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Ducharme S, Pijnenburg Y, Rohrer JD, Huey E, Finger E, Tatton N. Identifying and Diagnosing TDP-43 Neurodegenerative Diseases in Psychiatry. Am J Geriatr Psychiatry 2024; 32:98-113. [PMID: 37741764 PMCID: PMC11270911 DOI: 10.1016/j.jagp.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
Neuropsychiatric symptoms (NPS) are common manifestations of neurodegenerative disorders and are often early signs of those diseases. Among those neurodegenerative diseases, TDP-43 proteinopathies are an increasingly recognized cause of early neuropsychiatric manifestations. TDP-43-related diseases include frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE). The majority of TDP-43-related diseases are sporadic, but a significant proportion is hereditary, with progranulin (GRN) mutations and C9orf72 repeat expansions as the most common genetic etiologies. Studies reveal that NPS can be the initial manifestation of those diseases or can complicate disease course, but there is a lack of awareness among clinicians about TDP-43-related diseases, which leads to common diagnostic mistakes or delays. There is also emerging evidence that TDP-43 accumulations could play a role in late-onset primary psychiatric disorders. In the absence of robust biomarkers for TDP-43, the diagnosis remains primarily based on clinical assessment and neuroimaging. Given the association with psychiatric symptoms, clinical psychiatrists have a key role in the early identification of patients with TDP-43-related diseases. This narrative review provides a comprehensive overview of the pathobiology of TDP-43, resulting clinical presentations, and associated neuropsychiatric manifestations to help guide clinical practice.
Collapse
Affiliation(s)
- Simon Ducharme
- Department of Psychiatry (SD), Douglas Mental Health University Institute, McGill University, Montreal, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (YP), Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease (JDR), UCL Queen Square Institute of Neurology, London, UK
| | - Edward Huey
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Psychiatry (EH), Columbia University, New York, NY
| | - Elizabeth Finger
- London Health Sciences Centre Parkwood Institute (EF), London, ON, Canada
| | | |
Collapse
|
23
|
Zhao B, Cowan CM, Coutts JA, Christy DD, Saraph A, Hsueh SCC, Plotkin SS, Mackenzie IR, Kaplan JM, Cashman NR. Targeting RACK1 to alleviate TDP-43 and FUS proteinopathy-mediated suppression of protein translation and neurodegeneration. Acta Neuropathol Commun 2023; 11:200. [PMID: 38111057 PMCID: PMC10726565 DOI: 10.1186/s40478-023-01705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma/Translocated in Sarcoma (FUS) are ribonucleoproteins associated with pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under physiological conditions, TDP-43 and FUS are predominantly localized in the nucleus, where they participate in transcriptional regulation, RNA splicing and metabolism. In disease, however, they are typically mislocalized to the cytoplasm where they form aggregated inclusions. A number of shared cellular pathways have been identified that contribute to TDP-43 and FUS toxicity in neurodegeneration. In the present study, we report a novel pathogenic mechanism shared by these two proteins. We found that pathological FUS co-aggregates with a ribosomal protein, the Receptor for Activated C-Kinase 1 (RACK1), in the cytoplasm of spinal cord motor neurons of ALS, as previously reported for pathological TDP-43. In HEK293T cells transiently transfected with TDP-43 or FUS mutant lacking a functional nuclear localization signal (NLS; TDP-43ΔNLS and FUSΔNLS), cytoplasmic TDP-43 and FUS induced co-aggregation with endogenous RACK1. These co-aggregates sequestered the translational machinery through interaction with the polyribosome, accompanied by a significant reduction of global protein translation. RACK1 knockdown decreased cytoplasmic aggregation of TDP-43ΔNLS or FUSΔNLS and alleviated associated global translational suppression. Surprisingly, RACK1 knockdown also led to partial nuclear localization of TDP-43ΔNLS and FUSΔNLS in some transfected cells, despite the absence of NLS. In vivo, RACK1 knockdown alleviated retinal neuronal degeneration in transgenic Drosophila melanogaster expressing hTDP-43WT or hTDP-43Q331K and improved motor function of hTDP-43WT flies, with no observed adverse effects on neuronal health in control knockdown flies. In conclusion, our results revealed a novel shared mechanism of pathogenesis for misfolded aggregates of TDP-43 and FUS mediated by interference with protein translation in a RACK1-dependent manner. We provide proof-of-concept evidence for targeting RACK1 as a potential therapeutic approach for TDP-43 or FUS proteinopathy associated with ALS and FTLD.
Collapse
Affiliation(s)
- Beibei Zhao
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
- ProMIS Neurosciences, Cambridge, MA, 02142, USA
| | - Catherine M Cowan
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Juliane A Coutts
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Darren D Christy
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Ananya Saraph
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Shawn C C Hsueh
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Stephen S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Ian R Mackenzie
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | | | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada.
- ProMIS Neurosciences, Cambridge, MA, 02142, USA.
| |
Collapse
|
24
|
Wang C, Cui Y, Xu T, Zhou Y, Yang R, Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem Pharmacol 2023; 218:115923. [PMID: 37981175 DOI: 10.1016/j.bcp.2023.115923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role in a wide variety of cellular processes to coordinate catabolic and anabolic pathways and regulate cell growth and fate. There is increasing evidence showing that abnormal glycogen synthase kinase 3 (GSK-3) is associated with the pathogenesis and progression of many disorders, such as cancer, diabetes, psychiatric diseases, and neurodegenerative diseases. In this review, we summarize recent findings about the regulatory role of GSK-3 in the occurrence and development of multiple neurodegenerative diseases, mainly focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The aim of this study is to provide new insight into the shared working mechanism of GSK-3 as a therapeutic target of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chengfeng Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Tong Xu
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China; Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China; Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China.
| | - Rong Yang
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China.
| | - Ting Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
25
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
26
|
Candelise N, Caissutti D, Zenuni H, Nesci V, Scaricamazza S, Salvatori I, Spinello Z, Mattei V, Garofalo T, Ferri A, Valle C, Misasi R. Different Chronic Stress Paradigms Converge on Endogenous TDP43 Cleavage and Aggregation. Mol Neurobiol 2023; 60:6346-6361. [PMID: 37450246 PMCID: PMC10533643 DOI: 10.1007/s12035-023-03455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023]
Abstract
The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Henri Zenuni
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | - Valentina Nesci
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Illari Salvatori
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), 00185, Rome, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, University La Sapienza, 00185, Rome, Italy.
| |
Collapse
|
27
|
Helmold BR, Pauss KE, Ozdinler PH. TDP-43 protein interactome informs about perturbed canonical pathways and may help develop personalized medicine approaches for patients with TDP-43 pathology. Drug Discov Today 2023; 28:103769. [PMID: 37714405 PMCID: PMC10872580 DOI: 10.1016/j.drudis.2023.103769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) pathology is a common proteinopathy observed among a broad spectrum of patients with neurodegenerative disease, regardless of the mutation. This suggests that protein-protein interactions of TDP-43 with other proteins may in part be responsible for the pathology. To gain better insights, we investigated TDP-43-binding proteins in each domain and correlated these interactions with canonical pathways. These investigations revealed key cellular events that are involved and are important at each domain and suggested previously identified compounds to modulate key aspects of these canonical pathways. Our approach proposes that personalized medicine approaches, which focus on perturbed cellular mechanisms would be feasible in the near future.
Collapse
Affiliation(s)
- Benjamin R Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Kate E Pauss
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA; Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60611, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Godfrey RK, Alsop E, Bjork RT, Chauhan BS, Ruvalcaba HC, Antone J, Gittings LM, Michael AF, Williams C, Hala'ufia G, Blythe AD, Hall M, Sattler R, Van Keuren-Jensen K, Zarnescu DC. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits. Acta Neuropathol Commun 2023; 11:168. [PMID: 37864255 PMCID: PMC10588218 DOI: 10.1186/s40478-023-01656-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611, USA.
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Reed T Bjork
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Brijesh S Chauhan
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA
| | - Hillary C Ruvalcaba
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Jerry Antone
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Allison F Michael
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christi Williams
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Grace Hala'ufia
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Alexander D Blythe
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Megan Hall
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA.
| |
Collapse
|
29
|
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy. eLife 2023; 12:RP85921. [PMID: 37819053 PMCID: PMC10567115 DOI: 10.7554/elife.85921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julie C Necarsulmer
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Baggio A Evangelista
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Youjun Chen
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Xu Tian
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Sara Nafees
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Ariana B Marquez
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
| | - Huijun Jiang
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Ping Wang
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Deepa Ajit
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - J Ashley Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, University of North CarolinaChapel HillUnited States
| | - Feng-Chang Lin
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Adriana S Beltran
- Department of Genetics, University of North CarolinaChapel HillUnited States
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Todd J Cohen
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North CarolinaChapel HillUnited States
| |
Collapse
|
30
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
31
|
Agin-Liebes J, Hickman RA, Vonsattel JP, Faust PL, Flowers X, Sosunova IU, Ntiri J, Mayeux R, Surface M, Marder K, Fahn S, Przedborski S, Alcalay RN. Patterns of TDP-43 Deposition in Brains with LRRK2 G2019S Mutations. Mov Disord 2023; 38:1541-1545. [PMID: 37218402 PMCID: PMC10524857 DOI: 10.1002/mds.29449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
OBJECTIVE To assess for TDP-43 deposits in brains with and without a LRRK2 G2019S mutation. BACKGROUND LRRK2 G2019S mutations have been associated with parkinsonism and a wide range of pathological findings. There are no systematic studies examining the frequency and extent of TDP-43 deposits in neuropathological samples from LRRK2 G2019S carriers. METHODS Twelve brains with LRRK2 G2019S mutations were available for study from the New York Brain Bank at Columbia University; 11 of them had samples available for TDP-43 immunostaining. Clinical, demographic, and pathological data are reported for 11 brains with a LRRK2 G2019S mutation and compared to 11 brains without GBA1 or LRRK2 G2019S mutations with a pathologic diagnosis of Parkinson's disease (PD) or diffuse Lewy body disease. They were frequency matched by age, gender, parkinsonism age of onset, and disease duration. RESULTS TDP-43 aggregates were present in 73% (n = 8) of brains with a LRRK2 mutation and 18% (n = 2) of brains without a LRRK2 mutation (P = 0.03). In one brain with a LRRK2 mutation, TDP-43 proteinopathy was the primary neuropathological change. CONCLUSIONS Extranuclear TDP-43 aggregates are observed with greater frequency in LRRK2 G2019S autopsies compared to PD cases without a LRRK2 G2019S mutation. The association between LRRK2 and TDP-43 should be further explored. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Julian Agin-Liebes
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Richard A. Hickman
- Department of Defense/Uniformed Services University Brain Tissue Repository, Uniformed Services University, Bethesda, MD, 20817, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jean Paul Vonsattel
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY, 10032, USA
| | - Phyllis L. Faust
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY, 10032, USA
| | - Xena Flowers
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY, 10032, USA
| | | | - Joel Ntiri
- Columbia College, 1130 Amsterdam Ave, New York, NY 10027, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Matthew Surface
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
- The Michael J. Fox Foundation for Parkinson’s Research, New York, New York, USA
| | - Karen Marder
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Stanley Fahn
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Serge Przedborski
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY, 10032, USA
- Department of Neuroscience Columbia University, 630 W 168th Street, New York, NY, 10032, USA
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
32
|
Yu CL, Chuang TW, Samuel SY, Lou YC, Tarn WY. Co-phase separation of Y14 and RNA in vitro and its implication for DNA repair. RNA (NEW YORK, N.Y.) 2023; 29:1007-1019. [PMID: 37001915 DOI: 10.1261/rna.079514.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The multifunctional RNA recognition motif-containing protein Y14/RBM8A participates in mRNA metabolism and is essential for the efficient repair of DNA double-strand breaks (DSBs). Y14 contains highly charged, low-complexity sequences in both the amino- and carboxy-terminal domains. The feature of charge segregation suggests that Y14 may undergo liquid-liquid phase separation (LLPS). Recombinant Y14 formed phase-separated droplets, which were sensitive to pH and salt concentration. Domain mapping suggested that LLPS of Y14 involves multivalent electrostatic interactions and is partly determined by the net charge of its low-complexity regions. Phospho-mimicry of the carboxy-terminal arginine-serine dipeptides of Y14 suppressed phase separation. Moreover, RNA could phase separate into Y14 droplets and modulate Y14 LLPS in a concentration-dependent manner. Finally, the capacity of Y14 in LLPS and coacervation with RNA in vitro correlated with its activity in DSB repair. These results reveal a molecular rule for LLPS of Y14 in vitro and an implication for its co-condensation with RNA in genome stability.
Collapse
Affiliation(s)
- Chia-Lin Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Wei Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Sabrina Yeo Samuel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
33
|
Chen M, Yang X, Liu H, Wan J. Identification and functional characterization of a bipartite nuclear localization signal in ANKRD11. Biochem Biophys Res Commun 2023; 670:117-123. [PMID: 37290286 DOI: 10.1016/j.bbrc.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 06/10/2023]
Abstract
ANKRD11 gene encodes for the large nuclear protein essential for multiple system development including the nervous system. However, the molecular basis for the proper nuclear localization of ANKRD11 has not yet been elucidated. In this study, we have identified a functional bipartite nuclear localization signal (bNLS) between residues 53 and 87 of ANKRD11. Using biochemical approaches, we discovered two major binding sites in this bipartite NLS for Importin α1. Through site-directed mutagenesis and functional analysis, we further found that this bipartite NLS is sufficient for nuclear import of overexpressing GFP in HeLa cells and necessary for nuclear localization of ANKRD11. Importantly, our study provides a possible pathogenic mechanism for certain clinical variants located within the bipartite nuclear localization signal of ANKRD11.
Collapse
Affiliation(s)
- Min Chen
- Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xue Yang
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Haiyang Liu
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Jun Wan
- Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China; Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Sampognaro PJ, Arya S, Knudsen GM, Gunderson EL, Sandoval-Perez A, Hodul M, Bowles K, Craik CS, Jacobson MP, Kao AW. Mutations in α-synuclein, TDP-43 and tau prolong protein half-life through diminished degradation by lysosomal proteases. Mol Neurodegener 2023; 18:29. [PMID: 37131250 PMCID: PMC10155372 DOI: 10.1186/s13024-023-00621-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Autosomal dominant mutations in α-synuclein, TDP-43 and tau are thought to predispose to neurodegeneration by enhancing protein aggregation. While a subset of α-synuclein, TDP-43 and tau mutations has been shown to increase the structural propensity of these proteins toward self-association, rates of aggregation are also highly dependent on protein steady state concentrations, which are in large part regulated by their rates of lysosomal degradation. Previous studies have shown that lysosomal proteases operate precisely and not indiscriminately, cleaving their substrates at very specific linear amino acid sequences. With this knowledge, we hypothesized that certain coding mutations in α-synuclein, TDP-43 and tau may lead to increased protein steady state concentrations and eventual aggregation by an alternative mechanism, that is, through disrupting lysosomal protease cleavage recognition motifs and subsequently conferring protease resistance to these proteins. RESULTS To test this possibility, we first generated comprehensive proteolysis maps containing all of the potential lysosomal protease cleavage sites for α-synuclein, TDP-43 and tau. In silico analyses of these maps indicated that certain mutations would diminish cathepsin cleavage, a prediction we confirmed utilizing in vitro protease assays. We then validated these findings in cell models and induced neurons, demonstrating that mutant forms of α-synuclein, TDP-43 and tau are degraded less efficiently than wild type despite being imported into lysosomes at similar rates. CONCLUSIONS Together, this study provides evidence that pathogenic mutations in the N-terminal domain of α-synuclein (G51D, A53T), low complexity domain of TDP-43 (A315T, Q331K, M337V) and R1 and R2 domains of tau (K257T, N279K, S305N) directly impair their own lysosomal degradation, altering protein homeostasis and increasing cellular protein concentrations by extending the degradation half-lives of these proteins. These results also point to novel, shared, alternative mechanism by which different forms of neurodegeneration, including synucleinopathies, TDP-43 proteinopathies and tauopathies, may arise. Importantly, they also provide a roadmap for how the upregulation of particular lysosomal proteases could be targeted as potential therapeutics for human neurodegenerative disease.
Collapse
Affiliation(s)
- Paul J. Sampognaro
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
- Neuromuscular Division, Department of Neurology, University of California, San Francisco, CA USA
| | - Shruti Arya
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | | | - Emma L. Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Molly Hodul
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | - Kathryn Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Aimee W. Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| |
Collapse
|
35
|
Licht-Murava A, Meadows SM, Palaguachi F, Song SC, Jackvony S, Bram Y, Zhou C, Schwartz RE, Froemke RC, Orr AL, Orr AG. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. SCIENCE ADVANCES 2023; 9:eade1282. [PMID: 37075107 PMCID: PMC10115456 DOI: 10.1126/sciadv.ade1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Transactivating response region DNA binding protein 43 (TDP-43) pathology is prevalent in dementia, but the cell type-specific effects of TDP-43 pathology are not clear, and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We found that patients with Alzheimer's disease or frontotemporal dementia have aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive memory loss and localized changes in antiviral gene expression. These changes were cell-autonomous and correlated with impaired astrocytic defense against infectious viruses. Among the changes, astrocytes had elevated levels of interferon-inducible chemokines, and neurons had elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals. CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to the effects of astrocytic TDP-43 dysregulation, and blockade of CXCR3 reduced this activity. Ablation of CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal interactions.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha M. Meadows
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Fernando Palaguachi
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Soomin C. Song
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephanie Jackvony
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Constance Zhou
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| | - Robert E. Schwartz
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Robert C. Froemke
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anna G. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| |
Collapse
|
36
|
Bernal AF, Mota N, Pamplona R, Area-Gomez E, Portero-Otin M. Hakuna MAM-Tata: Investigating the role of mitochondrial-associated membranes in ALS. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166716. [PMID: 37044239 DOI: 10.1016/j.bbadis.2023.166716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease leading to selective and progressive motor neuron (MN) death. Despite significant heterogeneity in pathogenic and clinical terms, MN demise ultimately unifies patients. Across the many disturbances in neuronal biology present in the disease and its models, two common trends are loss of calcium homeostasis and dysregulations in lipid metabolism. Since both mitochondria and endoplasmic reticulum (ER) are essential in these functions, their intertwin through the so-called mitochondrial-associated membranes (MAMs) should be relevant in this disease. In this review, we present a short overview of MAMs functional aspects and how its dysfunction could explain a substantial part of the cellular disarrangements in ALS's natural history. MAMs are hubs for lipid synthesis, integrating glycerophospholipids, sphingolipids, and cholesteryl ester metabolism. These lipids are essential for membrane biology, so there should be a close coupling to cellular energy demands, a role that MAMs may partially fulfill. Not surprisingly, MAMs are also host part of calcium signaling to mitochondria, so their impairment could lead to mitochondrial dysfunction, affecting oxidative phosphorylation and enhancing the vulnerability of MNs. We present data supporting that MAMs' maladaptation could be essential to MNs' vulnerability in ALS.
Collapse
Affiliation(s)
- Anna Fernàndez Bernal
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| | - Natàlia Mota
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| | - Estela Area-Gomez
- Centro de Investigaciones Biológicas Margarita Salas CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| |
Collapse
|
37
|
Bak AN, Djukic S, Kadlecova M, Braunstein TH, Jensen DB, Meehan CF. Cytoplasmic TDP-43 accumulation drives changes in C-bouton number and size in a mouse model of sporadic Amyotrophic Lateral Sclerosis. Mol Cell Neurosci 2023; 125:103840. [PMID: 36921783 DOI: 10.1016/j.mcn.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/11/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
An altered neuronal excitability of spinal motoneurones has consistently been implicated in Amyotrophic Lateral Sclerosis (ALS) leading to several investigations of synaptic input to these motoneurones. One such input that has repeatedly been shown to be affected is a population of large cholinergic synapses terminating mainly on the soma of the motoneurones referred to as C-boutons. Most research on these synapses during disease progression has used transgenic Superoxide Dismutase 1 (SOD1) mouse models of the disease which have not only produced conflicting findings, but also fail to recapitulate the key pathological feature seen in ALS; cytoplasmic accumulations of TAR DNA-binding protein 43 (TDP-43). Additionally, they fail to distinguish between slow and fast motoneurones, the latter of which have more C-boutons, but are lost earlier in the disease. To circumvent these issues, we quantified the frequency and volume of C-boutons on traced soleus and gastrocnemius motoneurones, representing predominantly slow and fast motor pools respectively. Experiments were performed using the TDP-43ΔNLS mouse model that carries a transgenic construct of TDP-43 devoid of its nuclear localization signal, preventing its nuclear import. This results in the emergence of pathological TDP-43 inclusions in the cytoplasm, modelling the main pathology seen in this disorder, accompanied by a severe and lethal ALS phenotype. Our results confirmed changes in both the number and volume of C-boutons with a decrease in number on the more vulnerable, predominantly fast gastrocnemius motoneurones and an increase in number on the less vulnerable, predominantly slow soleus motoneurones. Importantly, these changes were only found in male mice. However, both sexes and motor pools showed a decrease in C-bouton volume. Our experiments confirm that cytoplasmic TDP-43 accumulation is sufficient to drive C-bouton changes.
Collapse
Affiliation(s)
| | - Svetlana Djukic
- Department of Neuroscience, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
Yusuff T, Chang YC, Sang TK, Jackson GR, Chatterjee S. Codon-optimized TDP-43 mediates neurodegeneration in a Drosophila model of ALS/FTLD. Front Genet 2023; 14:881638. [PMID: 36968586 PMCID: PMC10034021 DOI: 10.3389/fgene.2023.881638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Transactive response DNA binding protein-43 (TDP-43) is known to mediate neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The exact mechanism by which TDP-43 exerts toxicity in the brains, spinal cord, and lower motor neurons of affected patients remains unclear. In a novel Drosophila melanogaster model, we report gain-of-function phenotypes due to misexpression of insect codon-optimized version of human wild-type TDP-43 (CO-TDP-43) using both the binary GAL4/UAS system and direct promoter fusion constructs. The CO-TDP-43 model showed robust tissue specific phenotypes in the adult eye, wing, and bristles in the notum. Compared to non-codon optimized transgenic flies, the CO-TDP-43 flies produced increased amount of high molecular weight protein, exhibited pathogenic phenotypes, and showed cytoplasmic aggregation with both nuclear and cytoplasmic expression of TDP-43. Further characterization of the adult retina showed a disruption in the morphology and function of the photoreceptor neurons with the presence of acidic vacuoles that are characteristic of autophagy. Based on our observations, we propose that TDP-43 has the propensity to form toxic protein aggregates via a gain-of-function mechanism, and such toxic overload leads to activation of protein degradation pathways such as autophagy. The novel codon optimized TDP-43 model is an excellent resource that could be used in genetic screens to identify and better understand the exact disease mechanism of TDP-43 proteinopathies and find potential therapeutic targets.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| | - Ya-Chu Chang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - George R. Jackson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
- National Parkinson’s Disease Research Education and Clinical Center, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Shreyasi Chatterjee
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| |
Collapse
|
39
|
Abstract
Growing evidence indicates that liquid-liquid phase separation (LLPS), a phenomenon whereby transient, weak interactions can facilitate self-assembly of proteins into liquid-like droplets and can contribute to the formation of amyloid fibrils. Such an observation has posited that LLPS and the associated formation of membrane-less organelles in the cell can contribute to protein aggregation in neurodegenerative disease. In this chapter, we describe methods for performing biophysical studies on the transactive response DNA-binding protein of 43 kDa (TDP-43), a protein that forms aggregates in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We describe purification of the disordered low-complexity domain (LCD) of TDP-43 and provide a methodology for studying the protein's behavior using site-directed spin labeling coupled with electron paramagnetic resonance. We additionally discuss visualization of TDP-43 LCD liquid droplets and methods for quantifying LLPS and aggregation into amyloid fibrils.
Collapse
Affiliation(s)
- W Michael Babinchak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
40
|
Wang R, Sun H, Chen W, Zhao B, Chen L. Molecular basis of ssDNA recognition by RBM45 protein of neurodegenerative disease from multiple molecular dynamics simulations and energy predictions. J Mol Graph Model 2023; 118:108377. [PMID: 36435031 DOI: 10.1016/j.jmgm.2022.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases (NDD) are a group of cognitive and behavioral disorders characterized by progressive loss of neuronal structure and function. As the population ages, the incidence is getting higher and higher, but there is currently no effective treatment. The details of RNA/DNA recognition by the RNA-binding protein RBM45 closely related to neurodegenerative diseases through its two tandem RNA-recognition domains at its N-terminus have important implications for structure-based drug discovery against degenerative diseases. To explore the key characteristics of interaction between ssDNA and RBM45, we performed multiple molecular dynamics (MD) simulations along with MM-PBSA energy prediction on the complexes of wild type (WT) and three mutant RBM45s (K100A, F124A/Y165A, and F29A/F70A/F124A/Y165A) with ssDNA, respectively. The findings suggest that these mutated residues of RBM45 modify the interaction of their surrounding residues with ssDNA, thereby affecting RBM45 protein binding to ssDNA. In contrast with WT RBM45 protein, variations in van der Waals and electrostatic interactions with ssDNA caused by these three RBM45 mutants are critical to affect binding between them. In addition, energy analysis showed that RBM45 is a specific ssDNA-binding protein. The results of our work provide valuable theoretical guidance for the design effective drugs of NDD.
Collapse
Affiliation(s)
- Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Han Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China.
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China; Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, PR China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China.
| |
Collapse
|
41
|
TARDBP promotes ovarian cancer progression by altering vascular endothelial growth factor splicing. Oncogene 2023; 42:49-61. [PMID: 36369320 DOI: 10.1038/s41388-022-02539-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Disruptions in alternative splicing regulation play an essential role in ovarian cancer progression. However, the underlying mechanism remains unclear. TAR DNA-binding protein (TARDBP) plays a crucial role in alternative splicing regulation. Herein we found that TARDBP expression was significantly upregulated in OC tissue samples, particularly in cases of metastasis; further, TARDBP expression was markedly upregulated in OC patients with poor prognosis. These findings were validated by extensive tissue microarray data. TARDBP was also found to promote tumorigenesis and metastasis of OC cells in vitro and in vivo. Mechanistically, TARDBP increased the binding of the splicing factor serine/arginine-rich splicing factor 1 (SRSF1) to intron 7 of vascular endothelial growth factor (VEGF), increasing the formation of the proangiogenic VEGF165 isoform and decreasing that of the antiangiogenic VEGF165b isoform. The abnormal alternative splicing event was responsible for the activation of angiogenesis and contributed to the progression of OC. To conclude, TARDBP was found to regulate the alternative splicing of VEGF via SRSF1, induce the formation of VEGF165 but inhibit that of VEGF165b, and promote OC angiogenesis. Hence, TARDBP can serve as an independent prognostic factor and new target for OC cancer therapy.
Collapse
|
42
|
Romano R, De Luca M, Del Fiore VS, Pecoraro M, Lattante S, Sabatelli M, La Bella V, Bucci C. Allele-specific silencing as therapy for familial amyotrophic lateral sclerosis caused by the p.G376D TARDBP mutation. Brain Commun 2022; 4:fcac315. [PMID: 36751500 PMCID: PMC9897181 DOI: 10.1093/braincomms/fcac315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons. There is no treatment for this disease that affects the ability to move, eat, speak and finally breathe, causing death. In an Italian family, a heterozygous pathogenic missense variant has been previously discovered in Exon 6 of the gene TARDBP encoding the TAR DNA-binding protein 43 protein. Here, we developed a potential therapeutic tool based on allele-specific small interfering RNAs for familial amyotrophic lateral sclerosis with the heterozygous missense mutation c.1127G>A. We designed a small interfering RNA that was able to diminish specifically the expression of the exogenous Green Fluorescent Protein (TAR DNA-binding protein 43G376D mutant protein) in HEK-293T cells but not that of the Green Fluorescent Protein (TAR DNA-binding protein 43 wild-type). Similarly, this small interfering RNA silenced the mutated allele in fibroblasts derived from patients with amyotrophic lateral sclerosis but did not silence the wild-type gene in control fibroblasts. In addition, we established that silencing the mutated allele was able to strongly reduce the pathological cellular phenotypes induced by TAR DNA-binding protein 43G376D expression, such as the presence of cytoplasmic aggregates. Thus, we have identified a small interfering RNA that could be used to silence specifically the mutated allele to try a targeted therapy for patients carrying the p.G376D TAR DNA-binding protein 43 mutation.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Via Provinciale Lecce-Monteroni n.165, 73100 Lecce, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Via Provinciale Lecce-Monteroni n.165, 73100 Lecce, Italy
| | - Victoria Stefania Del Fiore
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Via Provinciale Lecce-Monteroni n.165, 73100 Lecce, Italy
| | - Martina Pecoraro
- ALS Clinical Research Center, P Giaccone University Hospital and Department of Biomedicine, Neuroscience and advanced Diagnostic (BIND), University of Palermo, via Gaetano La Loggia n° 1, 90129 Palermo, Italy
| | - Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy,Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, P Giaccone University Hospital and Department of Biomedicine, Neuroscience and advanced Diagnostic (BIND), University of Palermo, via Gaetano La Loggia n° 1, 90129 Palermo, Italy
| | - Cecilia Bucci
- Correspondence to: Cecilia Bucci Department of Biological and Environmental Sciences and Technologies (DiSTeBA) Via Provinciale Lecce-Monteroni n.165 73100 Lecce, Italy E-mail:
| |
Collapse
|
43
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
44
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
45
|
Plasma TDP-43 Reflects Cortical Neurodegeneration and Correlates with Neuropsychiatric Symptoms in Huntington's Disease. Clin Neuroradiol 2022; 32:1077-1085. [PMID: 35238950 DOI: 10.1007/s00062-022-01150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Huntington's disease (HD) is a monogenic neurodegenerative disease with no effective treatment currently available. The pathological hallmark of HD is the aggregation of mutant huntingtin in the medium spiny neurons of the striatum, leading to severe subcortical atrophy. Cortical degeneration also occurs in HD from its very early stages, although its biological origin is poorly understood. Among the possible pathological mechanisms that could promote cortical damage in HD, the in vivo study of TDP-43 pathology remains to be explored, which was the main objective of this work. METHODS We investigated the clinical and structural brain correlates of plasma TDP-43 levels in a sample of 36 HD patients. Neuroimaging alterations were assessed both at the macrostructural (cortical thickness) and microstructural (intracortical diffusivity) levels. Importantly, we controlled for mutant huntingtin and tau biomarkers in order to assess the independent role of TDP-43 in HD neurodegeneration. RESULTS Plasma TDP-43 levels in HD specifically correlated with the presence and severity of apathy (p = 0.003). The TDP-43 levels also reflected cortical thinning and microstructural degeneration, especially in frontal and anterior-temporal regions (p < 0.05 corrected). These TDP-43-related brain alterations correlated, in turn, with the severity of cognitive, motor and behavioral symptoms. CONCLUSION Our results suggest that the presence of TDP-43 pathology in HD has an independent contribution to the severity of neuropsychiatric symptoms and frontotemporal degeneration. These findings point out the importance of TDP-43 as an additional pathological process to be taken into consideration in this devastating disorder.
Collapse
|
46
|
Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J Biol Chem 2022; 298:102498. [PMID: 36116552 PMCID: PMC9587012 DOI: 10.1016/j.jbc.2022.102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
47
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
48
|
Cappelli S, Spalloni A, Feiguin F, Visani G, Šušnjar U, Brown AL, De Bardi M, Borsellino G, Secrier M, Phatnani H, Romano M, Fratta P, Longone P, Buratti E. NOS1AP is a novel molecular target and critical factor in TDP-43 pathology. Brain Commun 2022; 4:fcac242. [PMID: 36267332 PMCID: PMC9576154 DOI: 10.1093/braincomms/fcac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many lines of evidence have highlighted the role played by heterogeneous nuclear ribonucleoproteins in amyotrophic lateral sclerosis. In this study, we have aimed to identify transcripts co-regulated by TAR DNA-binding protein 43 kDa and highly conserved heterogeneous nuclear ribonucleoproteins which have been previously shown to regulate TAR DNA-binding protein 43 kDa toxicity (deleted in azoospermia-associated protein 1, heterogeneous nuclear ribonucleoprotein -Q, -D, -K and -U). Using the transcriptome analyses, we have uncovered that Nitric Oxide Synthase 1 Adaptor Protein mRNA is a direct TAR DNA-binding protein 43 kDa target, and in flies, its modulation alone can rescue TAR DNA-binding protein 43 kDa pathology. In primary mouse cortical neurons, we show that TAR DNA-binding protein 43 kDa mediated downregulation of Nitric Oxide Synthase 1 Adaptor Protein expression strongly affects the NMDA-receptor signalling pathway. In human patients, the downregulation of Nitric Oxide Synthase 1 Adaptor Protein mRNA strongly correlates with TAR DNA-binding protein 43 kDa proteinopathy as measured by cryptic Stathmin-2 and Unc-13 homolog A cryptic exon inclusion. Overall, our results demonstrate that Nitric Oxide Synthase 1 Adaptor Protein may represent a novel disease-relevant gene, potentially suitable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Alida Spalloni
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Urša Šušnjar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marco De Bardi
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Patrizia Longone
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
49
|
Tran NN, Lee BH. Functional implication of ubiquitinating and deubiquitinating mechanisms in TDP-43 proteinopathies. Front Cell Dev Biol 2022; 10:931968. [PMID: 36158183 PMCID: PMC9500471 DOI: 10.3389/fcell.2022.931968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which motor neurons in spinal cord and motor cortex are progressively lost. About 15% cases of ALS also develop the frontotemporal dementia (FTD), in which the frontotemporal lobar degeneration (FTLD) occurs in the frontal and temporal lobes of the brain. Among the pathologic commonalities in ALS and FTD is ubiquitin-positive cytoplasmic aggregation of TDP-43 that may reflect both its loss-of-function and gain-of-toxicity from proteostasis impairment. Deep understanding of how protein quality control mechanisms regulate TDP-43 proteinopathies still remains elusive. Recently, a growing body of evidence indicates that ubiquitinating and deubiquitinating pathways are critically engaged in the fate decision of aberrant or pathological TDP-43 proteins. E3 ubiquitin ligases coupled with deubiquitinating enzymes may influence the TDP-43-associated proteotoxicity through diverse events, such as protein stability, translocation, and stress granule or inclusion formation. In this article, we recapitulate our current understanding of how ubiquitinating and deubiquitinating mechanisms can modulate TDP-43 protein quality and its pathogenic nature, thus shedding light on developing targeted therapies for ALS and FTD by harnessing protein degradation machinery.
Collapse
Affiliation(s)
- Non-Nuoc Tran
- Department of New Biology, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- Department of New Biology Research Center (NBRC), Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Byung-Hoon Lee,
| |
Collapse
|
50
|
TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 2022; 144:187-210. [PMID: 35713704 PMCID: PMC9945325 DOI: 10.1007/s00401-022-02449-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Collapse
|