1
|
Zhuo B, Qin C, Deng S, Jiang H, Si S, Tao F, Cai F, Meng Z. The role of ACSL4 in stroke: mechanisms and potential therapeutic target. Mol Cell Biochem 2024:10.1007/s11010-024-05150-6. [PMID: 39496916 DOI: 10.1007/s11010-024-05150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
Stroke, as a neurological disorder with a poor overall prognosis, has long plagued the patients. Current stroke therapy lacks effective treatments. Ferroptosis has emerged as a prominent subject of discourse across various maladies in recent years. As an emerging therapeutic target, notwithstanding its initial identification in tumor cells associated with brain diseases, it has lately been recognized as a pivotal factor in the pathological progression of stroke. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a potential target and biomarker of catalytic unsaturated fatty acids mediating ferroptosis in stroke. Specifically, the upregulation of ACSL4 leads to heightened accumulation of lipid peroxidation products and reactive oxygen species (ROS), thereby exacerbating the progression of ferroptosis in neuronal cells. ACSL4 is present in various tissues and involved in multiple pathways of ferroptosis. At present, the pharmacological mechanisms of targeting ACSL4 to inhibit ferroptosis have been found in many drugs, but the molecular mechanisms of targeting ACSL4 are still in the exploratory stage. This paper introduces the physiopathological mechanism of ACSL4 and the current status of the research involved in ferroptosis crosstalk and epigenetics, and summarizes the application status of ACSL4 in modern pharmacology research, and discusses the potential application value of ACSL4 in the field of stroke.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangkun Si
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Tao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fei Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
2
|
Wang X, Xu L, Meng Y, Chen F, Zhuang J, Wang M, An W, Han Y, Chu B, Chai R, Liu W, Wang H. FOXO1-NCOA4 Axis Contributes to Cisplatin-Induced Cochlea Spiral Ganglion Neuron Ferroptosis via Ferritinophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402671. [PMID: 39206719 PMCID: PMC11515924 DOI: 10.1002/advs.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mammalian cochlea spiral ganglion neurons (SGNs) are crucial for sound transmission, they can be damaged by chemotherapy drug cisplatin and lead to irreversible sensorineural hearing loss (SNHL), while such damage can also render cochlear implants ineffective. However, the mechanisms underlying cisplatin-induced SGNs damage and subsequent SNHL are still under debate and there is no currently effective clinical treatment. Here, this study demonstrates that ferroptosis is triggered in SGNs following exposure to cisplatin. Inhibiting ferroptosis protects against cisplatin-induced SGNs damage and hearing loss, while inducing ferroptosis intensifies these effects. Furthermore, cisplatin prompts nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in SGNs, while knocking down NCOA4 mitigates cisplatin-induced ferroptosis and hearing loss. Notably, the upstream regulator of NCOA4 is identified and transcription factor forkhead box O1 (FOXO1) is shown to directly suppress NCOA4 expression in SGNs. The knocking down of FOXO1 amplifies NCOA4-mediated ferritinophagy, increases ferroptosis and lipid peroxidation, while disrupting the interaction between FOXO1 and NCOA4 in NCOA4 knock out mice prevents the cisplatin-induced SGN ferroptosis and hearing loss. Collectively, this study highlights the critical role of the FOXO1-NCOA4 axis in regulating ferritinophagy and ferroptosis in cisplatin-induced SGNs damage, offering promising therapeutic targets for SNHL mitigation.
Collapse
Affiliation(s)
- Xue Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yu Meng
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fang Chen
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Jinzhu Zhuang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Man Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Weibin An
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yuechen Han
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Wenwen Liu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| |
Collapse
|
3
|
Duan WL, Ma YP, Wang XJ, Ma CS, Han B, Sheng ZM, Dong H, Zhang LY, Li PA, Zhang BG, He MT. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis. Eur J Pharmacol 2024; 972:176553. [PMID: 38574838 DOI: 10.1016/j.ejphar.2024.176553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Chang-Sheng Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Bo Han
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China.
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China; Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
4
|
Zhang F, Zhang Y, Zhou Q, Shi Y, Gao X, Zhai S, Zhang H. Using machine learning to identify proteomic and metabolomic signatures of stroke in atrial fibrillation. Comput Biol Med 2024; 173:108375. [PMID: 38569232 DOI: 10.1016/j.compbiomed.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia, with stroke being its most detrimental comorbidity. The exact mechanism of AF related stroke (AFS) still needs to be explored. In this study, we integrated proteomics and metabolomics platform to explore disordered plasma proteins and metabolites between AF patients and AFS patients. There were 22 up-regulated and 31 down-regulated differentially expressed proteins (DEPs) in AFS plasma samples. Moreover, 63 up-regulated and 51 down-regulated differentially expressed metabolites (DEMs) were discovered in AFS plasma samples. We integrated proteomics and metabolomics based on the topological interactions of DEPs and DEMs, which yielded revealed several related pathways such as arachidonic acid metabolism, serotonergic synapse, purine metabolism, tyrosine metabolism and steroid hormone biosynthesis. We then performed a machine learning model to identify potential biomarkers of stroke in AF. Finally, we selected 6 proteins and 6 metabolites as candidate biomarkers for predicting stroke in AF by random forest, the area under the curve being 0.976. In conclusion, this study provides new perspectives for understanding the progressive mechanisms of AF related stroke and discovering innovative biomarkers for determining the prognosis of stroke in AF.
Collapse
Affiliation(s)
- Fan Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Zhang
- Beidahuang Industry Group General Hospital, Harbin, 150001, China
| | - Qi Zhou
- Research Management Office, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yuanqi Shi
- Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiangyuan Gao
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Siqi Zhai
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haiyu Zhang
- Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
5
|
Yang K, Liu J, He T, Dong W. Caffeine and neonatal acute kidney injury. Pediatr Nephrol 2024; 39:1355-1367. [PMID: 37665410 DOI: 10.1007/s00467-023-06122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Acute kidney injury is one of the most threatening diseases in neonates, with complex pathogenesis and limited treatment options. Caffeine is a commonly used central nervous system stimulant for treating apnea in preterm infants. There is compelling evidence that caffeine may have potential benefits for preventing neonatal acute kidney injury, but comprehensive reports are lacking in this area. Hence, this review aims to provide a summary of clinical data on the potential benefits of caffeine in improving neonatal acute kidney injury. Additionally, it delves into the molecular mechanisms underlying caffeine's effects on acute kidney injury, with a focus on various aspects such as oxidative stress, adenosine receptors, mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome, autophagy, p53, and gut microbiota. The ultimate goal of this review is to provide information for healthcare professionals regarding the link between caffeine and neonatal acute kidney injury and to identify gaps in our current understanding.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Ting He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
6
|
Wang Y, Xu X, Shui X, Ren R, Liu Y. Molecular subtype identification of cerebral ischemic stroke based on ferroptosis-related genes. Sci Rep 2024; 14:9350. [PMID: 38653998 PMCID: PMC11039763 DOI: 10.1038/s41598-024-53327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Cerebral ischemic stroke (CIS) has the characteristics of a high incidence, disability, and mortality rate. Here, we aimed to explore the potential pathogenic mechanisms of ferroptosis-related genes (FRGs) in CIS. Three microarray datasets from the Gene Expression Omnibus (GEO) database were utilized to analyze differentially expressed genes (DEGs) between CIS and normal controls. FRGs were obtained from a literature report and the FerrDb database. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to screen hub genes. The receiver operating characteristic (ROC) curve was adopted to evaluate the diagnostic value of key genes in CIS, followed by analysis of immune microenvironment, transcription factor (TF) regulatory network, drug prediction, and molecular docking. In total, 128 CIS samples were divided into 2 subgroups after clustering analysis. Compared with cluster A, 1560 DEGs were identified in cluster B. After the construction of the WGCNA and PPI network, 5 hub genes, including MAPK3, WAS, DNAJC5, PRKCD, and GRB2, were identified for CIS. Interestingly, MAPK3 was a FRG that differentially expressed between cluster A and cluster B. The expression levels of 5 hub genes were all specifically highly in cluster A subtype. It is noted that neutrophils were the most positively correlated with all 5 real hub genes. PRKCD was one of the target genes of FASUDIL. In conclusion, five real hub genes were identified as potential diagnostic markers, which can distinguish the two subtypes well.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China.
| | - Xinjuan Xu
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Xinjun Shui
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Ruilin Ren
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Yu Liu
- Department of Surgical, Peking University First Hospital Taiyuan, Taiyuan, China
| |
Collapse
|
7
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2024:10.1007/s12033-024-01140-7. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
8
|
Chen X, Gu J, Zhang X. Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction. Cardiology 2024; 149:369-382. [PMID: 38574466 PMCID: PMC11309082 DOI: 10.1159/000538409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND In recent years, the mechanistic interaction between the brain and heart has been explored in detail, which explains the effects of brain injuries on the heart and those of cardiac dysfunction on the brain. Brain injuries are the predominant cause of post-stroke deaths, and cardiac dysfunction is the second leading cause of mortality after stroke onset. SUMMARY Several studies have reported the association between brain injuries and cardiac dysfunction. Therefore, it is necessary to study the influence on the heart post-stroke to understand the underlying mechanisms of stroke and cardiac dysfunction. This review focuses on the mechanisms and the effects of cardiac dysfunction after the onset of stroke (ischemic or hemorrhagic stroke). KEY MESSAGES The role of the site of stroke and the underlying mechanisms of the brain-heart axis after stroke onset, including the hypothalamic-pituitary-adrenal axis, inflammatory and immune responses, brain-multi-organ axis, are discussed.
Collapse
Affiliation(s)
- Xiaosheng Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Li Y, Shen Q, Huang L, Li B, Zhang Y, Wang W, Zhao B, Gao W. Anti-aging Factor GRSF1 Attenuates Cerebral Ischemia-Reperfusion Injury in Mice by Inhibiting GPX4-Mediated Ferroptosis. Mol Neurobiol 2024; 61:2151-2164. [PMID: 37861894 DOI: 10.1007/s12035-023-03685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Abnormal accumulation of senescent cells in tissues has been shown to facilitate the onset and progression of various diseases. As an important protein involving in the regulation of cellular senescence process, researches suggested GRSF1 as a potential senolytic target to improve multiple physiological and pathological processes. However, the underlying mechanism of cellular senescence on cerebral ischemia-reperfusion injury (CIRI) has not been revealed. Here, we investigated the effect of GRSF1 on CIRI and delved into its specific mechanisms. In the present study, we established a mouse model of cerebral ischemia-reperfusion (CIR) and observed low expression of anti-aging factor GRSF1, along with greatly increased levels of senescence-related markers p16 and p21 and senescence-associated secretory phenotype TNF-α. Furthermore, we found that the expression of GPX4 was elevated parallel to GRSF1 in CIR mice with overexpression of GRSF1, oxidative stress, and iron metabolism-related proteins were inhibited. Functionally, overexpressing GRSF1 significantly ameliorated infarct volume and neurological function scores and suppressed apoptosis in CIR mice, while administration of GPX4 inhibitors reversed these beneficial phenotypes. Taken together, our results indicate cellular senescence as an important pathological mechanism to exacerbate cerebral injury during CIRI, while GRSF1 could inhibit oxidative stress-mediated ferroptosis through upregulating GPX4 to attenuate reperfusion injury, which makes senolytic treatment, especially GRSF1, a promising therapeutic target for CIRI.
Collapse
Affiliation(s)
- Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lidan Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Zhang Y, Ye P, Zhu H, Gu L, Li Y, Feng S, Zeng Z, Chen Q, Zhou B, Xiong X. Neutral polysaccharide from Gastrodia elata alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling pathway. CNS Neurosci Ther 2024; 30:e14456. [PMID: 37752806 PMCID: PMC10916450 DOI: 10.1111/cns.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
AIMS The crosstalk between ferroptosis and neuroinflammation considerably impacts the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Neutral polysaccharide from Gastrodia elata (NPGE) has shown significant effects against oxidative stress and inflammation. This study investigated the potential effects of NPGE on CIRI neuropathology. METHODS The effects of NPGE were studied in a mouse model of ischemic stroke (IS) and in oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cells. RESULTS NPGE treatment decreased neurological deficits, reduced infarct volume, and alleviated cerebral edema in IS mice, and promoted the survival of OGD/R-induced HT22 cells. Mechanistically, NPGE treatment alleviated neuronal ferroptosis by upregulating GPX4 levels, lowering reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ excessive hoarding, and meliorating GSH levels and SOD activity. Additionally, it inhibited neuroinflammation by down-regulating the level of IL-1β, IL-6, TNF-α, NLRP3, and HMGB1. Meanwhile, NPGE treatment alleviated ferroptosis and inflammation in erastin-stimulated HT22 cells. Furthermore, NPGE up-regulated the expression of NRF2 and HO-1 and promoted the translocation of NRF2 into the nucleus. Using the NRF2 inhibitor brusatol, we verified that NRF2/HO-1 signaling mediated the anti-ferroptotic and anti-inflammatory properties of NPGE. CONCLUSION Collectively, our results demonstrate the protective effects of NPGE and highlight its therapeutic potential as a drug component for CIRI treatment.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Peng Ye
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijuan Gu
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuntao Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Department of Neurosurgery, The Affiliated Huzhou HospitalZhejiang University School of Medicine (Huzhou Central Hospital)HuzhouChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qianxue Chen
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
11
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
12
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
13
|
Dabbagh Ohadi MA, Maroufi SF, Mohammadi MR, Hosseini Siyanaki MR, Khorasanizadeh M, Kellner CP. Ferroptosis as a Therapeutic Target in Subarachnoid Hemorrhage. World Neurosurg 2024; 182:52-57. [PMID: 37979679 DOI: 10.1016/j.wneu.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular disorder with significant mortality and morbidity. Neural injury in SAH is mediated through a variety of pathophysiological processes. Currently available treatments are either nonspecific in targeting the basic pathophysiological mechanisms that result in neural damage in SAH, or merely focus on vasospasm. Ferroptosis is a type of programmed iron dependent cell death, which has received attention due to its possible role in neural injury in SAH. Herein, we review how intracellular iron overload mediates the production of reactive free radicals and lipid peroxidation through a variety of biochemical pathways in SAH. This in turn results in induction of ferroptosis, as well as exacerbation of vasospasm. We also discuss several therapeutic agents that have been shown to inhibit ferroptosis through targeting different steps of the process. Such agents have proven effective in ameliorating vasospasm, neural damage, and neurobehavioral outcomes in animal models of SAH. Human studies to test the safety and efficacy of intrathecal or parenteral administration of the inhibitors of ferroptosis in improving outcomes of SAH patients are warranted. There are currently a few ongoing clinical trials pursuing this therapeutic concept, the results of which will be critical to determine the value of ferroptosis as a novel therapeutic target in SAH.
Collapse
Affiliation(s)
- Mohammad Amin Dabbagh Ohadi
- Departments of Pediatric Neurosurgery Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Farzad Maroufi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - MirHojjat Khorasanizadeh
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, New York, USA.
| | - Christopher P Kellner
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, New York, USA
| |
Collapse
|
14
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
15
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Cao C, Lu T, Cheng Q, Cui G, Wang Z, Li X, Li H, Gao H, Shen H, Sun Q. Restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and improved neurological deficits after experimental subarachnoid hemorrhage. Brain Res 2023; 1820:148556. [PMID: 37648093 DOI: 10.1016/j.brainres.2023.148556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Ferroptosis is an important therapeutic target to alleviate early brain injury (EBI) after subarachnoid hemorrhage (SAH), yet the mechanism of neuronal ferroptosis after SAH remains unclear. System xc- dysfunction is one of the key pathways to induce ferroptosis. System xc- activity is mainly regulated by the expression of xCT. This study was designed to investigate the effect of xCT expression and System xc- activity on ferroptosis and EBI in an experimental SAH model both in vitro and in vivo. METHODS SAH was induced in adult male Sprague-Dawley rats by injecting autologous blood into the prechiasmatic cistern. Primary neurons treated with oxyhemoglobin (10 µM) were used to mimic SAH in vitro. Plasmid transfection was used to induce xCT overexpression. Western blotting, immunofluorescence staining, measurement of cystine uptake, enzyme-linked immunosorbent assay, transmission electron microscopy, Nissl staining, and a series of neurobehavioral tests were conducted to explore the role of xCT and System xc- activity in ferroptosis and EBI after SAH. RESULTS We found that System xc- dysfunction induced ferroptosis and exacerbated EBI after SAH in rats. xCT deficiency after SAH resulted in System xc- dysfunction, weakened neuronal antioxidant capacity and activated neuronal ferroptosis. xCT overexpression improved neuronal antioxidant capacity and inhibited neuronal ferroptosis by restoring System xc- activity. Rats with xCT overexpression after SAH presented with attenuated brain edema and inflammation, increased neuronal survival, and ameliorated neurological deficits. CONCLUSIONS Our study revealed that restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and EBI and improved neurological deficits after SAH.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Intensive Care Unit, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China; Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China.
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Qian Cheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Heng Gao
- Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City 214400, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
17
|
Tan Q, Zhang X, Li S, Liu W, Yan J, Wang S, Cui F, Li D, Li J. DMT1 differentially regulates mitochondrial complex activities to reduce glutathione loss and mitigate ferroptosis. Free Radic Biol Med 2023; 207:32-44. [PMID: 37419216 DOI: 10.1016/j.freeradbiomed.2023.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Mitochondria are vital for energy production and redox homeostasis, yet knowledge of relevant mechanisms remains limited. Here, through a genome-wide CRISPR-Cas9 knockout screening, we have identified DMT1 as a major regulator of mitochondria membrane potential. Our findings demonstrate that DMT1 deficiency increases the activity of mitochondrial complex I and reduces that of complex III. Enhanced complex I activity leads to increased NAD+ production, which activates IDH2 by promoting its deacetylation via SIRT3. This results in higher levels of NADPH and GSH, which improve antioxidant capacity during Erastin-induced ferroptosis. Meanwhile, loss of complex III activity impairs mitochondrial biogenesis and promotes mitophagy, contributing to suppression of ferroptosis. Thus, DMT1 differentially regulates activities of mitochondrial complex I and III to cooperatly suppress Erastin-induced ferroptosis. Furthermore, NMN, an alternative method of increasing mitochondrial NAD+, exhibits similar protective effects against ferroptosis by boosting GSH in a manner similar to DMT1 deficiency, shedding a light on potential therapeutic strategy for ferroptosis-related pathologies.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiaoqian Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Shuxiang Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenbin Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jiaqi Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Siqi Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Feng Cui
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dan Li
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, 066000, China.
| | - Jun Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
18
|
Cao L, Zhao S, Han K, Fan L, Zhao C, Yin S, Hu H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J Nutr Biochem 2023; 120:109427. [PMID: 37549833 DOI: 10.1016/j.jnutbio.2023.109427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death driven by excessive oxidation of polyunsaturated phospholipids on cellular membranes. Accumulating evidence suggests that ferroptosis has been implicated in the pathological process of various diseases, such as cardiovascular diseases, neurological diseases, liver diseases, kidney injury, lung injury, diabetes, and cancer. Targeting ferroptosis is therefore considered to be a reasonable strategy to fight against ferroptosis-associated diseases. Many dietary bioactive agents have been identified to be able to either suppress or promote ferroptosis, indicating that ferroptosis-based intervention by dietary approach may be an effective strategy for preventing and treating diseases associated with ferroptosis dysregulation. In this review, we summarize the present understanding of the functional role of ferroptosis in the pathogenesis of aforementioned diseases with an emphasis on the evidence of managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis and propose issues that need to be addressed to promote practical application of dietary approach targeting ferroptosis.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Yeh SJ, Chen CH, Lin YH, Tsai LK, Lee CW, Tang SC, Jeng JS. Association of Ferroptosis with Severity and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: A Case-control Study. Mol Neurobiol 2023; 60:5902-5914. [PMID: 37357230 DOI: 10.1007/s12035-023-03448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Ferroptosis, an iron-dependent form of cell death, is characterized by intracellular accumulation of iron and reactive oxygen species-induced lipid peroxidation. Animal experiments have shown the important roles of ferroptosis in ischemic stroke, but the evidence in human stroke is insufficient. This prospective study evaluated the associations between plasma ferroptosis biomarkers at hyperacute stage and long-term outcomes in patients with acute ischemic stroke undergoing endovascular thrombectomy (EVT). The plasma samples were collected immediately before and after EVT (T1 and T2) and at 24 h (T3) for the 126 stroke patients and once for the 50 stroke-free control subjects. Compared with controls, stroke patients had higher 4-hydroxynonenal (4-HNE) levels at T1 and T2 while lower homocysteine and soluble transferrin receptor (sTfR) levels at T3. In stroke patients, higher National Institutes of Health Stroke Scale scores at admission were correlated with higher 4-HNE and lower sTfR levels. Lower Alberta Stroke Program Early CT (ASPECT) scores and larger infarct core volumes on CT perfusion before EVT were correlated with higher 4-HNE and homocysteine levels. After adjusting for significant parameters, homocysteine levels at T2 were significantly associated with poor functional outcome and mortality at 3 months. In the receiver operating characteristic (ROC) models, adding homocysteine levels at T2 and hemoglobin levels to the reference model for predicting poor functional outcome significantly increased the area under the ROC curve. In summary, this study provides evidence that ferroptosis is associated with stroke severity and outcomes in patients with acute ischemic stroke undergoing EVT.
Collapse
Affiliation(s)
- Shin-Joe Yeh
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| | - Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| | - Yen-Heng Lin
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan.
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan.
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan
| |
Collapse
|
20
|
Li C, Wu Y, Chen Q, Luo Y, Liu P, Zhou Z, Zhao Z, Zhang T, Su B, Sun T, Jiang C. Pleiotropic Microenvironment Remodeling Micelles for Cerebral Ischemia-Reperfusion Injury Therapy by Inhibiting Neuronal Ferroptosis and Glial Overactivation. ACS NANO 2023; 17:18164-18177. [PMID: 37703316 DOI: 10.1021/acsnano.3c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Reperfusion injury presents a significant obstacle to neuronal survival following successful recanalization in ischemic stroke, which is characterized by intricate pathophysiological processes comprising numerous interconnected pathways. Oxidative stress-induced neuronal ferroptosis and the overactivation of glial cells play important roles in this phenomenon. In this study, we developed a targeted cross-linked micelle loaded with idebenone to rescue the ischemic penumbra by inhibiting neuronal ferroptosis and glial overactivation. In rat models, the CREKA peptide-modified micelles accumulate in the damaged brain via binding to microthrombi in the ipsilateral microvessels. Upon reactive oxygen species (ROS) stimulation, diselenide bonds within the micelles are transformed to hydrophilic seleninic acids, enabling synchronized ROS consumption and responsive drug release. The released idebenone scavenges ROS, prevents oxidative stress-induced neuronal ferroptosis, attenuates glial overactivation, and suppresses pro-inflammatory factors secretion, thereby modulating the inflammatory microenvironment. Finally, this micelle significantly reinforces neuronal survival, reduces infarct volume, and improves behavioral function compared to the control groups. This pleiotropic therapeutic micelle provides a proof-of-concept of remodeling the lesion microenvironment by inhibiting neuronal ferroptosis and glial overactivation to treat cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
21
|
Schreiner OD, Schreiner TG. Iron chelators as a therapeutic option for Alzheimer's disease-A mini-review. FRONTIERS IN AGING 2023; 4:1234958. [PMID: 37602277 PMCID: PMC10433644 DOI: 10.3389/fragi.2023.1234958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative disorders, particularly Alzheimer's disease (AD), remain a great challenge regarding the finding of effective treatment, one main reason being the incomplete understanding of their etiology. With many intensely debated hypotheses, a newer approach based on the impact of iron imbalance in sustaining neurodegeneration in the central nervous system becomes increasingly popular. Altered iron homeostasis leads to increased iron accumulation in specific brain areas, explaining the clinical picture of AD patients. Moreover, growing evidence sustains the significant impact of iron metabolism in relationship to other pathological processes encountered in the AD-affected brain, such as the amyloidogenic pathway, chronic inflammation, or oxidative stress. In this context, this mini-review aims to summarize the novel data from the continuously expanding literature on this topic in a didactic manner. Thus, in the first part, the authors briefly highlight the most relevant aspects related to iron absorption, transport, regulation, and elimination at the cerebral level, focusing on the role of the blood-brain barrier and the newer concept of ferroptosis. Subsequently, currently available iron chelation therapies are discussed, including an overview of the most relevant clinical trials on this topic. In the final part, based on the latest results from in vitro and in vivo studies, new research directions are suggested to enhance the development of effective antidementia therapies.
Collapse
Affiliation(s)
- Oliver Daniel Schreiner
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Medical Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Thomas Gabriel Schreiner
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| |
Collapse
|
22
|
Lv Y, Wu M, Wang Z, Wang J. Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases. Cell Biol Toxicol 2023; 39:827-851. [PMID: 36459356 DOI: 10.1007/s10565-022-09778-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
Ferroptosis is a regulated cell death mainly manifested by iron-dependent lipid peroxide accumulation. The leading cause of ferroptosis is the imbalance of intracellular oxidative systems (e.g., LOXs, POR, ROS) and antioxidant systems (e.g., GSH/GPx4, CoQ10/FSP1, BH4/GCH1), which is regulated by a complex network. In the past decade, this metabolic network has been continuously refined, and the links with various pathophysiological processes have been gradually established. Apoptosis has been regarded as the only form of regulated cell death for a long time, and the application of chemotherapeutic drugs to induce apoptosis of cancer cells is the mainstream method. However, studies have reported that cancer cells' key features are resistance to apoptosis and chemotherapeutics. For high proliferation, cancer cells often have very active lipid metabolism and iron metabolism, which pave the way for ferroptosis. Interestingly, researchers found that drug-resistant or highly aggressive cancer cells are more prone to ferroptosis. Therefore, ferroptosis may be a potential strategy to eliminate cancer cells. In addition, links between ferroptosis and other diseases, such as neurological disorders and ischemia-reperfusion injury, have also been found. Understanding these diseases from the perspective of ferroptosis may provide new insights into clinical treatment. Herein, the metabolic processes in ferroptosis are reviewed, and the potential mechanisms and targets of ferroptosis in different diseases are summarized.
Collapse
Affiliation(s)
- Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
23
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
24
|
Yu Y, Li X, Wu X, Li X, Wei J, Chen X, Sun Z, Zhang Q. Sodium hydrosulfide inhibits hemin-induced ferroptosis and lipid peroxidation in BV2 cells via the CBS/H 2S system. Cell Signal 2023; 104:110594. [PMID: 36646297 DOI: 10.1016/j.cellsig.2023.110594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Ferroptosis is a form of iron-dependent programmed cell death discovered in recent years that has been shown to be involved in diverse neurological disorders. Hydrogen sulfide (H2S) is an important signaling molecule with neuroprotective effects, including antioxidation. However, whether the protective mechanism of H2S is related to ferroptosis remains unknown. Therefore, in this study, we focused on the protective mechanisms of sodium hydrosulfide (NaHS, a donor of H2S) against ferroptosis caused by intracerebral hemorrhage (ICH) using a hemin-induced BV2 cell injury model in vitro. Our results indicated that NaHS enhanced cell viability and reduced hemin-induced lactate dehydrogenase (LDH) release. NaHS suppressed ferroptosis after hemin treatment, which was confirmed by attenuated reactive oxygen species (ROS) and lipid peroxidation, maintained iron homeostasis, recovery of the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7-member 11 (SLC7A11), and increased glutathione (GSH) production. Moreover, we demonstrated that inhibiting ferroptosis improved cell survival and prevented hemin-induced oxidative stress. In addition, NaHS was also able to block ferroptosis inducer RSL3-induced ferroptotic cell death. We also found that NaHS increased cystathionine-β-synthase (CBS) expression and H2S levels after hemin treatment. Furthermore, NaHS-induced ferroptosis reduction was inhibited by the CBS inhibitor aminooxyacetic acid (AOAA) as well as by CBS small interference RNA (siCBS). In summary, these findings demonstrated that NaHS protects against hemin-induced ferroptosis by reducing lipid peroxidation, inhibiting iron overload, increasing GSH production, and improving GPX4 and SLC7A11 via the CBS/H2S system. The CBS/H2S system may be a promising target for preventing ferroptosis after ICH.
Collapse
Affiliation(s)
- Yang Yu
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, China
| | - Xinghui Li
- Department of Epidemiology and Biostatistics, College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China; School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xinglong Li
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xianjin Chen
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhouyuan Sun
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qinghua Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
25
|
Ko G, Kim J, Jeon YJ, Lee D, Baek HM, Chang KA. Salvia miltiorrhiza Alleviates Memory Deficit Induced by Ischemic Brain Injury in a Transient MCAO Mouse Model by Inhibiting Ferroptosis. Antioxidants (Basel) 2023; 12:antiox12040785. [PMID: 37107160 PMCID: PMC10135292 DOI: 10.3390/antiox12040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Salvia miltiorrhiza (SM) has been used in oriental medicine for its neuroprotective effects against cardiovascular diseases and ischemic stroke. In this study, we investigated the therapeutic mechanism underlying the effects of SM on stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Our results showed that SM administration significantly attenuated acute brain injury, including brain infarction and neurological deficits, 3 days after tMCAO. This was confirmed by our magnetic resonance imaging (MRI) study, which revealed a reduction in brain infarction with SM administration, as well as our magnetic resonance spectroscopy (MRS) study, which demonstrated the restoration of brain metabolites, including taurine, total creatine, and glutamate. The neuroprotective effects of SM were associated with the reduction in gliosis and upregulation of inflammatory cytokines, such as interleukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α), along with the upregulation of phosphorylated STAT3 in post-ischemic brains. SM also reduced the levels of 4-Hydroxynonenal (4-HNE) and malondialdehyde (MDA), which are markers of lipid peroxidation, induced by oxidative stress upregulation in the penumbra of the tMCAO mouse brain. SM administration attenuated ischemic neuronal injury by inhibiting ferroptosis. Additionally, post-ischemic brain synaptic loss and neuronal loss were alleviated by SM administration, as demonstrated by Western blot and Nissl staining. Moreover, daily administration of SM for 28 days after tMCAO significantly reduced neurological deficits and improved survival rates in tMCAO mice. SM administration also resulted in improvement in post-stroke cognitive impairment, as measured by the novel object recognition and passive avoidance tests in tMCAO mice. Our findings suggest that SM provides neuroprotection against ischemic stroke and has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Geon Ko
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Yeong-Jae Jeon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
26
|
Hu Y, Hu H, Yin L, Wang L, Luo K, Luo N. Arachidonic acid impairs the function of the blood-testis barrier via triggering mitochondrial complex-ROS-P38 MAPK axis in hyperthermal Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114598. [PMID: 36774800 DOI: 10.1016/j.ecoenv.2023.114598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The death of Sertoli cells (SCs) under condition of heat stress (HS) affects spermatogenesis and is associated with impaired function of the blood-testis barrier (BTB). The fatty acid arachidonic acid (AA) is essential for the maintenance of cellular function. However, excessive release of AA during HS may adversely affect the reproductive function. The molecular mechanisms through which AA modulates the BTB in SCs are unclear. In this study, we found that 100 µM AA damaged testicular morphology and accelerated SC apoptosis during HS, reducing the stability of tight junction proteins (TJPs), shown by measurement of the levels of Claudin 11, 5, Occludin, and trans-epithelial electrical resistance (TEER). It was also found that AA adversely affected TJPs by increasing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), activating p38 mitogen-activated protein kinases (P38 MAPK) and reducing mitochondria DNA (mtDNA) and the expression of mitochondrial complexes I and III. In contrast, pretreatment with SB203508 (a P38 MAPK inhibitor), Rotenone (an inhibitor of complex I) and Antimycin A1 (an inhibitor of complex III) reversed TJPs degradation induced by AA. Interestingly, pretreatment of cells with 10 µM Baicalein, a 12/15 lipoxygenase (12/15-LOX) -dependent inhibitor of AA production, protected against AA-induced TJPs degradation, restored mitochondrial function, and reduced apoptosis. These results suggested an intriguing link between the induction of TJPs degradation induced by AA overload and mitochondrial antioxidant function during HS, which was found to be regulated by the mitochondrial complex-ROS-P38 MAPK axis.
Collapse
Affiliation(s)
- Yu Hu
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Hu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ling Yin
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - KeYan Luo
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - NanJian Luo
- Department of Preclinical Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
27
|
Liu X, Du Y, Liu J, Cheng L, He W, Zhang W. Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain Res Bull 2023; 193:146-157. [PMID: 36596364 DOI: 10.1016/j.brainresbull.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the major cause of disability and death worldwide, but post-stroke neuronal death and related mechanisms remain unclear. Ferroptosis, a newly identified type of regulated cell death, has been shown to be associated with neurological disorders, yet the exact relationship between ferroptosis and ischemic stroke has not been elucidated. The purpose of this study is to investigate the effects of ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) on neuronal injury after cerebral ischemia/reperfusion (I/R) and the underlying mechanism. In this study, we demonstrated that ferroptosis does occur in the stroke model. We found that Fer-1 reduced the levels of iron and malondialdehyde, and increased the content of glutathione and the expression of solute carrier family 7 member 11 and glutathione peroxidase 4 in cerebral I/R models. Additionally, Fer-1 significantly reduced the infarct volume and improved neurobehavioral outcomes. Moreover, we found that Fer-1 increased the levels of phosphorylated AKT and GSK3β following cerebral I/R. To further investigate the functional role of the AKT in the neuroprotective effects of Fer-1, MCAO models and oxygen-glucose deprivation-induced HT22 cells were pretreated with the AKT inhibitor MK-2206 before treatment with Fer-1 and the protective effects of Fer-1 were reversed. In conclusion, Fer-1 has protective effects on cerebral I/R injury by activating the AKT/GSK3β pathway, indicating that ferroptosis may become a novel target in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xinyao Liu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yue Du
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Linggang Cheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Liu YS, Zhang GY, Hou Y. Theoretical and Experimental Investigation of the Antioxidation Mechanism of Loureirin C by Radical Scavenging for Treatment of Stroke. Molecules 2023; 28:380. [PMID: 36615573 PMCID: PMC9822359 DOI: 10.3390/molecules28010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023] Open
Abstract
Recent pharmacological studies have shown that dragon's blood has an anti-cerebral ischemia effect. Loureirin C (LC), a kind of dihydrochalcone compound in dragon's blood, is believed to be play an important role in the treatment of ischemia stroke, but fewer studies for LC have been done. In this paper, we report the first experimental and theoretical studies on the antioxidation mechanism of LC by radical scavenging. The experimental studies show that LC has almost no effect on cell viability under 15 μM for the SH-SY5Y cells without any treatments. For the SH-SY5Y cells with oxygen and glucose deprivation-reperfusion (OGD/R) treatment, LC increased the viability of SH-SY5Y cells. The results of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox Red experiments indicate that LC is very efficient in inhibiting the generation of the intracellular/mitochondrial reactive oxygen species (ROS) or removing these two kinds of generated ROS. The density functional theory (DFT) calculations allowed us to elucidate the antioxidation mechanisms of LC. Fukui function analysis reveals the radical scavenging of LC by hydrogen abstraction mechanism, the complex formation by e-transfer, and radical adduct formation (RAF) mechanism. Among the H-abstraction, the complex formation by e-transfer, and radical adduct formation (RAF) reactions on LC, the H-abstraction at O-H35 position by OH• is favorable with the smallest energy difference between the product and two reactants of the attack of OH• to LC of -0.0748 Ha. The bond dissociation enthalpies (BDE), proton affinities (PA), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE) were calculated to determine thermodynamically preferred reaction pathway for hydrogen abstraction mechanism. In water, IP and the lowest PDE value at O3-H35 position are lower than the lowest BDE value at O3-H35 position; 41.8986 and 34.221 kcal/mol, respectively, indicating that SEPT mechanism is a preferred one in water in comparison with the HAT mechanism. The PA value of O3-H35 of LC in water is -17.8594 kcal/mol, thus the first step of SPLET would occur spontaneously. The minimum value of ETE is higher than the minimum value of PDE at O3-H35 position and IP value, 14.7332 and 22.4108 kcal/mol, respectively, which suggests that the SEPT mechanism is a preferred one in water in comparison with the SPLET mechanism. Thus, we can draw a conclusion that the SEPT mechanism of is the most favorite hydrogen abstraction mechanism in water, and O-H35 hydroxyl group has the greatest ability to donate H-atoms.
Collapse
Affiliation(s)
- Ye-Shu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| | - Guo-Ying Zhang
- College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| |
Collapse
|
29
|
Li B, Wang W, Li Y, Wang S, Liu H, Xia Z, Gao W, Zhao B. cGAS-STING pathway aggravates early cerebral ischemia-reperfusion injury in mice by activating NCOA4-mediated ferritinophagy. Exp Neurol 2023; 359:114269. [PMID: 36343680 DOI: 10.1016/j.expneurol.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Stroke patients are often complicated by cerebral ischemia-reperfusion injury (CIRI) after the restoration of cerebral perfusion, and how to prevent CIRI at an early stage has received close attention. The imbalance of iron metabolism is one of the essential factors in the aggravation of CIRI, and NCOA4-mediated ferritinophagy, as a critical pathway to regulate iron metabolism, is expected to be an effective intervention target. We established a mouse model of cerebral ischemia-reperfusion (CIR) with NCOA4 silencing. We found that activation of NCOA4-mediated ferritinophagy atthe early stage of CIR mediated the onset of oxidative stress and contributed to autophagy and apoptosis, and eventually resulted in increased brain injury. This suggests that NCOA4-mediated ferritinophagy plays a vital role in early CIR and can be an effective target to prevent and treat CIRI. We next explored the upstream regulatory targets of NCOA4-mediated ferritinophagy. The previous evidence for the cGAS-STING pathway's importance during CIR and its strong relationship with autophagy attracted our attention. To investigate whether the cGAS-STING pathway regulates NCOA4-mediated ferritinophagy, we further administered a cGAS inhibitor to mice with CIR and overexpressed NCOA4. Along with the inhibition of the cGAS-STING pathway, ferritinophagy, oxidative stress, autophagy, and apoptosis were inhibited, and CIRI was ameliorated, which was attenuated by NCOA4 overexpression. In conclusion, our results suggest that activation of the cGAS-STING pathway exacerbates CIRI at the early stage of CIR, which may be achieved by mediating NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Su Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hengjuan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
30
|
Zhan S, Liang J, Lin H, Cai J, Yang X, Wu H, Wei J, Wang S, Xian M. SATB1/SLC7A11/HO-1 Axis Ameliorates Ferroptosis in Neuron Cells After Ischemic Stroke by Danhong Injection. Mol Neurobiol 2023; 60:413-427. [PMID: 36274077 DOI: 10.1007/s12035-022-03075-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Neuronal damage after ischemic stroke (IS) is frequently due to ferroptosis, contributing significantly to ischemic injury. However, the mechanism against ferroptosis in IS remained unclear. The aim of this study was to investigate the potential mechanism of Danhong injection (DHI) and the critical transcription factor SATB1 in preventing neuronal ferroptosis after ischemic stroke in vivo and in vitro. The results showed that DHI treatment significantly reduced the infarct area and associated damage in the brains of the pMCAO mice, and enhanced the viability of OGD-injured neurons. And several characteristic indicators of ferroptosis, such as mitochondrial necrosis and iron accumulation, were regulated by DHI after IS. Importantly, we found that the expression and activity of SATB1 were decreased in the pMCAO mice, especially in neuron cells. Meanwhile, the SATB1/SLC7A11/HO-1 signaling pathway was activated after DHI treatment in ischemic stroke and was found to improve neuronal ferroptosis. Inhibition of SATB1 significantly reduced SLC7A11-HO-1 and significantly attenuated the anti-ferroptosis effects of DHI in the OGD model. These findings indicate that neuronal ferroptosis after IS can be alleviated by DHI through SATB1/SLC7A11/HO-1 pathway, and SATB1 may be an attractive therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Sikai Zhan
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayin Liang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinxin Yang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongwei Wu
- China Academy of Chinese Medical Sciences, Dongzhimen 16 Nanxiao Road, Dongcheng District, Beijing, 100700, China
| | - Junying Wei
- China Academy of Chinese Medical Sciences, Dongzhimen 16 Nanxiao Road, Dongcheng District, Beijing, 100700, China.
| | - Shumei Wang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China. .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Minghua Xian
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China. .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Miao M, Han Y, Wang Y, Yang Y, Zhu R, Sun M, Zhang J. The research landscape of ferroptosis in the brain: A bibliometric analysis. Front Pharmacol 2022; 13:1014550. [PMID: 36330097 PMCID: PMC9622939 DOI: 10.3389/fphar.2022.1014550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Ferroptosis is a newly proposed concept of programmed cell death and has been widely studied in many diseases during the past decade. However, a bibliometric study that concentrates on publication outputs and research trends of ferroptosis related to the brain is lacking. Methods: We retrieved publication data in the field of ferroptosis in the brain from the Web of Science Core Collection on 31 December 2021. A bibliometric analysis was performed using VOSviewer and CiteSpace software. Results: Six hundred fifty-six documents focusing on ferroptosis in the brain were published from 2012 to 2021. The number of publications in this field has shown a steady increase in recent years. Most publications were from China (338) and the United States (166), while the most productive organizations were at the University of Melbourne (34) and University of Pittsburgh (23). Ashley I. Bush was the most productive author, while Scott J Dixon was the most co-cited author. The journal Free Radical Biology and Medicine published the most articles in this field, while Cell was the most cited journal. Among 656 publications, top 10 cited documents were cited at least 300 times. Among the top 20 references with the strongest citation bursts, half of the papers had a burst until 2021. The keywords analysis suggests that the top 20 keywords appeared at least 40 times. Additionally, "amyloid precursor protein" was the keyword with strongest bursts. Conclusion: Research on ferroptosis in the brain will continue to be highly regarded. This study analyzed the research landscape of ferroptosis in the brain and offers a new reference for researchers in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, People’s Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Li Y, Guo Z, Xu T, Zhang Y, Zeng L, Huang X, Liu Q. Extracellular vesicles, a novel model linking bacteria to ferroptosis in the future? Appl Microbiol Biotechnol 2022; 106:7377-7386. [PMID: 36216901 DOI: 10.1007/s00253-022-12228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a recently discovered modulated cell death mechanism caused by the accumulation of iron-dependent lipid peroxides to toxic levels and plays an important role in tumor immunology and neurology. Recent studies have shown that ferroptosis may play a crucial role in bacterial infection pathogenesis, which may be useful in anti-infection therapies. However, how bacteria enter cells to induce ferroptosis after invading the host immune system remains largely unknown. In addition, the current studies only focus on the relationship between a single bacterial species or genus and host cell ferroptosis, and there is no systematic summary of its regulatory mechanism. Therefore, our review firstly sums up the role of ferroptosis in bacterial infection and its regulatory mechanism, and innovatively speculates on the function and potential mechanism of extracellular vesicles (EVs) in bacterial-induced ferroptosis, in order to provide possible novel directions and ideas for future anti-infection research. KEY POINTS: • Ferroptosis presents a novel mechanism for bacterial host interaction • EVs provide the potential mechanism for bacterial-induced ferroptosis • The relationship of EVs with ferroptosis provides possible directions for future treatment of bacterial infection.
Collapse
Affiliation(s)
- Yi Li
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.,The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
| | - Zhicheng Guo
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.,The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.,The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
33
|
Liu Z, Zhou Z, Ai P, Zhang C, Chen J, Wang Y. Astragaloside IV attenuates ferroptosis after subarachnoid hemorrhage via Nrf2/HO-1 signaling pathway. Front Pharmacol 2022; 13:924826. [PMID: 36059982 PMCID: PMC9437486 DOI: 10.3389/fphar.2022.924826] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe type of stroke featuring exceptionally high rate of morbidity and mortality due to the lack of effective management. Ferroptosis can be defined as a novel iron-dependent programmed cell death in contrast to classical apoptosis and necrosis. Astragaloside IV (AS-IV) is an active ingredient extracted from Astragalus membranaceus with established therapeutic effect on CNS diseases. However, the exact role of ferroptosis in Astragaloside IV-mediated neuroprotection after SAH is yet to be demonstrated. In the present study, the SAH model of SD male rats with endovascular perforation was used to gauge the neuroprotective effect of AS-IV on SAH-induced early brain injury (EBI) and to clarify the potential molecular mechanism. We found that the induction of SAH reduced the levels of SLC7A11 and glutathione peroxidase 4 (GPX4) in the brain, exacerbated iron accumulation, enhanced lipid reactive oxygen species (ROS) level, and stimulated neuronal ferroptosis. However, the administration of AS-IV and the ferroptosis inhibitor Ferrostatin-1 (Fer-1) enhanced the antioxidant capacity after SAH and suppressed the accumulation of lipid peroxides. Meanwhile, AS-IV triggered Nrf2/HO-1 signaling pathway and alleviated ferroptosis due to the induction of SAH. The Nrf2 inhibitor ML385 blocked the beneficial effects of neuroprotection. These results consistently suggest that ferroptosis is profoundly implicated in facilitating EBI in SAH, and that AS-IV thwarts the process of ferroptosis in SAH by activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuhai Wang
- *Correspondence: Junhui Chen, ; Yuhai Wang,
| |
Collapse
|
34
|
Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, Ji J. Emerging Mechanisms and Targeted Therapy of Ferroptosis in Neurological Diseases and Neuro-oncology. Int J Biol Sci 2022; 18:4260-4274. [PMID: 35844784 PMCID: PMC9274504 DOI: 10.7150/ijbs.72251] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a novel type of cell death characterized by iron-dependent lipid peroxidation that involves a variety of biological processes, such as iron metabolism, lipid metabolism, and oxidative stress. A growing body of research suggests that ferroptosis is associated with cancer and neurodegenerative diseases, such as glioblastoma, Alzheimer's disease, Parkinson's disease, and stroke. Building on these findings, we can selectively induce ferroptosis for the treatment of certain cancers, or we can treat neurodegenerative diseases by inhibiting ferroptosis. This review summarizes the relevant advances in ferroptosis, the regulatory mechanisms of ferroptosis, the participation of ferroptosis in brain tumors and neurodegenerative diseases, and the corresponding drug therapies to provide new potential targets for its treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Junguo Hui
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
35
|
Wang K, Wang J, Zhang J, Zhang A, Liu Y, Zhou J, Wang X, Zhang J. Ferroptosis in Glioma Immune Microenvironment: Opportunity and Challenge. Front Oncol 2022; 12:917634. [PMID: 35832539 PMCID: PMC9273259 DOI: 10.3389/fonc.2022.917634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Glioma is the most common intracranial malignant tumor in adults and the 5-year survival rate of glioma patients is extremely poor, even in patients who received Stupp treatment after diagnosis and this forces us to explore more efficient clinical strategies. At this time, immunotherapy shows great potential in a variety of tumor clinical treatments, however, its clinical effect in glioma is limited because of tumor immune privilege which was induced by the glioma immunosuppressive microenvironment, so remodeling the immunosuppressive microenvironment is a practical way to eliminate glioma immunotherapy resistance. Recently, increasing studies have confirmed that ferroptosis, a new form of cell death, plays an important role in tumor progression and immune microenvironment and the crosstalk between ferroptosis and tumor immune microenvironment attracts much attention. This work summarizes the progress studies of ferroptosis in the glioma immune microenvironment.
Collapse
Affiliation(s)
- Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China.,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
36
|
Liu Y, Zhou L, Xu Y, Li K, Zhao Y, Qiao H, Xu Q, Zhao J. Heat Shock Proteins and Ferroptosis. Front Cell Dev Biol 2022; 10:864635. [PMID: 35478955 PMCID: PMC9035830 DOI: 10.3389/fcell.2022.864635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a new form of regulatory cell death named by Dixon in 2012, which is characterized by the accumulation of lipid peroxides and iron ions. Molecular chaperones are a class of evolutionarily conserved proteins in the cytoplasm. They recognize and bind incompletely folded or assembled proteins to help them fold, transport or prevent their aggregation, but they themselves do not participate in the formation of final products. As the largest number of molecular chaperones, heat shock proteins can be divided into five families: HSP110 (HSPH), HSP90 (HSPC), HSP70 (HSPA), HSP40 (DNAJ) and small heat shock proteins (HSPB). Different heat shock proteins play different roles in promoting or inhibiting ferroptosis in different diseases. It is known that ferroptosis is participated in tumors, nervous system diseases, renal injury and ischemia-reperfusion injury. However, there are few reviews about the relationship of heat shock proteins and ferroptosis. In this study, we systematically summarize the roles of heat shock proteins in the occurrence of ferroptosis, and predict the possible mechanisms of different families of heat shock proteins in the development of ferroptosis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
- *Correspondence: Ying Liu, ; Jie Zhao,
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ying Liu, ; Jie Zhao,
| |
Collapse
|
37
|
Peng W, Ouyang Y, Wang S, Hou J, Zhu Z, Yang Y, Zhou R, Pi R. L-F001, a Multifunctional Fasudil-Lipoic Acid Dimer Prevents RSL3-Induced Ferroptosis via Maintaining Iron Homeostasis and Inhibiting JNK in HT22 Cells. Front Cell Neurosci 2022; 16:774297. [PMID: 35431808 PMCID: PMC9008309 DOI: 10.3389/fncel.2022.774297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, plays important roles in cerebral ischemia. Previously we have found that L-F001, a novel fasudil-lipoic acid dimer with good pharmacokinetic characters has good neuroprotection against toxin-induced cell death in vitro and in vivo. Here, we investigated the protective effects of L-F001 against a Glutathione peroxidase 4 (GPX4) inhibitor Ras-selective lethality 3 (RSL3) -induced ferroptosis in HT22 cells. We performed MTT, Transmission Electron Microscope (TEM), Western blot, and immunofluorescence analyses to determine the protective effects of L-F001 treatment. RSL3 treatment significantly reduced HT22 cell viability and L-F001 significantly protected RSL3-induced cell death in a concentration-dependent manner and significantly attenuated Mitochondrial shrinkage observed by TEM. Meanwhile, L-F001 significantly decreased RSL3-induced ROS and lipid peroxidation levels in HT22 cells. Moreover L-F001could restore GPX4 and glutamate-cysteine ligase modifier subunit (GCLM) levels, and significantly deceased Cyclooxygenase (COX-2) levels to rescue the lipid peroxidation imbalance. In addition, FerroOrange fluorescent probe and Western blot analysis revealed that L-F001 treatment decreased the total number of intracellular Fe2+ and restore Ferritin heavy chain 1 (FTH1) level in RSL3-induced HT22 cells. Finally, L-F001 could reduce RSL3-induced c-Jun N-terminal kinase (JNK) activation, which might be a potential drug target for LF-001. Considering that L-F001 has a good anti-ferroptosis effect, our results showed that L-F001 might be a multi-target agent for the therapy of ferroptosis-related diseases, such as cerebral ischemia.
Collapse
Affiliation(s)
- Weijia Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Ouyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ying Ouyang
| | - Shuyi Wang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Hou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruiyu Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Chen Y, Long T, Xu Q, Zhang C. Bibliometric Analysis of Ferroptosis in Stroke From 2013 to 2021. Front Pharmacol 2022; 12:817364. [PMID: 35264947 PMCID: PMC8899397 DOI: 10.3389/fphar.2021.817364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Stroke is a major cause of long-term disability and death, but the clinical therapeutic strategy for stroke is limited and more research must be conducted to explore the possible avenues for stroke treatment and recovery. Since ferroptosis is defined, its role in the body has become the focus of attention and discussion, including in stroke. Methods: In this work, we aim to systematically discuss the “ferroptosis in stroke” research by bibliometric analysis. Documents were retrieved from the Web of Science Core Collection database on October 30, 2021. Statistical analysis and visualization analysis were conducted by the VOSviewer 1.6.15. Results: Ninety-nine documents were identified for bibliometric analysis. Research on “ferroptosis in stroke” has been rapidly developing and has remained the focus of many scholars and organizations in the last few years, but the Chinese groups in this field still lacked collaboration with others. Documents and citation analysis suggested that Rajiv R. Ratan and Brent R. Stockwell are active researchers, and the research by Qingzhang Tuo, Ishraq Alim, and Qian Li are more important drivers in the development of the field. Keywords associated with lipid peroxidation, ferroptosis, iron, oxidative stress, and cell death had high frequency, but apoptosis, necroptosis, pyroptosis, and autophagy had scant research, and there may be more research ideas in the future by scholars. Conclusion: Further exploration of the mechanisms of crosstalk between ferroptosis and other programmed cell death may improve clinical applications and therapeutic effects against stroke. Scholars will also continue to pay attention to and be interested in the hot topic “ferroptosis in stroke”, to produce more exciting results and provide new insights into the bottleneck of stroke treatment.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, China
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Chi Zhang,
| |
Collapse
|
39
|
Ferroptosis-related gene signature correlates with the tumor immune features and predicts the prognosis of glioma patients. Biosci Rep 2021; 41:230149. [PMID: 34726238 PMCID: PMC8655507 DOI: 10.1042/bsr20211640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Glioma is a malignant intracranial tumor and the most fatal cancer. The role of ferroptosis in the clinical progression of gliomas is unclear. Method: Univariate and least absolute shrinkage and selection operator (Lasso) Cox regression methods were used to develop a ferroptosis-related signature (FRSig) using a cohort of glioma patients from the Chinese Glioma Genome Atlas (CGGA), and was validated using an independent cohort of glioma patients from The Cancer Genome Atlas (TCGA). A single-sample gene set enrichment analysis (ssGSEA) was used to calculate levels of the immune infiltration. Multivariate Cox regression was used to determine the independent prognostic role of clinicopathological factors and to establish a nomogram model for clinical application. Results: We analyzed the correlations between the clinicopathological features and ferroptosis-related gene (FRG) expression and established an FRSig to calculate the risk score for individual glioma patients. Patients were stratified into two subgroups with distinct clinical outcomes. Immune cell infiltration in the glioma microenvironment and immune-related indexes were identified that significantly correlated with the FRSig, the tumor mutation burden (TMB), copy number alteration (CNA), and immune checkpoint expression was also significantly positively correlated with the FRSig score. Ultimately, an FRSig-based nomogram model was constructed using the independent prognostic factors age, World Health Organization (WHO) grade, and FRSig score. Conclusion: We established the FRSig to assess the prognosis of glioma patients. The FRSig also represented the glioma microenvironment status. Our FRSig will contribute to improve patient management and individualized therapy by offering a molecular biomarker signature for precise treatment.
Collapse
|
40
|
Tan T, Li J, Luo R, Wang R, Yin L, Liu M, Zeng Y, Zeng Z, Xie T. Recent Advances in Understanding the Mechanisms of Elemene in Reversing Drug Resistance in Tumor Cells: A Review. Molecules 2021; 26:5792. [PMID: 34641334 PMCID: PMC8510449 DOI: 10.3390/molecules26195792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors are life-threatening, and chemotherapy is one of the common treatment methods. However, there are often many factors that contribute to the failure of chemotherapy. The multidrug resistance of cancer cells during chemotherapy has been reported, since tumor cells' sensitivity decreases over time. To overcome these problems, extensive studies have been conducted to reverse drug resistance in tumor cells. Elemene, an extract of the natural drug Curcuma wenyujin, has been found to reverse drug resistance and sensitize cancer cells to chemotherapy. Mechanisms by which elemene reverses tumor resistance include inhibiting the efflux of ATP binding cassette subfamily B member 1(ABCB1) transporter, reducing the transmission of exosomes, inducing apoptosis and autophagy, regulating the expression of key genes and proteins in various signaling pathways, blocking the cell cycle, inhibiting stemness, epithelial-mesenchymal transition, and so on. In this paper, the mechanisms of elemene's reversal of drug resistance are comprehensively reviewed.
Collapse
Affiliation(s)
- Tiantian Tan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruhua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Liyan Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengmeng Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
41
|
Yan N, Xu Z, Qu C, Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 2021; 98:107844. [PMID: 34153667 DOI: 10.1016/j.intimp.2021.107844] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease and its risk factors cause persistent decrease of cerebral blood flow, chronic cerebral hypoperfusion (CCH) is the major foundation of vascular cognitive impairment (VCI). The hippocampus is extremely vulnerable to cerebral ischemia and hypoxia. Oxidative stress and neuroinflammation injury are important pathophysiological mechanisms of this process, which is closely related to hippocampal neurons damage and loss. Dimethyl fumarate (DMF), an FDA-approved therapeutic for multiple sclerosis (MS), plays a protective role in multiple neurological disorders. Studies have shown that DMF exerts anti-inflammatory and antioxidant effects via the NRF2/ARE/NF-κB signaling pathway. Thus, this study aimed to evaluate the neuroprotective effect of DMF in the CCH rat model. Ferroptosis, a novel defined iron-dependent cell death form, were found to be strongly associated with the pathophysiology of CCH. Emerging evidences have shown that inhibition of ferroptosis by targeting NRF2 exerted neuroprotective effect in neurodegeneration diseases. We also investigated whether DMF can alleviate cognitive deficits through inhibition of ferroptosis by the NRF2 signaling pathway in this study. DMF was intragastric for consecutive five weeks (100 mg/kg/day). Then behavior test and histological, molecular, and biochemical analysis were performed. We found that DMF treatment significantly improved cognitive deficits and partially reversed hippocampus neuronal damage and loss caused by CCH. And DMF treatment decreased hippocampus IL-1β, TNF-α, and IL-6 pro-inflammatory cytokines concentration, and mediated the NF-κB signaling pathway. And DMF also alleviated hippocampus oxidative stress through reducing MDA, and increasing GSH and SOD levels, which are also closely associated with ferroptosis. Besides, DMF treatment reduced the expression of PTGS2, and increased the expression of FTH1 and xCT, and the iron content is also reduced, which were the important features related to ferroptosis. Furthermore, DMF activated the NRF2/ARE signaling pathway and upregulated the expression of HO-1, NQO1 and GPX4. These outcomes indicated that DMF can improve cognitive impairment in rats with CCH, possibly through alleviating neuroinflammation, oxidative stress damage and inhibiting ferroptosis of hippocampal neurons. Overall, our results provide new evidence for the neuroprotective role of DMF.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|