1
|
Appenroth D, West AC, Wood SH, Hazlerigg DG. Tanycytes from a bird's eye view: gene expression profiling of the tanycytic region under different seasonal states in the Svalbard ptarmigan. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01716-3. [PMID: 39299992 DOI: 10.1007/s00359-024-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In mammals and birds, tanycytes are known to regulate thyroid hormone conversion, and this process is central to the control of seasonal reproduction. In mammals, this cell type is also implicated in retinoic acid signalling, neurogenesis, and nutritional gatekeeping, all of which have been linked to hypothalamic regulation of energy metabolism. Less is known about these potential wider roles of tanycytes in birds. To address this gap, we combined LASER capture microdissection and transcriptomics to profile the tanycytic region in male Svalbard ptarmigan, a High Arctic species with photoperiod-dependent seasonal rhythms in reproductive activation and body mass. Short photoperiod (SP) adapted birds were transferred to constant light (LL) to trigger breeding and body mass loss. After five months under LL, the development of photorefractoriness led to spontaneous re-emergence of the winter phenotype, marked by the termination of breeding and gain in body mass. The transfer from SP to LL initiated gene expression changes in both thyroid hormone and retinoic acid pathways, as described in seasonal mammals. Furthermore, transcriptomic signatures of cell differentiation and migration were observed. Comparison to data from Siberian hamsters demonstrated that a photoperiod-dependent re-organisation of the hypothalamic tanycytic region is likely a conserved feature. Conversely, the spontaneous development of photorefractoriness showed a surprisingly small number of genes that reverted in expression level, despite reversal of the reproductive and metabolic phenotype. Our data suggest general conservation of tanycyte biology between photoperiodic birds and mammals and raise questions about the mechanistic origins of the photorefractory state.
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Modder M, Coomans CP, Saaltink DJ, Tersteeg MMH, Hoogduin J, Scholten L, Pronk ACM, Lalai RA, Boelen A, Kalsbeek A, Rensen PCN, Vreugdenhil E, Kooijman S. Doublecortin-like knockdown in mice attenuates obesity by stimulating energy expenditure in adipose tissue. Sci Rep 2024; 14:19517. [PMID: 39174821 PMCID: PMC11341836 DOI: 10.1038/s41598-024-70639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Crosstalk between peripheral metabolic organs and the central nervous system is essential for body weight control. At the base of the hypothalamus, β-tanycytes surround the portal capillaries and function as gatekeepers to facilitate transfer of substances from the circulation into the cerebrospinal fluid and vice versa. Here, we investigated the role of the neuroplasticity gene doublecortin-like (DCL), highly expressed by β-tanycytes, in body weight control and whole-body energy metabolism. We demonstrated that DCL-knockdown through a doxycycline-inducible shRNA expression system prevents body weight gain by reducing adiposity in mice. DCL-knockdown slightly increased whole-body energy expenditure possibly as a result of elevated circulating thyroid hormones. In white adipose tissue (WAT) triglyceride uptake was increased while the average adipocyte cell size was reduced. At histological level we observed clear signs of browning, and thus increased thermogenesis in WAT. We found no indications for stimulated thermogenesis in brown adipose tissue (BAT). Altogether, we demonstrate an important, though subtle, role of tanycytic DCL in body weight control through regulation of energy expenditure, and specifically WAT browning. Elucidating mechanisms underlying the role of DCL in regulating brain-peripheral crosstalk further might identify new treatment targets for obesity.
Collapse
Affiliation(s)
- Melanie Modder
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Claudia P Coomans
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Dirk-Jan Saaltink
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Mayke M H Tersteeg
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Janna Hoogduin
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Leonie Scholten
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Reshma A Lalai
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Endocrine Laboratory, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Erno Vreugdenhil
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Brunner M, Lopez-Rodriguez D, Estrada-Meza J, Dali R, Rohrbach A, Deglise T, Messina A, Thorens B, Santoni F, Langlet F. Fasting induces metabolic switches and spatial redistributions of lipid processing and neuronal interactions in tanycytes. Nat Commun 2024; 15:6604. [PMID: 39098920 PMCID: PMC11298547 DOI: 10.1038/s41467-024-50913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
The ependyma lining the third ventricle (3V) in the mediobasal hypothalamus plays a crucial role in energy balance and glucose homeostasis. It is characterized by a high functional heterogeneity and plasticity, but the underlying molecular mechanisms governing its features are not fully understood. Here, 5481 hypothalamic ependymocytes were cataloged using FACS-assisted scRNAseq from fed, 12h-fasted, and 24h-fasted adult male mice. With standard clustering analysis, typical ependymal cells and β2-tanycytes appear sharply defined, but other subpopulations, β1- and α-tanycytes, display fuzzy boundaries with few or no specific markers. Pseudospatial approaches, based on the 3V neuroanatomical distribution, enable the identification of specific versus shared tanycyte markers and subgroup-specific versus general tanycyte functions. We show that fasting dynamically shifts gene expression patterns along the 3V, leading to a spatial redistribution of cell type-specific responses. Altogether, we show that changes in energy status induce metabolic and functional switches in tanycyte subpopulations, providing insights into molecular and functional diversity and plasticity within the tanycyte population.
Collapse
Affiliation(s)
- Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Lopez-Rodriguez
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Judith Estrada-Meza
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rafik Dali
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tamara Deglise
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Institute for Genetic and Biomedical Research (IRGB) - CNR, Monserrato, Italy.
| | - Fanny Langlet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Hazlerigg DG, Simonneaux V, Dardente H. Melatonin and Seasonal Synchrony in Mammals. J Pineal Res 2024; 76:e12996. [PMID: 39129720 DOI: 10.1111/jpi.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Collapse
Affiliation(s)
- David G Hazlerigg
- Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, Arctic Seasonal Timekeeping Initiative (ASTI), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
6
|
Wang J, O'Reilly M, Cooper IA, Chehrehasa F, Moody H, Beecher K. Mapping GABAergic projections that mediate feeding. Neurosci Biobehav Rev 2024; 163:105743. [PMID: 38821151 DOI: 10.1016/j.neubiorev.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuroscience offers important insights into the pathogenesis and treatment of obesity by investigating neural circuits underpinning appetite and feeding. Gamma-aminobutyric acid (GABA), one of the most abundant neurotransmitters in the brain, and its associated receptors represent an array of pharmacologically targetable mediators of appetite signalling. Targeting the GABAergic system is therefore an increasingly investigated approach to obesity treatment. However, the many GABAergic projections that control feeding have yet to be collectively analysed. This review provides a comprehensive analysis of the relationship between GABAergic signalling and appetite by examining both foundational studies and the results of newly emerging chemogenetic/optogenetic experiments. A current snapshot of these efforts to map GABAergic projections influencing appetite is provided, and potential avenues for further investigation are provided.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Max O'Reilly
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | | | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| |
Collapse
|
7
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
8
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
9
|
Markussen FAF, Cázarez-Márquez F, Melum VJ, Hazlerigg DG, Wood SH. c-fos induction in the choroid plexus, tanycytes and pars tuberalis is an early indicator of spontaneous arousal from torpor in a deep hibernator. J Exp Biol 2024; 227:jeb247224. [PMID: 38690647 PMCID: PMC11166454 DOI: 10.1242/jeb.247224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.
Collapse
Affiliation(s)
- Fredrik A. F. Markussen
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Vebjørn J. Melum
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - David G. Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Shona H. Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| |
Collapse
|
10
|
Benevento M, Alpár A, Gundacker A, Afjehi L, Balueva K, Hevesi Z, Hanics J, Rehman S, Pollak DD, Lubec G, Wulff P, Prevot V, Horvath TL, Harkany T. A brainstem-hypothalamus neuronal circuit reduces feeding upon heat exposure. Nature 2024; 628:826-834. [PMID: 38538787 PMCID: PMC11041654 DOI: 10.1038/s41586-024-07232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leila Afjehi
- Programme Proteomics, Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | - Kira Balueva
- Institute of Physiology, Christian Albrechts University, Kiel, Germany
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - János Hanics
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Sabah Rehman
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Programme Proteomics, Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | - Peer Wulff
- Institute of Physiology, Christian Albrechts University, Kiel, Germany
| | - Vincent Prevot
- University of Lille, INSERM, CHU Lille, Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR S1172, EGID, Lille, France
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
11
|
Aloui L, Greene ES, Tabler T, Lassiter K, Thompson K, Bottje WG, Orlowski S, Dridi S. Effect of heat stress on the hypothalamic expression profile of water homeostasis-associated genes in low- and high-water efficient chicken lines. Physiol Rep 2024; 12:e15972. [PMID: 38467563 DOI: 10.14814/phy2.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.
Collapse
Affiliation(s)
- Loujain Aloui
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
- Higher School of Agriculture of Mograne, University of Carthage, Zaghouan, Tunisia
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Thompson
- Center for Agricultural Data Analyses, Divion of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter G Bottje
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Just N, Chevillard PM, Batailler M, Dubois JP, Vaudin P, Pillon D, Migaud M. Multiparametric MR Evaluation of the Photoperiodic Regulation of Hypothalamic Structures in Sheep. Neuroscience 2023; 535:142-157. [PMID: 37913859 DOI: 10.1016/j.neuroscience.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Most organisms on earth, humans included, have developed strategies to cope with environmental day-night and seasonal cycles to survive. For most of them, their physiological and behavioral functions, including the reproductive function, are synchronized with the annual changes of day length, to ensure winter survival and subsequent reproductive success in the following spring. Sheep are sensitive to photoperiod, which also regulates natural adult neurogenesis in their hypothalamus. We postulate that the ovine model represents a good alternative to study the functional and metabolic changes occurring in response to photoperiodic changes in hypothalamic structures of the brain. Here, the impact of the photoperiod on the neurovascular coupling and the metabolism of the hypothalamic structures was investigated at 3T using BOLD fMRI, perfusion-MRI and proton magnetic resonance spectroscopy (1H-MRS). A longitudinal study involving 8 ewes was conducted during long days (LD) and short days (SD) revealing significant BOLD, rCBV and metabolic changes in hypothalamic structures of the ewe brain between LD and SD. More specifically, the transition between LD and SD revealed negative BOLD responses to hypercapnia at the beginning of SD period followed by significant increases in BOLD, rCBV, Glx and tNAA concentrations towards the end of the SD period. These observations suggest longitudinal mechanisms promoting the proliferation and differentiation of neural stem cells within the hypothalamic niche of breeding ewes. We conclude that multiparametric MRI studies including 1H-MRS could be promising non-invasive translational techniques to investigate the existence of natural adult neurogenesis in-vivo in gyrencephalic brains.
Collapse
Affiliation(s)
- Nathalie Just
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France; Danish Research Centre for Magnetic Resonance (DRCMR), Hvidovre, Denmark.
| | - Pierre Marie Chevillard
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Batailler
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Jean-Philippe Dubois
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Pascal Vaudin
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Delphine Pillon
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Migaud
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| |
Collapse
|
13
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
14
|
Latif R, Davies TF, Mezei M. Functional Water Channels Within the TSH Receptor: A New Paradigm for TSH Action With Disease Implications. Endocrinology 2023; 164:bqad146. [PMID: 37767722 DOI: 10.1210/endocr/bqad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
The thyroid-stimulating hormone receptor (TSHR) transmembrane domain (TMD) is found in the plasma membrane and consists of lipids and water molecules. To understand the role of TSHR-associated water molecules, we used molecular dynamic simulations of the TMD and identified a network of putative receptor-associated transmembrane water channels. This result was confirmed with extended simulations of the full-length TSHR with and without TSH ligand binding. While the transport time observed in the simulations via the TSHR protein was slower than via the lipid bilayer itself, we found that significantly more water traversed via the TSHR than via the lipid bilayer, which more than doubled with the binding of TSH. Using rat thyroid cells (FRTL-5) and a calcein fluorescence technique, we measured cell volumes after blockade of aquaporins 1 and 4, the major thyroid cell water transporters. TSH showed a dose-dependent ability to influence water transport, and similar effects were observed with stimulating TSHR autoantibodies. Small molecule TSHR agonists, which are allosteric activators of the TMD, also enhanced water transport, illustrating the role of the TMD in this phenomenon. Furthermore, the water channel pathway was also mapped across 2 activation motifs within the TSHR TMD, suggesting how water movement may influence activation of the receptor. In pathophysiological conditions such as hypothyroidism and hyperthyroidism where TSH concentrations are highly variable, this action of TSH may greatly influence water movement in thyroid cells and many other extrathyroidal sites where the TSHR is expressed, thus affecting normal cellular function.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, Thyroid Research Unit, New York, NY 10468, USA
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, Thyroid Research Unit, New York, NY 10468, USA
| | - Mihaly Mezei
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
16
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
17
|
Merchán M, Coveñas R, Plaza I, Abecia JA, Palacios C. Anatomy of hypothalamic and diencephalic nuclei involved in seasonal fertility regulation in ewes. Front Vet Sci 2023; 10:1101024. [PMID: 36876003 PMCID: PMC9978410 DOI: 10.3389/fvets.2023.1101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
In this study, we describe in detail the anatomy of nuclei involved in seasonal fertility regulation (SFR) in ewes. For this purpose, the intergeniculate leaflet of the visual thalamus, the caudal hypothalamic arcuate nucleus, and suprachiasmatic, paraventricular and supraoptic nuclei of the rostral hypothalamus were morphometrically and qualitatively analyzed in Nissl-stained serial sections, in the three anatomical planes. In addition, data were collected on calcium-binding proteins and cell phenotypes after immunostaining alternate serial sections for calretinin, parvalbumin and calbindin. For a complete neuroanatomical study, glial architecture was assessed by immunostaining and analyzing alternate sections for glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1). The results showed a strong microglial and astroglia reaction around the hypothalamic nuclei of interest and around the whole 3rd ventricle of the ewe brain. Moreover, we correlated cytoarchitectonic coordinates of panoramic serial sections with their macroscopic localization and extension in midline sagittal-sectioned whole brain to provide guidelines for microdissecting nuclei involved in SFR.
Collapse
Affiliation(s)
- Miguel Merchán
- Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Salamanca, Spain.,Laboratory of Neuroanatomy of the Peptidergic Systems, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Recognized Research Group - Molecular Bases of Development (Grupo de Investigación Reconocido - Bases Moleculares del Desarrollo - GIR-BMD), University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Recognized Research Group - Molecular Bases of Development (Grupo de Investigación Reconocido - Bases Moleculares del Desarrollo - GIR-BMD), University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza
- Auditory Neuroplasticity Laboratory, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - José Alfonso Abecia
- Environmental Science Institute (IUCA), University of Zaragoza, Zaragoza, Spain
| | - Carlos Palacios
- Animal Production Area, Department of Construction and Agronomy, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Olejniczak I, Campbell B, Tsai YC, Tyagarajan SK, Albrecht U, Ripperger JA. Suprachiasmatic to paraventricular nuclei interaction generates normal food searching rhythms in mice. Front Physiol 2022; 13:909795. [PMID: 36277219 PMCID: PMC9582613 DOI: 10.3389/fphys.2022.909795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Searching for food follows a well-organized decision process in mammals to take up food only if necessary. Moreover, scavenging is preferred during their activity phase. Various time-dependent regulatory processes have been identified originating from the suprachiasmatic nuclei (SCN), which convert external light information into synchronizing output signals. However, a direct impact of the SCN on the timing of normal food searching has not yet been found. Here, we revisited the function of the SCN to affect when mice look for food. We found that this process was independent of light but modified by the palatability of the food source. Surprisingly, reducing the output from the SCN, in particular from the vasopressin releasing neurons, reduced the amount of scavenging during the early activity phase. The SCN appeared to transmit a signal to the paraventricular nuclei (PVN) via GABA receptor A1. Finally, the interaction of SCN and PVN was verified by retrograde transport-mediated complementation. None of the genetic manipulations affected the uptake of more palatable food. The data indicate that the PVN are sufficient to produce blunted food searching rhythms and are responsive to hedonistic feeding. Nevertheless, the search for normal food during the early activity phase is significantly enhanced by the SCN.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Campbell
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Urs Albrecht
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Jürgen A. Ripperger,
| |
Collapse
|
19
|
Zubrzycki M, Zubrzycka M, Wysiadecki G, Szemraj J, Jerczynska H, Stasiolek M. Release of Endocannabinoids into the Cerebrospinal Fluid during the Induction of the Trigemino-Hypoglossal Reflex in Rats. Curr Issues Mol Biol 2022; 44:2401-2416. [PMID: 35678693 PMCID: PMC9164053 DOI: 10.3390/cimb44050164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Hanna Jerczynska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Mariusz Stasiolek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland;
| |
Collapse
|
20
|
Takahashi O, Tanahashi M, Yokoi S, Kaneko M, Yanaka K, Nakagawa S, Maita H. The cell type-specific ER membrane protein UGS148 is not essential in mice. Genes Cells 2021; 27:43-60. [PMID: 34897904 DOI: 10.1111/gtc.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
Genomes of higher eukaryotes encode many uncharacterized proteins, and the functions of these proteins cannot be predicted from the primary sequences due to a lack of conserved functional domains. In this study, we focused on a poorly characterized protein UGS148 that is highly expressed in a specialized cell type called tanycytes that line the ventral wall of the third ventricle in the hypothalamus. Immunostaining of UGS148 revealed the fine morphology of tanycytes with highly branched apical ER membranes. Immunoprecipitation revealed that UGS148 associated with mitochondrial ATPase at least in vitro, and ER and mitochondrial signals occasionally overlapped in tanycytes. Mutant mice lacking UGS148 did not exhibit overt phenotypes, suggesting that UGS148 was not essential in mice reared under normal laboratory conditions. We also found that RNA probes that were predicted to uniquely detect UGS148 mRNA cross-reacted with uncharacterized RNAs, highlighting the importance of experimental validation of the specificity of probes during the hybridization-based study of RNA localization.
Collapse
Affiliation(s)
- Osamu Takahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mayuko Tanahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kaori Yanaka
- Liver Cancer Prevention Research Unit, RIKEN, Wako, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Porniece Kumar M, Cremer AL, Klemm P, Steuernagel L, Sundaram S, Jais A, Hausen AC, Tao J, Secher A, Pedersen TÅ, Schwaninger M, Wunderlich FT, Lowell BB, Backes H, Brüning JC. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab 2021; 3:1662-1679. [PMID: 34931084 PMCID: PMC8688146 DOI: 10.1038/s42255-021-00499-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022]
Abstract
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Marta Porniece Kumar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anna Lena Cremer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sivaraj Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - A Christine Hausen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jenkang Tao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Heiko Backes
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
22
|
Rohrbach A, Caron E, Dali R, Brunner M, Pasquettaz R, Kolotuev I, Santoni F, Thorens B, Langlet F. Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Mol Metab 2021; 53:101311. [PMID: 34325016 PMCID: PMC8379510 DOI: 10.1016/j.molmet.2021.101311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives Glucokinase (GCK) is critical for glucosensing. In rats, GCK is expressed in hypothalamic tanycytes and appears to play an essential role in feeding behavior. In this study, we investigated the distribution of GCK-expressing tanycytes in mice and their role in the regulation of energy balance. Methods In situ hybridization, reporter gene assay, and immunohistochemistry were used to assess GCK expression along the third ventricle in mice. To evaluate the impact of GCK-expressing tanycytes on arcuate neuron function and mouse physiology, Gck deletion along the ventricle was achieved using loxP/Cre recombinase technology in adult mice. Results GCK expression was low along the third ventricle, but detectable in tanycytes facing the ventromedial arcuate nucleus from bregma −1.5 to −2.2. Gck deletion induced the death of this tanycyte subgroup through the activation of the BAD signaling pathway. The ablation of GCK-expressing tanycytes affected different aspects of energy balance, leading to an increase in adiposity in mice. This phenotype was systematically associated with a defect in NPY neuron function. In contrast, the regulation of glucose homeostasis was mostly preserved, except for glucoprivic responses. Conclusions This study describes the role of GCK in tanycyte biology and highlights the impact of tanycyte loss on the regulation of energy balance. vmARH tanycytes express glucokinase. Glucokinase deletion in tanycytes induces cell death. Ablation of vmARH tanycytes alters energy balance and adiposity. Ablation of vmARH tanycytes alters NPY neuron function.
Collapse
Affiliation(s)
- Antoine Rohrbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S, 1172, Lille, France
| | - Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Faculty of Biology and Medicine, 1011, Lausanne, Switzerland
| | - Roxane Pasquettaz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Faculty of Biology and Medicine, 1011, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Hypothalamic Astrocytes as a Specialized and Responsive Cell Population in Obesity. Int J Mol Sci 2021; 22:ijms22126176. [PMID: 34201099 PMCID: PMC8228119 DOI: 10.3390/ijms22126176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a type of glial cell anatomically and functionally integrated into the neuronal regulatory circuits for the neuroendocrine control of metabolism. Being functional integral compounds of synapses, astrocytes are actively involved in the physiological regulatory aspects of metabolic control, but also in the pathological processes that link neuronal dysfunction and obesity. Between brain areas, the hypothalamus harbors specialized functional circuits that seem selectively vulnerable to metabolic damage, undergoing early cellular rearrangements which are thought to be at the core of the pathogenesis of diet-induced obesity. Such changes in the hypothalamic brain region consist of a rise in proinflammatory cytokines, the presence of a reactive phenotype in astrocytes and microglia, alterations in the cytoarchitecture and synaptology of hypothalamic circuits, and angiogenesis, a phenomenon that cannot be found elsewhere in the brain. Increasing evidence points to the direct involvement of hypothalamic astrocytes in such early metabolic disturbances, thus moving the study of these glial cells to the forefront of obesity research. Here we provide a comprehensive review of the most relevant findings of molecular and pathophysiological mechanisms by which hypothalamic astrocytes might be involved in the pathogenesis of obesity.
Collapse
|
24
|
Bolborea M, Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? Am J Physiol Regul Integr Comp Physiol 2021; 320:R994-R1003. [PMID: 33826442 DOI: 10.1152/ajpregu.00296.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vertebrates, the energy balance process is tightly controlled by complex neural circuits that sense metabolic signals and adjust food intake and energy expenditure in line with the physiological requirements of optimal conditions. Within neural networks controlling energy balance, tanycytes are peculiar ependymoglial cells that are nowadays recognized as multifunctional players in the metabolic hypothalamus. However, the physiological function of hypothalamic tanycytes remains unclear, creating a number of ambiguities in the field. Here, we review data accumulated over the years that demonstrate the physiological function of tanycytes in the maintenance of metabolic homeostasis, opening up new research avenues. The presumed involvement of tanycytes in the pathophysiology of metabolic disorders and age-related neurodegenerative diseases will be finally discussed.
Collapse
Affiliation(s)
- Matei Bolborea
- Central and Peripheral Mechanisms of Neurodegeneration, INSERM U1118, Université de Strasbourg, Strasbourg, France.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Fanny Langlet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Hypothalamic Microglial Heterogeneity and Signature under High Fat Diet-Induced Inflammation. Int J Mol Sci 2021; 22:ijms22052256. [PMID: 33668314 PMCID: PMC7956484 DOI: 10.3390/ijms22052256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signaling activation. Recent data from transcriptomic analysis of microglia from rodents and humans has allowed the identification of several microglial subpopulations throughout the brain. Numerous studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data unveiling microglial heterogeneity have triggered the development of novel experimental models for studying the roles and characteristics of each microglial subtype. In this review, we explore microglial heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet-induced inflammation. We present novel currently available ex vivo and in vivo experimental models that can be useful when designing a new research project in this field of study. Last, we examine the transcriptomic data already published to identify how the hypothalamic microglial signature changes upon short-term and prolonged high-fat feeding.
Collapse
|
26
|
Samodien E, Chellan N. Hypothalamic neurogenesis and its implications for obesity-induced anxiety disorders. Front Neuroendocrinol 2021; 60:100871. [PMID: 32976907 DOI: 10.1016/j.yfrne.2020.100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
Obesity and anxiety are public health problems that have no effective cure. Obesity-induced anxiety is also the most common behavioural trait exhibited amongst obese patients, with the mechanisms linking these disorders being poorly understood. The hypothalamus and hippocampus are reciprocally connected, important neurogenic brain regions that could be vital to understanding these disorders. Dietary, physical activity and lifestyle interventions have been shown to be able to enhance neurogenesis within the hippocampus, while the effects thereof within the hypothalamus is yet to be ascertained. This review describes hypothalamic neurogenesis, its impairment in obesity as well as the effect of interventional therapies. Obesity is characterized by a neurogenic shift towards neuropeptide Y neurons, promoting appetite and weight gain. While, nutraceuticals and exercise promote proopiomelanocortin neuron proliferation, causing diminished appetite and reduced weight gain. Through the furthered development of multimodal approaches targeting both these brain regions could hold an even greater therapeutic potential.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa.
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| |
Collapse
|
27
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
28
|
Reiter RJ, Rosales-Corral S, Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv Med Sci 2020; 65:394-402. [PMID: 32763813 DOI: 10.1016/j.advms.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
The aim of this report is to summarize the data documenting the vital nature of well-regulated cellular and organismal circadian rhythms, which are also reflected in a stable melatonin cycle, in supporting optimal health. Cellular fluctuations in physiology exist in most cells of multicellular organisms with their stability relying on the prevailing light:dark cycle, since it regulates, via specialized intrinsically-photoreceptive retinal ganglion cells (ipRGC) and the retinohypothalamic tract, the master circadian oscillator, i.e., the suprachiasmatic nuclei (SCN). The output message of the SCN, as determined by the light:dark cycle, is transferred to peripheral oscillators, so-called slave cellular oscillators, directly via the autonomic nervous system with its limited distribution. and indirectly via the pineal-derived circulating melatonin rhythm, which contacts every cell. Via its regulatory effects on the neuroendocrine system, particularly the hypothalamo-pituitary-adrenal axis, the SCN also has a major influence on the adrenal glucocorticoid rhythm which impacts neurological diseases and psychological behaviors. Moreover, the SCN regulates the circadian production and secretion of melatonin. When the central circadian oscillator is disturbed, such as by light at night, it passes misinformation to all organs in the body. When this occurs the physiology of cells becomes altered and normal cellular functions are compromised. This physiological upheaval is a precursor to pathologies. The deterioration of the SCN/pineal network is often a normal consequence of aging and its related diseases, but in today's societies where manufactured light is becoming progressively more common worldwide, the associated pathologies may also be occurring at an earlier age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| |
Collapse
|
29
|
Pasquettaz R, Kolotuev I, Rohrbach A, Gouelle C, Pellerin L, Langlet F. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. J Comp Neurol 2020; 529:553-575. [PMID: 32515035 PMCID: PMC7818493 DOI: 10.1002/cne.24965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Tanycytes are highly specialized ependymal cells that line the bottom and the lateral walls of the third ventricle. In contact with the cerebrospinal fluid through their cell bodies, they send processes into the arcuate nucleus, the ventromedial nucleus, and the dorsomedial nucleus of the hypothalamus. In the present work, we combined transgenic and immunohistochemical approaches to investigate the neuroanatomical associations between tanycytes and neural cells present in the hypothalamic parenchyma, in particular in the arcuate nucleus. The specific expression of tdTomato in tanycytes first allowed the observation of peculiar subcellular protrusions along tanycyte processes and at their endfeet such as spines, swelling, en passant boutons, boutons, or claws. Interestingly, these protrusions contact different neural cells in the brain parenchyma including blood vessels and neurons, and in particular NPY and POMC neurons in the arcuate nucleus. Using both fluorescent and electron microscopy, we finally observed that these tanycyte protrusions contain ribosomes, mitochondria, diverse vesicles, and transporters, suggesting dense tanycyte/neuron and tanycyte/blood vessel communications. Altogether, our results lay the neuroanatomical basis for tanycyte/neural cell interactions, which will be useful to further understand cell-to-cell communications involved in the regulation of neuroendocrine functions.
Collapse
Affiliation(s)
- Roxane Pasquettaz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cathy Gouelle
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France.,Inserm U1082, Universite de Poitiers, Poitiers Cedex, France
| | - Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Tang Y, Zuniga-Hertz JP, Han C, Yu B, Cai D. Multifaceted secretion of htNSC-derived hypothalamic islets induces survival and antidiabetic effect via peripheral implantation in mice. eLife 2020; 9:52580. [PMID: 32081132 PMCID: PMC7062468 DOI: 10.7554/elife.52580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
We report that mouse hypothalamic stem/progenitor cells produce multiple pancreatic, gastrointestinal and hypothalamic peptides in addition to exosomes. Through cell sorting and selection according to insulin promoter activity, we generated a subpopulation(s) of these cells which formed 3D spherical structure with combined features of hypothalamic neurospheres and pancreatic islets. Through testing streptozotocin-induced pancreatic islet disruption and fatal diabetes, we found that peripheral implantation of these spheres in mice led to remarkable improvements in general health and survival in addition to a moderate antidiabetic effect, and notably these pro-survival versus metabolic effects were dissociable to a significant extent. Mechanistically, secretion of exosomes by these spheres was essential for enhancing survival while production of insulin was important for the antidiabetic effect. In summary, hypothalamic neural stem/progenitor cells comprise subpopulations with multifaceted secretion, and their derived hypothalamic islets can be implanted peripherally to enhance general health and survival together with an antidiabetic benefit.
Collapse
Affiliation(s)
- Yizhe Tang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Juan Pablo Zuniga-Hertz
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Bin Yu
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
31
|
Langlet F. Targeting Tanycytes: Balance between Efficiency and Specificity. Neuroendocrinology 2020; 110:574-581. [PMID: 31986518 DOI: 10.1159/000505549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.
Collapse
Affiliation(s)
- Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,
| |
Collapse
|
32
|
Samodien E, Pheiffer C, Erasmus M, Mabasa L, Louw J, Johnson R. Diet-induced DNA methylation within the hypothalamic arcuate nucleus and dysregulated leptin and insulin signaling in the pathophysiology of obesity. Food Sci Nutr 2019; 7:3131-3145. [PMID: 31660128 PMCID: PMC6804761 DOI: 10.1002/fsn3.1169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity rates continue to rise in an unprecedented manner in what could be the most rapid population‐scale shift in human phenotype ever to occur. Increased consumption of unhealthy, calorie‐dense foods, coupled with sedentary lifestyles, is the main factor contributing to a positive energy balance and the development of obesity. Leptin and insulin are key hormones implicated in pathogenesis of this disorder and are crucial for controlling whole‐body energy homeostasis. Their respective function is mediated by the counterbalance of anorexigenic and orexigenic neurons located within the hypothalamic arcuate nucleus. Dysregulation of leptin and insulin signaling pathways within this brain region may contribute not only to the development of obesity, but also systemically affect the peripheral organs, thereby manifesting as metabolic diseases. Although the exact mechanisms detailing how these hypothalamic nuclei contribute to disease pathology are still unclear, increasing evidence suggests that altered DNA methylation may be involved. This review evaluates animal studies that have demonstrated diet‐induced DNA methylation changes in genes that regulate energy homeostasis within the arcuate nucleus, and elucidates possible mechanisms causing hypothalamic leptin and insulin resistance leading to the development of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Melisse Erasmus
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Biochemistry and Microbiology University of Zululand KwaDlangezwa South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| |
Collapse
|
33
|
Samodien E, Johnson R, Pheiffer C, Mabasa L, Erasmus M, Louw J, Chellan N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol Metab 2019; 27:1-10. [PMID: 31300352 PMCID: PMC6717768 DOI: 10.1016/j.molmet.2019.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The prevalence of obesity and metabolic diseases continues to rise globally. The increased consumption of unhealthy energy-rich diets that are high in fat and sugars results in oxidative stress and inflammation leading to hypothalamic dysfunction, which has been linked with these diseases. Conversely, diets rich in polyphenols, which are phytochemicals known for their antioxidant and anti-inflammatory properties, are associated with a reduced risk for developing metabolic diseases. SCOPE OF REVIEW This review provides an overview of the effects of polyphenols against diet-induced hypothalamic dysfunction with respect to neural inflammation and mitochondrial dysfunction. Results show that polyphenols ameliorate oxidative stress and inflammation within the hypothalamus, thereby improving leptin signaling and mitochondrial biogenesis. Furthermore, they protect against neurodegeneration by decreasing the production of reactive oxygen species and enhancing natural antioxidant defense systems. MAJOR CONCLUSIONS The potential of polyphenols as nutraceuticals against hypothalamic inflammation, mitochondrial dysfunction, and neurodegeneration could hold tremendous value. With hypothalamic inflammation increasing naturally with age, the potential to modulate these processes in order to extend longevity is exciting and warrants exploration. The continued escalation of mental health disorders, which are characterized by heightened neuronal inflammation, necessitates the furthered investigation into polyphenol therapeutic usage in this regard.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Melisse Erasmus
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| |
Collapse
|
34
|
Macedo F, Dos Santos LS, Glezer I, da Cunha FM. Brain Innate Immune Response in Diet-Induced Obesity as a Paradigm for Metabolic Influence on Inflammatory Signaling. Front Neurosci 2019; 13:342. [PMID: 31068773 PMCID: PMC6491681 DOI: 10.3389/fnins.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a predisposing factor for numerous morbidities, including those affecting the central nervous system. Hypothalamic inflammation is a hallmark of obesity and is believed to participate in the onset and progression of the obese phenotype, by promoting changes in neuronal functions involved in the control of metabolism. The activation of brain immune cells in the hypothalamus, which are represented by microglia and brain macrophages, is associated with obesity and has been the focus of intense research. Despite the significant body of knowledge gathered on this topic, obesity-induced metabolic changes in brain cells involved in innate immune responses are still poorly characterized due, at least in part, to limitations in the existing experimental methods. Since the metabolic state influences immune responses of microglia and other myeloid cells, the understanding and characterization of the effects of cellular metabolism on the functions of these cells, and their impact on brain integrity, are crucial for the development of efficient therapeutic interventions for individuals exposed to a long-term high fat diet (HFD). Here we review and speculate on the cellular basis that may underlie the observed changes in the reactivity and metabolism of the innate immune cells of the brain in diet-induced obesity (DIO), and discuss important points that deserve further investigation.
Collapse
Affiliation(s)
- Felipe Macedo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Souza Dos Santos
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Thorens B. Targeting the Brain to Cure Type 2 Diabetes. Diabetes 2019; 68:476-478. [PMID: 30787069 DOI: 10.2337/dbi18-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Clyburn C, Browning KN. Role of astroglia in diet-induced central neuroplasticity. J Neurophysiol 2019; 121:1195-1206. [PMID: 30699056 DOI: 10.1152/jn.00823.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by increased adiposity that develops when energy intake outweighs expenditure, is rapidly becoming a serious health crisis that affects millions of people worldwide and is associated with severe comorbid disorders including hypertension, cardiovascular disease, and type II diabetes. Obesity is also associated with the dysregulation of central neurocircuits involved in the control of autonomic, metabolic, and cognitive functions. Systemic inflammation associated with diet-induced obesity (DIO) has been proposed to be responsible for the development of these comorbidities as well as the dysregulation of central neurocircuits. A growing body of evidence suggests, however, that exposure to a high-fat diet (HFD) may cause neuroinflammation and astroglial activation even before systemic inflammation develops, which may be sufficient to cause dysregulation of central neurocircuits involved in energy homeostasis before the development of obesity. The purpose of this review is to summarize the current literature exploring astroglial-dependent modulation of central circuits following exposure to HFD and DIO, including not only dysregulation of neurocircuits involved in energy homeostasis and feeding behavior, but also the dysregulation of learning, memory, mood, and reward pathways.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
37
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
38
|
Elizondo-Vega RJ, Recabal A, Oyarce K. Nutrient Sensing by Hypothalamic Tanycytes. Front Endocrinol (Lausanne) 2019; 10:244. [PMID: 31040827 PMCID: PMC6476911 DOI: 10.3389/fendo.2019.00244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nutritional signals have long been implicated in the control of cellular processes that take place in the hypothalamus. This includes food intake regulation and energy balance, inflammation, and most recently, neurogenesis. One of the main glial cells residing in the hypothalamus are tanycytes, radial glial-like cells, whose bodies are located in the lining of the third ventricle, with processes extending to the parenchyma and reaching neuronal nuclei. Their unique anatomical location makes them directly exposed to nutrients in the cerebrospinal fluid. Several research groups have shown that tanycytes can respond to nutritional signals by different mechanisms, such as calcium signaling, metabolic shift, and changes in proliferation/differentiation potential. Despite cumulative evidence showing tanycytes have the molecular components to participate in nutrient detection and response, there are no enough functional studies connecting tanycyte nutrient sensing with hypothalamic functions, nor that highlight the relevance of this process in physiological and pathological context. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes in the hypothalamus, highlighting the need for more detailed analysis on the actual implications of tanycyte-nutrient sensing and how this process can be modulated, which might allow the discovery of new metabolic and signaling pathways as therapeutic targets, for the treatment of hypothalamic related diseases.
Collapse
Affiliation(s)
- Roberto Javier Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Karina Oyarce
| |
Collapse
|
39
|
Klein C, Jonas W, Wiedmer P, Schreyer S, Akyüz L, Spranger J, Hellweg R, Steiner B. High-fat Diet and Physical Exercise Differentially Modulate Adult Neurogenesis in the Mouse Hypothalamus. Neuroscience 2018; 400:146-156. [PMID: 30599265 DOI: 10.1016/j.neuroscience.2018.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The hypothalamus has emerged as a novel neurogenic niche in the adult brain during the past decade. However, little is known about its regulation and the role hypothalamic neurogenesis might play in body weight and appetite control. High-fat diet (HFD) has been demonstrated to induce an inflammatory response and to alter neurogenesis in the hypothalamus and functional outcome measures, e.g. body weight. Such modulation poses similarities to what is known from adult hippocampal neurogenesis, which is highly responsive to lifestyle factors, such as nutrition or physical exercise. With the rising question of a principle of neurogenic stimulation by lifestyle in the adult brain as a physiological regulatory mechanism of central and peripheral functions, exercise is interventionally applied in obesity and metabolic syndrome conditions, promoting weight loss and improving glucose tolerance and insulin sensitivity. To investigate the potential pro-neurogenic cellular processes underlying such beneficial peripheral outcomes, we exposed adult female mice to HFD together with physical exercise and evaluated neurogenesis and inflammatory markers in the arcuate nucleus (ArcN) of the hypothalamus. We found that HFD increased neurogenesis, whereas physical exercise stimulated cell proliferation. HFD also increased the amount of microglia, which was counteracted by physical exercise. Physiologically, exercise increased food and fat intake but reduced HFD-induced body weight gain. These findings support the hypothesis that hypothalamic neurogenesis may represent a counter-regulatory mechanism in response to environmental or physiological insults to maintain energy balance.
Collapse
Affiliation(s)
- C Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - W Jonas
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - P Wiedmer
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany
| | - S Schreyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - L Akyüz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Germany
| | - J Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutritional Medicine, Berlin, Germany
| | - R Hellweg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Psychiatry, Berlin, Germany
| | - B Steiner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|
40
|
Rahman MH, Kim MS, Lee IK, Yu R, Suk K. Interglial Crosstalk in Obesity-Induced Hypothalamic Inflammation. Front Neurosci 2018; 12:939. [PMID: 30618568 PMCID: PMC6300514 DOI: 10.3389/fnins.2018.00939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022] Open
Abstract
Glial cells have recently gained particular attention for their close involvement in neuroinflammation and metabolic disorders including obesity and diabetes. In the central nervous system (CNS), different types of resident glial cells have been documented to express several signaling molecules and related receptors, and their crosstalks have been implicated in physiology and pathology of the CNS. Emerging evidence illustrates that malfunctioning glia and their products are an important component of hypothalamic inflammation. Recent studies have suggested that glia–glia crosstalk is a pivotal mechanism of overnutrition-induced chronic hypothalamic inflammation, which might be intrinsically associated with obesity/diabetes and their pathological consequences. This review covers the recent advances in the molecular aspects of interglial crosstalk in hypothalamic inflammation, proposing a central role of such a crosstalk in the development of obesity, diabetes, and related complications. Finally, we discuss the possibilities and challenges of targeting glial cells and their crosstalk for a better understanding of hypothalamic inflammation and related metabolic dysfunctions.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
41
|
Martínez-Cerdeño V, Noctor SC. Neural Progenitor Cell Terminology. Front Neuroanat 2018; 12:104. [PMID: 30574073 PMCID: PMC6291443 DOI: 10.3389/fnana.2018.00104] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Since descriptions of neural precursor cells (NPCs) were published in the late 19th century, neuroanatomists have used a variety of terms to describe these cells, each term reflecting contemporary understanding of cellular characteristics and function. As the field gained knowledge through a combination of technical advance and individual insight, the terminology describing NPCs changed to incorporate new information. While there is a trend toward consensus and streamlining of terminology over time, to this day scientists use different terms for NPCs that reflect their field and perspective, i.e., terms arising from molecular, cellular, or anatomical sciences. Here we review past and current terminology used to refer to NPCs, including embryonic and adult precursor cells of the cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, UC Davis School of Medicine, Sacramento, CA, United States.,UC Davis Medical Center, MIND Institute, Sacramento, CA, United States
| | - Stephen C Noctor
- UC Davis Medical Center, MIND Institute, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
42
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
43
|
Abstract
Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan. These aspects limit their translational relevance for human appetite control. This review will consider the value of studies carried out in a seasonal species, the Siberian hamster, which shows natural photoperiod-regulated annual cycles in appetite, growth and fattening. Such studies reveal that this long-term control is not simply an adjustment of the known hypothalamic neuronal systems that control hunger and satiety in the short term. Long-term cyclicity is probably driven by hypothalamic tanycytes, glial cells that line the ventricular walls of the hypothalamus. These unique cells sense nutrients and metabolic hormones, integrate seasonal signals and effect plasticity of surrounding neural circuits through their function as a stem cell niche in the adult. Studies of glial cell function in the hypothalamus offer new potential for identifying central targets for appetite and body weight control amenable to dietary or pharmacological manipulation.
Collapse
|
44
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
45
|
Al-Kaabi M, Hussam F, Al-Marsoummi S, Al-Anbaki A, Al-Salihi A, Al-Aubaidy H. Expression of ZO1, vimentin, pan-cadherin and AGTR1 in tanycyte-like cells of the sulcus medianus organum. Biochem Biophys Res Commun 2018; 502:243-249. [PMID: 29803674 DOI: 10.1016/j.bbrc.2018.05.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
Tanycytes are a specialized ependymal lining of brain ventricles with exceptional features of having long basal processes and junctional complexes between cell bodies. These tanycytes are present at the regions of circumventricular organs (CVOs) which possess common morphological and functional features enabling them to be described as the brain windows where the barrier systems have special properties. Previous studies detailed seven of these CVOs but little information is available regarding another putative site at the rostral part of the median sulcus of the 4th ventricle, or the sulcus medianus organum (SMO). Here we performed a pilot immunohistochemical study to support earlier observations suggesting the SMO as a novel CVO. We labeled rat brain with ZO1, vimentin, pan-cadherin and angiotensin II type 1 receptors markers which showed a morphologically distinct population of cells at the region of the SMO similar to tanycytes present in the median eminence, a known CVO. These cells had basal processes reaching the deeply seated blood vessels while the caudal part of the median sulcus did not show similar long cellular extensions. We concluded that tanycyte-like cells are present in the SMO in a pattern resembling that of other CVOs where the strategic location of the SMO is probably for signal integration between brainstem nuclei and the rostrally located neuronal centers.
Collapse
Affiliation(s)
- Muthanna Al-Kaabi
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq; University of Tasmania, Faculty of Health, School of Medicine, Medical Science Precinct, Hobart, Tasmania, Australia
| | - Fadhil Hussam
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq
| | - Sarmad Al-Marsoummi
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq; University of North Dakota, School of Medicine and Health Sciences, Department of Biomedical Sciences, North Dakota, USA
| | - Ali Al-Anbaki
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Anam Al-Salihi
- Al-Nahrain University, College of Medicine, Department of Human Anatomy, Baghdad, Iraq
| | - Hayder Al-Aubaidy
- La Trobe University, School of Life Sciences, Department of Physiology, Anatomy & Microbiology, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
46
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
47
|
Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front Physiol 2018; 9:170. [PMID: 29615917 PMCID: PMC5868458 DOI: 10.3389/fphys.2018.00170] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
The most lethal form of brain cancer, glioblastoma multiforme, is characterized by rapid growth and invasion facilitated by cell migration and degradation of the extracellular matrix. Despite technological advances in surgery and radio-chemotherapy, glioblastoma remains largely resistant to treatment. New approaches to study glioblastoma and to design optimized therapies are greatly needed. One such approach harnesses computational modeling to support the design and delivery of glioblastoma treatment. In this paper, we critically summarize current glioblastoma therapy, with a focus on emerging nanomedicine and therapies that capitalize on cell-specific signaling in glioblastoma. We follow this summary by discussing computational modeling approaches focused on optimizing these emerging nanotherapeutics for brain cancer. We conclude by illustrating how mathematical analysis can be used to compare the delivery of a high potential anticancer molecule, delphinidin, in both free and nanoparticle loaded forms across the blood-brain barrier for glioblastoma.
Collapse
Affiliation(s)
- Elif Ozdemir-Kaynak
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, Turkey
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, Turkey.,Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
48
|
Ebling FJP, Lewis JE. Tanycytes and hypothalamic control of energy metabolism. Glia 2018; 66:1176-1184. [DOI: 10.1002/glia.23303] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Francis J. P. Ebling
- School of Life Sciences; University of Nottingham Medical School, Queen's Medical Centre; Nottingham NG7 2UH United Kingdom
| | - Jo E. Lewis
- School of Life Sciences; University of Nottingham Medical School, Queen's Medical Centre; Nottingham NG7 2UH United Kingdom
| |
Collapse
|
49
|
Hendrickson ML, Zutshi I, Wield A, Kalil RE. Nestin expression and in vivo proliferative potential of tanycytes and ependymal cells lining the walls of the third ventricle in the adult rat brain. Eur J Neurosci 2018; 47:284-293. [PMID: 29359828 DOI: 10.1111/ejn.13834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
There is a disagreement in the literature concerning the degree of proliferation of cells in the walls of the third ventricle (3rdV) under normal conditions in the adult mammalian brain. To address this issue, we mapped the cells expressing the neural stem/progenitor cell marker nestin along the entire rostrocaudal extent of the 3rdV in adult male rats and observed a complex distribution. Abundant nestin was present in tanycyte cell bodies and processes and also was observed in patches of ependymal cells as well as in isolated ependymal cells throughout the walls of the 3rdV. However, we observed very limited ependymal cell or tanycyte proliferation in normal adult rats as determined by bromodeoxyuridine (BrdU) incorporation or the expression of Ki-67. Moreover, fewer than 13% of the cells that were BrdU-positive (BrdU+) or Ki-67-positive (Ki-67+) expressed nestin. These observations stand in contrast to those made in the subventricular zone of the lateral ventricle (SVZ) and subgranular zone of the hippocampal formation (SGZ), where cell proliferation measured by BrdU incorporation or Ki-67 expression is observed frequently in cells that also express nestin. Thus, while ependymal cell or tanycyte cell proliferation can be promoted by the addition of mitogens, dietary modifications or other in vivo manipulations, the proliferation of ependymal cells and tanycytes in the walls of the 3rdV is very limited in the normal adult male rat brain.
Collapse
Affiliation(s)
- Michael L Hendrickson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, USA
| | - Ipshita Zutshi
- Graduate Program in Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alyssa Wield
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Ronald E Kalil
- School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, USA
| |
Collapse
|
50
|
Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat Commun 2017; 8:484. [PMID: 28883467 PMCID: PMC5589884 DOI: 10.1038/s41467-017-00604-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
The hypothalamic–pituitary–thyroid (HPT) axis maintains circulating thyroid hormone levels in a narrow physiological range. As axons containing thyrotropin-releasing hormone (TRH) terminate on hypothalamic tanycytes, these specialized glial cells have been suggested to influence the activity of the HPT axis, but their exact role remained enigmatic. Here, we demonstrate that stimulation of the TRH receptor 1 increases intracellular calcium in tanycytes of the median eminence via Gαq/11 proteins. Activation of Gαq/11 pathways increases the size of tanycyte endfeet that shield pituitary vessels and induces the activity of the TRH-degrading ectoenzyme. Both mechanisms may limit the TRH release to the pituitary. Indeed, blocking TRH signaling in tanycytes by deleting Gαq/11 proteins in vivo enhances the response of the HPT axis to the chemogenetic activation of TRH neurons. In conclusion, we identify new TRH- and Gαq/11-dependent mechanisms in the median eminence by which tanycytes control the activity of the HPT axis. The hypothalamic-pituitary-thyroid (HPT) axis regulates a wide range of physiological processes. Here the authors show that hypothalamic tanycytes play a role in the homeostatic regulation of the HPT axis; activation of TRH signaling in tanycytes elevates their intracellular Ca2+ via Gαq/11 pathway, ultimately resulting in reduced TRH release into the pituitary vessels.
Collapse
|