1
|
Hosseini Fin NS, Yip A, Scott JT, Teo L, Homman-Ludiye J, Bourne JA. Developmental dynamics of marmoset prefrontal cortical SST and PV interneuron networks highlight primate-specific features. Development 2025; 152:dev204254. [PMID: 40292611 DOI: 10.1242/dev.204254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The primate prefrontal cortex (PFC) undergoes protracted postnatal development, crucial for the emergence of cognitive control and executive function. Central to this maturation are inhibitory interneurons (INs), particularly parvalbumin-expressing (PV+) and somatostatin-expressing (SST+) subtypes, which regulate cortical circuit timing and plasticity. While rodent models have provided foundational insights into IN development, the trajectory of postmigratory maturation in primates remains largely uncharted. In this study, we characterized the expression of PV, SST, the chloride transporter KCC2, and the ion channels Kv3.1b and Nav1.1 across six PFC regions (areas 8aD, 8aV, 9, 46, 11 and 47L) in the postnatal marmoset. We report a prolonged maturation of PV+ INs into adolescence, accompanied by progressive upregulation of ion channels that support high-frequency firing. In contrast, SST+ INs show a postnatal decline in density, diverging from rodent developmental patterns. These findings reveal distinct, cell type-specific maturation dynamics in the primate PFC and offer a developmental framework for understanding how inhibitory circuit refinement may underlie vulnerability to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nafiseh S Hosseini Fin
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Yip
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - Jack T Scott
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - Jihane Homman-Ludiye
- Monash MicroImaging, 15 Innovation Walk, Monash University, Clayton, VIC 3800, Australia
| | - James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Delli Pizzi S, Tomaiuolo F, Sestieri C, Chiarelli AM, Gambi F, Ferretti A, Sensi SL. Modafinil alters the functional connectivity of distinct thalamic nuclei with the neocortex. Neuroimage 2025; 312:121242. [PMID: 40288703 DOI: 10.1016/j.neuroimage.2025.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
Modafinil promotes wakefulness and enhances cognitive function through mechanisms and neural effects that are still partially unknown. Several studies have shown that the compound alters the functional cortical architecture. In contrast, its influence on subcortical regions and thalamocortical connections, which are crucial for modulating neocortical connectivity, remains unexplored. The acute modulation of thalamo-cortical connectivity was assessed in two groups of participants who received either a single 100 mg dose of modafinil (N = 25) or a placebo (N = 25). Magnetic Resonance Imaging (MRI) was used to parcel the thalamus into its constituent nuclei, which served as seeds for voxel-wise resting state functional connectivity analyses. Additionally, maps of nuclei-specific functional reorganization were compared to those of receptor/transporter expression to assess their spatial overlaps. Modafinil, but not placebo, altered the connectivity of three thalamic nuclei. Specifically, the medial pulvinar nuclei showed increased connectivity with cortical regions of the Sensorimotor and Salience/Ventral Attention (SVAN) Networks. These functional changes spatially overlapped with the distribution of the norepinephrine transporter (NET). Additionally, the anterior and inferior pulvinar complex exhibited enhanced connectivity with the insular and supramarginal regions of the SVAN and superior frontal area of the Default Mode Network (DMN). However, unlike the medial pulvinar, these effects were not spatially linked to the expression of any specific receptor or transporter. Finally, the ventro-lateral anterior complex exhibited increased connectivity with the posterior region of the DMN and the Fronto-Parietal Control Network, along with decreased connectivity to the premotor cortex. The topography of these functional modifications mainly overlaps with the distribution of glutamatergic and serotonergic receptors. In summary, our findings highlight modafinil's influence on thalamocortical circuits, emphasizing the role of higher-order pulvinar nuclei and ventro-lateral anterior complex.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio"of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy.
| | - Federica Tomaiuolo
- Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio"of Chieti-Pescara, Italy; Department of Engineering and Geology, University "G. d'Annunzio" of Chieti Pescara, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio"of Chieti-Pescara, Italy
| | - Antonio Maria Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio"of Chieti-Pescara, Italy
| | - Francesco Gambi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio"of Chieti-Pescara, Italy; UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio"of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy; Neurology Institute, SS Annunziata University Hospital, University "G. d'Annunzio" of Chieti-Pescara, Italy.
| |
Collapse
|
3
|
Charyasz E, Erb M, Bause J, Heule R, Bender B, Jangir VK, Grodd W, Scheffler K. Functional connectivity of thalamic nuclei during sensorimotor task-based fMRI at 9.4 Tesla. Front Neurosci 2025; 19:1568222. [PMID: 40433501 PMCID: PMC12106322 DOI: 10.3389/fnins.2025.1568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The thalamus is the brain's central communication hub, playing a key role in processing and relaying sensorimotor and cognitive information between the cerebral cortex and other brain regions. It consists of specific and non-specific nuclei, each with a different role. Specific thalamic nuclei relay sensory and motor information to specific cortical and subcortical regions to ensure precise communication. In contrast, non-specific thalamic nuclei are involved in general functions such as attention or consciousness through broader and less targeted connections. In the present study, we aimed to investigate the functional connectivity patterns of the thalamic nuclei identified in our previous study as being involved in motor (finger-tapping) and sensory (finger-touch) tasks. The results of this study show that thalamic nuclei are not static hubs with a predefined role in neural signal processing, as they show different task-specific functional connectivity patterns in the anterior, middle, lateral, and posterior thalamic nuclei. Instead, they are all functional hubs that can flexibly change their connections to other brain regions in response to task demands. This work has important implications for understanding task-dependent functional connectivity between thalamic nuclei and different brain regions using task-based fMRI at 9.4 Tesla.
Collapse
Affiliation(s)
- Edyta Charyasz
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Michael Erb
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Jonas Bause
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rahel Heule
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Center for MR Research, University Children's Hospital, Zürich, Switzerland
| | - Benjamin Bender
- Department of Neuroradiology, Diagnostical, and Interventional Neuroradiology, University Hospital of Tübingen, Tübingen, Germany
| | - Vinod Kumar Jangir
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Grodd
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Córdoba-Claros MA, Rubio-Garrido P, de Lima RRM, Morais PLAG, do Nascimento ES, Cavalcante JS, Clascá F. Projection Motifs and Wiring Logic of Medial Pulvinar Thalamocortical Axons in the Marmoset Monkey. J Neurosci 2025; 45:e1837242025. [PMID: 39919832 PMCID: PMC11984104 DOI: 10.1523/jneurosci.1837-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
The medial pulvinar thalamic nucleus (MPu) is an evolutionary novelty of the primate thalamus, prominently expanded in humans. Piecemeal data from studies in various monkey species indicate that MPu axons reach prefrontal, inferior parietal, cingulate, insular, or temporal areas; however, the precise wiring and functional logic of such brain-wide connections remain obscure. In marmoset monkeys (Callithrix jacchus) of both sexes, we visualized the axons originated from specific pulvinar domains by means of biotinylated dextran amine microinjections and compared them across multiple cases. In addition, by injecting retrograde tracers in the cortical areas targeted by the pulvinar axons, we investigated the organization of projection cells within MPu and the existence of long-range branched axons. Specific projection motifs reveal a caudal MPu subnucleus that innervates inferior and ventral temporal areas and a rostral MPu subnucleus that innervates temporal, ventral prefrontal, premotor, inferior posterior parietal, and cingulate areas. We demonstrate numerous MPu neurons that innervate through branched axons prefrontal and parietal or prefrontal and temporal areas; other cells with different projection patterns are closely intermingled with them. Our findings support the notion that MPu is a hub of the brain-wide networks that support complex visual and social cognition, sensory-guided reaching, working memory, and attention. Moreover, the finding of long-range branching MPu axons and dense terminal arborizations suggest that MPu cells may regulate functional connectivity among high-level cortical areas at different spatial scales. Besides, the anatomical "ground truth" provided by our study is relevant for functional imaging and distributed network modeling studies.
Collapse
Affiliation(s)
- María Angélica Córdoba-Claros
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Pablo Rubio-Garrido
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Ruthnaldo R M de Lima
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Paulo Leonardo A G Morais
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Expedito S do Nascimento
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Jeferson S Cavalcante
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Francisco Clascá
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| |
Collapse
|
5
|
Chandran AS, Joshi S, Suresh S, Savarraj J, Snyder K, Vasconcellos FDN, Vakilna YS, Modiano YA, Pati S, Tandon N. Efficacy of neuromodulation of the pulvinar nucleus for drug-resistant epilepsy. Epilepsia 2025; 66:1059-1070. [PMID: 39797738 DOI: 10.1111/epi.18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus. METHODS A single-institution retrospective review of five patients who underwent bilateral pulvinar DBS for drug-resistant TLE or PQE was performed. Stimulation parameters were adjusted monthly as needed, and side effects were monitored. The primary outcome was the percentage reduction in patient-reported seizure frequency in comparison to the preimplant baseline. The location of the active electrode contacts in relation to pulvinar thalami that produced the best seizure outcome was identified. Chronic sensing of the pulvinar local field potentials (LFPs) and circadian pattern of modulation of the LFP amplitudes were analyzed. RESULTS Four patients (80%) experienced a >70% reduction in seizure frequency, whereas one patient had >50% reduction in seizure. Mean seizure reduction was 79% at a median follow-up of 13 months (range = 9-21 months). No significant side effects were noted. Of all the pulvinar subnuclei, stimulation of the medial pulvinar nucleus (MPN) produced the best seizure outcome in all patients except for two, in whom active contacts in the MPN but also in more lateral and inferior locations resulted in the most significant reduction in seizures. Chronic timeline data identified changes in LFP amplitude associated with stimulation and seizure occurrences. SIGNIFICANCE In this first ever report on a series of patients undergoing bilateral pulvinar DBS for drug-resistant epilepsy, we demonstrate that stimulation of the pulvinar and in particular the MPN is a safe and viable option for patients with nonlesional PQE or TLE. The optimal target for stimulation and relative merits of open versus closed loop stimulation should be delineated in future studies.
Collapse
Affiliation(s)
- Arjun Suresh Chandran
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuti Joshi
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jude Savarraj
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kathryn Snyder
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fernando De Nigris Vasconcellos
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yash S Vakilna
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yosefa A Modiano
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nitin Tandon
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Wang S, Ma L, Wang S, Duan C, Wang X, Bian X, Zhai D, Sun Y, Xie S, Zhang S, Liu Y, Lin X, Wang R, Liu X, Yu S, Lou X, Dong Z. Effects of acute sleep deprivation on the brain function of individuals with migraine: a resting-state functional magnetic resonance imaging study. J Headache Pain 2025; 26:60. [PMID: 40155843 PMCID: PMC11954264 DOI: 10.1186/s10194-025-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Sleep deprivation can trigger acute headache attacks in individuals with migraine; however, the underlying mechanism remains poorly understood. The aim of this study was to investigate the effects of acute sleep deprivation (ASD) on brain function in individuals with migraine without aura (MWoA) via functional magnetic resonance imaging (fMRI). METHODS Twenty three MWoA individuals and 23 healthy controls (HCs) were fairly included in this study. All participants underwent two MRI scans: one at baseline (prior to sleep deprivation) and another following 24 h of ASD. Images were obtained with blood-oxygen-level-dependent and T1-weighted sequences on a Siemens 7.0 T MRI scanner. We conducted analyses of changes in the low-frequency fluctuations (ALFF) values and functional connectivity (FC) between brain networks and within network before and after ASD in both MWoA group and HC group. Additionally, we investigated the relationship between the changes in ALFF before and after ASD and the clinical features (VAS and monthly headache days). RESULTS In the HC group, ASD led to a significant increase in ALFF values in the left parahippocampal gyrus compared to baseline (p-FDR = 0.01). In the MWoA group, ALFF values were significantly greater in 64 brain regions after ASD than at baseline. The most significant change in ALFF before and after ASD in the MWoA group was detected in the right medial pulvinar of the thalamus (p-FDR = 0.017), which showed a significant negative correlation with monthly headache days. Moreover, seed-based connectivity (SBC) analysis using the right medial pulvinar of the thalamus as the seed point revealed significantly increased connectivity with the cerebellar vermis (p-FWE = 0.035) after ASD in individuals with MWoA, whereas connectivity with the right postcentral gyrus was significantly decreased (p-FWE = 0.048). Furthermore, we performed analyses of between-network connectivity (BNC) and within-network connectivity across 17 brain networks, utilizing the Yeo-17 atlas. Both MWoA individuals and HCs showed no significant changes in BNC after ASD compared to baseline. However, our analysis in within-network revealed that MWoA individuals exhibited a reduced within-network FC in dorsal attention network (DAN) after ASD compared to baseline (p-FDR = 0.031), whereas HCs showed no significant differences in within-network FC across all networks before and after ASD. CONCLUSIONS In comparison to HCs, MWoA individuals exhibited significant alterations in brain function after ASD, particularly within the thalamus, and MWoA individuals exhibited a reduced within-network FC in DAN after ASD compared to baseline. Brain regions and networks in MWoA individuals were more susceptible to the effects of ASD.
Collapse
Affiliation(s)
- Shuqing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Longteng Ma
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, The PLA Joint Logistic Support Force 983 Hospital, Tianjin, 300142, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Wang
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Caohui Duan
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinyu Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xiangbing Bian
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yin Sun
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Siyuan Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuhua Zhang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingyuan Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoxue Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruobing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiu Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Lou
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Alhesain M, Alzu’bi A, Sankar N, Smith C, Kerwin J, Laws R, Lindsay S, Clowry GJ. Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei. Front Neuroanat 2025; 19:1530236. [PMID: 39990522 PMCID: PMC11842364 DOI: 10.3389/fnana.2025.1530236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded. Methods This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers. Results In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2. Conclusion In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.
Collapse
Affiliation(s)
- Maznah Alhesain
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| | - Ayman Alzu’bi
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
- Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Niveditha Sankar
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Charles Smith
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Janet Kerwin
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Gavin J. Clowry
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Cassidy RM, Macias AV, Lagos WN, Ugorji C, Callaway EM. Complementary Organization of Mouse Driver and Modulator Cortico-thalamo-cortical Circuits. J Neurosci 2025; 45:e1167242024. [PMID: 39824633 PMCID: PMC11780356 DOI: 10.1523/jneurosci.1167-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/20/2025] Open
Abstract
Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules. Because mouse pulvinar neurons projecting to different areas are spatially intermingled, their input/output relationships have been difficult to characterize using traditional anatomical methods. To determine the organization of CTC circuits, we mapped the higher visual areas (HVAs) of male and female mice with intrinsic signal imaging and targeted five pulvinar→HVA pathways for projection-specific rabies tracing. We aligned postmortem cortical tissue to in vivo maps for precise quantification of the areas and cell types projecting to each pulvinar→HVA population. Layer 5 corticothalamic (L5CT) "driver" inputs to the pulvinar originate predominantly from primary visual cortex (V1), consistent with the CC hierarchy. L5CT inputs from lateral HVAs specifically avoid driving reciprocal connections, consistent with the "no-strong-loops" hypothesis. Conversely, layer 6 corticothalamic (L6CT) "modulator" inputs are distributed across areas and are biased toward reciprocal connections. Unlike previous studies in primates, we find that every HVA receives disynaptic input from the superior colliculus. CTC circuits in the pulvinar thus depend on both target HVA and input cell type, such that driving and modulating higher-order pathways follow complementary connection rules similar to those governing first-order CT circuits.
Collapse
Affiliation(s)
- Rachel M Cassidy
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| | - Angel V Macias
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Willian N Lagos
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Chiamaka Ugorji
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
9
|
Meyer EE, Martynek M, Kastner S, Livingstone MS, Arcaro MJ. Expansion of a conserved architecture drives the evolution of the primate visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2421585122. [PMID: 39805017 PMCID: PMC11761675 DOI: 10.1073/pnas.2421585122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Human brain evolution is marked by a disproportionate expansion of cortical regions associated with advanced perceptual and cognitive functions. While this expansion is often attributed to the emergence of novel specialized brain areas, modifications to evolutionarily conserved cortical regions also have been linked to species-specific behaviors. Distinguishing between these two evolutionary outcomes has been limited by the ability to make direct comparisons between species. Here, we addressed this limitation by examining the expansion of the human visual cortex relative to macaques using a common functional architecture: retinotopy. Our findings revealed that human visual cortex expansion is primarily driven by increases in the surface area of a visual map architecture present in macaques rather than an increase in the number of individual areas. This expansion was not uniform, with higher-order areas, particularly in the parietal cortex, exhibiting the largest growth. Comparisons between neonate and adult humans revealed that these relative areal size differences were already established at birth. A meta-analysis of neuroimaging studies indicated that the most expanded areas are associated with advanced cognitive functions beyond visual processing. These results suggest that human perceptual and cognitive adaptations may be rooted in the expansion of evolutionarily conserved cortical architecture, with modifications even in the sensory cortex contributing to the broader cognitive functions characteristic of human behavior.
Collapse
Affiliation(s)
- Emily E. Meyer
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Marcelina Martynek
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
| | | | - Michael J. Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
10
|
Pizzo F, Carron R, Laguitton V, Clement A, Giusiano B, Bartolomei F. Medial pulvinar stimulation for focal drug-resistant epilepsy: interim 12-month results of the PULSE study. Front Neurol 2024; 15:1480819. [PMID: 39719976 PMCID: PMC11667892 DOI: 10.3389/fneur.2024.1480819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/08/2024] [Indexed: 12/26/2024] Open
Abstract
Objective This study aims to evaluate the efficacy and safety of deep brain stimulation (DBS) of the medial pulvinar nucleus (PuM) in reducing seizure frequency and addressing comorbidities in patients with drug and vagal nerve-resistant focal epilepsy. Methods This is an open-label prospective treatment trial with a planned enrollment of 12 patients suffering from medically refractory epilepsy (Clinical trial gov NCT04692701), for which the interim 12-month post-implantation results for the first 6 patients are being reported. Inclusion criteria were focal epilepsy not suitable for or after failed surgical intervention and previous failure of neurostimulation therapies (vagus nerve stimulation or anterior thalamic nucleus DBS). Evaluations included seizure diaries, neuropsychological assessments, and scales for depression, anxiety, quality of life, and seizure severity. PuM DBS was performed using ROSA robotic assistance, with follow-ups every 3 months for 1 year. Results Out of six patients, five completed 1-year follow-up (one patient died prematurely). A non-significant trend toward seizure reduction was observed at 6 months, becoming more pronounced at 1 year (mean reduction: 45%; responders: 2/5). Seizure severity significantly improved (p = 0.02), with a reduction in the NHS3 scale scores. Quality of life improved significantly at 1 year (p = 0.03). Psychiatric assessments indicated a non-significant trend toward improvement in depression (mean improvement: 26%) and anxiety (mean improvement: 20%) scores. Neuropsychological testing showed stable or improved cognitive performance in three out of five patients. Adverse events included one case of cerebral hemorrhage, one infection leading to device removal, and one possible SUDEP. Significance Preliminary results suggest that PuM DBS may offer a promising therapeutic option for reducing seizure severity and improving quality of life and cognitive functions in patients with drug-resistant epilepsy. Despite the small sample size and the presence of serious adverse events, the findings warrant further investigation with larger cohorts to confirm these trends and optimize the treatment protocol.
Collapse
Affiliation(s)
- Francesca Pizzo
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Virginie Laguitton
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
| | - Audrey Clement
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
| | - Bernard Giusiano
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
11
|
Basile GA, Quartarone A, Cerasa A, Ielo A, Bonanno L, Bertino S, Rizzo G, Milardi D, Anastasi GP, Saranathan M, Cacciola A. Track-Weighted Dynamic Functional Connectivity Profiles and Topographic Organization of the Human Pulvinar. Hum Brain Mapp 2024; 45:e70062. [PMID: 39639553 PMCID: PMC11621236 DOI: 10.1002/hbm.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
The human pulvinar is considered a prototypical associative thalamic nucleus as it represents a key node in several cortico-subcortical networks. Through this extensive connectivity to widespread brain areas, it has been suggested that the pulvinar may play a central role in modulating cortical oscillatory dynamics of complex cognitive and executive functions. Additionally, derangements of pulvinar activity are involved in different neuropsychiatric conditions including Lewy-body disease, Alzheimer's disease, and schizophrenia. Anatomical investigations in nonhuman primates have demonstrated a topographical organization of cortico-pulvinar connectivity along its dorsoventral and rostrocaudal axes; this specific organization shows only partial overlap with the traditional subdivision into subnuclei (anterior, lateral, medial, and inferior) and is thought to coordinate information processing within specific brain networks. However, despite its relevance in mediating higher-order cognitive functions, such a structural and functional organization of the pulvinar in the human brain remains poorly understood. Track-weighted dynamic functional connectivity (tw-dFC) is a recently developed technique that combines structural and dynamic functional connectivity, allowing the identification of white matter pathways underlying the fluctuations observed in functional connectivity between brain regions over time. Herein, we applied a data-driven parcellation approach to reveal topographically organized connectivity clusters within the human pulvinar complex, in two large cohorts of healthy human subjects. Unsupervised clustering of tw-dFC time series within the pulvinar complex revealed dorsomedial, dorsolateral, ventral anterior, and ventral posterior connectivity clusters. Each of these clusters shows functional coupling to specific, widespread cortico-subcortical white matter brain networks. Altogether, our findings represent a relevant step towards a better understanding of pulvinar anatomy and function, and a detailed characterization of his role in healthy and pathological conditions.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| | | | - Antonio Cerasa
- Institute of Bioimaging and Complex Biological Systems (IBSBC CNR)MilanItaly
| | - Augusto Ielo
- IRCCS Centro Neurolesi Bonino PulejoMessinaItaly
| | | | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Giuseppina Rizzo
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| | - Manojkumar Saranathan
- Department of RadiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly
| |
Collapse
|
12
|
Long X, Wang X, Cao Y, Kong D, Wu B, Xie H, Zhao Z, Roberts N, Gong Q, Jia Z. Disorganized thalamic subregional functional connectivity in bipolar I disorder. MedComm (Beijing) 2024; 5:e771. [PMID: 39492839 PMCID: PMC11527814 DOI: 10.1002/mco2.771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 11/05/2024] Open
Abstract
Thalamus plays a pivotal role in the pathophysiology of neuropsychiatric conditions due to its strategic position and intricate connectivity with the cerebral cortex, limbic system, and other subcortical structures. In the present study, the potential involvement of the thalamus and subregions of the thalamus are explored in bipolar disorder (BD). In particular, functional and structural magnetic resonance imaging was performed on 73 adult patients with BD-I and 78 healthy controls (HCs). Seed-based thalamus and thalamic subregional functional connectivity (FC) were compared between the BD-I patients and HCs. Compared to HCs, patients with BD-I showed higher FC between the left thalamus and right lingual gyrus and altered FC between the dorsal thalamus and the default mode network and prefrontal regions, which may be correlated with mania symptomatology. In patients with BD-I, the anterior subregions of the thalamus had higher FC than the posterior subregions. No significant difference in gray matter volume or local functional activity was found in the thalamus and thalamic subregions between BD-I and HC. These findings provide evidence of disorganized thalamocortical FC in BD-I, suggesting that the thalamus and its subregions may play important and specific roles in the neural circuitry of BD.
Collapse
Affiliation(s)
- Xipeng Long
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Xiuli Wang
- Department of Psychiatrythe Fourth People's Hospital of ChengduChengduChina
| | - Yuan Cao
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Di Kong
- Department of Psychiatrythe Fourth People's Hospital of ChengduChengduChina
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC)Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Hongsheng Xie
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Ziru Zhao
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI)School of Clinical SciencesUniversity of EdinburghEdinburghUK
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC)Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenChina
| | - Zhiyun Jia
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| |
Collapse
|
13
|
de Bézenac C, Leek N, Adan G, Mohanraj R, Biswas S, Marson A, Keller S. Subcortical Alterations in Newly Diagnosed Epilepsy and Associated Changes in Brain Connectivity and Cognition. Hum Brain Mapp 2024; 45:e70069. [PMID: 39508641 PMCID: PMC11542292 DOI: 10.1002/hbm.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with chronic focal epilepsy commonly exhibit subcortical atrophy, particularly of the thalamus. The timing of these alterations remains uncertain, though preliminary evidence suggests that observable changes may already be present at diagnosis. It is also not yet known how these morphological changes are linked to the coherence of white matter pathways throughout the brain, or to neuropsychological function often compromised before antiseizure medication treatment. This study investigates localized atrophy in subcortical regions using surface shape analysis in individuals with newly diagnosed focal epilepsy (NDfE) and assesses their implications on brain connectivity and cognitive function. We collected structural (T1w) and diffusion-weighted MRI and neuropsychological data from 104 patients with NDfE and 45 healthy controls (HCs) matched for age, sex, and education. A vertex-based shape analysis was performed on subcortical structures to compare patients with NDfE and HC, adjusting for age, sex, and intracranial volume. The mean deformation of significance areas (pcor < 0.05) was used to identify white matter pathways associated with overall shape alterations in patients relative to controls using correlational tractography. Additionally, the relationship between significant subcortical shape values and neuropsychological outcomes was evaluated using a generalized canonical correlation approach. Shape analysis revealed bilateral focal inward deformation (a proxy for localized atrophy) in anterior areas of the right and left thalamus and right pallidum in patients with NDfE compared to HC (FWE corrected). No structures showed areas of outward deformation in patients. The connectometry analysis revealed that fractional anisotropy (FA) was positively correlated with thalamic and pallidal shape deformation, that is, reduced FA was associated with inward deformation in tracts proximal to and or connecting with the thalamus including the fornix, frontal, parahippocampal, and corticothalamic pathways. Thalamic and pallidal shape changes were also related to increased depression and anxiety and reduced memory and cognitive function. These findings suggest that atrophy of the thalamus, which has previously been associated with the generation and maintenance of focal seizures, may present at epilepsy diagnosis and relate to alterations in both white matter connectivity and cognitive performance. We suggest that at least some alterations in brain structure and consequent impact on cognitive and affective processes are the result of early epileptogenic processes rather than exclusively due to the chronicity of longstanding epilepsy, recurrent seizures, and treatment with antiseizure medication.
Collapse
Affiliation(s)
- Christophe E. de Bézenac
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Nicola Leek
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Guleed H. Adan
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
| | - Rajiv Mohanraj
- Department of NeurologyManchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation TrustSalfordUK
| | | | - Anthony G. Marson
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
| | - Simon S. Keller
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
14
|
Pecheva D, Smith DM, Casey BJ, Woodward LJ, Dale AM, Filippi CG, Watts R. Sex and mental health are related to subcortical brain microstructure. Proc Natl Acad Sci U S A 2024; 121:e2403212121. [PMID: 39042688 PMCID: PMC11295051 DOI: 10.1073/pnas.2403212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.
Collapse
Affiliation(s)
- Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA92093
| | - Diana M. Smith
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA92093
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA92093
| | - B. J. Casey
- Department of Neuroscience and Behavior, Barnard College, New York, NY10027
| | - Lianne J. Woodward
- Faculty of Health, University of Canterbury, Christchurch8140, New Zealand
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA92093
- Department of Radiology, University of California, San Diego, La Jolla, CA92093
- Department of Neurosciences, University of California, San Diego, La Jolla, CA92093
- Department of Psychiatry, University of California, San Diego, La Jolla, CA92093
| | - Christopher G. Filippi
- Department of Radiology, The Hospital for Sick Children and the SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Richard Watts
- Faculty of Health, University of Canterbury, Christchurch8140, New Zealand
| |
Collapse
|
15
|
Fin NSH, Yip A, Teo L, Homman-Ludiye J, Bourne JA. Developmental dynamics of the prefrontal cortical SST and PV interneuron networks: Insights from the monkey highlight human-specific features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602904. [PMID: 39026896 PMCID: PMC11257587 DOI: 10.1101/2024.07.10.602904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The primate prefrontal cortex (PFC) is a quintessential hub of cognitive functions. Amidst its intricate neural architecture, the interplay of distinct neuronal subtypes, notably parvalbumin (PV) and somatostatin (SST) interneurons (INs), emerge as a cornerstone in sculpting cortical circuitry and governing cognitive processes. While considerable strides have been made in elucidating the developmental trajectory of these neurons in rodent models, our understanding of their postmigration developmental dynamics in primates still needs to be studied. Disruptions to this developmental trajectory can compromise IN function, impairing signal gating and circuit modulation within cortical networks. This study examined the expression patterns of PV and SST, ion transporter KCC2, and ion channel subtypes Kv3.1b, and Nav1.1 - associated with morphophysiological stages of development in the postnatal marmoset monkey in different frontal cortical regions (granular areas 8aD, 8aV, 9, 46; agranular areas 11, 47L). Our results demonstrate that the maturation of PV+ INs extends into adolescence, characterized by discrete epochs associated with specific expression dynamics of ion channel subtypes. Interestingly, we observed a postnatal decrease in SST interneurons, contrasting with studies in rodents. This endeavor broadens our comprehension of primate cortical development and furnishes invaluable insights into the etiology and pathophysiology of neurodevelopmental disorders characterized by perturbations in PV and SST IN function.
Collapse
Affiliation(s)
- Nafiseh S Hosseini Fin
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton Vic., 3800, Australia
| | - Adrian Yip
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton Vic., 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton Vic., 3800, Australia
| | - Jihane Homman-Ludiye
- Monash MicroImaging, 15 Innovation Walk, Monash University, Clayton, VIC, 3800, Australia
| | - James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
17
|
Albergoni M, Pagani E, Preziosa P, Meani A, Margoni M, Rocca MA, Filippi M. Thalamic nuclei volume partially mediates the effects of aerobic capacity on fatigue in people with multiple sclerosis. J Neurol 2024; 271:3378-3388. [PMID: 38507073 DOI: 10.1007/s00415-024-12277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Fatigue is frequent in people with multiple sclerosis (pwMS) impacting physical and cognitive functions. Lower aerobic capacity and regional thalamic volume may be involved in the pathophysiology of fatigue in pwMS. OBJECTIVES To identify associations between thalamic nuclei volumes, aerobic capacity and fatigue and to investigate whether the influence of aerobic capacity on fatigue in pwMS is mediated by thalamic integrity. METHODS Eighty-three pwMS underwent a clinical evaluation with assessment of fatigue (Modified Fatigue Impact Scale [MFIS]), including physical (pMFIS) and cognitive (cMFIS) components, and peak of oxygen uptake (VO2peak). PwMS and 63 sex- and age-matched healthy controls (HC) underwent a 3 T brain MRI to quantify volume of the whole thalamus and its nuclei. RESULTS Compared to HC, pwMS showed higher global MFIS, pMFIS and cMFIS scores, and lower VO2peak and thalamic volumes (p < 0.001). In pwMS, higher VO2peak was significantly associated with lower MFIS and pMFIS scores (r value = - 0.326 and - 0.356; pFDR ≤ 0.046) and higher laterodorsal thalamic nucleus (Dor) cluster volume (r value = 0.300; pFDR = 0.047). Moreover, lower Dor thalamic cluster volume was significantly associated with higher MFIS, pMFIS and cMFIS scores (r value range = - 0.305; - 0.293; pFDR ≤ 0.049). The volume of Dor thalamic cluster partially mediated the positive effects of VO2peak on both MFIS and cMFIS, with relative indirect effects of 21% and 32% respectively. No mediation was found for pMFIS. CONCLUSIONS Higher VO2peak is associated with lower fatigue in pwMS, likely acting on Dor thalamic cluster volume integrity. Such an effect might be different according to the type of fatigue (cognitive or physical).
Collapse
Affiliation(s)
- Matteo Albergoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Lim M, Kim DJ, Nascimento TD, DaSilva AF. High-definition tDCS over primary motor cortex modulates brain signal variability and functional connectivity in episodic migraine. Clin Neurophysiol 2024; 161:101-111. [PMID: 38460220 PMCID: PMC11610772 DOI: 10.1016/j.clinph.2024.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE This study investigated how high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) affects brain signal variability and functional connectivity in the trigeminal pain pathway, and their association with changes in migraine attacks. METHODS Twenty-five episodic migraine patients were randomized for ten daily sessions of active or sham M1 HD-tDCS. Resting-state blood-oxygenation-level-dependent (BOLD) signal variability and seed-based functional connectivity were assessed pre- and post-treatment. A mediation analysis was performed to test whether BOLD signal variability mediates the relationship between treatment group and moderate-to-severe headache days. RESULTS The active M1 HD-tDCS group showed reduced BOLD variability in the spinal trigeminal nucleus (SpV) and thalamus, but increased variability in the rostral anterior cingulate cortex (rACC) compared to the sham group. Connectivity decreased between medial pulvinar-temporal pole, medial dorsal-precuneus, and the ventral posterior medial nucleus-SpV, but increased between the rACC-amygdala, and the periaqueductal gray-parahippocampal gyrus. Changes in medial pulvinar variability mediated the reduction in moderate-to-severe headache days at one-month post-treatment. CONCLUSIONS M1 HD-tDCS alters BOLD signal variability and connectivity in the trigeminal somatosensory and modulatory pain system, potentially alleviating migraine headache attacks. SIGNIFICANCE M1 HD-tDCS realigns brain signal variability and connectivity in migraineurs closer to healthy control levels.
Collapse
Affiliation(s)
- Manyoel Lim
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Dajung J Kim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Thiago D Nascimento
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre F DaSilva
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Biesbroek JM, Verhagen MG, van der Stigchel S, Biessels GJ. When the central integrator disintegrates: A review of the role of the thalamus in cognition and dementia. Alzheimers Dement 2024; 20:2209-2222. [PMID: 38041861 PMCID: PMC10984498 DOI: 10.1002/alz.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/04/2023]
Abstract
The thalamus is a complex neural structure with numerous anatomical subdivisions and intricate connectivity patterns. In recent decades, the traditional view of the thalamus as a relay station and "gateway to the cortex" has expanded in recognition of its role as a central integrator of inputs from sensory systems, cortex, basal ganglia, limbic systems, brain stem nuclei, and cerebellum. As such, the thalamus is critical for numerous aspects of human cognition, mood, and behavior, as well as serving sensory processing and motor functions. Thalamus pathology is an important contributor to cognitive and functional decline, and it might be argued that the thalamus has been somewhat overlooked as an important player in dementia. In this review, we provide a comprehensive overview of thalamus anatomy and function, with an emphasis on human cognition and behavior, and discuss emerging insights on the role of thalamus pathology in dementia.
Collapse
Affiliation(s)
- J. Matthijs Biesbroek
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of NeurologyDiakonessenhuis HospitalUtrechtThe Netherlands
| | - Marieke G. Verhagen
- VIB Center for Brain and DiseaseLeuvenBelgium
- Department of NeurosciencesKatholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - Stefan van der Stigchel
- Department of Experimental PsychologyHelmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
| | - Geert Jan Biessels
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
20
|
Bastuji H, Cadic-Melchior A, Ruelle-Le Glaunec L, Magnin M, Garcia-Larrea L. Functional connectivity between medial pulvinar and cortical networks as a predictor of arousal to noxious stimuli during sleep. Eur J Neurosci 2024; 59:570-583. [PMID: 36889675 DOI: 10.1111/ejn.15958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
The interruption of sleep by a nociceptive stimulus is favoured by an increase in the pre-stimulus functional connectivity between sensory and higher level cortical areas. In addition, stimuli inducing arousal also trigger a widespread electroencephalographic (EEG) response reflecting the coordinated activation of a large cortical network. Because functional connectivity between distant cortical areas is thought to be underpinned by trans-thalamic connections involving associative thalamic nuclei, we investigated the possible involvement of one principal associative thalamic nucleus, the medial pulvinar (PuM), in the sleeper's responsiveness to nociceptive stimuli. Intra-cortical and intra-thalamic signals were analysed in 440 intracranial electroencephalographic (iEEG) segments during nocturnal sleep in eight epileptic patients receiving laser nociceptive stimuli. The spectral coherence between the PuM and 10 cortical regions grouped in networks was computed during 5 s before and 1 s after the nociceptive stimulus and contrasted according to the presence or absence of an arousal EEG response. Pre- and post-stimulus phase coherence between the PuM and all cortical networks was significantly increased in instances of arousal, both during N2 and paradoxical (rapid eye movement [REM]) sleep. Thalamo-cortical enhancement in coherence involved both sensory and higher level cortical networks and predominated in the pre-stimulus period. The association between pre-stimulus widespread increase in thalamo-cortical coherence and subsequent arousal suggests that the probability of sleep interruption by a noxious stimulus increases when it occurs during phases of enhanced trans-thalamic transfer of information between cortical areas.
Collapse
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre du Sommeil, Hospices Civils de Lyon, Bron, France
| | - Andéol Cadic-Melchior
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Lucien Ruelle-Le Glaunec
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre d'évaluation et de traitement de la douleur, Hôpital Neurologique, Lyon, France
| |
Collapse
|
21
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
22
|
Kim WS, Shen J, Tsogt U, Odkhuu S, Cheraghi S, Rami FZ, Chung YC. Altered thalamic volumes and functional connectivity in the recovered patients with psychosis. Psychiatry Res 2024; 331:115688. [PMID: 38141265 DOI: 10.1016/j.psychres.2023.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Investigating neural correlates in recovered patients with psychosis is important in terms of identifying biological markers associated with recovery status or predicting a possible future relapse. We sought to examine thalamic nuclei volumes and thalamus-centered functional connectivity (FC) in recovered patients with psychosis who discontinued their medication. METHODS Thirty patients with psychosis who satisfied the criteria for full recovery and 50 healthy controls (HC) matched for age, sex, and education underwent magnetic resonance imaging and clinical evaluation. The recovered patients were divided into the maintained and relapsed subjects according to their clinical status on the follow-ups. Thalamic nuclei volumes and thalamus-centered FC were measured between the recovered patients and HC. Correlations between the thalamic nuclei or altered FC, and clinical symptoms and cognitive functioning were explored. RESULTS Modest cognitive impairments and reduced thalamic nuclei volumes were evident in the recovered patients. Moreover, we found altered thalamo-cortical connectivity and its associations with negative symptoms and cognitive functioning in the recovered patients compared with HC. CONCLUSION These findings suggest that there are still cognitive impairments, and aberrant neuronal changes in the recovered patients. The implication of differential FC patterns between the maintained and the relapsed patients remain to be further explored.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jie Shen
- Medical School, Department of Psychiatry, Jeonbuk National University, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Uyanga Tsogt
- Medical School, Department of Psychiatry, Jeonbuk National University, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Soyolsaikhan Odkhuu
- Medical School, Department of Psychiatry, Jeonbuk National University, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sahar Cheraghi
- Medical School, Department of Psychiatry, Jeonbuk National University, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Fatima Zahra Rami
- Medical School, Department of Psychiatry, Jeonbuk National University, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea; Medical School, Department of Psychiatry, Jeonbuk National University, Jeonju, Korea; Research Institute of Clinical Medicine of Jeonbuk National, University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
23
|
Frauscher B, Bartolomei F, Baud MO, Smith RJ, Worrell G, Lundstrom BN. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 2023; 64 Suppl 3:S49-S61. [PMID: 37194746 PMCID: PMC10654261 DOI: 10.1111/epi.17640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France. AP-HM, Service de Neurophysiologie Clinique, Hôpital de la Timone, Marseille, France
| | - Maxime O. Baud
- Sleep-Wake-Epilepsy Center, NeuroTec and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern
| | - Rachel J. Smith
- University of Alabama at Birmingham, Electrical and Computer Engineering Department, Birmingham, Alabama, US. University of Alabama at Birmingham, Neuroengineering Program, Birmingham, Alabama, US
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, US
| | | |
Collapse
|
24
|
Boeken OJ, Cieslik EC, Langner R, Markett S. Characterizing functional modules in the human thalamus: coactivation-based parcellation and systems-level functional decoding. Brain Struct Funct 2023; 228:1811-1834. [PMID: 36547707 PMCID: PMC10516793 DOI: 10.1007/s00429-022-02603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The human thalamus relays sensory signals to the cortex and facilitates brain-wide communication. The thalamus is also more directly involved in sensorimotor and various cognitive functions but a full characterization of its functional repertoire, particularly in regard to its internal anatomical structure, is still outstanding. As a putative hub in the human connectome, the thalamus might reveal its functional profile only in conjunction with interconnected brain areas. We therefore developed a novel systems-level Bayesian reverse inference decoding that complements the traditional neuroinformatics approach towards a network account of thalamic function. The systems-level decoding considers the functional repertoire (i.e., the terms associated with a brain region) of all regions showing co-activations with a predefined seed region in a brain-wide fashion. Here, we used task-constrained meta-analytic connectivity-based parcellation (MACM-CBP) to identify thalamic subregions as seed regions and applied the systems-level decoding to these subregions in conjunction with functionally connected cortical regions. Our results confirm thalamic structure-function relationships known from animal and clinical studies and revealed further associations with language, memory, and locomotion that have not been detailed in the cognitive neuroscience literature before. The systems-level decoding further uncovered large systems engaged in autobiographical memory and nociception. We propose this novel decoding approach as a useful tool to detect previously unknown structure-function relationships at the brain network level, and to build viable starting points for future studies.
Collapse
Affiliation(s)
- Ole J Boeken
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sebastian Markett
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| |
Collapse
|
25
|
Kim CN, Shin D, Wang A, Nowakowski TJ. Spatiotemporal molecular dynamics of the developing human thalamus. Science 2023; 382:eadf9941. [PMID: 37824646 PMCID: PMC10758299 DOI: 10.1126/science.adf9941] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.
Collapse
Affiliation(s)
- Chang N Kim
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - David Shin
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
26
|
Kim CN, Shin D, Wang A, Nowakowski TJ. Spatiotemporal molecular dynamics of the developing human thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554174. [PMID: 37662287 PMCID: PMC10473600 DOI: 10.1101/2023.08.21.554174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially-distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single cell and multiplexed spatial transcriptomics. Here we show that molecularly-defined thalamic neurons differentiate in the second trimester of human development, and that these neurons organize into spatially and molecularly distinct nuclei. We identify major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei. In addition, we identify six subtypes of GABAergic neurons that are shared and distinct across thalamic nuclei. One-Sentence Summary Single cell and spatial profiling of the developing thalamus in the first and second trimester yields molecular mechanisms of thalamic nuclei development.
Collapse
|
27
|
Yan H, Wang X, Zhang X, Qiao L, Gao R, Ni D, Shu W, Xu C, Ren L, Yu T. Deep brain stimulation for patients with refractory epilepsy: nuclei selection and surgical outcome. Front Neurol 2023; 14:1169105. [PMID: 37251216 PMCID: PMC10213517 DOI: 10.3389/fneur.2023.1169105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Objective By studying the surgical outcome of deep brain stimulation (DBS) of different target nuclei for patients with refractory epilepsy, we aimed to explore a clinically feasible target nucleus selection strategy. Methods We selected patients with refractory epilepsy who were not eligible for resective surgery. For each patient, we performed DBS on a thalamic nucleus [anterior nucleus of the thalamus (ANT), subthalamic nucleus (STN), centromedian nucleus (CMN), or pulvinar nucleus (PN)] selected based on the location of the patient's epileptogenic zone (EZ) and the possible epileptic network involved. We monitored the clinical outcomes for at least 12 months and analyzed the clinical characteristics and seizure frequency changes to assess the postoperative efficacy of DBS on the different target nuclei. Results Out of the 65 included patients, 46 (70.8%) responded to DBS. Among the 65 patients, 45 underwent ANT-DBS, 29 (64.4%) responded to the treatment, and four (8.9%) of them reported being seizure-free for at least 1 year. Among the patients with temporal lobe epilepsy (TLE, n = 36) and extratemporal lobe epilepsy (ETLE, n = 9), 22 (61.1%) and 7 (77.8%) responded to the treatment, respectively. Among the 45 patients who underwent ANT-DBS, 28 (62%) had focal to bilateral tonic-clonic seizures (FBTCS). Of these 28 patients, 18 (64%) responded to the treatment. Out of the 65 included patients, 16 had EZ related to the sensorimotor cortex and underwent STN-DBS. Among them, 13 (81.3%) responded to the treatment, and two (12.5%) were seizure-free for at least 6 months. Three patients had Lennox-Gastaut syndrome (LGS)-like epilepsy and underwent CMN-DBS; all of them responded to the treatment (seizure frequency reductions: 51.6%, 79.6%, and 79.5%). Finally, one patient with bilateral occipital lobe epilepsy underwent PN-DBS, reducing the seizure frequency by 69.7%. Significance ANT-DBS is effective for patients with TLE or ETLE. In addition, ANT-DBS is effective for patients with FBTCS. STN-DBS might be an optimal treatment for patients with motor seizures, especially when the EZ overlaps the sensorimotor cortex. CMN and PN may be considered modulating targets for patients with LGS-like epilepsy or occipital lobe epilepsy, respectively.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Shu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Mørch-Johnsen L, Jørgensen KN, Barth C, Nerland S, Bringslid IK, Wortinger LA, Andreou D, Melle I, Andreassen OA, Agartz I. Thalamic nuclei volumes in schizophrenia and bipolar spectrum disorders - Associations with diagnosis and clinical characteristics. Schizophr Res 2023; 256:26-35. [PMID: 37126979 DOI: 10.1016/j.schres.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The thalamus is central to brain functions ranging from primary sensory processing to higher-order cognition. Structural deficits in thalamic association nuclei such as the pulvinar and mediodorsal nuclei have previously been reported in schizophrenia. However, the specificity with regards to clinical presentation, and whether or not bipolar disorder (BD) is associated with similar alterations is unclear. METHODS We investigated thalamic nuclei volumes in 334 patients with schizophrenia spectrum disorders (SSD) (median age 29 years, 59 % male), 322 patients with BD (30 years, 40 % male), and 826 healthy controls (HC) (34 years, 54 % male). Volumes of 25 thalamic nuclei were extracted from T1-weighted magnetic resonance imaging using an automated Bayesian segmentation method and compared between groups. Furthermore, we explored associations with clinical characteristics across diagnostic groups, including psychotic and mood symptoms and medication use, as well as diagnostic subtype in BD. RESULTS Significantly smaller volumes were found in the mediodorsal, pulvinar, and lateral and medial geniculate thalamic nuclei in SSD. Similarly, smaller volumes were found in BD in the same four regions, but mediodorsal nucleus volume alterations were limited to its lateral part and pulvinar alterations to its anterior region. Smaller volumes in BD compared to HC were seen only in BD type I, not BD type II. Across diagnoses, having more negative symptoms was associated with smaller pulvinar volumes. CONCLUSIONS Structural alterations were found in both SSD and BD, mainly in the thalamic association nuclei. Structural deficits in the pulvinar may be of relevance for negative symptoms.
Collapse
Affiliation(s)
- Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Kippersund Bringslid
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Soulier H, Pizzo F, Jegou A, Lagarde S, Garnier E, Makhalova J, Medina Villalon S, Carron R, Bénar C, Bartolomei F. The anterior and pulvinar thalamic nuclei interactions in mesial temporal lobe seizure networks. Clin Neurophysiol 2023; 150:176-183. [PMID: 37075682 DOI: 10.1016/j.clinph.2023.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE To evaluate the respective roles of the anterior thalamic nucleus (ANT) and the medial pulvinar (PuM) during mesial temporal lobe seizures recorded by stereoelectroencephalography (SEEG). METHODS We assessed functional connectivity (FC) in 15 SEEG recorded seizures from 6 patients using a non-linear correlation method. Functional interactions were explored between the mesial temporal region, the temporal neocortex, ANT and PuM. The node total-strength (the summed connectivity of the node with all other nodes) as well as the directionality of the links (IN and OUT strengths) were calculated to estimate drivers and receivers during the cortico-thalamic interactions. RESULTS Significant increased thalamo-cortical FC during seizures was observed, with the node total-strength reaching a maximum at seizure end. There was no significant difference in global connectivity values between ANT and PuM. Regarding directionality, significantly higher thalamic IN strength values were observed. However, compared to ANT, PuM appeared to be the driver at the end of seizures with synchronous termination. CONCLUSIONS This work demonstrates that during temporal seizures, both thalamic nuclei are highly connected with the mesial temporal region and that PuM could play a role in seizure termination. SIGNIFICANCE Understanding functional connectivity between the mesial temporal and thalamic nuclei could contribute to the development of target-specific deep brain stimulation strategies for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Hugo Soulier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Julia Makhalova
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
30
|
Yao S, Shi S, Zhou Q, Wang J, Du X, Takahata T, Roe AW. Functional topography of pulvinar-visual cortex networks in macaques revealed by INS-fMRI. J Comp Neurol 2023; 531:681-700. [PMID: 36740976 DOI: 10.1002/cne.25456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 02/07/2023]
Abstract
The pulvinar in the macaque monkey contains three divisions: the medial pulvinar (PM), the lateral pulvinar (PL), and the inferior pulvinar (PI). Anatomical studies have shown that connections of PM are preferentially distributed to higher association areas, those of PL are biased toward the ventral visual pathway, and those of PI are biased with the dorsal visual pathway. To study functional connections of the pulvinar at mesoscale, we used a novel method called INS-fMRI (infrared neural stimulation and functional magnetic resonance imaging). This method permits studies and comparisons of multiple pulvinar networks within single animals. As previously revealed, stimulations of different sites in PL and PI produced topographically organized focal activations in visual areas V1, V2, and V3. In contrast, PM stimulation elicited little or diffuse response. The relative activations of areas V1, V2, V3A, V3d, V3v, V4, MT, and MST revealed that connections of PL are biased to ventral pathway areas, and those of PI are biased to dorsal areas. Different statistical values of activated blood-oxygen-level-dependent responses produced the same center of activation, indicating stability of connectivity; it also suggests possible dynamics of broad to focal responses from single stimulation sites. These results demonstrate that infrared neural stimulation-induced connectivity is largely consistent with previous anatomical connectivity studies, thereby demonstrating validity of our novel method. In addition, it suggests additional interpretations of functional connectivity to complement anatomical studies.
Collapse
Affiliation(s)
- Songping Yao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sunhang Shi
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianbao Wang
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Du
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Anna Wang Roe
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Neurosurgery of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Kalamatianos T, Mavrovounis G, Skouras P, Pandis D, Fountas K, Stranjalis G. Medial Pulvinar Stimulation in Temporal Lobe Epilepsy: A Literature Review and a Hypothesis Based on Neuroanatomical Findings. Cureus 2023; 15:e35772. [PMID: 37025746 PMCID: PMC10071339 DOI: 10.7759/cureus.35772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
While bilateral stimulation of the anterior thalamic nuclei remains the only approved deep brain stimulation (DBS) option for focal epilepsy, two additional thalamic targets have been proposed. Earlier work indicated the potential of centromedian thalamic nucleus stimulation with recent findings highlighting the medial pulvinar nucleus. The latter has been shown to exhibit electrophysiological and imaging alterations in patients with partial status epilepticus and temporal lobe epilepsy. On this basis, recent studies have begun assessing the feasibility and efficacy of pulvinar stimulation, with encouraging results on the reduction of seizure frequency and severity. Building on existing neuroanatomical knowledge, indicating that the medial pulvinar is connected to the temporal lobe via the temporopulvinar bundle of Arnold, we hypothesize that this is one of the routes through which medial pulvinar stimulation affects temporal lobe structures. We suggest that further anatomic, imaging, and electrophysiologic studies are warranted to deepen our understanding of the subject and guide future clinical applications.
Collapse
|
32
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
33
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
34
|
Alemán-Gómez Y, Baumgartner T, Klauser P, Cleusix M, Jenni R, Hagmann P, Conus P, Do KQ, Bach Cuadra M, Baumann PS, Steullet P. Multimodal Magnetic Resonance Imaging Depicts Widespread and Subregion Specific Anomalies in the Thalamus of Early-Psychosis and Chronic Schizophrenia Patients. Schizophr Bull 2023; 49:196-207. [PMID: 36065156 PMCID: PMC9810016 DOI: 10.1093/schbul/sbac113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND HYPOTHESIS Although the thalamus has a central role in schizophrenia pathophysiology, contributing to sensory, cognitive, and sleep alterations, the nature and dynamics of the alterations occurring within this structure remain largely elusive. Using a multimodal magnetic resonance imaging (MRI) approach, we examined whether anomalies: (1) differ across thalamic subregions/nuclei, (2) are already present in the early phase of psychosis (EP), and (3) worsen in chronic schizophrenia (SCHZ). STUDY DESIGN T1-weighted and diffusion-weighted images were analyzed to estimate gray matter concentration (GMC) and microstructural parameters obtained from the spherical mean technique (intra-neurite volume fraction [VFINTRA)], intra-neurite diffusivity [DIFFINTRA], extra-neurite mean diffusivity [MDEXTRA], extra-neurite transversal diffusivity [TDEXTRA]) within 7 thalamic subregions. RESULTS Compared to age-matched controls, the thalamus of EP patients displays previously unreported widespread microstructural alterations (VFINTRA decrease, TDEXTRA increase) that are associated with similar alterations in the whole brain white matter, suggesting altered integrity of white matter fiber tracts in the thalamus. In both patient groups, we also observed more localized and heterogenous changes (either GMC decrease, MDEXTRA increase, or DIFFINTRA decrease) in mediodorsal, posterior, and ventral anterior parts of the thalamus in both patient groups, suggesting that the nature of the alterations varies across subregions. GMC and DIFFINTRA in the whole thalamus correlate with global functioning, while DIFFINTRA in the subregion encompassing the medial pulvinar is significantly associated with negative symptoms in SCHZ. CONCLUSION Our data reveals both widespread and more localized thalamic anomalies that are already present in the early phase of psychosis.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Thomas Baumgartner
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Raoul Jenni
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| | - Meritxell Bach Cuadra
- Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pascal Steullet
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland
| |
Collapse
|
35
|
Forno G, Saranathan M, Contador J, Guillen N, Falgàs N, Tort-Merino A, Balasa M, Sanchez-Valle R, Hornberger M, Lladó A. Thalamic nuclei changes in early and late onset Alzheimer's disease. CURRENT RESEARCH IN NEUROBIOLOGY 2023. [DOI: 10.1016/j.crneur.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
36
|
Velioglu HA, Ayyildiz B, Ayyildiz S, Sutcubasi B, Hanoglu L, Bayraktaroglu Z, Yulug B. A structural and resting-state functional connectivity investigation of the pulvinar in elderly individuals and Alzheimer's disease patients. Alzheimers Dement 2022. [PMID: 36576157 DOI: 10.1002/alz.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD), structural and functional changes in the brain may give rise to disruption of specific cognitive functions. The aim of this study is to investigate the functional connectivity alterations in the pulvinar's subdivisions and total pulvinar voxel-based morphometry (VBM) changes in individuals with AD and healthy controls. A seed-based functional connectivity analysis was applied to the anterior, inferior, lateral, and medial pulvinar in each hemisphere. Furthermore, VBM analysis was carried out to compare gray matter (GM) volume differences in the pulvinar and thalamus between the two groups. Connectivity analysis revealed that the pulvinar subdivisions had decreased connectivity in individuals with AD. In addition, the pulvinar and thalamus in each hemisphere were significantly smaller in the AD group. The pulvinar may have a role in AD-related cognitive impairments and the intrinsic connectivity network changes and GM loss in pulvinar subdivisions suggest the cognitive deterioration occurring in those with AD. HIGHLIGHTS: The pulvinar may play a role in pathophysiology of cognitive impairments in those with Alzheimer's disease (AD). Decreased structural volume and functional connectivity were found in patients with AD. The inferior pulvinar is functionally the most affected subdivision by AD compared to the others.
Collapse
Affiliation(s)
- Halil Aziz Velioglu
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Behcet Ayyildiz
- Anatomy PhD Program, Graduate School of Health Sciences, Kocaeli University, Kocaeli, Turkey.,Department of Anatomy, School of Medicine, Istinye University, Istanbul, Turkey
| | - Sevilay Ayyildiz
- Anatomy PhD Program, Graduate School of Health Sciences, Kocaeli University, Kocaeli, Turkey.,Department of Anatomy, School of Medicine, Istinye University, Istanbul, Turkey
| | - Bernis Sutcubasi
- Department of Psychology, Faculty of Arts and Sciences, Acibadem University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, Istanbul Medipol University, International School of Medicine, Istanbul, Turkey
| | - Burak Yulug
- Alanya Alaaddin Keykubat University, School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
37
|
Egawa J, Kawasaki K, Hayashi T, Akikawa R, Someya T, Hasegawa I. Theory of mind tested by implicit false belief: a simple and full-fledged mental state attribution. FEBS J 2022; 289:7343-7358. [PMID: 34914205 PMCID: PMC10078721 DOI: 10.1111/febs.16322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023]
Abstract
About 40 years have passed since 'theory of mind (ToM)' research started. The false-belief test is used as a litmus test for ToM ability. The implicit false-belief test has renewed views of ToM in several disciplines, including psychology, psychiatry, and neuroscience. Many important questions have been considered via the paradigm of implicit false belief. We recently addressed the phylogenetic and physiological aspects of ToM using a version of this paradigm combined with the chemogenetic technique on Old World monkeys. We sought to create animal models for autism that exhibit behavioral phenotypes similar to human symptoms. The simultaneous manipulation of neural circuits and assessments of changes in phenotypes can help identify the causal neural substrate of ToM.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Japan
| | - Taketsugu Hayashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Ryota Akikawa
- Department of Physiology, Niigata University School of Medicine, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Japan
| |
Collapse
|
38
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
39
|
Jiang H, Li Z, Yang W, Sun Y, Yan F, Sun Q, Wei H, Bian L. Region-specific disturbed iron redistribution in Cushing's disease measured by magnetic resonance imaging-based quantitative susceptibility mapping. Clin Endocrinol (Oxf) 2022; 97:81-90. [PMID: 35170794 DOI: 10.1111/cen.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cushing's disease (CD) is most common endogenous Cushing's syndrome. This study aimed to assess iron alternations in deep grey matter in CD. DESIGN A cross-sectional study was performed. PATIENTS In this study, 48 active CD patients, 39 remitted CD patients and 52 healthy control (HC) subjects underwent magnetic resonance imaging. MEASUREMENTS Quantitative susceptibility mapping (QSM). RESULTS Decreased susceptibility values were found in the bilateral putamen, caudate, red nucleus, subthalamic nucleus and pulvinar nuclei of the thalamus (TL-PLV) in active and remitted patients with CD compared with HCs. Interestingly, in remitted patients with CD, altered susceptibility values were significantly correlated with altered brain volumes in TL-PLV, while TL-PLV may play an essential role as a general regulatory hub for adaptive and flexible cognition. CONCLUSION Chronic exposure to hypercortisolism may be related to iron distribution and significantly correlated with altered brain volumes and clinical features in patients with CD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Leow YN, Zhou B, Sullivan HA, Barlowe AR, Wickersham IR, Sur M. Brain-wide mapping of inputs to the mouse lateral posterior (LP/Pulvinar) thalamus-anterior cingulate cortex network. J Comp Neurol 2022; 530:1992-2013. [PMID: 35383929 PMCID: PMC9167239 DOI: 10.1002/cne.25317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/29/2023]
Abstract
The rodent homolog of the primate pulvinar, the lateral posterior (LP) thalamus, is extensively interconnected with multiple cortical areas. While these cortical interactions can span the entire LP, subdivisions of the LP are characterized by differential connections with specific cortical regions. In particular, the medial LP has reciprocal connections with frontoparietal cortical areas, including the anterior cingulate cortex (ACC). The ACC plays an integral role in top‐down sensory processing and attentional regulation, likely exerting some of these functions via the LP. However, little is known about how ACC and LP interact, and about the information potentially integrated in this reciprocal network. Here, we address this gap by employing a projection‐specific monosynaptic rabies tracing strategy to delineate brain‐wide inputs to bottom‐up LP→ACC and top‐down ACC→LP neurons. We find that LP→ACC neurons receive inputs from widespread cortical regions, including primary and higher order sensory and motor cortical areas. LP→ACC neurons also receive extensive subcortical inputs, particularly from the intermediate and deep layers of the superior colliculus (SC). Sensory inputs to ACC→LP neurons largely arise from visual cortical areas. In addition, ACC→LP neurons integrate cross‐hemispheric prefrontal cortex inputs as well as inputs from higher order medial cortex. Our brain‐wide anatomical mapping of inputs to the reciprocal LP‐ACC pathways provides a roadmap for understanding how LP and ACC communicate different sources of information to mediate attentional control and visuomotor functions.
Collapse
Affiliation(s)
- Yi Ning Leow
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Blake Zhou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandria R Barlowe
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Abouelleil M, Deshpande N, Ali R. Emerging Trends in Neuromodulation for Treatment of Drug-Resistant Epilepsy. FRONTIERS IN PAIN RESEARCH 2022; 3:839463. [PMID: 35386582 PMCID: PMC8977768 DOI: 10.3389/fpain.2022.839463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 70 million people globally. A considerable proportion of epilepsy is resistant to anti-epileptic drugs (AED). For patients with drug-resistant epilepsy (DRE), who are not eligible for resective or ablative surgery, neuromodulation has been a palliative option. Since the approval of vagus nerve stimulation (VNS) in 1997, expansion to include other modalities, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), has led to improved seizure control in this population. In this article, we discuss the current updates and emerging trends on neuromodulation for epilepsy.
Collapse
Affiliation(s)
- Mohamed Abouelleil
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
| | - Nachiket Deshpande
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rushna Ali
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
- *Correspondence: Rushna Ali
| |
Collapse
|
42
|
Martínez A, Tobe RH, Gaspar PA, Malinsky D, Dias EC, Sehatpour P, Lakatos P, Patel GH, Bermudez DH, Silipo G, Javitt DC. Disease-Specific Contribution of Pulvinar Dysfunction to Impaired Emotion Recognition in Schizophrenia. Front Behav Neurosci 2022; 15:787383. [PMID: 35237135 PMCID: PMC8883821 DOI: 10.3389/fnbeh.2021.787383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
One important aspect for managing social interactions is the ability to perceive and respond to facial expressions rapidly and accurately. This ability is highly dependent upon intact processing within both cortical and subcortical components of the early visual pathways. Social cognitive deficits, including face emotion recognition (FER) deficits, are characteristic of several neuropsychiatric disorders including schizophrenia (Sz) and autism spectrum disorders (ASD). Here, we investigated potential visual sensory contributions to FER deficits in Sz (n = 28, 8/20 female/male; age 21–54 years) and adult ASD (n = 20, 4/16 female/male; age 19–43 years) participants compared to neurotypical (n = 30, 8/22 female/male; age 19–54 years) controls using task-based fMRI during an implicit static/dynamic FER task. Compared to neurotypical controls, both Sz (d = 1.97) and ASD (d = 1.13) participants had significantly lower FER scores which interrelated with diminished activation of the superior temporal sulcus (STS). In Sz, STS deficits were predicted by reduced activation of early visual regions (d = 0.85, p = 0.002) and of the pulvinar nucleus of the thalamus (d = 0.44, p = 0.042), along with impaired cortico-pulvinar interaction. By contrast, ASD participants showed patterns of increased early visual cortical (d = 1.03, p = 0.001) and pulvinar (d = 0.71, p = 0.015) activation. Large effect-size structural and histological abnormalities of pulvinar have previously been documented in Sz. Moreover, we have recently demonstrated impaired pulvinar activation to simple visual stimuli in Sz. Here, we provide the first demonstration of a disease-specific contribution of impaired pulvinar activation to social cognitive impairment in Sz.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- *Correspondence: Antígona Martínez,
| | - Russell H. Tobe
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Pablo A. Gaspar
- Department of Psychiatry, Biomedical Neurosciences Institute, IMHAY, University of Chile, Santiago, Chile
| | - Daniel Malinsky
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Elisa C. Dias
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Pejman Sehatpour
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Peter Lakatos
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Gaurav H. Patel
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Dalton H. Bermudez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Gail Silipo
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Daniel C. Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
43
|
Zeng H, Chen S, Fink GR, Weidner R. Information Exchange between Cortical Areas: The Visual System as a Model. Neuroscientist 2022; 29:370-384. [PMID: 35057664 DOI: 10.1177/10738584211069061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As nearly all brain functions, perception, motion, and higher-order cognitive functions require coordinated neural information processing within distributed cortical networks. Over the past decades, new theories and techniques emerged that advanced our understanding of how information is transferred between cortical areas. This review surveys critical aspects of interareal information exchange. We begin by examining the brain’s structural connectivity, which provides the basic framework for interareal communication. We then illustrate information exchange between cortical areas using the visual system as an example. Next, well-studied and newly proposed theories that may underlie principles of neural communication are reviewed, highlighting recent work that offers new perspectives on interareal information exchange. We finally discuss open questions in the study of the neural mechanisms underlying interareal information exchange.
Collapse
Affiliation(s)
- Hang Zeng
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Siyi Chen
- Ludwig-Maximilians-Universität München, München, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne, Germany
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| |
Collapse
|
44
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
45
|
Cheung V, Chung P, Bjorni M, Shvareva VA, Lopez YC, Feinberg EH. Virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq) defines projection neurons involved in sensorimotor integration. Cell Rep 2021; 37:110131. [PMID: 34936877 PMCID: PMC8719358 DOI: 10.1016/j.celrep.2021.110131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Behavior arises from concerted activity throughout the brain. Consequently, a major focus of modern neuroscience is defining the physiology and behavioral roles of projection neurons linking different brain areas. Single-cell RNA sequencing has facilitated these efforts by revealing molecular determinants of cellular physiology and markers that enable genetically targeted perturbations such as optogenetics, but existing methods for sequencing defined projection populations are low throughput, painstaking, and costly. We developed a straightforward, multiplexed approach, virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq). VECTORseq repurposes commercial retrogradely infecting viruses typically used to express functional transgenes (e.g., recombinases and fluorescent proteins) by treating viral transgene mRNA as barcodes within single-cell datasets. VECTORseq is compatible with different viral families, resolves multiple populations with different projection targets in one sequencing run, and identifies cortical and subcortical excitatory and inhibitory projection populations. Our study provides a roadmap for high-throughput identification of neuronal subtypes based on connectivity.
Collapse
Affiliation(s)
- Victoria Cheung
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Philip Chung
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Max Bjorni
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Varvara A Shvareva
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yesenia C Lopez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan H Feinberg
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
46
|
Spiteri S, Crewther D. Neural Mechanisms of Visual Motion Anomalies in Autism: A Two-Decade Update and Novel Aetiology. Front Neurosci 2021; 15:756841. [PMID: 34790092 PMCID: PMC8591069 DOI: 10.3389/fnins.2021.756841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 21st century has seen dramatic changes in our understanding of the visual physio-perceptual anomalies of autism and also in the structure and development of the primate visual system. This review covers the past 20 years of research into motion perceptual/dorsal stream anomalies in autism, as well as new understanding of the development of primate vision. The convergence of this literature allows a novel developmental hypothesis to explain the physiological and perceptual differences of the broad autistic spectrum. Central to these observations is the development of motion areas MT+, the seat of the dorsal cortical stream, central area of pre-attentional processing as well as being an anchor of binocular vision for 3D action. Such development normally occurs via a transfer of thalamic drive from the inferior pulvinar → MT to the anatomically stronger but later-developing LGN → V1 → MT connection. We propose that autistic variation arises from a slowing in the normal developmental attenuation of the pulvinar → MT pathway. We suggest that this is caused by a hyperactive amygdala → thalamic reticular nucleus circuit increasing activity in the PIm → MT via response gain modulation of the pulvinar and hence altering synaptic competition in area MT. We explore the probable timing of transfer in dominance of human MT from pulvinar to LGN/V1 driving circuitry and discuss the implications of the main hypothesis.
Collapse
Affiliation(s)
- Samuel Spiteri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | | |
Collapse
|
47
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
48
|
Burdette D, Mirro EA, Lawrence M, Patra SE. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: A case series. Epilepsia Open 2021; 6:611-617. [PMID: 34268893 PMCID: PMC8408587 DOI: 10.1002/epi4.12524] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug‐resistant focal epilepsy with regional neocortical seizure onsets originating from the posterior quadrant can be particularly difficult to treat with resective surgery due to the overlap with eloquent cortex. Published reports indicate that corticothalamic treatment targeting the anterior or centromedian nucleus of the thalamus with direct brain‐responsive stimulation may be an effective approach to treat regional neocortical epilepsy. The pulvinar has remained largely unstudied as a neurostimulation target to treat refractory epilepsy. Because the pulvinar has connections with the posterior quadrant, neurostimulation may be effective if applied to seizures originating in this area. We performed a retrospective chart review of patients with regional neocortical seizure onsets in the posterior quadrant treated with the RNS System. Demographics, epilepsy history, clinical seizure frequencies, and neuropsychological testing results were obtained from the chart. Electrocorticogram (ECoG) records stored by the RNS System were reviewed to evaluate electrographic seizure onset patterns. Our patients were followed for 10, 12.5, and 15 months. All patients were responders (≥50% seizure reduction), and two of the three patients experienced a ≥90% reduction in seizures at the last follow‐up. Pre‐ and postsurgical neuropsychological evaluations were compared for two of the patients, and there was no evidence of cognitive decline found in either patient. Interestingly, mild cognitive improvements were reported. The third patient had only postimplant neuropsychological testing data available. Findings for this patient suggested executive dysfunction that was present prior to the RNS System which did not worsen with surgery. A visual inspection of ECoGs revealed near‐simultaneous seizure onsets in neocortical and pulvinar leads in two patients. Seizure onsets in the third patient were more variable. This is the first published report of brain‐responsive neurostimulation targeting the pulvinar to treat refractory regional onset epilepsy of posterior quadrant origin.
Collapse
|
49
|
van de Mortel LA, Thomas RM, van Wingen GA. Grey Matter Loss at Different Stages of Cognitive Decline: A Role for the Thalamus in Developing Alzheimer's Disease. J Alzheimers Dis 2021; 83:705-720. [PMID: 34366336 PMCID: PMC8543264 DOI: 10.3233/jad-210173] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by cognitive impairment and large loss of grey matter volume and is the most prevalent form of dementia worldwide. Mild cognitive impairment (MCI) is the stage that precedes the AD dementia stage, but individuals with MCI do not always convert to the AD dementia stage, and it remains unclear why. Objective: We aimed to assess grey matter loss across the brain at different stages of the clinical continuum of AD to gain a better understanding of disease progression. Methods: In this large-cohort study (N = 1,386) using neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative, voxel-based morphometry analyses were performed between healthy controls, individuals with early and late and AD dementia stage. Results: Clear patterns of grey matter loss in mostly hippocampal and temporal regions were found across clinical stages, though not yet in early MCI. In contrast, thalamic volume loss seems one of the first signs of cognitive decline already during early MCI, whereas this volume loss does not further progress from late MCI to AD dementia stage. AD dementia stage converters already show grey matter loss in hippocampal and mid-temporal areas as well as the posterior thalamus (pulvinar) and angular gyrus at baseline. Conclusion: This study confirms the role of temporal brain regions in AD development and suggests additional involvement of the thalamus/pulvinar and angular gyrus that may be linked to visuospatial, attentional, and memory related problems in both early MCI and AD dementia stage conversion.
Collapse
Affiliation(s)
- Laurens Ansem van de Mortel
- Department of Psychiatry, Amsterdam UMC, Universityof Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rajat Mani Thomas
- Department of Psychiatry, Amsterdam UMC, Universityof Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Guido Alexander van Wingen
- Department of Psychiatry, Amsterdam UMC, Universityof Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Phillips JM, Kambi NA, Redinbaugh MJ, Mohanta S, Saalmann YB. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev 2021; 128:487-510. [PMID: 34216654 DOI: 10.1016/j.neubiorev.2021.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The prefrontal cortex (PFC) has a complex relationship with the thalamus, involving many nuclei which occupy predominantly medial zones along its anterior-to-posterior extent. Thalamocortical neurons in most of these nuclei are modulated by the affective and cognitive signals which funnel through the basal ganglia. We review how PFC-connected thalamic nuclei likely contribute to all aspects of cognitive control: from the processing of information on internal states and goals, facilitating its interactions with mnemonic information and learned values of stimuli and actions, to their influence on high-level cognitive processes, attentional allocation and goal-directed behavior. This includes contributions to transformations such as rule-to-choice (parvocellular mediodorsal nucleus), value-to-choice (magnocellular mediodorsal nucleus), mnemonic-to-choice (anteromedial nucleus) and sensory-to-choice (medial pulvinar). Common mechanisms appear to be thalamic modulation of cortical gain and cortico-cortical functional connectivity. The anatomy also implies a unique role for medial PFC in modulating processing in thalamocortical circuits involving other orbital and lateral PFC regions. We further discuss how cortico-basal ganglia circuits may provide a mechanism through which PFC controls cortico-cortical functional connectivity.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States.
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Michelle J Redinbaugh
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1202 Capitol Ct., Madison, WI 53715, United States.
| |
Collapse
|