1
|
Stenvinkel P, Shiels PG, Kotanko P, Evenepoel P, Johnson RJ. Harnessing Evolution and Biomimetics to Enhance Planetary Health: Kidney Insights. J Am Soc Nephrol 2025; 36:311-321. [PMID: 39607684 PMCID: PMC11801751 DOI: 10.1681/asn.0000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Planetary health encompasses the understanding that the long-term well-being of humanity is intrinsically linked to the health of global ecological systems. Unfortunately, current practices often overlook this principle, leading to a human-oriented (anthropocentric) worldview that has resulted in heightened greenhouse gas emissions, increased heat stress, lack of access to clean water, and pollution, threatening both the environment and health and survival of Homo sapiens and countless other species. One significant consequence of these environmental changes is the exacerbation of inflammatory and oxidative stressors, which not only contributes to common lifestyle diseases but also accelerates the aging process. We advocate for a shift away from our current anthropocentric frameworks to an approach that focuses on nature's solutions that developed from natural selection over the eons. This approach, which encompasses the field of biomimicry, may provide insights that can help protect against an inflammatory phenotype to mitigate physiological and cellular senescence and provide a buffer against environmental stressors. Gaining insights from how animals have developed ingenious approaches to combat adversity through the evolutionary process of natural selection not only provides solutions for climate change but also confronts the rising burden of lifestyle diseases that accumulate with age.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Glasgow Geroscience Group, School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Kotanko
- Renal Research Institute, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Le Maho Y, Tasiemski A, Bertile F, Bulet P. Fieldwork on animals living in extreme conditions as a source of biomedical innovation. SCIENCE IN ONE HEALTH 2024; 4:100096. [PMID: 39877680 PMCID: PMC11773462 DOI: 10.1016/j.soh.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025]
Abstract
Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or Drosophila, but the keys to some important biomedical questions may simply not be found in these. However, compared with the high number of molecules originating from plants in clinical use, and with the countless unique adaption mechanisms that animals have developed over the course of evolution to cope with environmental constrains, there is still few investigations on wild animals with biomedical objectives, and field studies are far fewer. A major limitation is insufficient funding, the main causes of which we analyze. We argue, however, that fieldwork is a key driver in generating new scientific knowledge as part of a One Health approach, by observing/documenting and understanding the diverse and largely unexplored biological processes evolved by animals adapted to unusual environmental conditions, which would be extreme conditions for humans. These conditions do not only refer to extreme temperatures, since lack of food or water, high pressures or lack of oxygen, are clearly extreme constraints. To conduct this research, there are serious limitations we propose to address. Specific techniques and methods are requested, not only to work in extreme environments, but also to minimize the ecological footprint of field work. The erosion of biodiversity is a major threat. The reduction of animal disturbance, a key issue, requires specific technologies and expertise. An ethical approach is requested, for the sake of transparency and to comply with the Nagoya Protocol on genetic resources. An interdisciplinary expertise and a meticulous planning are requested to overcome the field constraints and interface the associated laboratory work. We recommend focusing on the major threats to global human health today, which wild animals appear to resist particularly well, such as antibioresistance and diseases associated with lifestyle and senescence.
Collapse
Affiliation(s)
- Yvon Le Maho
- University of Strasbourg, CNRS, Hubert Curien Pluridisciplinary Institute, UMR7178, 67087 Strasbourg, France
| | - Aurélie Tasiemski
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Hubert Curien Pluridisciplinary Institute, UMR7178, 67087 Strasbourg, France
| | - Philippe Bulet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
- Plateform BioPark of Archamps, 218 Avenue Marie Curie ArchParc 74160, Archamps, France
| |
Collapse
|
3
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
4
|
Buffenstein R, Amoroso VG. The Untapped Potential of Comparative Biology in Aging Research: Insights From the Extraordinary-Long-Lived Naked Mole-Rat. J Gerontol A Biol Sci Med Sci 2024; 79:glae110. [PMID: 38721823 DOI: 10.1093/gerona/glae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 06/27/2024] Open
Abstract
The search for solutions to the vagaries of aging has, historically, been akin to searching at night in the bright light under street lamps by utilizing the few preexisting and well-established animal model systems. Throughout my career as a comparative biologist, I have ventured into the darkness across 4 continents and studied over 150 different animal species, many of which have evolved remarkable adaptations to survive on the harsh and rugged fitness landscape that exists outside of the laboratory setting. In this Fellows Forum, I will discuss the main focus of my research for the last 25 years and dig deeply into the biology of the preternaturally long-lived naked mole-rat that makes it an ideal model system for the characterization of successful strategies to combat aging.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| | - Vince G Amoroso
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
5
|
Antó JM. Human health and the health of Planet Earth go together. J Intern Med 2024; 295:695-706. [PMID: 38420693 DOI: 10.1111/joim.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The emergence of the planetary health approach was highlighted by the report of The Rockefeller Foundation-Lancet Commission on Planetary Health in 2015 and changed how we comprehend human well-being. The report advocates integrating the health of other living beings and Earth's natural systems as intrinsic components of human health. Drawing on over three decades of experience in respiratory epidemiology and environmental health, this article outlines how my perspective on human health underwent a transformative shift upon reading the abovementioned report. The planetary health approach offers a lens through which human health issues and potential solutions can be understood within the context of the Anthropocene. It addresses the pressing existential challenges arising from humanity's transgression of planetary limits. Embracing the planetary health paradigm within the field of health sciences can catalyze transformative changes essential for cultivating a sustainable and equitable future.
Collapse
Affiliation(s)
- Josep M Antó
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
6
|
Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220230. [PMID: 37482773 PMCID: PMC10363705 DOI: 10.1098/rstb.2022.0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Richard J. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Miguel A. Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - L. Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología ‘Ignacio Chavez’, Mexico City 14080, Mexico
| | - Dean Tolan
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Aichi 480-1103, Japan
| | - Ana Andres-Hernando
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición ‘Salvador Zubirán’, Mexico City 14080, Mexico
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
7
|
Kalogeropoulu SK, Rauch-Schmücking H, Lloyd EJ, Stenvinkel P, Shiels PG, Johnson RJ, Fröbert O, Redtenbacher I, Burgener IA, Painer-Gigler J. Formerly bile-farmed bears as a model of accelerated ageing. Sci Rep 2023; 13:9691. [PMID: 37322151 PMCID: PMC10272202 DOI: 10.1038/s41598-023-36447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
Bear bile-farming is common in East and Southeast Asia and this farming practice often results in irreversible health outcomes for the animals. We studied long-term effects of chronic bacterial and sterile hepatobiliary inflammation in 42 Asiatic black bears (Ursus thibetanus) rescued from Vietnamese bile farms. The bears were examined under anesthesia at least twice as part of essential medical interventions. All bears were diagnosed with chronic low-grade sterile or bacterial hepatobiliary inflammation along with pathologies from other systems. Our main finding was that the chronic low-grade inflammatory environment associated with bile extraction in conjunction with the suboptimal living conditions on the farms promoted and accelerated the development of age-related pathologies such as chronic kidney disease, obese sarcopenia, cardiovascular remodeling, and degenerative joint disease. Through a biomimetic approach, we identified similarities with inflammation related to premature aging in humans and found significant deviations from the healthy ursid phenotype. The pathological parallels with inflammageing and immuno-senescence induced conditions in humans suggest that bile-farmed bears may serve as animal models to investigate pathophysiology and deleterious effects of lifestyle-related diseases.
Collapse
Affiliation(s)
- Szilvia K Kalogeropoulu
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, 1160, Vienna, Austria
| | - Hanna Rauch-Schmücking
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, 1160, Vienna, Austria
| | - Emily J Lloyd
- BEAR SANCTUARY Ninh Binh, FOUR PAWS Viet, Ninh Binh, 43000, Vietnam
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska, University Hospital, 141 86, Stockholm, Sweden
| | - Paul G Shiels
- Davidson Bld, School of Molecular Biosciences, University of Glasgow, Glasgow, GB, UK
| | - Richard J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Iwan A Burgener
- Division of Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Johanna Painer-Gigler
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, 1160, Vienna, Austria.
| |
Collapse
|
8
|
Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM, Mace R, Read A, Turner PE, Blumstein DT. The future of evolutionary medicine: sparking innovation in biomedicine and public health. FRONTIERS IN SCIENCE 2023; 1:997136. [PMID: 37869257 PMCID: PMC10590274 DOI: 10.3389/fsci.2023.997136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.
Collapse
Affiliation(s)
- B. Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Molly Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter D. Gluckman
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Felicia M. Low
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
| | - Ruth Mace
- Department of Anthropology, University College London, London, United Kingdom
| | - Andrew Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, PA, United States
- Department of Entomology, The Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Stenvinkel P, Shiels PG, Johnson RJ. Lessons from evolution by natural selection: An unprecedented opportunity to use biomimetics to improve planetary health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116981. [PMID: 36508982 DOI: 10.1016/j.jenvman.2022.116981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Planetary health embraces the concept that long-term human welfare depends on the well-being of its ecological systems. Current practices, however, have often ignored this concept and have led to an anthropocentric world, with the consequence of increased greenhouse gas emissions, heat stress, lack of clean water and pollution, that are threatening the environment as well as the health and life of Homo sapiens and many other species. One consequence of environmental stressors has been the stimulation of inflammatory and oxidative stress that may not only promote common lifestyle diseases, but the ageing process. Despite the harshness of the current reality, treatment opportunities may exist 'in our backyard'. Biomimicry is an emerging field of research that explores how nature is structured and aims to mimic ingenious solutions that have evolved in nature for different applications that benefit human life. As nature always counteracts excesses from within, biodiversity could be a source of solutions that have evolved through the natural selection of animal species that have survived polluted, warm, and arid environments - i.e. the same presumptive changes that now threaten human health. One example from the emerging science suggests that animals use the cytoprotective Nrf2 antioxidant pathway to combat environmental stress and this may be a case example that we can apply to better human health. Learning from nature may provide opportunities for environmental management and solutions to the most challenging issue that face the future of the planet.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Paul G Shiels
- School of Molecular Biosystems, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, 12700 East 19th Ave, RC-2 Research Building, Rm 7012, Mail Stop C281, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
10
|
Willey C, Korstanje R. Sequencing and assembling bear genomes: the bare necessities. Front Zool 2022; 19:30. [PMID: 36451195 PMCID: PMC9710173 DOI: 10.1186/s12983-022-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Unique genetic adaptations are present in bears of every species across the world. From (nearly) shutting down important organs during hibernation to preventing harm from lifestyles that could easily cause metabolic diseases in humans, bears may hold the answer to various human ailments. However, only a few of these unique traits are currently being investigated at the molecular level, partly because of the lack of necessary tools. One of these tools is well-annotated genome assemblies from the different, extant bear species. These reference genomes are needed to allow us to identify differences in genetic variants, isoforms, gene expression, and genomic features such as transposons and identify those that are associated with biomedical-relevant traits. In this review we assess the current state of the genome assemblies of the eight different bear species, discuss current gaps, and the future benefits these reference genomes may have in informing human biomedical applications, while at the same time improving bear conservation efforts.
Collapse
|
11
|
Ebert T, Tran N, Schurgers L, Stenvinkel P, Shiels PG. Ageing - Oxidative stress, PTMs and disease. Mol Aspects Med 2022; 86:101099. [PMID: 35689974 DOI: 10.1016/j.mam.2022.101099] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) have been proposed as a link between the oxidative stress-inflammation-ageing trinity, thereby affecting several hallmarks of ageing. Phosphorylation, acetylation, and ubiquitination cover >90% of all the reported PTMs. Several of the main PTMs are involved in normal "healthy" ageing and in different age-related diseases, for instance neurodegenerative, metabolic, cardiovascular, and bone diseases, as well as cancer and chronic kidney disease. Ultimately, data from human rare progeroid syndromes, but also from long-living animal species, imply that PTMs are critical regulators of the ageing process. Mechanistically, PTMs target epigenetic and non-epigenetic pathways during ageing. In particular, epigenetic histone modification has critical implications for the ageing process and can modulate lifespan. Therefore, PTM-based therapeutics appear to be attractive pharmaceutical candidates to reduce the burden of ageing-related diseases. Several phosphorylation and acetylation inhibitors have already been FDA-approved for the treatment of other diseases and offer a unique potential to investigate both beneficial effects and possible side-effects. As an example, the most well-studied senolytic compounds dasatinib and quercetin, which have already been tested in Phase 1 pilot studies, also act as kinase inhibitors, targeting cellular senescence and increasing lifespan. Future studies need to carefully determine the best PTM-based candidates for the treatment of the "diseasome of ageing".
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden; University of Leipzig Medical Center, Medical Department III - Endocrinology, Nephrology, Rheumatology, Leipzig, Germany.
| | - Ngoc Tran
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research School Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden
| | - Paul G Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| |
Collapse
|
12
|
Natterson-Horowitz B, Boddy AM, Zimmerman D. Female Health Across the Tree of Life: Insights at the Intersection of Women's Health, One Health and Planetary Health. PNAS NEXUS 2022; 1:pgac044. [PMID: 35668878 PMCID: PMC9154074 DOI: 10.1093/pnasnexus/pgac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023]
Abstract
Across the tree of life, female animals share biological characteristics that place them at risk for similar diseases and disorders. Greater awareness of these shared vulnerabilities can accelerate insight and innovation in women's health. We present a broadly comparative approach to female health that can inform issues ranging from mammary, ovarian, and endometrial cancer to preeclampsia, osteoporosis, and infertility. Our focus on female health highlights the interdependence of human, animal, and environmental health. As the boundaries between human and animal environments become blurred, female animals across species are exposed to increasingly similar environmental hazards. As such, the health of female animals has unprecedented relevance to the field of woman's health. Expanding surveillance of animal populations beyond zoonoses to include noncommunicable diseases can strengthen women's health prevention efforts as environmental factors are increasingly implicated in human mortality. The physiology of nonhuman females can also spark innovation in women's health. There is growing interest in those species of which the females appear to have a level of resistance to pathologies that claim millions of human lives every year. These physiologic adaptations highlight the importance of biodiversity to human health. Insights at the intersection of women's health and planetary health can be a rich source of innovations benefitting the health of all animals across the tree of life.
Collapse
Affiliation(s)
- B Natterson-Horowitz
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Dawn Zimmerman
- Director of Wildlife Health, Veterinary Medical Officer, Global Health Program, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT 06520, USA
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT 59715, USA
| |
Collapse
|
13
|
Okai-Nobrega LA, Santos TRT, Lage AP, Araújo PAD, Souza TRD, Fonseca ST. A influência de calçados no arco longitudinal medial do pé e na cinemática dos membros inferiores de crianças no início da fase de aquisição de marcha. Rev Bras Ortop 2022; 57:167-174. [PMID: 35198125 PMCID: PMC8856855 DOI: 10.1055/s-0041-1741021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 11/04/2022] Open
Abstract
Objective
To evaluate the biomechanical behavior of the medial longitudinal arch (MLA) of the foot and the kinematic parameters of the lower limbs with biomimetic footwear (BF) and non-biomimetic (NB1, NB2, NB3 and NB4) footwear in children at the beginning of the gait acquisition phase.
Methods
Four toddlers were evaluated at the beginning of the gait acquisition phase under the following conditions: walking barefoot, ambulation with BF and NB1, NB2, NB3 and NB4 footwear in hard floor. BF is described as biomimetic because of its property of emulating natural and irregular floors through a dynamic internal insole. The MLA and kinematics of the hip, knee, and ankle during gait were evaluated by three-dimensional motion analysis system. The similarity between the kinematic curves of barefoot and footwear conditions was analyzed by root mean square error (RMSE).
Results
The use of BF presented the highest magnitude of MLA and the greatest difference in relation to barefoot condition (higher RMSE). The BF showed less difference in the kinematics of the knee and ankle joints during gait when compared to barefoot condition (lower RMSE). NB2 footwear presented hip kinematics more similar to barefoot condition (lower RMSE).
Conclusion
Biomimetics footwear and NB2 shoes (both with wider forefoot region) generated smaller differences in lower limbs compared to barefoot. In addition, the MLA was higher in the BF, probably because different design from other shoes.
Collapse
Affiliation(s)
- Liria Akie Okai-Nobrega
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- Anamê Baby Design, Belo Horizonte, MG, Brasil
| | | | | | | | - Thales Rezende de Souza
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Sérgio Teixeira Fonseca
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
14
|
Abstract
The fields of micro- and nanomechanics are strongly interconnected with the development of micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) devices, their fabrication and applications. This article highlights the biomimetic concept of designing new nanodevices for advanced materials and sensing applications.
Collapse
|
15
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Natterson-Horowitz B, Baccouche BM, Mary J, Shivkumar T, Bertelsen MF, Aalkjær C, Smerup MH, Ajijola OA, Hadaya J, Wang T. Did giraffe cardiovascular evolution solve the problem of heart failure with preserved ejection fraction? EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:248-255. [PMID: 34447575 PMCID: PMC8385250 DOI: 10.1093/emph/eoab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/04/2021] [Indexed: 11/18/2022]
Abstract
The evolved adaptations of other species can be a source of insight for novel biomedical innovation. Limitations of traditional animal models for the study of some pathologies are fueling efforts to find new approaches to biomedical investigation. One emerging approach recognizes the evolved adaptations in other species as possible solutions to human pathology. The giraffe heart, for example, appears resistant to pathology related to heart failure with preserved ejection fraction (HFpEF)—a leading form of hypertension-associated cardiovascular disease in humans. Here, we postulate that the physiological pressure-induced left ventricular thickening in giraffes does not result in the pathological cardiovascular changes observed in humans with hypertension. The mechanisms underlying this cardiovascular adaptation to high blood pressure in the giraffe may be a bioinspired roadmap for preventive and therapeutic strategies for human HFpEF.
Collapse
Affiliation(s)
- Barbara Natterson-Horowitz
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Basil M Baccouche
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer Mary
- Zoobiquity Research Initiative at UCLA, Los Angeles, CA 90024, USA
| | | | | | | | - Morten H Smerup
- Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Molecular, Cellular and Integrative Physiology Program, UCLA, Los Angeles, CA, USA
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:221-254. [PMID: 34424518 DOI: 10.1007/978-3-030-65943-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The subterranean-dwelling naked mole-rat (Heterocephalus glaber) is an extremophilic rodent, able to thrive in the harsh underground conditions of sub-Saharan Northeast Africa. This pelage-free mammal exhibits numerous unusual ecophysiological features including pronounced tolerance of thermolability, hypoxia, hypercapnia and noxious substances. As a mammal, the naked mole-rat provides a proof-of-concept that age-related changes in physiology are avoidable. At ages far beyond their expected lifespans given both their body size and/or the timing of early developmental milestones, naked mole-rats fail to exhibit meaningful changes in physiological health or demographic mortality. Lack of physiological deterioration with age is also evident in lean and fat mass, bone quality, and reproductive capacity. Rather, regardless of age, under basal conditions naked mole-rats appear to "idle on low" with their "shields up" as is manifested by low body temperature, metabolic rate, cardiac output and kidney concentrating ability, enabling better protection of organs and cellular function. When needed, they can nevertheless ramp up these functions, increasing cardiac output and metabolism 2-5 fold. Here we review many unusual aspects of their physiology and examine how these attributes facilitate both tolerance of the diverse suite of hostile conditions encountered in their natural milieu as well as contribute to their extraordinary longevity and resistance to common, age-related chronic diseases.
Collapse
|
18
|
Shiels PG, Painer J, Natterson-Horowitz B, Johnson RJ, Miranda JJ, Stenvinkel P. Manipulating the exposome to enable better ageing. Biochem J 2021; 478:2889-2898. [PMID: 34319404 PMCID: PMC8331090 DOI: 10.1042/bcj20200958] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
The sum total of life course exposures creates an exposome that has a significant impact on age-related health. Understanding the interplay between exposome factors and the (epi) genome, offers pertinent insights into the ageing process and its relationship with the accumulation of allostatic load. We propose to exploit this to develop a biomimetic approach that will provide insight into how evolution through natural selection in other species has solved many age related human health issues. In particular, we will emphasise the need to reconnect a more mechanistic approach to medical science with a broader natural sciences approach, using biomimetics to mitigate the global burden of age related ill health. In particular, we will discuss how such an approach indicates leverage of the activities of the Nrf 2 gene to enhance health span via reintroduction of the classical 'Food as Medicine' concept, including modulation of the microbiome and the creation of more salutogenic and biophilic environments. Additionally, we will discuss how this approach integrates with novel and developing senotherapies.
Collapse
Affiliation(s)
- Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstreet 1, 1160 Vienna, Austria
| | - Barbara Natterson-Horowitz
- Department of Human Evolutionary Biology, UCLA Division of Cardiology, Co-Director, Evolutionary Medicine Program at UCLA, Harvard University, California, U.S.A
| | - Richard J. Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, U.S.A
| | - Jaime J. Miranda
- CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|
19
|
Xue J, Liu J, Yong J, Liang K. Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jueyi Xue
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
20
|
A planetary health perspective for kidney disease. Kidney Int 2021; 98:261-265. [PMID: 32709283 PMCID: PMC7372277 DOI: 10.1016/j.kint.2020.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
|
21
|
A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clin Sci (Lond) 2021; 135:1251-1272. [PMID: 34037207 DOI: 10.1042/cs20201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The worldwide landscape of an ageing population and age-related disease brings with it huge socio-economic and public healthcare concerns across nations. Correspondingly, monumental human and financial resources have been invested in biomedical research, with a mission to decode the mechanisms of ageing and how these contribute to age-related disease. Multiple hallmarks of ageing have been identified that are common across taxa, highlighting their fundamental importance. These include dysregulated mitochondrial metabolism and telomeres biology, epigenetic modifications, cell-matrix interactions, proteostasis, dysregulated nutrient sensing, stem cell exhaustion, inflammageing and immuno-senescence. While our understanding of the molecular basis of ageing is improving, it remains a complex and multifactorial process that remains to be fully understood. A key aspect of the shortfall in our understanding of the ageing process lies in translating data from standard animal models to humans. Consequently, we suggest that a 'biomimetic' and comparative approach, integrating knowledge from species in the wild, as opposed to inbred genetically homogenous laboratory animals, can provide powerful insights into human ageing processes. Here we discuss some particularities and comparative patterns among several species from the animal kingdom, endowed with longevity or short lifespans and unique metabolic profiles that could be potentially exploited to the understanding of ageing and age-related diseases. Based upon lessons from nature, we also highlight several avenues for renewed focus in the pathophysiology of ageing and age-related disease (i.e. diet-microbiome-health axis, oxidative protein damage, adaptive homoeostasis and planetary health). We propose that a biomimetic alliance with collaborative research from different disciplines can improve our understanding of ageing and age-related diseases with long-term sustainable utility.
Collapse
|
22
|
Stenvinkel P, Avesani CM, Gordon LJ, Schalling M, Shiels PG. Biomimetics provides lessons from nature for contemporary ways to improve human health. J Clin Transl Sci 2021; 5:e128. [PMID: 34367673 PMCID: PMC8327543 DOI: 10.1017/cts.2021.790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Carla M. Avesani
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Line J. Gordon
- Stockholm Resilience Centre Stockholm University, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
23
|
Stenvinkel P, Painer J, Shiels PG, Bansal A, Fereidouni S, Natterson-Horowitz B, Johnson RJ, Miranda JJ. SARS-COV-2 and biomimetics: What saves the planet will save our health. J Intern Med 2021; 289:244-246. [PMID: 32583447 PMCID: PMC7361468 DOI: 10.1111/joim.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Affiliation(s)
- P Stenvinkel
- From the, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - J Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - P G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - A Bansal
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Fereidouni
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - B Natterson-Horowitz
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Evolutionary Medicine Program, University of California, Los Angeles, CA, USA
| | - R J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J J Miranda
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
24
|
Some Exciting Future Directions for Work on Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:409-420. [PMID: 34424527 DOI: 10.1007/978-3-030-65943-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The naked mole-rat is a species of growing research interest. Recent focus on this species from both a biomedical and zoological perspective has led to important discoveries regarding eusociality and ecophysiological and sensory traits associated with life below ground as well as natural protection from variable oxygen availability, acid-induced pain, and the vagaries of aging. These features serve to remind us that many foundational discoveries have arisen using extremophilic organisms and elucidating the mechanisms they employ to survive the harsh environmental conditions they encounter. Investigating these evolved features also facilitates a better understanding of several human disease states that share features with this harsh subterranean milieu. Here, we provide an overview of some unanswered questions and future directions to advance this field, alongside discussion of the tools that could facilitate accelerated progression of research using this enigmatic model.
Collapse
|
25
|
Kooman JP, Stenvinkel P, Shiels PG, Feelisch M, Canaud B, Kotanko P. The oxygen cascade in patients treated with hemodialysis and native high-altitude dwellers: lessons from extreme physiology to benefit patients with end-stage renal disease. Am J Physiol Renal Physiol 2020; 320:F249-F261. [PMID: 33356957 DOI: 10.1152/ajprenal.00540.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patients treated with hemodialysis (HD) repeatedly undergo intradialytic low arterial oxygen saturation and low central venous oxygen saturation, reflecting an imbalance between upper body systemic oxygen supply and demand, which are associated with increased mortality. Abnormalities along the entire oxygen cascade, with impaired diffusive and convective oxygen transport, contribute to the reduced tissue oxygen supply. HD treatment impairs pulmonary gas exchange and reduces ventilatory drive, whereas ultrafiltration can reduce tissue perfusion due to a decline in cardiac output. In addition to these factors, capillary rarefaction and reduced mitochondrial efficacy can further affect the balance between cellular oxygen supply and demand. Whereas it has been convincingly demonstrated that a reduced perfusion of heart and brain during HD contributes to organ damage, the significance of systemic hypoxia remains uncertain, although it may contribute to oxidative stress, systemic inflammation, and accelerated senescence. These abnormalities along the oxygen cascade of patients treated with HD appear to be diametrically opposite to the situation in Tibetan highlanders and Sherpa, whose physiology adapted to the inescapable hypobaric hypoxia of their living environment over many generations. Their adaptation includes pulmonary, vascular, and metabolic alterations with enhanced capillary density, nitric oxide production, and mitochondrial efficacy without oxidative stress. Improving the tissue oxygen supply in patients treated with HD depends primarily on preventing hemodynamic instability by increasing dialysis time/frequency or prescribing cool dialysis. Whether dietary or pharmacological interventions, such as the administration of L-arginine, fermented food, nitrate, nuclear factor erythroid 2-related factor 2 agonists, or prolyl hydroxylase 2 inhibitors, improve clinical outcome in patients treated with HD warrants future research.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Bernard Canaud
- Montpellier University, School of Medicine, Montpellier, France & Global Medical Office, Fresenius Medical Care, Bad Homburg, Germany
| | - Peter Kotanko
- Renal Research Institute, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
26
|
Ebert T, Painer J, Bergman P, Qureshi AR, Giroud S, Stalder G, Kublickiene K, Göritz F, Vetter S, Bieber C, Fröbert O, Arnemo JM, Zedrosser A, Redtenbacher I, Shiels PG, Johnson RJ, Stenvinkel P. Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears. Sci Rep 2020; 10:20323. [PMID: 33230252 PMCID: PMC7684304 DOI: 10.1038/s41598-020-76346-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Ecology, Berlin, Germany
| | - Sebastian Vetter
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway.,Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. .,Department of Renal Medicine M99, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
27
|
Horowitz BN, Kutinsky IB, Linde A. Species-Spanning Echocardiography: Cardiovascular Insights from Across the Animal Kingdom. Curr Cardiol Rep 2020; 22:165. [PMID: 33037937 DOI: 10.1007/s11886-020-01417-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The objective of this review is to present comparative echocardiography as a source of insights for human cardiovascular medicine. RECENT FINDINGS We present echocardiographic examples of high impact human cardiovascular pathologies, including valvular, vascular, conduction, and myocardial disorders, in a wide range of species in varying environments. Unique features associated with comparative echocardiographic assessments are linked to human cardiology, including natural animal models of resistance and vulnerability. The cardiovascular vulnerabilities and strengths of other species can be a source of invaluable insights for human healthcare professionals. Echocardiography is playing a key role in bridging human and veterinary cardiology. Consequently, species-spanning echocardiography can deliver novel insights for human medicine.
Collapse
Affiliation(s)
- B N Horowitz
- Department of Medicine, Harvard Medical School, Boston, MA, USA. .,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Ilana B Kutinsky
- William Beaumont School of Medicine, Oakland University, Rochester, MI, USA
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
28
|
Abstract
For the last century we have relied on model organisms to help understand fundamental biological processes. Now, with advancements in genome sequencing, assembly, and annotation, non-model organisms may be studied with the same advanced bioanalytical toolkit as model organisms. Proteomics is one such technique, which classically relies on predicted protein sequences to catalog and measure complex proteomes across tissues and biofluids. Applying proteomics to non-model organisms can advance and accelerate biomimicry studies, biomedical advancements, veterinary medicine, agricultural research, behavioral ecology, and food safety. In this postmodel organism era, we can study almost any species, meaning that many non-model organisms are, in fact, important emerging model organisms. Herein we specifically focus on eukaryotic organisms and discuss the steps to generate sequence databases, analyze proteomic data with or without a database, and interpret results as well as future research opportunities. Proteomics is more accessible than ever before and will continue to rapidly advance in the coming years, enabling critical research and discoveries in non-model organisms that were hitherto impossible.
Collapse
Affiliation(s)
- Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY, USA
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC, USA
| |
Collapse
|
29
|
Stenvinkel P. The One Health concept - the health of humans is intimately linked with the health of animals and a sustainable environment. J Intern Med 2020; 287:223-225. [PMID: 32077193 DOI: 10.1111/joim.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|
30
|
O'Toole PW, Shiels PG. The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. J Intern Med 2020; 287:271-282. [PMID: 31957113 DOI: 10.1111/joim.13021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
A paradox of so-called developed countries is that, as the major historical causes of human mortality are eliminated or mitigated by medical progress, lifestyle-related diseases have become major killers. Furthermore, as lifespan is extended by the combined effects of modern medicine, health span is struggling to keep apace because of the burden of noncommunicable diseases linked to diet and sedentary lifestyle. The gut microbiome is now recognized as a plastic environmental risk factor for many of these diseases, the microbiome being defined as the complex community of co-evolved commensal microbes that breaks down components of a complex diet, modulates innate immunity, and produces signalling molecules and metabolites that can impact on diverse regulatory systems in mammals. Aspects of the so-called 'Western' lifestyle linked to disease risk such as energy dense diet and antibiotic treatment are known to affect the composition and function of the microbiome. Here, we review the detailed mechanisms whereby the gut microbiome may modulate risk of diseases linked to sedentary lifestyle and ageing-related health loss. We focus on the comparative value of natural animal models such as hibernation for studying metabolic regulation and the challenge of extrapolating from animal models to processes that occur in human ageing.
Collapse
Affiliation(s)
- P W O'Toole
- From the, School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|