1
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Galvani F, Cammarota M, Vacondio F, Rivara S, Boscia F. Protective Activity of Melatonin Combinations and Melatonin-Based Hybrid Molecules in Neurodegenerative Diseases. J Pineal Res 2024; 76:e70008. [PMID: 39582467 PMCID: PMC11586835 DOI: 10.1111/jpi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The identification of protective agents for the treatment of neurodegenerative diseases is the mainstay therapeutic goal to modify the disease course and arrest the irreversible disability progression. Pharmacological therapies synergistically targeting multiple pathogenic pathways, including oxidative stress, mitochondrial dysfunction, and inflammation, are prime candidates for neuroprotection. Combination or synergistic therapy with melatonin, whose decline correlates with altered sleep/wake cycle and impaired glymphatic "waste clearance" system in neurodegenerative diseases, has a great therapeutic potential to treat inflammatory neurodegenerative states. Despite the protective outcomes observed in preclinical studies, mild or poor outcomes were observed in clinical settings, suggesting that melatonin combinations promoting synergistic actions at appropriate doses might be more suitable to treat multifactorial neurodegenerative disorders. In this review, we first summarize the key melatonin actions and pathways contributing to cell protection and its therapeutic implication in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We remark the major controversies in the field, mostly generated by the lack of a common consensus for the optimal dosing, molecular targets, and toxicity. Then, we review the literature investigating the efficacy of melatonin combinations with approved or investigational neuroprotective agents and of melatonin-containing hybrid molecules, both in vitro and in animal models of AD, PD, and MS, as well as the efficacy of add-on melatonin in clinical settings. We highlight the rationale for such melatonin combinations with a focus on the comparison with single-agent treatment and on the assays in which an additive or a synergistic effect has been achieved. We conclude that a better characterization of the mechanisms underlying such melatonin synergistic actions under neuroinflammation at appropriate doses needs to be tackled to advance successful clinical translation of neuroprotective melatonin combination therapies or melatonin-based hybrid molecules.
Collapse
Affiliation(s)
| | - Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| | | | - Silvia Rivara
- Department of Food and DrugUniversity of ParmaParmaItaly
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of MedicineFederico II University of NaplesNaplesItaly
| |
Collapse
|
3
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
4
|
Gao X, Sun H, Wei Y, Niu J, Hao S, Sun H, Tang G, Qi C, Ge J. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155805. [PMID: 38851097 DOI: 10.1016/j.phymed.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear. PURPOSE The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved. METHODS A T2DM mouse model was established by a combination of a high-fat diet (HFD) and streptozotocin (STZ, 100 mg/kg, i.p.), and Mlt (5, 10 or 20 mg/kg) was intragastrically administered for six consecutive weeks. The serum levels of glycolipid metabolism indicators were measured, behavioral performance was tested, and the protein expression of key molecules involved in the regulation of synaptic plasticity, circadian rhythms, and neuroinflammation in the hippocampus was detected. Moreover, the fluorescence intensities of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (IBA-1), amyloid β-protein (Aβ) and phosphorylated Tau (p-Tau) in the hippocampus were also observed. RESULTS Treatment with Mlt not only improved T2DM-related metabolic disorders, as indicated by increased serum concentrations of fasting blood glucose (FBG), glycosylated hemoglobin (HbAlc), insulin (INS), total cholesterol (TC) and triglyceride (TG), improved glucose tolerance and liver and pancreas function but also alleviated AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, as indicated by decreased immobility time in the tail suspension test (TST) and forced swimming test (FST), increased preference indices of novel objects or novel arms in the novel object recognition test (NOR) and Y-maze test (Y-maze), and improved platform positioning capability in the Morris water maze (MWM) test. Moreover, treatment with Mlt also improved the hyperactivation of astrocytes and microglia in the hippocampus of mice, accompanied by reduced expression of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor (TNF-α), Aβ, and p-Tau and increased expression of brain-derived neurotrophic factor (BDNF), Synapsin I, Synaptotagmin I, melatonin receptor 1B (MT1B), brain muscle arnt-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), period 2 (Per2), and cryptochrome 2 (Cry2). CONCLUSION Mlt alleviated T2DM-related metabolic disorders and AD-like neuropsychiatric injuries in a HFD/STZ-induced mouse model, possibly through a mechanism involving the regulation of glial activation and associated neuroinflammation and the balancing of synaptic plasticity and circadian rhythms in the hippocampus.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China
| | - Guozhang Tang
- School of 1st Clinic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, PR China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China.
| |
Collapse
|
5
|
Angelopoulou E, Bougea A, Hatzimanolis A, Scarmeas N, Papageorgiou SG. Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells 2024; 13:1164. [PMID: 38995015 PMCID: PMC11240615 DOI: 10.3390/cells13131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer's disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-β1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Anastasia Bougea
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| |
Collapse
|
6
|
Wang L, Wei Y, Sun Z, Tai W, Li H, Yin Y, Jiang LH, Wang JZ. Effectiveness and mechanisms of combined use of antioxidant nutrients in protecting against oxidative stress-induced neuronal loss and related neurological deficits. CNS Neurosci Ther 2024; 30:e14886. [PMID: 39072940 DOI: 10.1111/cns.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Oxidative stress is a well-known pathological factor driving neuronal loss and age-related neurodegenerative diseases. Melatonin, coenzyme Q10 and lecithin are three common nutrients with an antioxidative capacity. Here, we examined the effectiveness of them administrated individually and in combination in protecting against oxidative stress-induced neuronal death in vitro, and neurodegenerative conditions such as Alzheimer's disease and associated deficits in vivo. METHODS Mouse neuroblastoma Neuro-2a (N2a) cells were exposed with H2O2 for 6 h, and subsequently treated with melatonin, coenzyme Q10, and lecithin alone or in combination for further 24 h. Cell viability was assessed using the CCK-8 assay. Eight-week-old male mice were intraperitoneally injected with D-(+)-galactose for 10 weeks and administrated with melatonin, coenzyme Q10, lecithin, or in combination for 5 weeks starting from the sixth week, followed by behavioral tests to assess the effectiveness in mitigating neurological deficits, and biochemical assays to explore the underlying mechanisms. RESULTS Exposure to H2O2 significantly reduced the viability of N2a cells and increased oxidative stress and tau phosphorylation, all of which were alleviated by treatment with melatonin, coenzyme Q10, lecithin alone, and, most noticeably, by combined treatment. Administration of mice with D-(+)-galactose-induced oxidative stress and tau phosphorylation, brain aging, impairments in learning and memory, anxiety- and depression-like behaviors, and such detrimental effects were mitigated by melatonin, coenzyme Q10, lecithin alone, and, most consistently, by combined treatment. CONCLUSIONS These results suggest that targeting oxidative stress via supplementation of antioxidant nutrients, particularly in combination, is a better strategy to alleviate oxidative stress-mediated neuronal loss and brain dysfunction due to age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Lu Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingjuan Wei
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Blood Transfusion, Xuchang Central Hospital, Xuchang, China
| | - Zhenzhou Sun
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenya Tai
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hui Li
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- School of Biomedical Sciences, University of Leeds, Leeds, UK
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Jian-Zhi Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
8
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
9
|
Shi Y, Ye D, Cui K, Bai X, Fan M, Feng Y, Hu C, Xu Y, Huang J. Melatonin ameliorates retinal ganglion cell senescence and apoptosis in a SIRT1-dependent manner in an optic nerve injury model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167053. [PMID: 38325588 DOI: 10.1016/j.bbadis.2024.167053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-β-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT 201942, United States
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
10
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Zegarra-Valdivia JA, Pignatelli J, Nuñez A, Torres Aleman I. The Role of Insulin-like Growth Factor I in Mechanisms of Resilience and Vulnerability to Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:16440. [PMID: 38003628 PMCID: PMC10671249 DOI: 10.3390/ijms242216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.
Collapse
Affiliation(s)
- Jonathan A. Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- School of Medicine, Universidad Señor de Sipán, Chiclayo 14000, Peru
| | - Jaime Pignatelli
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Cajal Institute (CSIC), 28002 Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
13
|
Gao X, Sun H, Hao S, Sun H, Ge J. Melatonin protects HT-22 cells against palmitic acid-induced glucolipid metabolic dysfunction and cell injuries: Involved in the regulation of synaptic plasticity and circadian rhythms. Biochem Pharmacol 2023; 217:115846. [PMID: 37804870 DOI: 10.1016/j.bcp.2023.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MLT) is ahormonal substance reported with various pharmacological activities.Based on its effects of neuroprotection and metabolic regulation, the aim of the present study is to investigate its potential effect on palmitic acid (PA)-induced cell injuries and glucolipid metabolic dysfunction and explore the possible mechanism. Briefly, HT-22 cells were challenged with PA (0.1 mM, 24 h) and treated with MLT (10-6-10-8 mol/L). Cell proliferation, lipid accumulation and glucose consumption were detected. The protein expression of key molecular involved with the function of synaptic plasticity and circadian rhythms were measured via western blotting, and the expression of Map-2, MT1A, MT1B and Bmal1 were measured via immunofluorescence staining. The results showed that MLT could alleviate the neurotoxicity induced by PA, as indicated by the increased cell proliferation, enhanced fluorescence intensity of Map-2, and decreased lipid deposition and insulin resistance. Moreover, treatment of MLT could reverse the imbalanced expression of p-Akt, p-ERK, Synapsin I, Synaptotagmin I, BDNF, MT1B, Bmal1, and Clock in PA-induced HT-22 cells. These results suggested a remarkably neuroprotective effect of MLT against PA-induced cell injury and glucolipid metabolic dysfunction, the mechanism of which might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
14
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Gao X, Wei Y, Sun H, Hao S, Ma M, Sun H, Zang D, Qi C, Ge J. Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms. Mol Neurobiol 2023:10.1007/s12035-023-03360-5. [PMID: 37126129 DOI: 10.1007/s12035-023-03360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Increasing data suggest a crucial role of circadian rhythm in regulating metabolic and neurological diseases, and Bmal1 is regarded as a key regulator of circadian transcription. The aim of this study is to investigate the role of Bmal1 in the disruption of circadian rhythm and neuropsychiatric injuries in type 2 diabetes mellitus (T2DM). A T2DM model was induced by the combination of high-fat-diet (HFD) and streptozotocin (STZ) in vivo or HT-22 cells challenged with palmitic-acid (PA) in vitro. The glucolipid metabolism indicators, behavioral performance, and expression of synaptic plasticity proteins and circadian rhythm-related proteins were detected. These changes were also observed after interference of Bmal1 expression via overexpressed plasmid or small interfering RNAs in vitro. The results showed that HFD/STZ could induce T2DM-like glycolipid metabolic turmoil and abnormal neuropsychiatric behaviors in mice, as indicated by the increased concentrations of fasting blood-glucose (FBG), HbA1c and lipids, the impaired glucose tolerance, and the decreased preference index of novel object or novel arm in the novel object recognition test (NOR) and Y-maze test (Y-maze). Consistently, the protein expression of synaptic plasticity proteins and circadian rhythm-related proteins and the positive fluorescence intensity of MT1B and Bmal1 were decreased in the hippocampus of HFD/STZ-induced mice or PA-challenged HT-22 cells. Furthermore, overexpression of Bmal1 could improve the PA-induced lipid metabolic dysfunction and increase the decreased expressions of synaptic plasticity proteins and circadian rhythm-related proteins, and vice versa. These results suggested a crucial role of Bmal1 in T2DM-related glycolipid metabolic disorder and neuropsychiatric injury, which mechanism might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
16
|
Melatonin alleviates BDE-209-induced cognitive impairment and hippocampal neuroinflammation by modulating microglia polarization via SIRT1-mediated HMGB1/TLR4/NF-κB pathway. Food Chem Toxicol 2023; 172:113561. [PMID: 36566971 DOI: 10.1016/j.fct.2022.113561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants with developmental neurotoxicity, the mechanism of which remains obscure. The present study aimed to evaluate cognitive deficits and microglia-originated neuroinflammation in the hippocampus of offspring rats exposed to BDE-209 (30 and 100 mg/kg) during perinatal period. Compared to the control, BDE-209-treated rats showed significant longer escape latency and less platform crossings in tests of Morris water maze. Besides obvious hippocampal neuron damage, increased microglial activation and pro-inflammatory markers (CD86, TNFα, and IL-1β), meanwhile, decreased anti-inflammatory molecules (CD206, IL-10, and Arg1) were induced by BDE-209. Furthermore, we investigated the neuroprotection of melatonin against BDE-209 and whether through sirtuin 1 (SIRT1). Consistent with restored SIRT1 activity, enhanced deacetylation of HMGB1 and inhibited cytoplasmic translocation of HMGB1, reduced expression of proteins involved in TLR4-NF-κB pathway and nuclear transfer of phosphorylated-NF-κB p65, and ultimately suppressed microglial activation and improved spatial memory were observed in 10 mg/kg melatonin-pretreated rats, compared with BDE-209-exposed alone. These results demonstrated that melatonin ameliorated BDE-209-caused cognitive impairment partially through shifting microglia polarization towards anti-inflammatory phenotype in a SIRT1-dependent manner, suggesting a potential mechanism for prevention.
Collapse
|
17
|
Temporal Appearance of Enhanced Innate Anxiety in Alzheimer Model Mice. Biomedicines 2023; 11:biomedicines11020262. [PMID: 36830799 PMCID: PMC9953677 DOI: 10.3390/biomedicines11020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The prevalence of Alzheimer's disorder (AD) is increasing worldwide, and the co-morbid anxiety is an important, albeit often neglected problem, which might appear early during disease development. Animal models can be used to study this question. Mice, as prey animals, show an innate defensive response against a predator odor, providing a valuable tool for anxiety research. Our aim was to test whether the triple-transgenic mice model of AD shows signs of innate anxiety, with specific focus on the temporal appearance of the symptoms. We compared 3xTg-AD mice bearing human mutations of amyloid precursor protein, presenilin 1, and tau with age-matched controls. First, separate age-groups (between 2 and 18 months) were tested for the avoidance of 2-methyl-2-thiazoline, a fox odor component. To test whether hypolocomotion is a general sign of innate anxiety, open-field behavior was subsequently followed monthly in both sexes. The 3xTg-AD mice showed more immobility, approached the fox odor container less often, and spent more time in the avoidance zone. This effect was detectable already in two-month-old animals irrespective of sex, not visible around six months of age, and was more pronounced in aged females than males. The 3xTg-AD animals moved generally less. They also spent less time in the center of the open-field, which was detectable mainly in females older than five months. In contrast to controls, the aged 3xTg-AD was not able to habituate to the arena during a 30-min observation period irrespective of their sex. Amyloid beta and phospho-Tau accumulated gradually in the hippocampus, amygdala, olfactory bulb, and piriform cortex. In conclusion, the early appearance of predator odor- and open space-induced innate anxiety detected already in two-month-old 3xTg-AD mice make this genetically predisposed strain a good model for testing anxiety both before the onset of AD-related symptoms as well as during the later phase. Synaptic dysfunction by protein deposits might contribute to these disturbances.
Collapse
|
18
|
Cammarota M, Ferlenghi F, Vacondio F, Vincenzi F, Varani K, Bedini A, Rivara S, Mor M, Boscia F. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br J Pharmacol 2022; 180:1316-1338. [PMID: 36526591 DOI: 10.1111/bph.16014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
19
|
Protective Effect of Resveratrol in an Experimental Model of Salicylate-Induced Tinnitus. Int J Mol Sci 2022; 23:ijms232214183. [PMID: 36430660 PMCID: PMC9692321 DOI: 10.3390/ijms232214183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
To date, the effect of resveratrol on tinnitus has not been reported. The attenuative effects of resveratrol (RSV) on a salicylate-induced tinnitus model were evaluated by in vitro and in vivo experiments. The gene expression of the activity-regulated cytoskeleton-associated protein (ARC), tumor necrosis factor-alpha (TNFα), and NMDA receptor subunit 2B (NR2B) in SH-SY5Y cells was examined using qPCR. Phosphorylated cAMP response element-binding protein (p-CREB), apoptosis markers, and reactive oxygen species (ROS) were evaluated by in vitro experiments. The in vivo experiment evaluated the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and auditory brainstem response (ABR) level. The NR2B expression in the auditory cortex (AC) was determined by immunohistochemistry. RSV significantly reduced the salicylate-induced expression of NR2B, ARC, and TNFα in neuronal cells; the GPIAS and ABR thresholds altered by salicylate in rats were recovered close to their normal range. RSV also reduced the salicylate-induced NR2B overexpression of the AC. These results confirmed that resveratrol exerted an attenuative effect on salicylate-induced tinnitus and may have a therapeutic potential.
Collapse
|
20
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Possible Application of Melatonin in Long COVID. Biomolecules 2022; 12:1646. [PMID: 36358996 PMCID: PMC9687267 DOI: 10.3390/biom12111646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical sequelae and symptoms for a considerable number of COVID-19 patients can linger for months beyond the acute stage of SARS-CoV-2 infection, "long COVID". Among the long-term consequences of SARS-CoV-2 infection, cognitive issues (especially memory loss or "brain fog"), chronic fatigue, myalgia, and muscular weakness resembling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are of importance. Melatonin may be particularly effective at reducing the signs and symptoms of SARS-CoV-2 infection due to its functions as an antioxidant, anti-inflammatory, and immuno-modulatory agent. Melatonin is also a chronobiotic medication effective in treating delirium and restoring the circadian imbalance seen in COVID patients in the intensive care unit. Additionally, as a cytoprotector, melatonin aids in the prevention of several COVID-19 comorbidities, including diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases. This narrative review discusses the application of melatonin as a neuroprotective agent to control cognitive deterioration ("brain fog") and pain in the ME/CFS syndrome-like documented in long COVID. Further studies on the therapeutic use of melatonin in the neurological sequelae of SARS-CoV-2 infection are warranted.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires C1107AAZ, Argentina
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Seithikurippu R. Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
21
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
22
|
Ali A, Zahid HF, Cottrell JJ, Dunshea FR. A Comparative Study for Nutritional and Phytochemical Profiling of Coffea arabica (C. arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking. Molecules 2022; 27:molecules27165126. [PMID: 36014363 PMCID: PMC9416486 DOI: 10.3390/molecules27165126] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Coffee is the most widely used beverage globally and contains many bioactive compounds, including phenolic compounds, alkaloids, triterpenes, organic acids, amino acids, hormones, and fatty acids. The main objective of this study was the comparative profiling of Australian, Colombian, Ethiopian, and Peruvian C. arabica using LC-ESI-QTOF-MS/MS. In this study, we tentatively identified 136 bioactive metabolites, including five (05) organic acids, six (06) alkaloids, three (03) amino acids (l-phenylalanine, l-tyrosine, and l-pyroglutamic acid), two (02) hormones (melatonin and serotonin), two fatty acids, one (01) furopyrans (goniothalenol), one (01) carotenoid (crocetin), three (03) terpenoids, thirty-eight (38) phenolic acids, forty-one (41) flavonoids, five (05) stilbenes, three (03) lignans and twenty-three (23) other polyphenols in C. arabica. The highest TPC value (17.74 ± 0.32 mg GAE/g) was measured in Colombian coffee while the lowest TPC value (10.24 ± 0.73 mg GAE/g) was in Peruvian coffee. Colombian coffee has a higher antioxidant potential than other studied coffee samples. A total of nineteen phenolic metabolites were mapped through LC-MS/MS. Quinic acid derivatives were quantified in higher concentrations than other metabolites. Furthermore, molecular docking predicted that chlorogenic acid is a main bioactive compound that contributes to anti-Alzheimer and anti-diabetic activities of C. arabica. The obtained results indicate that C. arabica contains a vast number of bioactive compounds which have potential health benefits. Furthermore, research could be conducted to validate the effect of these metabolites on the flavor profile of coffee beverages.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne Australia, Parkville, VIC 3010, Australia
| | - Hafza Fasiha Zahid
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne Australia, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne Australia, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne Australia, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| |
Collapse
|
23
|
Su WL, Wu CC, Wu SFV, Lee MC, Liao MT, Lu KC, Lu CL. A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Front Nutr 2022; 9:865321. [PMID: 35795579 PMCID: PMC9251345 DOI: 10.3389/fnut.2022.865321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Melatonin, an endogenous indoleamine, is an antioxidant and anti-inflammatory molecule widely distributed in the body. It efficiently regulates pro-inflammatory and anti-inflammatory cytokines under various pathophysiological conditions. The melatonin rhythm, which is strongly associated with oxidative lesions and mitochondrial dysfunction, is also observed during the biological process of aging. Melatonin levels decline considerably with age and are related to numerous age-related illnesses. The signs of aging, including immune aging, increased basal inflammation, mitochondrial dysfunction, significant telomeric abrasion, and disrupted autophagy, contribute to the increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These characteristics can worsen the pathophysiological response of the elderly to SARS-CoV-2 and pose an additional risk of accelerating biological aging even after recovery. This review explains that the death rate of coronavirus disease (COVID-19) increases with chronic diseases and age, and the decline in melatonin levels, which is closely related to the mitochondrial dysfunction in the patient, affects the virus-related death rate. Further, melatonin can enhance mitochondrial function and limit virus-related diseases. Hence, melatonin supplementation in older people may be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
24
|
Chen D, Lan G, Li R, Mei Y, Shui X, Gu X, Wang L, Zhang T, Gan CL, Xia Y, Hu L, Tian Y, Zhang M, Lee TH. Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer’s disease. Transl Neurodegener 2022; 11:27. [PMID: 35527277 PMCID: PMC9082841 DOI: 10.1186/s40035-022-00302-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Intracellular accumulation of the microtubule-associated protein tau and its hyperphosphorylated forms is a key neuropathological feature of Alzheimer’s disease (AD). Melatonin has been shown to prevent tau hyperphosphorylation in cellular and animal models. However, the molecular mechanisms by which melatonin attenuates tau hyperphosphorylation and tau-related pathologies are not fully understood. Methods Immunofluorescence, immunoblotting analysis and thioflavin-S staining were employed to examine the effects of early and late treatment of melatonin on tau-related pathology in hTau mice, in which nonmutated human tau is overexpressed on a mouse tau knockout background. High-throughput microRNA (miRNA) sequencing, quantitative RT-PCR, luciferase reporter assay and immunoblotting analysis were performed to determine the molecular mechanism. Results We found that both early and late treatment of melatonin efficiently decreased the phosphorylation of soluble and insoluble tau at sites related to AD. Moreover, melatonin significantly reduced the number of neurofibrillary tangles (NFTs) and attenuated neuronal loss in the cortex and hippocampus. Furthermore, using miRNA microarray analysis, we found that miR-504-3p expression was upregulated by melatonin in the hTau mice. The administration of miR-504-3p mimics dramatically decreased tau phosphorylation by targeting p39, an activator of the well-known tau kinase cyclin-dependent kinase 5 (CDK5). Compared with miR-504-3p mimics alone, co-treatment with miR-504-3p mimics and p39 failed to reduce tau hyperphosphorylation. Conclusions Our results suggest for the first time that melatonin alleviates tau-related pathologies through upregulation of miR-504-3p expression by targeting the p39/CDK5 axis and provide novel insights into AD treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00302-4.
Collapse
|
25
|
Roy J, Wong KY, Aquili L, Uddin MS, Heng BC, Tipoe GL, Wong KH, Fung ML, Lim LW. Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 2022; 65:100986. [PMID: 35167824 DOI: 10.1016/j.yfrne.2022.100986] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Melatonin and novel melatonin-based therapies such as melatonin-containing hybrid molecules, melatonin analogues, and melatonin derivatives have been investigated as potential therapeutics against Alzheimer's disease (AD) pathogenesis. In this review, we examine the developmental trends of melatonin therapies for AD from 1997 to 2021. We then highlight the neuroprotective mechanisms of melatonin therapy derived from preclinical studies. These mechanisms include the alleviation of amyloid-related burden, neurofibrillary tangle accumulation, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, and impaired neuroplasticity and neurotransmission. We further illustrate the beneficial effects of melatonin on behavior in animal models of AD. Next, we discuss the clinical effects of melatonin on sleep, cognition, behavior, psychiatric symptoms, electroencephalography findings, and molecular biomarkers in patients with mild cognitive impairment and AD. We then explore the effectiveness of novel melatonin-based therapies. Lastly, we discuss the limitations of current melatonin therapies for AD and suggest two emerging research themes for future study.
Collapse
Affiliation(s)
- Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Boon Chin Heng
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Peking University School of Stomatology, Beijing, China
| | - George Lim Tipoe
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
27
|
Bi J, Sun P, Feng E, Shen J, Chen C, Tan H, Li Z, Lin Y. Melatonin Synergizes With Methylprednisolone to Ameliorate Acute Spinal Cord Injury. Front Pharmacol 2022; 12:723913. [PMID: 35095480 PMCID: PMC8792471 DOI: 10.3389/fphar.2021.723913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Methylprednisolone (MP) is the drug of choice for treating spinal cord injury (SCI), but the aggressive dosage regimen used often results in adverse side effects. Therefore, MP should be combined with other drugs to lower the required dose. Melatonin is effective in alleviating nerve damage and inhibiting axonal degeneration. The combination of melatonin and half-dose methylprednisolone (HMP) for spinal cord injury treatment has never been reported. In this study, we established a rat model of T9 spinal cord injury by the Allen's method and assessed the synergistic therapeutic effects of melatonin and HMP by factorial design. Our results demonstrated that melatonin could synergize with HMP to ameliorate acute SCI through PI3K-AKT1 pathway. Combining melatonin with HMP significantly reduced the standard-dose of methylprednisolone and limited its adverse reactions, representing a promising option for treating acute SCI.
Collapse
Affiliation(s)
- Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Emergency Department, SongBei Hospital of the Fourth Hospital Affiliated with Harbin Medical University, Harbin, China
- Postdoctoral Workstation, Harbin Children's Hospital, Harbin, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Orthopedics, Bejing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Erwei Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong Chen
- Department of Spine Surgery, Orthopedics Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haining Tan
- Department of Orthopedic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Turovskaya N. Features of Cognitive and Emotional Sphere of a Teenager with Epiphysis Pathology and Concomitant Speech Disorder: An Analysis of a Single Case. КЛИНИЧЕСКАЯ И СПЕЦИАЛЬНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/cpse.2022110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
<p style="text-align: justify;">The study of the features of cognitive impairments in various cerebral organic pathologies allows us to understand the role of individual structures of the brain in the implementation of mental activity and determine the appropriate ways of providing psychological assistance to patients. In a situation of rare pathology, the analysis of individual clinical cases is useful. The aim of this research was to study the state of cognitive functions in a 13-year-old male teenager with a cystic restructuring of the pineal gland and concomitant undifferentiated impairment of expressive speech. Changes in the epiphysis were detected in the patient in less than a month before this psychological study. During the examination, methods of pathopsychological and neuropsychological diagnostics, and projective graphic tests were used. In the course of neuropsychological research on a teenager, a violation of the ability to compose a syllabic kinetic scheme of utterance and, in general, a lack of dynamic and kinesthetic praxis, as well as interhemispheric interaction and auditory-speech memory were revealed. The main ways of providing psychological assistance to the patient were identified: neuropsychological correction aimed at restoring impaired speech function based on preserved higher mental functions, and restoration of the communicative function of speech. The obtained results of psychological research require further understanding and verification, primarily in order to understand the pathogenesis of cognitive disorders in the situation of cystic pineal gland rearrangement.</p>
Collapse
|
29
|
Chen C, Yang C, Wang J, Huang X, Yu H, Li S, Li S, Zhang Z, Liu J, Yang X, Liu GP. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease. J Pineal Res 2021; 71:e12774. [PMID: 34617321 DOI: 10.1111/jpi.12774] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
While melatonin is known to have protective effects in mitochondria-related diseases, aging, and neurodegenerative disorders, there is poor understanding of the effects of melatonin treatment on mitophagy in Alzheimer's disease (AD). We used proteomic analysis to investigate the effects and underlying molecular mechanisms of oral melatonin treatment on mitophagy in the hippocampus of 4-month-old wild-type mice versus age-matched 5 × FAD mice, an animal model of AD. 5 × FAD mice showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mtDNA, mitochondrial marker proteins and MDA production, decreased electron transport chain proteins and ATP levels, and co-localization of Lamp1 and Tomm20. Melatonin treatment reversed the abnormal expression of proteins in the signaling pathway of lysosomes, pathologic phagocytosis of microglia, and mitochondrial energy metabolism. Moreover, melatonin restored mitophagy by improving mitophagosome-lysosome fusion via Mcoln1, and thus, ameliorated mitochondrial functions, attenuated Aβ pathology, and improved cognition. Concurrent treatment with chloroquine and melatonin blocked the positive behavioral and biochemical effects of administration with melatonin alone. Taken in concert, these results suggest that melatonin reduces AD-related deficits in mitophagy such that the drug should be considered as a therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chongyang Chen
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Yang
- Cognitive Impairment Ward of Neurology Department, the Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, Guangdong, China
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi Huang
- Department of Neurology, Shenzhen People's Hospital (First Affiliated Hospital of Southern University of Science and Technology), Second Clinical College, Jinan University, Shenzhen, Guangdong Province, China
| | - Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shangming Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, JS, China
| |
Collapse
|
30
|
Zhu L, Gong Y, Lju H, Sun G, Zhang Q, Qian Z. Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3-R4 domains revealed by molecular dynamics simulation. Phys Chem Chem Phys 2021; 23:20615-20626. [PMID: 34514491 DOI: 10.1039/d1cp03142b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accumulation of β-amyloid (Aβ) and tau protein is considered to be an important pathological characteristic of Alzheimer's disease (AD). Failure of medicine targeting Aβ has drawn more attention to the influence of tau protein and its fibrillization on neurodegeneration. Increasing evidence shows that melatonin (Mel) can effectively inhibit the formation of tau fibrils and disassemble preformed tau fibrils. However, the underlying mechanism is poorly understood. In this work, we investigated the kinetics of melatonin binding and destabilizing the tetrameric protofilament and octameric filament of tau R3-R4 domains by performing microsecond all-atom molecular dynamics simulations. Our results show that Mel is able to disrupt the C-shaped structure of the tau protofilament and filament, and destabilizes the association between N- and C-termini. Mel predominantly binds to β1 and β6-β8 regions and favors contact with the elongation surface, which is dominantly driven by hydrogen bonding interactions and facilitated by other interactions. The strong π-π stacking interaction of Mel with Y310 impedes the intramolecular CH-π interaction between I308 and Y310, and the cation-π interaction of Mel with R379 interferes with the formation of the D348-R379 salt bridge. Moreover, Mel occupies the protofilament surface in the tetrameric protofilament and prevents the formation of intermolecular hydrogen bonds between residues K331 and Q336 in the octameric filament. Our work provides molecular insights into Mel hindering tau fibrillization or destabilizing the protofilament and filament, and the revealed inhibitory mechanisms provide useful clues for the design of efficient anti-amyloid agents.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Hao Lju
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Gongwu Sun
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
31
|
Dai Y, Peng L, Liu Y, Xu Y, Qiao J. Melatonin binds with high affinity and specificity to beta-amyloid: LC-MS provides insight into Alzheimer's disease treatment. FEBS Open Bio 2021; 11:2800-2806. [PMID: 34428352 PMCID: PMC8487044 DOI: 10.1002/2211-5463.13279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
To study the potential relationship between melatonin and beta-amyloid (Abeta), we established a liquid chromatography-mass spectrometry (LC-MS) method to quantitatively analyze melatonin, deuterated isotopes (melatonin-D4), and internal standard 6-iodo-2-(4'-dimethylamino-) phenyl-imidazo(1,2) pyridine (IMPY) under positive (+) mode. The gradient elution was set to 6 min, and the corresponding peak time of melatonin and its isotope melatonin-D4 was 3.14 min, while the peak time for the internal standard IMPY was 3.24 min. Next, we established and optimized the molecule receptor saturation binding assay based on LC-MS to determine the melatonin affinity for beta-amyloid (Abeta). Melatonin showed a high and specific binding for Abeta. The corresponding equilibrium dissociation constant (Kd) of melatonin with Abeta 1-40 and Abeta 1-42 was 814.37 ± 36.62 and 628.33 ± 13.57 nmol·L-1 ; besides, the Kd of melatonin with mixed plaques (1-40 and 1-42) was 461.13 ± 45.37 nmol·L-1 . The results may suggest the potential mechanism of action of MT on Abeta and provide a theoretical basis for the improvement of MT treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yaqian Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liduo Peng
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinping Qiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Abdulrahim HA, Alagbonsi IA, Amuda O, Omeiza NA, Feyitimi ARA, Olayaki LA. Cannabis sativa and/or melatonin do not alter brain lipid but alter oxidative mechanisms in female rats. J Cannabis Res 2021; 3:38. [PMID: 34412689 PMCID: PMC8377844 DOI: 10.1186/s42238-021-00095-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background Lipid profile and redox status play a role in brain (dys)functions. Cannabinoid and melatonergic systems operate in the brain and contribute to brain (patho)physiology, but their roles in the modulation of brain lipid and redox status are not well-known. We studied the effect of ethanol extract of Cannabis sativa (CS) and/or melatonin (M) on the lipid profile and anti-oxidant system of the rat brain. Methods We randomly divided twenty-four (24) female Wistar rats into 4 groups (n = 6 rats each). Group 1 (control) received distilled water mixed with DMSO. Groups II–IV received CS (2 mg/kg), M (4 mg/kg), and co-administration of CS and M (CS + M) respectively via oral gavage between 8:00 am and 10:00 am once daily for 14 days. Animals underwent 12-h fasting after the last day of treatment and sacrificed under ketamine anesthesia (20 mg/kg; i.m). The brain tissues were excised and homogenized for assay of the concentrations of the total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), nitric oxide (NO), malondialdehyde (MDA), and the activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE). One-way analysis of variance (ANOVA) was used to compare means across groups, followed by the least significant difference (LSD) post-hoc test. Results CS and/or M did not affect the lipid profile parameters. However, CS increased the G6PD (from 15.58 ± 1.09 to 21.02 ± 1.45 U/L; p = 0.047), GPx (from 10.47 ± 0.86 to 17.71 ± 1.04 U/L; p = 0.019), and SOD (from 0.81 ± 0.02 to 0.90 ± 0.01 μM; p = 0.007), but decreased NO (from 9.40 ± 0.51 to 6.75 ± 0.21 μM; p = 0.010) and had no effect on MDA (p = 0.905), CAT (p = 0.831), GR (p = 0.639), and AChE (p = 0.571) in comparison with the control group. M augmented the increase in G6PD (from 21.02 ± 1.45 U/L to 27.18 ± 1.81 U/L; p = 0.032) and decrease in NO (from 6.75 ± 0.21 to 4.86 ± 0.13 μM; p = 0.034) but abolished the increase in GPx (from 17.71 ± 1.04 to 8.59 ± 2.06 U/L; p = 0.006) and SOD (from 0.90 ± 0.01 to 0.70 ± 0.00 μM; p = 0.000) elicited by CS in the rat brain in comparison with the CS group. Conclusions CS and M do not alter brain lipid profile. Our data support the contention that CS elicits an anti-oxidative effect on the brain tissue and that CS + M elicits a pro-oxidant effect in rat brain. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-021-00095-9.
Collapse
Affiliation(s)
- Halimat Amin Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Isiaka Abdullateef Alagbonsi
- Department of Clinical Biology (Physiology unit), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda.
| | - Oluwasola Amuda
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Al-Hikmah University, Ilorin, Kwara, P.M.B. 1601, Nigeria
| | - Noah Adavize Omeiza
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | | |
Collapse
|
33
|
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharmacol Ther 2021; 224:107825. [PMID: 33662449 PMCID: PMC7919585 DOI: 10.1016/j.pharmthera.2021.107825] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Fatemi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
El-Missiry MA, Shabana S, Ghazala SJ, Othman AI, Amer ME. Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31108-31121. [PMID: 33598836 DOI: 10.1007/s11356-021-12951-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/09/2021] [Indexed: 05/11/2023]
Abstract
The current study aimed to investigate the ameliorative effect of melatonin (MLT) against brain injury in rats undergoing whole-body exposure to γ-radiation. Male Wistar rats were whole-body exposed to 4-Gy γ-radiation from a cesium-137 source. MLT (10 mg/kg) was orally administrated 30 minutes before irradiation and continued once daily for 1 and 7 days after exposure. In the irradiated rats, the plasma levels of glutamate were increased, while the gamma-aminobutyric acid (GABA) levels were decreased, and MLT improved the disturbed glutamate and GABA levels. These effects paralleled an increase in pro-inflammatory cytokines (IL-1b, IL-6, and TNF-a) and C-reactive protein as well as a decrease in IL-10 in the plasma of the irradiated rats. MLT treatment markedly reduced these effects, indicating its anti-inflammatory impact. Immunohistochemical studies demonstrated a remarkable upregulation of caspase-3 and P53 expression, indicating the increased apoptosis in the brain of irradiated rats. MLT significantly downregulated the expression of these parameters compared with that in the irradiated rats, indicating its anti-apoptotic effect. Oxidative stress is developed in the brain as evidenced by increased levels of malondialdehyde; decreased activities of superoxide dismutase, catalase, and glutathione peroxidase; and decreased content of glutathione in the brain. MLT remarkably ameliorated the development of oxidative stress in the brain of the irradiated rats indicating its antioxidant impact. The histopathological results were consistent with the biochemical and immunohistochemical results and showed that MLT remarkably protected the histological structure of brain tissue compared with that in the irradiated rats. In conclusion, MLT showed potential neuroprotective properties by increasing the release of neurotransmitters, antioxidants, and anti-inflammatory factors and reducing pro-inflammatory cytokines and apoptosis in the brain of irradiated rats. MLT can be beneficial in clinical and occupational settings requiring radiation exposure; however, additional studies are required to elucidate its neuroprotective effect in humans.
Collapse
Affiliation(s)
| | - Sameh Shabana
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sara J Ghazala
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
35
|
Targeting impaired nutrient sensing with repurposed therapeutics to prevent or treat age-related cognitive decline and dementia: A systematic review. Ageing Res Rev 2021; 67:101302. [PMID: 33609776 DOI: 10.1016/j.arr.2021.101302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia is a debilitating syndrome that significantly impacts individuals over the age of 65 years. There are currently no disease-modifying treatments for dementia. Impairment of nutrient sensing pathways has been implicated in the pathogenesis of dementia, and may offer a novel treatment approach for dementia. AIMS This systematic review collates all available evidence for Food and Drug Administration (FDA)-approved therapeutics that modify nutrient sensing in the context of preventing cognitive decline or improving cognition in ageing, mild cognitive impairment (MCI), and dementia populations. METHODS PubMed, Embase and Web of Science databases were searched using key search terms focusing on available therapeutics such as 'metformin', 'GLP1', 'insulin' and the dementias including 'Alzheimer's disease' and 'Parkinson's disease'. Articles were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The risk of bias was assessed using the Cochrane Risk of Bias tool v 2.0 for human studies and SYRCLE's risk of bias tool for animal studies. RESULTS Out of 2619 articles, 114 were included describing 31 different 'modulation of nutrient sensing pathway' therapeutics, 13 of which specifically were utilized in human interventional trials for normal ageing or dementia. Growth hormone secretagogues improved cognitive outcomes in human mild cognitive impairment, and potentially normal ageing populations. In animals, all investigated therapeutic classes exhibited some cognitive benefits in dementia models. While the risk of bias was relatively low in human studies, this risk in animal studies was largely unclear. CONCLUSIONS Modulation of nutrient sensing pathway therapeutics, particularly growth hormone secretagogues, have the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
|
36
|
Cui Y, Yang M, Wang Y, Ren J, Lin P, Cui C, Song J, He Q, Hu H, Wang K, Sun Y. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J 2021; 35:e21485. [PMID: 33709562 DOI: 10.1096/fj.202002247rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Cognitive dysfunction often occurs in diabetes mellitus patients. This study aimed to investigate the efficacy of melatonin (MLT) in improving diabetes-associated cognitive decline and the underlying mechanism involved. Type 2 diabetic mice and palmitic acid (PA)-stimulated BV-2 cells were treated by MLT, and the potential mechanisms among MLT, cognition, and autophagy were explored. The results showed that type 2 diabetic mice showed obvious learning and memory impairments in the Morris water maze test compared with normal controls, which could be ameliorated by MLT treatment. Meanwhile, MLT administration significantly improved neuroinflammation and regulated microglial apoptosis. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) increased the microglial inflammation and apoptosis, indicating that the treatment effect of MLT was mediated by autophagy. Lastly, MLT treatment significantly decreased the levels of toll-like receptors 4 (TLR4), phosphorylated-protein kinase B (Akt), and phosphorylated-mechanistic target of rapamycin (mTOR), indicating that blocking TLR4/Akt/mTOR pathway might be an underlying basis for the anti-inflammatory and anti-apoptosis effects of MLT. Collectively, our study suggested that MLT could improve learning and memory in type 2 diabetic mice by activating autophagy via the TLR4/Akt/mTOR pathway, thereby inhibiting neuroinflammation and microglial apoptosis.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Yilin Wang
- Department of Traumatic Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianmin Ren
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Peng Lin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|
37
|
Amin SN, Sharawy N, El Tablawy N, Elberry DA, Youssef MF, Abdelhady EG, Rashed LA, Hassan SS. Melatonin-Pretreated Mesenchymal Stem Cells Improved Cognition in a Diabetic Murine Model. Front Physiol 2021; 12:628107. [PMID: 33815140 PMCID: PMC8012759 DOI: 10.3389/fphys.2021.628107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a multisystem endocrine disorder affecting the brain. Mesenchymal stem cells (MSCs) pretreated with Melatonin have been shown to increase the potency of MSCs. This work aimed to compare Melatonin, stem cells, and stem cells pretreated with Melatonin on the cognitive functions and markers of synaptic plasticity in an animal model of type I diabetes mellitus (TIDM). Thirty-six rats represented the animal model; six rats for isolation of MSCs and 30 rats were divided into five groups: control, TIDM, TIDM + Melatonin, TIDM + Stem cells, and TIDM + Stem ex vivo Melatonin. Functional assessment was performed with Y-maze, forced swimming test and novel object recognition. Histological and biochemical evaluation of hippocampal Neuroligin 1, Sortilin, Brain-Derived Neurotrophic Factor (BDNF), inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2), Tumor necrosis factor-alpha (TNF-α), and Growth Associated Protein 43 (GAP43). The TIDM group showed a significant decrease of hippocampal Neuroligin, Sortilin, and BDNF and a significant increase in iNOS, TNF-α, TLR2, and GAP43. Melatonin or stem cells groups showed improvement compared to the diabetic group but not compared to the control group. TIDM + Stem ex vivo Melatonin group showed a significant improvement, and some values were restored to normal. Ex vivo melatonin-treated stem cells had improved spatial working and object recognition memory and depression, with positive effects on glucose homeostasis, inflammatory markers levels and synaptic plasticity markers expression.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashwa El Tablawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Azmy Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mira Farouk Youssef
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ebtehal Gamal Abdelhady
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Sabry Hassan
- Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States.,Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Zhang D, Xu S, Wang Y, Zhu G. The Potentials of Melatonin in the Prevention and Treatment of Bacterial Meningitis Disease. Molecules 2021; 26:1419. [PMID: 33808027 PMCID: PMC7961363 DOI: 10.3390/molecules26051419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023] Open
Abstract
Bacterial meningitis (BM) is an acute infectious central nervous system (CNS) disease worldwide, occurring with 50% of the survivors left with a long-term serious sequela. Acute bacterial meningitis is more prevalent in resource-poor than resource-rich areas. The pathogenesis of BM involves complex mechanisms that are related to bacterial survival and multiplication in the bloodstream, increased permeability of blood-brain barrier (BBB), oxidative stress, and excessive inflammatory response in CNS. Considering drug-resistant bacteria increases the difficulty of meningitis treatment and the vaccine also has been limited to several serotypes, and the morbidity rate of BM still is very high. With recent development in neurology, there is promising progress for drug supplements of effectively preventing and treating BM. Several in vivo and in vitro studies have elaborated on understanding the significant mechanism of melatonin on BM. Melatonin is mainly secreted in the pineal gland and can cross the BBB. Melatonin and its metabolite have been reported as effective antioxidants and anti-inflammation, which are potentially useful as prevention and treatment therapy of BM. In bacterial meningitis, melatonin can play multiple protection effects in BM through various mechanisms, including immune response, antibacterial ability, the protection of BBB integrity, free radical scavenging, anti-inflammation, signaling pathways, and gut microbiome. This manuscript summarizes the major neuroprotective mechanisms of melatonin and explores the potential prevention and treatment approaches aimed at reducing morbidity and alleviating nerve injury of BM.
Collapse
Affiliation(s)
- Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yiting Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
39
|
Danilovich ME, Alberto MR, Juárez Tomás MS. Microbial production of beneficial indoleamines (serotonin and melatonin) with potential application to biotechnological products for human health. J Appl Microbiol 2021; 131:1668-1682. [PMID: 33484616 DOI: 10.1111/jam.15012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Micro-organisms have showed the ability to produce biologically active compounds associated with neurotransmission in higher organisms. In particular, serotonin- and melatonin-producing microbes are valuable sources for the development of eco-friendly bioproducts. Serotonin and melatonin are indoleamines that have received special attention due to their positive effects on human health. These biomolecules exert a critical role in several physiological or pathological processes, including some mental and neurological disorders. This article includes a review of the microbial production of serotonin and melatonin, their functions in micro-organisms and their potential uses as therapeutic and/or preventive agents to improve human health. A description of the quantification methods employed to detect indoleamines and the evidence found concerning their microbial production at laboratory and industrial scale-for application in biotechnological products-is also provided. The microbial ability to synthesize beneficial indoleamines should be further studied and harnessed, to allow the development of sustainable bioprocesses to produce foods and pharmaceuticals for human health.
Collapse
Affiliation(s)
- M E Danilovich
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)-CONICET, Tucumán, Argentina
| | - M R Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)-CONICET, Tucumán, Argentina
| | - M S Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Tucumán, Argentina
| |
Collapse
|
40
|
Marhuenda J, Villaño D, Arcusa R, Zafrilla P. Melatonin in Wine and Beer: Beneficial Effects. Molecules 2021; 26:molecules26020343. [PMID: 33440795 PMCID: PMC7827953 DOI: 10.3390/molecules26020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a hormone secreted in the pineal gland with several functions, especially regulation of circadian sleep cycle and the biological processes related to it. This review evaluates the bioavailability of melatonin and resulting metabolites, the presence of melatonin in wine and beer and factors that influence it, and finally the different benefits related to treatment with melatonin. When administered orally, melatonin is mainly absorbed in the rectum and the ileum; it has a half-life of about 0.45–1 h and is extensively inactivated in the liver by phase 2 enzymes. Melatonin (MEL) concentration varies from picograms to ng/mL in fermented beverages such as wine and beer, depending on the fermentation process. These low quantities, within a dietary intake, are enough to reach significant plasma concentrations of melatonin, and are thus able to exert beneficial effects. Melatonin has demonstrated antioxidant, anticarcinogenic, immunomodulatory and neuroprotective actions. These benefits are related to its free radical scavenging properties as well and the direct interaction with melatonin receptors, which are involved in complex intracellular signaling pathways, including inhibition of angiogenesis and cell proliferation, among others. In the present review, the current evidence on the effects of melatonin on different pathophysiological conditions is also discussed.
Collapse
|
41
|
Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Albazal A, Delshad AA, Roghani M. Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J Chem Neuroanat 2020; 112:101902. [PMID: 33276072 DOI: 10.1016/j.jchemneu.2020.101902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/06/2020] [Accepted: 11/28/2020] [Indexed: 12/30/2022]
Abstract
Uncontrolled diabetes mellitus (DM) is linked to attentional deficits and cognition deterioration. The neurohormone melatonin is an endogenous synchronizer of circadian rhythms with multiple protective properties. This research was designed to assess its effect against learning and memory decline in streptozotocin (STZ)-induced diabetic rats. Rats were assigned to control, melatonin-treated control, diabetic, and melatonin-treated diabetic groups. Melatonin was administered i.p. at a dose of 10 mg/kg/day for 47 days. Treatment of diabetic rats with melatonin reversed decline of spatial recognition memory in Y maze, performance of rats in novel object discrimination, and retention and recall in passive avoidance tasks. Furthermore, melatonin appropriately attenuated hippocampal malondialdehyde (MDA) and reactive oxygen species (ROS) and improved superoxide dismutase (SOD) activity and improved mitochondrial membrane potential (MMP) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) with no significant effect on nitrite, glutathione (GSH) and catalase activity. Besides, hippocampal level of acetylcholinesterase (AChE), glial fibrillary acidic protein (GFAP), nuclear factor-kappaB (NF-κB), interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) decreased following melatonin treatment. There was also a reduction of dendritic spines of pyramidal neurons of hippocampal CA1 area in diabetic group that was significantly alleviated upon melatonin treatment. Melatonin could ameliorate learning and memory disturbances in diabetic rats through mitigation of cholinesterase activity, astrocytes, oxidative stress and inflammation and also via upregulation of some antioxidants in addition to its prevention of dendritic spine loss.
Collapse
Affiliation(s)
- Ala Albazal
- School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
43
|
Srivastava AK, Choudhury SR, Karmakar S. Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models. Neuropharmacology 2020; 194:108372. [PMID: 33157086 DOI: 10.1016/j.neuropharm.2020.108372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 11/15/2022]
Abstract
Epigenetic polycomb repressor complex-1 subunit BMI-1 plays a pivotal role in the process of gene repression to maintain the self-renewal and differentiation state of neurogenic tissues. Accumulating reports links lower expression of BMI-1 fails to regulate the repression of anti-oxidant response genes disrupt mitochondrial homeostasis underlying neurodegeneration. Interestingly, this negative relation between BMI-1 function and neurodegeneration is distinct but has not been generalized as a potential biomarker particularly in Parkinson's disease (PD). Hyperphosphorylated BMI-1 undergoes canonical polycomb E3 ligase function loss, thereby leads to reduce monoubiquitylation of histone 2A at lysine 119 (H2AK119ub) corroborates cellular accumulation of α-synuclein protein phosphorylated at serine 129 (pα-SYN (S129). In general, neuroprotectant suppressing pα-SYN (S129) level turns ineffective upon depletion of neuronal BMI-1. However, it has been observed that our neuroprotectant exposure suppresses the cellular pα-SYN (S129) and restore the the BMI-1 expression level in neuronal tissues. The pharmacological inhibition and activation of proteasomal machinery promote the cellular accumulation and degradation of neuronal pα-SYN (S129), respectively. Furthermore, our investigation reveals that accumulated pα-SYN (S129) are priorly complexed with BMI-1 undergoes ubiquitin-dependent proteasomal degradation and established as key pathway for therpeutic effect in PD. These findings linked the unestablished non-canonical role of BMI-1 in the clearance of pathological α-SYN and suspected to be a novel therapeutic target in PD.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
44
|
Abstract
The circadian clock controls daily rhythms in animal physiology, metabolism, and behavior, such as the sleep‐wake cycle. Disruption of circadian rhythms has been revealed in many diseases including neurodegenerative disorders. Interestingly, patients with many neurodegenerative diseases often show problems with circadian clocks even years before other symptoms develop. Here we review the recent studies identifying the association between circadian rhythms and several major neurodegenerative disorders. Early intervention of circadian rhythms may benefit the treatment of neurodegeneration.
Collapse
Affiliation(s)
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, 1664 N Virginia St, Reno, NV 89557, U.S.A
| |
Collapse
|
45
|
Kurowska A, Bodys-Cupak I, Staszkiewicz M, Szklarczyk J, Zalewska-Puchała J, Kliś-Kalinowska A, Makara-Studzińska M, Majda A. Interleukin-6 and Melatonin as Predictors of Cognitive, Emotional and Functional Ageing of Older People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3623. [PMID: 32455758 PMCID: PMC7277775 DOI: 10.3390/ijerph17103623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ageing process causes a number of changes in the human immune and endocrine systems. The aim of this study was to assess the relationship between cognitive, emotional and functional skills as well lifestyle, versus selected biochemical indicators of the ageing process. METHODS The cross-sectional study was conducted in a group of 121 people aged 60-90 residing in the Lesser Poland voivodship. The study used standardized research tools including the Barthel scale, Instrumental Activities of Daily Living (IADL) scale, Mini-Mental State Examination (MMSE), Life Orientation Test (LOT-R) and inventory of health behaviors (IHB). In addition, the concentration of IL-6 and melatonin in the blood plasma was determined. RESULTS We determined the correlation between the level of IL-6 in a group of people over 75 years of age (requiring medical care), and results of the IADL scale. There was also a correlation between melatonin levels and the MMSE results in a group of people aged 60-75 who did not require constant medical care. CONCLUSIONS IL-6 can be treated as a predictor of functional skills of people over 75 years of age, and melatonin can be perceived as a factor for recognizing cognitive impairment in elderly people who do not require constant medical assistance.
Collapse
Affiliation(s)
- Anna Kurowska
- Laboratory of Theory and Fundamentals of Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland; (I.B.-C.); (J.Z.-P.); (A.K.-K.); (A.M.)
| | - Iwona Bodys-Cupak
- Laboratory of Theory and Fundamentals of Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland; (I.B.-C.); (J.Z.-P.); (A.K.-K.); (A.M.)
| | - Magdalena Staszkiewicz
- Department of Clinical Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 25, 31-501 Krakow, Poland;
| | - Joanna Szklarczyk
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland;
| | - Joanna Zalewska-Puchała
- Laboratory of Theory and Fundamentals of Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland; (I.B.-C.); (J.Z.-P.); (A.K.-K.); (A.M.)
| | - Anna Kliś-Kalinowska
- Laboratory of Theory and Fundamentals of Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland; (I.B.-C.); (J.Z.-P.); (A.K.-K.); (A.M.)
| | - Marta Makara-Studzińska
- Department of Health Psychology, Institute of Nursing and Midwifery, Faculty of Health Sciences Jagiellonian University Medical College, ul. Kopernika 25, 31-501 Krakow, Poland;
| | - Anna Majda
- Laboratory of Theory and Fundamentals of Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland; (I.B.-C.); (J.Z.-P.); (A.K.-K.); (A.M.)
| |
Collapse
|
46
|
Zhao Y, Ren J, Hillier J, Jones M, Lu W, Jones EY. Structural characterization of melatonin as an inhibitor of the Wnt deacylase Notum. J Pineal Res 2020; 68:e12630. [PMID: 31876313 PMCID: PMC7027535 DOI: 10.1111/jpi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
The hormone melatonin, secreted from the pineal gland, mediates multiple physiological effects including modulation of Wnt/β-catenin signalling. The Wnt palmitoleate lipid modification is essential for its signalling activity, while the carboxylesterase Notum can remove the lipid from Wnt and inactivate it. Notum enzyme inhibition can therefore upregulate Wnt signalling. While searching for Notum inhibitors by crystallographic fragment screening, a hit compound N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide that is structurally similar to melatonin came to our attention. We then soaked melatonin and its precursor N-acetylserotonin into Notum crystals and obtained high-resolution structures (≤1.5 Å) of their complexes. In each of the structures, two compound molecules bind with Notum: one at the enzyme's catalytic pocket, overlapping the space occupied by the acyl tail of the Wnt palmitoleate lipid, and the other at the edge of the pocket opposite the substrate entrance. Although the inhibitory activity of melatonin shown by in vitro enzyme assays is low (IC50 75 µmol/L), the structural information reported here provides a basis for the design of potent and brain accessible drugs for neurodegenerative diseases such as Alzheimer's disease, in which upregulation of Wnt signalling may be beneficial.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jingshan Ren
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James Hillier
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Margaret Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Weixian Lu
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Edith Yvonne Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
47
|
Bogdan A, Manera V, Koenig A, David R. Pharmacologic Approaches for the Management of Apathy in Neurodegenerative Disorders. Front Pharmacol 2020; 10:1581. [PMID: 32038253 PMCID: PMC6989486 DOI: 10.3389/fphar.2019.01581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 01/10/2023] Open
Abstract
Apathy is one of the most frequent behavioral disturbances in many neurodegenerative disorders and is known to have a negative impact on the disease progression, particularly in Alzheimer’s disease. Therapeutic options are currently limited and non-pharmacological approaches should constitute first line treatments. Pharmacological agents likely to reduce apathy levels are lacking. The objective of the present article is to review recent pharmacological treatments for apathy in neurodegenerative disorders. The Pubmed database was searched with a particular focus on articles published as of January 2017. Current main levels of evidence have been reported so far with cholinergic, glutamatergic and dopaminergic agents to reduce levels of apathy, despite several conflicting results. Treatment duration and samples sizes may have however decreased the validity of previous results. Ongoing studies involving more participants/treatment duration or distinct neural pathways may provide new insights in the treatment of apathy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Anamaria Bogdan
- Centre Hospitalier Universitaire de Nice, Centre Mémoire de Ressources et de Recherche, Nice, France
| | - Valeria Manera
- CoBTeK Lab "Cognition Behaviour Technology", University of Nice Sophia Antipolis, Nice, France
| | - Alexandra Koenig
- CoBTeK Lab "Cognition Behaviour Technology", University of Nice Sophia Antipolis, Nice, France
| | - Renaud David
- Centre Hospitalier Universitaire de Nice, Centre Mémoire de Ressources et de Recherche, Nice, France
| |
Collapse
|
48
|
Yang X, Sun X, Wu J, Ma J, Si P, Yin L, Zhang Y, Yan LJ, Zhang C. Regulation of the SIRT1 signaling pathway in NMDA-induced Excitotoxicity. Toxicol Lett 2020; 322:66-76. [PMID: 31945382 DOI: 10.1016/j.toxlet.2020.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/12/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Silent Information Regulator 1 (SIRT1), an NAD+-dependent deacetylase, contributes to the neuroprotective effect. However, intracellular signaling pathways that affect SIRT1 function remain unknown. It is well known that N-methyl-D-aspartate (NMDA) receptor activation induces calcium influx which then activates PKC, and SIRT1 is a mRNA target for HuR protein. We hypothesize that Ca2+-PKC-HuR-SIRT1 pathway modulates SIRT1 function. The present study is to investigate the potential pathway of SIRT1 in the SH-SY5Y cell line as an in vitro model of NMDA-induced neurotoxicity. The results showed that: (1) SIRT1 levels were downregulated in NMDA model; (2) NMDA induced an increase in serine phosphorylation of HuR, while inhibition of serine phosphorylation of HuR increased SIRT1 levels, promoting cell survival; (3) PKC inhibitor (Gö 6976) reversed NMDA insults and also suppressed serine phosphorylation of HuR; (4) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, fully reversed NMDA insults and also inhibited PKC activity evoked by NMDA. These results indicate that intracellular elevated Ca2+ activates PKC, which phosphorylates HuR and then promotes SIRT1 mRNA decay and subsequent neuronal death in NMDA model. Therefore, the study suggests that inhibition of Ca2+-PKC-HuR-SIRT1 pathway could be an effective strategy for preventing certain neurological diseases related to NMDA excitotoxicity.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China.
| | - Xuefei Sun
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China; The People's Hospital of Funing, Qinhuangdao 066300, Hebei Province, PR China
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jinteng Ma
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Peipei Si
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China; Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050071, Hebei Province, PR China
| | - Litian Yin
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ce Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, #56 Xin Jian South Road, Taiyuan 030001, Shanxi Province, PR China
| |
Collapse
|
49
|
De Butte M, Gieseking B. Efficacy of a low-dose melatonin pretreatment in protecting against the neurobehavioral consequences of chronic hypoperfusion in middle-aged female rats. Behav Brain Res 2019; 377:112257. [PMID: 31553922 DOI: 10.1016/j.bbr.2019.112257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Mild cognitive impairment (MCI) is characterized by a reduction in cerebral blood flow. Permanent ligation of the common carotid arteries (2VO) in the rat mimics the chronic decrease in CBF that characterizes aMCI. The current study determined if melatonin (a pineal hormone with neuroprotective properties) can attenuate the neurobehavioral consequences of 2VO using middle-aged female rats. Two weeks following 2VO or sham surgery, rats were tested on various learning and memory tasks. 2VO resulted in hyperlocomotion on the open field. Melatonin attenuated this 2VO-induced hyperactivity. 2VO impaired visual memory however this was not attenuated by melatonin administration. Neither 2VO nor melatonin affected spatial memory performance on the MWM or spatial recognition task. Y-maze testing revealed 2VO rats exhibited a lower spontaneous alternation pattern and performed a greater number of alternate arm returns compared to 2VO rats treated with melatonin. 2VO resulted in a significant loss of CA1 hippocampal neurons which was attenuated with melatonin treatment. Chronic melatonin was found to attenuate the neuronal consequences of chronic cerebral hypoperfusion but only conferred partial behavioral protection in middle-aged female rats. Our results demonstrate that inclusion of older rodents is important in neuroprotection studies as neuroprotective agents may act differently in an aged brain.
Collapse
Affiliation(s)
- Maxine De Butte
- Department of Psychology, Sociology, and Social Work, West Texas A&M University, Canyon, TX, USA.
| | - Blake Gieseking
- Department of Psychology, Sociology, and Social Work, West Texas A&M University, Canyon, TX, USA
| |
Collapse
|
50
|
TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration. DISEASE MARKERS 2019; 2019:2387614. [PMID: 31636733 PMCID: PMC6766163 DOI: 10.1155/2019/2387614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that pathogenic mechanisms underlying neurodegeneration are strongly linked with neuroinflammatory responses. Tyro3, Axl, and Mertk (TAM receptors) constitute a subgroup of the receptor tyrosine kinase family, cell surface receptors which transmit signals from the extracellular space to the cytoplasm and nucleus. TAM receptors and the corresponding ligands, Growth Arrest Specific 6 and Protein S, are expressed in different tissues, including the nervous system, playing complex roles in tissue repair, inflammation and cell survival, proliferation, and migration. In the nervous system, TAM receptor signalling modulates neurogenesis and neuronal migration, synaptic plasticity, microglial activation, phagocytosis, myelination, and peripheral nerve repair, resulting in potential interest in neuroinflammatory and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. In Alzheimer and Parkinson diseases, a role of TAM receptors in neuronal survival and pathological protein aggregate clearance has been suggested, while in Multiple Sclerosis TAM receptors are involved in myelination and demyelination processes. To better clarify roles and pathways involving TAM receptors may have important therapeutic implications, given the fine modulation of multiple molecular processes which could be reached. In this review, we summarise the roles of TAM receptors in the central nervous system, focusing on the regulation of immune responses and microglial activities and analysing in vitro and in vivo studies regarding TAM signalling involvement in neurodegeneration.
Collapse
|