1
|
Beyzi SB, Ülger İ, Kaya E, Ocak B, Konca Y. Effects of Different Technological Forms of the Perilla frutescens in the Diet on Ruminal Fermentation, Milk and Plasma Fatty Acid Composition, Ruminal Biohydrogenation and Milk Quality in Dairy Goats. Vet Med Sci 2024; 10:e70087. [PMID: 39436201 PMCID: PMC11494893 DOI: 10.1002/vms3.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Fatty acids can be protected by changing their structure or form against microbial activity, and the different forms of fatty acids can modulate the ruminal biohydrogenation rate and contribute to the desired fatty acid profile in milk fat. OBJECTIVES The study investigated the effects of perilla (Perilla frutescens) dietary supplementation in the diet in different technological forms (seed, oil and formaldehyde-treated oil) on milk, plasma and ruminal fatty acid composition, and milk quality in lactating goats. METHODS The four dietary treatments consisted of (1) no supplementation, basal diet (CON); (2) perilla supplementation as seed at 44.7 g/kg (consisting of 20 g/kg oil (PS)); (3) perilla supplementation as oil at 20 g/kg (PO); (4) perilla supplementation as formaldehyde treated oil at 20 g/kg (protected perilla oil [PPO]). The experiment was implemented in a double 4 × 4 Latin square trial design, and sampling was carried out for 7 days after 21 days of adaptation. RESULTS Performance parameters were not affected by P. frutescens supplementation to the diet. PO decreased milk fat, whereas PPO increased milk fat. Milk cholesterol was not affected by P. frutescens dietary supplementation. Perilla oil supplementation in different forms to the diet did not affect ruminal pH, VFA and methane production. Perilla oil supplementation in different forms to the diet did not also affect the concentration of blood serum glucose, cholesterol and non-esterified fatty acids. Perilla supplementation to the diet increased the milk conjugated linoleic acid (CLA), C18:3n-3, C22:5n-3, C20:5n-3, C22:6n-3 and polyunsaturated fatty acid (PUFA) concentrations, and PPO group showed the greatest values. Ruminal palmitic (C16:0) acid was decreased, and in perilla groups, stearic acid (C18:0) concentration had the lowest, and ruminal c-9, t-11 CLA concentration had the highest value in PPO. CONCLUSIONS It has been found that the most effective form of perilla oil in increasing milk quality is that with formaldehyde treatment (protected form). Perilla oil, which is a rich source of omega 3 in the diet, can be used to increase milk quality in goats without adversely affecting performance, ruminal fermentation and blood parameters.
Collapse
Affiliation(s)
| | - İsmail Ülger
- Department of Animal ScienceFaculty of AgricultureUniversity of ErciyesKayseriTurkey
| | - Emrah Kaya
- Department of Animal ScienceFaculty of AgricultureUniversity of IğdırIğdırTurkey
| | - Buğra Ocak
- Department of Leather EngineeringFaculty of EngineeringEge UniversityIzmirTurkey
| | - Yusuf Konca
- Department of Animal ScienceFaculty of AgricultureUniversity of ErciyesKayseriTurkey
| |
Collapse
|
2
|
Li J, Kudereti T, Wusiman A, Abula S, He X, Li J, Yang Y, Guo Q, Guo Q. Regulatory Effects of Alhagi Honey Small-Molecule Sugars on Growth Performance and Intestinal Microbiota of Lambs. Animals (Basel) 2024; 14:2402. [PMID: 39199936 PMCID: PMC11350646 DOI: 10.3390/ani14162402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The present study was designed to assess the impact of Alhagi honey small-molecule sugars (AHAS) on Hu lambs. Therefore, in this study, AHAS low-dose (AHAS-L, 200 mg/ kg per day), AHAS medium-dose (AHAS-M, 400 mg/kg per day), and AHAS high-dose (AHAS-H, 800 mg/kg per day) were administered to Hu lambs to investigate the regulatory effects of AHAS on growth performance, oxidation index, immune system enhancement, and intestinal microbiota. The results showed that lambs in the AHAS-H group exhibited significantly increased in average daily weight gain, and growth performance compared to those in the control group (p < 0.05). Moreover, AHAS-H supplementation resulted in increased levels of serum antioxidant enzymes (SOD, GSH-Px, and T-AOC), serum antibodies (IgA, IgG, and IgM), and cytokines (IL-4, 10,17, IFN-γ, and TNF-α) compared with the control group (p < 0.05). Additionally, it increased the quantity and richness of beneficial bacteria at such as Sphingomonas, Ralstonia, and Flavobacterium, activating various metabolic pathways and promoting the production of various short-chain fatty acids. In summary, our findings highlight the potential of AHAS-H treatment in enhancing intestinal health of lambs by improving intestinal function, immunity, and related metabolic pathways. Consequently, these results suggest that AHAS holds promising potential as a valuable intervention for optimizing growth performance and intestinal health in lambs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Tuerhong Kudereti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xiaodong He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jiaxin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yang Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qianru Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
3
|
Ma X, Niu Y, Nan S, Zhang W. Effect of Salvia sclarea L. extract on growth performance, antioxidant capacity, and immune function in lambs. Front Vet Sci 2024; 11:1367843. [PMID: 38659454 PMCID: PMC11039921 DOI: 10.3389/fvets.2024.1367843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
The aim of this experiment is to explore the effects of salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of lambs. Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of twelve lambs in each. While the control group (CK) received only basal feed, the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04 mL/kg (group CL1), 0.08 mL/kg (group CL2), 0.12 mL/kg (group CL3), and 0.16 mL/kg (group CL4). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test for the determination of immune and antioxidant indices. The results showed that the average daily gain and average daily feed intake of lambs were significantly increased in CL3 group compared to CK group (p < 0.05). Also, the apparent nutrient digestibility of crude protein and neutral detergent fiber was significantly increased (p < 0.05). The Dry matter, acid detergent fiber and Ether extract were not significantly different (p > 0.05). The serum levels of superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups compared to CK group, while malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1β were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). In conclusion, the addition of salvia sclarea extract to the ration promotes growth performance and nutrient digestion in lambs. Improvement of immune response by increasing immunoglobulin and cytokine concentrations. And it enhances the antioxidant status by increasing the antioxidant enzyme activity in lambs. Introduction This study aimed to explore the effects of Salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of the lambs. Methods Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of 12 lambs each. The control group (CK) received only basal feed, whereas the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04, 0.08, 0.12, and 0.16 mL/kg (CL1, CL2, CL3, and CL4, respectively). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test to determine immune and antioxidant indices. Results The results showed that the average daily weight gain and feed intake of the lambs were significantly higher in the CL3 group than in the CK group (p < 0.05). In addition, the apparent nutrient digestibility of crude protein and neutral detergent fiber increased significantly (p < 0.05). The dry matter, acid detergent fiber, and ether extract were not significantly different (p > 0.05). Serum levels of superoxide dismutase, catalase, and glutathione peroxidase and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups than in the CK group, whereas malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1β were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). Discussion In conclusion, the addition of the S. sclarea extract to the diet promoted growth performance and nutrient digestion in lambs. Immune response was improved by increasing Ig and cytokine concentrations. It enhances antioxidant status by increasing antioxidant enzyme activity in lambs.
Collapse
Affiliation(s)
| | | | | | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Yu Y, Zhang B, Jiang X, Cui Y, Luo H, Stergiadis S, Wang B. Exploring the metabolomic landscape: Perilla frutescens as a promising enhancer of production, flavor, and nutrition in Tan lamb meat. Meat Sci 2024; 209:109419. [PMID: 38154372 DOI: 10.1016/j.meatsci.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Sokratis Stergiadis
- University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, Reading RG6 6EU, United Kingdom
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Chacko Kaitholil SR, Mooney MH, Aubry A, Rezwan F, Shirali M. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep. Anim Genet 2024; 55:20-46. [PMID: 38112204 PMCID: PMC10952161 DOI: 10.1111/age.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Feed costs and carcass yields affect the profitability and sustainability of sheep production. Therefore, it is crucial to select animals with a higher feed efficiency and high-quality meat production. This study focuses on the impact of dietary and genetic factors on production traits such as feed efficiency, carcass quality, and meat quality. Diets promote optimal sheep growth and development and provide sufficient protein can lead to higher-quality meat. However, establishing an optimized production system requires careful consideration and balance of dietary parameters. This includes ensuring adequate protein intake and feeding diets with higher intestinal absorption rates to enhance nutrient absorption in the gut. The study identifies specific genes, such as Callipyge, Calpastatin, and Myostatin, and the presence of causal mutations in these genes, as factors influencing animal growth rates, feed efficiency, and meat fatty acid profiles. Additionally, variants of other reported genes, including PIGY, UCP1, MEF2B, TNNC2, FABP4, SCD, FASN, ADCY8, ME1, CA1, GLIS1, IL1RAPL1, SOX5, SOX6, and IGF1, show potential as markers for sheep selection. A meta-analysis of reported heritability estimates reveals that residual feed intake (0.27 ± 0.07), hot carcass weight (0.26 ± 0.05), dressing percentage (0.23 ± 0.05), and intramuscular fat content (0.45 ± 0.04) are moderately to highly heritable traits. This suggests that these traits are less influenced by environmental factors and could be improved through genetic selection. Additionally, positive genetic correlations exist between body weight and hot carcass weight (0.91 ± 0.06), dressing percentage (0.35 ± 0.15), and shear force (0.27 ± 0.24), indicating that selecting for higher body weight could lead to favorable changes in carcass quality, and meat quality.
Collapse
Affiliation(s)
- Steffimol Rose Chacko Kaitholil
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- Agri‐Food and Biosciences InstituteHillsboroughUK
| | - Mark H. Mooney
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | | | - Faisal Rezwan
- Department of Computer ScienceAberystwyth UniversityAberystwythUK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- Agri‐Food and Biosciences InstituteHillsboroughUK
| |
Collapse
|
6
|
Zou M, Xue Q, Teng Q, Zhang Q, Liu T, Li Y, Zhao J. Acaricidal activities of paeonol from Moutan Cortex, dried bark of Paeonia × suffruticosa, against the grain pest mite Aleuroglyphus ovatus (Acari: Acaridae). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:615-628. [PMID: 37979065 DOI: 10.1007/s10493-023-00861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Aleuroglyphus ovatus (Acari: Acaridae) is a major pest mite of stored grains that is distributed worldwide. Paeonol, a phenolic component of the essential oil extracted from the Chinese herb Paeonia moutan, possesses a range of biological activities, including antiviral, antifungal and acaricidal activity. This study investigated the bioactivity of paeonol against A. ovatus and its effect on the activity of detoxification enzymes. The bioactivity of paeonol against A. ovatus was determined by contact, fumigation and repellency bioassays, and the mechanism was preliminarily explored via morphological observation of the color changes of mite epidermis and determination of the changing trend of some important enzymes associated with acaricidal efficacy in the mites. The results showed that the median lethal concentration (LC50) in the contact and fumigation bioassays was 9.832 μg/cm2 and 14.827 μg/cm3, respectively, and the acaricidal activity of paeonol was higher under direct contact than under fumigation. Dynamic symptomatology studies registered typical neurotoxicity symptoms including excitation, convulsion and paralysis in A. ovatus treated with paeonol. The enzyme activity of catalase (CAT), nitric oxide synthase (NOS) and glutathione-S-transferase (GST) was higher, whereas the activity of superoxide dismutase (SOD) and acetylcholinesterase (AChE) was lower, compared to the control group. CAT, NOS and GST were activated, whereas SOD and AChE activities were inhibited after paeonol intervention. Our findings suggest paeonol has potent acaricidal activity against A. ovatus and thus may be used as an agent to control the stored-product mite A. ovatus.
Collapse
Affiliation(s)
- Minghui Zou
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Qiqi Xue
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Qiao Teng
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Qiqi Zhang
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ting Liu
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Yuanyuan Li
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Biological Macromolecules, Wuhu, 241002, Anhui, China.
| | - Jinhong Zhao
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Biological Macromolecules, Wuhu, 241002, Anhui, China.
| |
Collapse
|
7
|
Liu S, Dong F, Hao J, Qiao L, Guo J, Wang S, Luo R, Lv Y, Cui J. Combination of hyperspectral imaging and entropy weight method for the comprehensive assessment of antioxidant enzyme activity in Tan mutton. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122342. [PMID: 36682252 DOI: 10.1016/j.saa.2023.122342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The antioxidant enzymes play the crucial role in inhibiting mutton spoilage. In this study, visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) combined with entropy weight method (EWM) was developed for the first time to evaluate the antioxidant properties of Tan mutton. The comprehensive index of antioxidant enzymes (AECI) consisting of peroxidase (49.34%), catalase (37.97%) and superoxidase (12.69%) was constructed by the EWM. Partial least squares regression, least squares support vector machine and artificial neural networks (ANN) were developed based on characteristic wavelengths extracted by successful projections algorithm, uninformative variable selection, iteratively retains informative variables (IRIV), regression coefficient and competitive adaptive reweighted sampling (CARS). The textural features (TF) were extracted by the gray level co-occurrence matrix and fused with the spectral data to establish models. Visualization of the changes in antioxidant enzyme activity was constructed from the optimal model. In addition, two-dimensional correlation spectra (2D-COS) with AECI as a perturbation variable was used to identify spectral features, revealing chemical bond changes order under the characteristic peaks at 612-799-473-708-559 nm. The results showed that the IRIV-CARS-TF-ANN model performed the best, with prediction set coefficient of determination (RP2) of 0.8813, which improved 2.12%, 1.11% and 2.77% over the RP2 of full band, IRIV and IRIV-CARS, respectively. It was suggested that fusion data of HSI may effectively predict the activity of antioxidant enzymes in Tan mutton.
Collapse
Affiliation(s)
- Sijia Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Fujia Dong
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jie Hao
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Lu Qiao
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jianhong Guo
- School of Chemical & Biological Engineering, Yinchuan University of Energy, Yinchuan 750021, China
| | - Songlei Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China.
| | - Ruiming Luo
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Yu Lv
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jiarui Cui
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Yang C, Zhu X, Liu W, Huang J, Xie Z, Yang F, Zhang L, Wei Y. Dietary Dried Jujube Fruit Powder (DJFP) Supplementation Improves Growth Performance, Antioxidant Stability, and Meat Composition in Broilers. Foods 2023; 12:foods12071463. [PMID: 37048283 PMCID: PMC10093937 DOI: 10.3390/foods12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Nowadays, broiler production is faced with great challenges due to intensive culture modes, and chickens are more susceptible to oxidative stress. Consequently, synthetic antioxidants have been used to reduce this process, but their use has shown potential health risks. Thus, the use of natural ingredients has been suggested as a strategy to prevent oxidative stress. This study investigated how dietary dried jujube fruit powder (DJFP) supplementation influences the growth performance, antioxidant stability, meat composition, and nutritional quality of Cobb broilers. A total of 360 unsexed broilers (1-day-old) were randomly assigned to treatments that varied in DJFP levels: a basal diet without DJFP (control) and diets supplemented with 50 g/kg DJFP (P1), 100 g/kg DJFP (P2), and 150 g/kg DJFP (P3), with 9 replicates per treatment (90 broilers/treatment or 10 broilers/replicate). The results demonstrated improvement in the growth performance of broilers in terms of body weight (BW), body weight gain (WG), average daily body weight gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) following dietary DJFP supplementation. In addition, the antioxidant stabilities in the DJFP-treated broilers were improved and inhibited the production of lipid oxidation products compared with the control, with those in the P2 group showing the most marked effect. Moreover, dietary DJFP supplementation significantly increased (p < 0.05) the activity of antioxidant enzymes in broilers. Furthermore, the breast meat of the broilers displayed an increased protein content with a simultaneous reduction in the fat content after DJFP treatment (p < 0.05). Essential amino acid levels were higher in the DJFP-supplemented groups (p < 0.05). The sum of saturated fatty acids was lower, and that of monounsaturated fatty acids (MUFAs) and the polyunsaturated fatty acid/saturated fatty acid ratio (PUFA/SFA) were higher in the DJFP-supplemented groups (p < 0.05). Together, these results indicate that up to 100 g/kg of dietary DJFP supplementation can enhance the growth performance and antioxidant capacity, meat composition, and amino acid and fatty acid composition in broiler breast meat. In conclusion, dietary DJFP supplementation is a healthy alternative to the use of synthetic antioxidants in broiler production, especially in regions rich in jujube resources.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xijin Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Jie Huang
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zhijun Xie
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Farong Yang
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuming Wei
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
9
|
Serra V, Castrica M, Agradi S, Curone G, Vigo D, Di Giancamillo A, Modina SC, Riva F, Balzaretti CM, De Bellis R, Brecchia G, Pastorelli G. Antioxidant Activity of Different Tissues from Rabbits Fed Dietary Bovine Colostrum Supplementation. Animals (Basel) 2023; 13:ani13050850. [PMID: 36899707 PMCID: PMC10000081 DOI: 10.3390/ani13050850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent advances in animal nutrition have indicated that bovine colostrum (BC), due to its content of macronutrients, micronutrients and bioactive compounds, is an excellent health supplement. To the best of our knowledge, no studies on the effect of BC on antioxidant status have been performed in rabbits. This study aimed to investigate the effect of two BC concentrations on antioxidant status and gene expression of antioxidant enzymes in some tissues of rabbits. Thirty New Zealand White male rabbits were randomly divided into three experimental diets, containing 0% (CON), 2.5%, and 5% of BC (BC-2.5 and BC-5, respectively). The activity of antioxidant enzymes in plasma (catalase: CAT; glutathione peroxidase: GPx; superoxide dismutase: SOD), and the enzymes' gene expression in the liver and longissimus dorsi muscle, were determined. Results showed no significant differences, neither in plasma nor in tissues. A significant tissue-related effect has been observed regarding the mRNA levels of SOD and GPx, which were higher in the LD (p = 0.022) and liver (p = 0.001), respectively. Further studies, considering modifications of the length and dosage of dietary BC supplementation, are required to update the current state of knowledge in rabbits, as well as to fully understand the potential value of BC for possible application in farming use.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Marta Castrica
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Roberta De Bellis
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via A. Saffi 2, 61029 Urbino, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: ; Tel.: +39-0250-334-583
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
10
|
Wang F, Yin Y, Wang Q, Xie J, Fu C, Guo H, Chen J, Yin Y. Effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity in Chinese indigenous Ningxiang pig. J Anim Physiol Anim Nutr (Berl) 2022; 107:878-886. [PMID: 36575591 DOI: 10.1111/jpn.13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
β-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary β-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg β-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental β-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary β-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added β-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary β-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiye Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Henghua Guo
- Anhui Huaheng Biotechnology, Hefei, Anhui, China
| | - Jiashun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
11
|
Seyedin SMV, Mojtahedi M, Farhangfar SH, Ghavipanje N. Partial substitution of alfalfa hay by Berberis vulgaris leaf modulated the growth performance, meat quality and antioxidant status of fattening lambs. Vet Med Sci 2022; 8:2605-2615. [PMID: 36112758 PMCID: PMC9677374 DOI: 10.1002/vms3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Undoubtedly, global warming has caused a decrease in the production of agricultural commodities. This problem has increased the price of animal feed due to competition with human consumption. Meanwhile, the physiology of ruminants gives them the ability to use by-products and agricultural waste and supply their requirements for growth, maintenance and even production. Berberis vulgaris is a plant native to Iran, and after separating the fruit, its waste (mainly leaf) is unused and causes environmental pollution. The leaves of this plant contain significant amounts of phenolic compounds, alkaloids and anthocyanins that have antioxidant properties. OBJECTIVES This experiment was conducted with the aim of determining the chemical properties of barberry leaves, such as crude protein, phenolic compounds, tannins and alkaloids. The effects of substituting of B. vulgaris leaf (BVL) in the diet on performance characteristics of fattening Baluchi lambs were evaluated. The quality and antioxidant status of meat and blood parameters such as glucose, cholesterol, blood urea nitrogen and liver enzymes were investigated. MATERIAL AND METHODS A total of 21 male of 5-6 months old lambs with a mean body weight of 30.60 ± 1.28 kg were randomly assigned to one of three dietary treatments with different levels of BVL: 1-diet without BVL (control), 2-diet containing 7.5% BVL (BVL7.5), and 3-diet containing 15% BVL (BVL15; dry matter [DM] basis). Blood samples were harvested after overnight fasting from the jugular vein at 0, 28, 56 and 84 days. The lambs were slaughtered after 84 days of feeding trial and longissimus dorsi (LD) muscle was dissected. Meat quality and antioxidant stability status were measured. RESULTS 15% substitution of alfalfa hay by BVL (BVL15) increased DM intake) and decreased average daily gain (p ≤ 0.05). The LD muscle (p ≤ 0.05), liver (p ≤ 0.01) and plasma (p ≤ 0.05) samples of lambs fed either BVL7.5 or BVL15 displayed a greater total antioxidant capacity than that of lambs fed the control diet. Also, malondialdehyde concentration was decreased in plasma (p ≤ 0.01) and LD muscle of lambs (p ≤ 0.05) fed both BVL7.5 and BVL15. In addition, higher a* and C* values (p ≤ 0.05) were observed in the meat of lambs fed BVL15 than those fed with the control, while the lightness (L*) in BVL15 was lower, compared to other experimental diets CONCLUSIONS: Overall, our results indicated that 7.5% substitution of alfalfa hay by BVL may positively modulate the antioxidant status of fattening lambs and improve the colour stability of meat without negative effects on performance characteristics.
Collapse
Affiliation(s)
| | - Mohsen Mojtahedi
- Department of Animal ScienceFaculty of AgricultureUniversity of BirjandBirjandIran
| | | | - Navid Ghavipanje
- Department of Animal ScienceFaculty of AgricultureUniversity of BirjandBirjandIran
| |
Collapse
|
12
|
Zhao J, Yang PC, Yang H, Wang ZB, El-Samahy M, Wang F, Zhang YL. Dietary supplementation with metformin improves testis function and semen quality and increases antioxidants and autophagy capacity in goats. Theriogenology 2022; 188:79-89. [DOI: 10.1016/j.theriogenology.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
13
|
Chen R, Yang M, Song YD, Wang RX, Wen C, Liu Q, Zhou YM, Zhuang S. Effect of anhydrous betaine and hydrochloride betaine on growth performance, meat quality, postmortem glycolysis, and antioxidant capacity of broilers. Poult Sci 2022; 101:101687. [PMID: 35139439 PMCID: PMC8844660 DOI: 10.1016/j.psj.2021.101687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- R Chen
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - M Yang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y D Song
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - R X Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - C Wen
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Q Liu
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y M Zhou
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S Zhuang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Yang M, Chen R, Song YD, Zhou YM, Liu Q, Zhuang S. Effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens. Br Poult Sci 2021; 63:351-359. [PMID: 34797186 DOI: 10.1080/00071668.2021.2008313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. This study investigated the effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens.2. In total, 400, one-day-old female Xueshan broiler chicks were randomly divided into five groups with eight replicates of ten chickens each for 102 d. Broilers were fed a basal diet supplemented with 0, 125, 250, 500 or 1,000 mg/kg betaine.3. Broilers fed betaine had better feed conversion efficiency and weight gain (P < 0.05) and increased meat redness and yellowness 24 h after slaughter. Supplementation linearly decreased cooking loss and drip loss from breast muscle (P < 0.05). Muscular resilience was improved and tenderness increased (P < 0.05). Intra-muscular saturated fatty acids decreased, while total monounsaturated fatty acids and polyunsaturated fatty acids increased (P < 0.05). Betaine increased activities of glutathione peroxidase (GPx) and total superoxide dismutase (SOD), glutathione (GSH) level, ratio of reduced glutathione/oxidised glutathione, and activity of scavenging hydroxyl radicals. It increased the activity of total antioxidant capacity (T-AOC) in the breast muscle (P < 0.05). Moreover, supplementation up-regulated (P < 0.05) mRNA expression levels of blood and antioxidant markers.4. In conclusion, 1000 mg/kg betaine can be recommended as a supplement for slow-growing, Xueshan chicken.
Collapse
Affiliation(s)
- M Yang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - R Chen
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Y D Song
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - Q Liu
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| | - S Zhuang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
15
|
Astragalus membranaceus Alters Rumen Bacteria to Enhance Fiber Digestion, Improves Antioxidant Capacity and Immunity Indices of Small Intestinal Mucosa, and Enhances Liver Metabolites for Energy Synthesis in Tibetan Sheep. Animals (Basel) 2021; 11:ani11113236. [PMID: 34827968 PMCID: PMC8614378 DOI: 10.3390/ani11113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Astragalus membranaceus is a widely used traditional Chinese herb that has been used by humans for hundreds of years. The Qinghai-Tibetan plateau (QTP) is regarded as one of the remaining ‘Green’ places in the world. With the fast-developing intensive livestock production, sustainable and environmentally-friendly practices are required urgently on the QTP. In the current study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT) to reduce the use of chemical veterinary drugs and antibiotics, and to examine the effect on rumen bacteria, the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue, and the liver metabolome responses. Abstract Natural, non-toxic feed additives can potentially replace chemical medications and antibiotics that are offered sheep to improve performance. In the present study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT), a traditional herb used widely in China. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9-month-old) were assigned randomly to one of four levels of supplementary AMT: 0 g/kg (A0), 20 g/kg (A20), 50 g/kg (A50) and 80 g/kg (A80) dry matter intake (DMI). The A50 and A80 groups increased the diversity of rumen bacteria on d 14 and the relative abundances of fiber decomposing bacteria. Supplementary AMT upregulated the metabolism of vitamins, nucleotides, amino acids and glycan, and downregulated the metabolism of lipids and carbohydrates. In addition, supplementary AMT enriched rumen bacteria for drug resistance, and reduced bacteria incurring cell motility. In general, AMT supplementation increased the concentrations of catalase (CAT), superoxide dismutase (SOD) total antioxidant capacity (T-AOC) and secretory immunoglobulin A (sIgA) in the small intestinal mucosa and CAT and SOD in meat tissue. The liver tissue metabolome response showed that AMT in the A80 lambs compared to the A0 lambs upregulated the metabolites for energy synthesis. It was concluded that supplementary A. membranaceus increased the relative abundances of fiber decomposing bacteria and improved the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue in Tibetan sheep.
Collapse
|
16
|
Measurement of Antioxidant Capacity of Meat and Meat Products: Methods and Applications. Molecules 2021; 26:molecules26133880. [PMID: 34202027 PMCID: PMC8271956 DOI: 10.3390/molecules26133880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/29/2023] Open
Abstract
At present, a wide variety of analytical methods is available to measure antioxidant capacity. However, this great diversity is not reflected in the analysis of meat and meat products, as there are a limited number of studies on determining this parameter in this complex food matrix. Despite this, and due to the interest in antioxidants that prevent oxidation reactions, the identification of antioxidants in meat and meat products is of special importance to the meat industry. For this reason, this review compiled the main antioxidant capacity assays employed in meat and meat products, to date, describing their foundations, and showing both their advantages and limitations. This review also looked at the different applications of antioxidant properties in meat and meat products. In this sense, the suitability of using these methodologies has been demonstrated in different investigations related to these foods.
Collapse
|
17
|
Wang Y, Wang R, Hao X, Hu Y, Guo T, Zhang J, Wang W, Shi X, An X, Qi J. Growth performance, nutrient digestibility, immune responses and antioxidant status of lambs supplemented with humic acids and fermented wheat bran polysaccharides. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
|
19
|
An X, Wang Y, Wang R, Hao X, Hu Y, Guo T, Zhang J, Wang W, Shi X, Han S, Qi J. Effects of a blend of cinnamaldehyde, eugenol and capsicum oleoresin (CEC) on growth performance, nutrient digestibility, immune response and antioxidant status of growing ewes. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Liang Y, Bao Y, Gao X, Deng K, An S, Wang Z, Huang X, Liu D, Liu Z, Wang F, Fan Y. Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat Sci 2020; 164:108094. [PMID: 32146297 DOI: 10.1016/j.meatsci.2020.108094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of spirulina supplementation in a high-energy (HE) diet on lipid metabolism, oxidative status and immunity in Hu lambs. The lambs were assigned to two groups receiving either a standard diet (ST) or a HE diet. Each group was divided into three subgroups: no spirulina supplementation (control), 1% spirulina supplementation, or 3% spirulina supplementation. The body fat, serum cholesterol, triacylglycerol and oxidative stress increased in lambs fed the HE diet. However, 3% spirulina supplementation in the HE diet reduced above parameters and enhanced antioxidant capacity, including increased SOD activity and T-AOC content in serum and Longissimus thoracis et lumborum (LTL). Additionally, lambs receiving 3% spirulina supplementation showed an improvement in immunity-related parameters, including increased IgG concentration in serum and red and white blood cell counts. In conclusion, 3% spirulina supplementation in HE diet ameliorated lipid metabolic disorder and oxidative stress caused by a HE diet.
Collapse
Affiliation(s)
- Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yongjin Bao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaoxiao Gao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Kaiping Deng
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shiyu An
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xinai Huang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Dong Liu
- Inner Mongolia Caolv Agricultural Science and Technology Development Co., Ltd, Ordos, Inner Mongolia 016100, PR China
| | - Zhinan Liu
- Inner Mongolia Caolv Agricultural Science and Technology Development Co., Ltd, Ordos, Inner Mongolia 016100, PR China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| | - Yixuan Fan
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
21
|
Deng K, Ren C, Fan Y, Pang J, Zhang G, Zhang Y, You P, Wang F. YAP1 regulates PPARG and RXR alpha expression to affect the proliferation and differentiation of ovine preadipocyte. J Cell Biochem 2019; 120:19578-19589. [DOI: 10.1002/jcb.29265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Caifang Ren
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Yixuan Fan
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Jing Pang
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Guomin Zhang
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Yanli Zhang
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Peihua You
- Portal Agri‐Industries Co, Ltd Nanjing China
| | - Feng Wang
- National Experimental Teaching Demonstration Center of Animal Science Nanjing Agricultural University Nanjing China
| |
Collapse
|
22
|
Mao H, Wang C, Yu Z. Weaning Ages Do Not Affect the Overall Growth or Carcass Traits of Hu Sheep. Animals (Basel) 2019; 9:ani9060356. [PMID: 31207948 PMCID: PMC6617184 DOI: 10.3390/ani9060356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine effects of weaning ages on growth, rumen development, and carcass characteristics and meat quality of Hu lambs. Thirty male Hu lambs were randomly divided into two weaning age groups: Weaned at 30 (W30) or 45 (W45) d of age. Blood samples were collected on the day of weaning before lambs (n = 5) were slaughtered, and then rumen sample was collected immediately after they were slaughtered. The intake of all feeds increased with age (p < 0.05), but were not affected by weaning age (p > 0.05). Oxidative stress indicators and immune variables, the plasma biochemical parameters did not differ between the two different weaning ages (p > 0.05). The two weaning age groups also had similar (p > 0.05) concentration of ruminal total volatile fatty acid. The two weaning age groups did not differ in body weight, carcass characteristics, or meat quality (p > 0.05) at d 120. These results indicate that weaning half a month earlier than the typical weaning age does not significantly affect the growth, ruminal development, or carcass characteristics of Hu lambs, and they can be weaned at 30 d of age to improve production efficiency.
Collapse
Affiliation(s)
- Huiling Mao
- College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China.
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China.
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Chong Wang
- College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China.
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China.
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Deng K, Ren C, Zhang G, Zhang Y, You P, Wang F, Fan Y. Polyphenol Compounds Attenuate High‐Dose PUFA‐Induced Oxidative Damage in Adipocytes. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaiping Deng
- National Experimental Teaching Demonstration Center of Animal ScienceNanjing Agricultural UniversityNanjing210095China
| | - Caifang Ren
- National Experimental Teaching Demonstration Center of Animal ScienceNanjing Agricultural UniversityNanjing210095China
| | - Guomin Zhang
- National Experimental Teaching Demonstration Center of Animal ScienceNanjing Agricultural UniversityNanjing210095China
| | - Yanli Zhang
- National Experimental Teaching Demonstration Center of Animal ScienceNanjing Agricultural UniversityNanjing210095China
| | - Peihua You
- Portal Agri‐Industries Co.Ltd.Xingdian Street, Pikou DistrictNanjing CityJiangsu ProvinceChina
| | - Feng Wang
- National Experimental Teaching Demonstration Center of Animal ScienceNanjing Agricultural UniversityNanjing210095China
| | - Yixuan Fan
- National Experimental Teaching Demonstration Center of Animal ScienceNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
24
|
Deng K, Ren C, Liu Z, Gao X, Fan Y, Zhang G, Zhang Y, Ma ES, Wang F, You P. Characterization of RUNX1T1, an Adipogenesis Regulator in Ovine Preadipocyte Differentiation. Int J Mol Sci 2018; 19:ijms19051300. [PMID: 29701705 PMCID: PMC5983735 DOI: 10.3390/ijms19051300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/23/2022] Open
Abstract
Runt-related transcription factor 1 translocation partner 1 (RUNX1T1), a potential novel regulator of adipogenesis, exists in two splice variants: a long (RUNX1T1-L) and a short (RUNX1T1-S) isoform. However, there is no data showing the existence of RUNX1T1 in ovine subcutaneous fat at different stages of developmental and its role on ovine adipogenesis. Therefore, the objectives of this study were to evaluate the presence of RUNX1T1 in subcutaneous fat of five-day-old to 24-month-old sheep and to investigate the role of RUNX1T1 in ovine adipogenesis. In this study, we detected a 1829 bp cDNA fragment of RUNX1T1 which contains a 1815 bp coding sequence that encodes 602-amino acid and 14 bp of 5′ untranslated region, respectively. The amino acid sequence of RUNX1T1 has 31.18–94.21% homology with other species’ protein sequences. During fat development, the RUNX1T1 protein expression was higher in subcutaneous fat of 24-month-old Hu sheep. In addition, the expression of RUNX1T1-L mRNA decreased first, then subsequently increased during ovine preadipocyte differentiation. Knockdown of RUNX1T1-L in ovine preadipocytes promoted preadipocyte differentiation and lipid accumulation. Taken together, our data suggests that RUNX1T1 is an important functional molecule in adipogenesis. Moreover, it showed for the first time that RUNX1T1-L was negatively correlated with the ovine preadipocyte differentiation.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Caifang Ren
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Zifei Liu
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoxiao Gao
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Yixuan Fan
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Guomin Zhang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanli Zhang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Ei-Samahy Ma
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Wang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Peihua You
- Portal Agri-Industries Co., Ltd., Xingdian Street, Pikou District, Nanjing 210095, China.
| |
Collapse
|