1
|
Ji SS, Zhao LX, Chen W, Wang YF, Liu FC, Li HP, He GW, Zhang J. The Characteristics of Coronary Artery Lesions in COVID-19 Infected Patients With Coronary Artery Disease: An Optical Coherence Tomography Study. Am J Cardiol 2024; 226:108-117. [PMID: 39009056 DOI: 10.1016/j.amjcard.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
COVID-19 may predispose patients to cardiac injuries but whether COVID-19 infection affects the morphological features of coronary plaques to potentially influence the outcome of patients with coronary artery disease (CAD) remains unknown. By using optical coherence tomography (OCT), this study compared the characteristics of coronary plaque in patients with CAD with/without COVID-19 infection. The 206 patients were divided into 2 groups. The COVID-19 group had 113 patients between December 7, 2022, and March 31, 2023, who received OCT assessment after China decided to lift the restriction on COVID-19 and had a history of COVID-19 infection. The non-COVID-19 group had 93 patients without COVID-19 infection who underwent OCT before December 7, 2022. The COVID-19 group demonstrated a higher incidence of plaque ruptures (53.1% vs 38.7%, p = 0.039), erosions (28.3% vs 11.8%, p = 0.004), fibrous (96.5% vs 89.2%, p = 0.041) and diffuse lesions (73.5% vs 50.5%, p <0.001) compared with the non-COVID-19 group, whereas non-COVID-19 group exhibited a higher frequency of cholesterol crystals (83.9% vs 70.8%, p = 0.027), deep calcifications (65.6% vs 51.3%, p = 0.039) and solitary lesions (57.0% vs 34.5%, p = 0.001). Kaplan-Meier survival analysis revealed a significantly lower major adverse cardiac events-free probability in the COVID-19 group (91.6% vs 95.5%, p = 0.006) than in the non-COVID-19 group. In conclusion, OCT demonstrated that COVID-19 infection is associated with coronary pathological changes such as more plaque ruptures, erosions, fibrosis, and diffuse lesions. Further, COVID-19 infection is associated with a higher propensity for acute coronary events and a higher risk of major adverse cardiac events in patients with CAD.
Collapse
Affiliation(s)
- Shan-Shan Ji
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China & Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Li-Xuan Zhao
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Weiqiang Chen
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Yi-Fan Wang
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Fang-Chun Liu
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Hai-Peng Li
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
| | - Jian Zhang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China & Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
| |
Collapse
|
2
|
Yan N, Shao C, Zhen Y, Zhang X, Xia N, Guo Q. Quantitative proteomic analysis and replacement therapy identifies haptoglobin as a therapeutic target in a murine model of SLE-associated diffuse alveolar hemorrhage. Front Vet Sci 2024; 11:1431738. [PMID: 39188900 PMCID: PMC11345213 DOI: 10.3389/fvets.2024.1431738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Background Diffuse alveolar hemorrhage (DAH) is a catastrophic clinical syndrome and one of the manifestations of pulmonary involvement in systemic lupus erythematosus (SLE), which is characterized by hemoptysis, diffuse pulmonary infiltrates, and respiratory failure. However, the treatment options for DAH remain limited, and DAH-related studies are needed to explore more effective therapeutic directions for better disease management and improved prognosis. Methods This study utilized the pristane-induced DAH murine model to mimic the pathological process of DAH in patients with SLE. Proteomic analysis was conducted to detect differentially expressed proteins (DEPs) in the plasma of surviving and non-surviving mice, followed by an analysis of biological functions and pathways. The most significant DEP was then confirmed in the plasma of SLE patients with or without DAH and DAH murine model with or without fatal outcomes. Finally, the therapeutic value of haptoglobin (Hp) replacement was validated in a DAH murine model through lung histopathology, RT-qPCR, and survival analysis. Results This study identified 178 DEPs, with 118 upregulated and 60 downregulated DEPs in the non-survival group. Within a set of notable Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, complement and coagulation cascades emerged as the most prominent pathway associated with the process of DAH. Later, the most significant DEP, haptoglobin (Hp), was confirmed to exhibit a significant decrease in the plasma of individuals with SLE-DAH and DAH murine model with poor outcomes by the ELISA test. Finally, compared with the control group, the severity of DAH in the Hp treatment group was alleviated significantly, as manifested by the decreased levels of pro-inflammatory cytokines (IL-6 and TNF-α), increased levels of anti-inflammatory cytokines (IL-10 and TGF-β), and decreased mortality. Conclusion A reduction in plasma Hp levels was observed in SLE-DAH, and the replacement therapy with Hp could alleviate pulmonary hemorrhage and reduce mortality in DAH mice. This study identified Hp as a potential biomarker for its clinical diagnosis and a direction for treatment.
Collapse
Affiliation(s)
- Ninghui Yan
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyi Shao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nana Xia
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ren Ji Hospital, Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Lu W, Yan L, Tang X, Wang X, Du J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cells therapy in COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2024; 22:550. [PMID: 38851730 PMCID: PMC11162060 DOI: 10.1186/s12967-024-05358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Hussein HAM, Thabet AA, Wardany AA, El-Adly AM, Ali M, Hassan MEA, Abdeldayem MAB, Mohamed ARMA, Sobhy A, El-Mokhtar MA, Afifi MM, Fathy SM, Sultan S. SARS-CoV-2 outbreak: role of viral proteins and genomic diversity in virus infection and COVID-19 progression. Virol J 2024; 21:75. [PMID: 38539202 PMCID: PMC10967059 DOI: 10.1186/s12985-024-02342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt.
| | - Ali A Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed A Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed M El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed Ali
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed E A Hassan
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A B Abdeldayem
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | | | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos Campus, Lebanon
| | - Magdy M Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Samah M Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary medicine, South Valley University, 83523, Qena, Egypt.
| |
Collapse
|
5
|
Barosa M, Jamrozik E, Prasad V. The Ethical Obligation for Research During Public Health Emergencies: Insights From the COVID-19 Pandemic. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2024; 27:49-70. [PMID: 38153559 PMCID: PMC10904511 DOI: 10.1007/s11019-023-10184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/29/2023]
Abstract
In times of crises, public health leaders may claim that trials of public health interventions are unethical. One reason for this claim can be that equipoise-i.e. a situation of uncertainty and/or disagreement among experts about the evidence regarding an intervention-has been disturbed by a change of collective expert views. Some might claim that equipoise is disturbed if the majority of experts believe that emergency public health interventions are likely to be more beneficial than harmful. However, such beliefs are not always justified: where high quality research has not been conducted, there is often considerable residual uncertainty about whether interventions offer net benefits. In this essay we argue that high-quality research, namely by means of well-designed randomized trials, is ethically obligatory before, during, and after implementing policies in public health emergencies (PHEs). We contend that this standard applies to both pharmaceutical and non-pharmaceutical interventions, and we elaborate an account of equipoise that captures key features of debates in the recent pandemic. We build our case by analyzing research strategies employed during the COVID-19 pandemic regarding drugs, vaccines, and non-pharmaceutical interventions; and by providing responses to possible objections. Finally, we propose a public health policy reform: whenever a policy implemented during a PHE is not grounded in high-quality evidence that expected benefits outweigh harms, there should be a planned approach to generate high-quality evidence, with review of emerging data at preset time points. These preset timepoints guarantee that policymakers pause to review emerging evidence and consider ceasing ineffective or even harmful policies, thereby improving transparency and accountability, as well as permitting the redirection of resources to more effective or beneficial interventions.
Collapse
Affiliation(s)
- Mariana Barosa
- Nova Medical School, Nova University of Lisbon, Lisbon, Portugal
- Science and Technologies Studies (MSc student), University College London, London, UK
| | - Euzebiusz Jamrozik
- Ethox and Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Royal Melbourne Hospital Department of Medicine, University of Melbourne, Melbourne, Australia
- Monash Bioethics Centre, Monash University, Melbourne, Australia
| | - Vinay Prasad
- University of California, San Francisco, 550 16th St, San Francisco, CA, 94158, USA.
| |
Collapse
|
6
|
Poor H, Yaeger K, Deeba S, Edwards S, Chapman E, Liu X, Eisenberg E, Tolbert TM, Shpiner A, Mocco J. Tenecteplase With Concomitant Anticoagulation for Acute Respiratory Failure in Patients With COVID-19: A Randomized Controlled Trial. Cureus 2024; 16:e54298. [PMID: 38496180 PMCID: PMC10944634 DOI: 10.7759/cureus.54298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Background Pulmonary thrombosis and thromboembolism play a significant role in the physiologic derangements seen in COVID-19 acute respiratory failure. The effect of thrombolysis with tenecteplase on patient outcomes is unknown. Methods We conducted a randomized, controlled, double-blind, phase II trial comparing tenecteplase versus placebo in patients with COVID-19 acute respiratory failure (NCT04505592). Patients with COVID-19 acute respiratory failure were randomized to tenecteplase 0.25 mg/kg or placebo in a 2:1 proportion. Both groups received therapeutic heparin for at least 72 hours. Results Thirteen patients were included in the trial. Eight patients were randomized to tenecteplase and five were randomized to placebo. At 28 days, 63% (n = 5) of patients assigned to the treatment group were alive and free from respiratory failure compared to 40% (n = 2) in the placebo arm (p = 0.43). Mortality at 28 days was 25% (n = 2) in the treatment arm and 20% (n = 1) in the control arm (p = 1.0). No patients in the treatment arm developed renal failure by 28 days compared to 60% (n = 3) in the placebo arm (p = 0.07). Major bleeding occurred in 25% (n = 2) of the treatment arm and 20% (n = 1) in the placebo arm; however, no patients in either arm experienced intracranial hemorrhage. Conclusions Tenecteplase with concomitant heparin may improve patient outcomes in patients with COVID-19 respiratory failure. As this study was limited by a small sample size, larger confirmatory studies are needed.
Collapse
Affiliation(s)
- Hooman Poor
- Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kurt Yaeger
- Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Serina Deeba
- Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sydney Edwards
- Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emily Chapman
- Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xinyan Liu
- Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Elliot Eisenberg
- Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas M Tolbert
- Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aaron Shpiner
- Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - J Mocco
- Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
7
|
Ueland T, Michelsen AE, Tveita AA, Kåsine T, Dahl TB, Finbråten AK, Holten AR, Skjønsberg OH, Mathiessen A, Henriksen KN, Trøseid M, Aaløkken TM, Halvorsen B, Dyrhol-Riise AM, Barratt-Due A, Aukrust P. Coagulopathy and adverse outcomes in hospitalized patients with COVID-19: results from the NOR-Solidarity trial. Res Pract Thromb Haemost 2024; 8:102289. [PMID: 38292350 PMCID: PMC10825546 DOI: 10.1016/j.rpth.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 02/01/2024] Open
Abstract
Background Several studies have examined parameters of increased thrombogenicity in COVID-19, but studies examining their association with long-term outcome and potential effects of antiviral agents in hospitalized patients with COVID-19 are scarce. Objectives To evaluate plasma levels of hemostatic proteins during hospitalization in relation to disease severity, treatment modalities, and persistent pulmonary pathology after 3 months. Methods In 165 patients with COVID-19 recruited into the NOR-Solidarity trial (NCT04321616) and randomized to treatment with hydroxychloroquine, remdesivir, or standard of care, we analyzed plasma levels of hemostatic proteins during the first 10 days of hospitalization (n = 160) and at 3 months of follow-up (n = 100) by enzyme immunoassay. Results Our main findings were as follows: (i) tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) were increased in patients with severe disease (ie, the combined endpoint of respiratory failure [Po2-to-FiO2 ratio, <26.6 kPa] or need for treatment at an intensive care unit) during hospitalization. Compared to patients without severe disease, tPA levels were a median of 42% (P < .001), 29% (P = .002), and 36% (P = .015) higher at baseline, 3 to 5 days, and 7 to 10 days, respectively. For TFPI, median levels were 37% (P = .003), 25% (P < .001), and 10% (P = .13) higher in patients with severe disease at these time points, respectively. No changes in thrombin-antithrombin complex; alpha 2-antiplasmin; a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; or antithrombin were observed in relation to severe disease. (ii) Patients treated with remdesivir had lower levels of TFPI than those in patients treated with standard of care alone. (iii) TFPI levels during hospitalization, but not at 3 months of follow-up, were higher in those with persistent pathology on chest computed tomography imaging 3 months after hospital admission than in those without such pathology. No consistent changes in thrombin-antithrombin complex, alpha 2-antiplasmin, ADAMTS-13, tPA, or antithrombin were observed in relation to pulmonary pathology at 3 months of follow-up. Conclusion TFPI and tPA are associated with severe disease in hospitalized patients with COVID-19. For TFPI, high levels measured during the first 10 days of hospitalization were also associated with persistent pulmonary pathology even 3 months after hospital admittance.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Medicine, Thrombosis Research and Expertise Center, University of Tromsø—the Arctic University of Norway, Tromsø, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Aune Tveita
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Trine Kåsine
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Critical Care and Emergencies, Oslo University Hospital, Oslo, Norway
| | - Tuva B. Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Aleksander R. Holten
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole Henning Skjønsberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | | | - Katerina N. Henriksen
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Hospital Pharmacies, South-Eastern Norway Enterprise, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trond Mogens Aaløkken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Division of Critical Care and Emergencies, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Sameni M, Mirmotalebisohi SA, Dadashkhan S, Ghani S, Abbasi M, Noori E, Zali H. COVID-19: A novel holistic systems biology approach to predict its molecular mechanisms (in vitro) and repurpose drugs. Daru 2023; 31:155-171. [PMID: 37597114 PMCID: PMC10624792 DOI: 10.1007/s40199-023-00471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/13/2023] [Indexed: 08/21/2023] Open
Abstract
PURPOSE COVID-19 strangely kills some youth with no history of physical weakness, and in addition to the lungs, it may even directly harm other organs. Its complex mechanism has led to the loss of any significantly effective drug, and some patients with severe forms still die daily. Common methods for identifying disease mechanisms and drug design are often time-consuming or reductionist. Here, we use a novel holistic systems biology approach to predict its molecular mechanisms (in vitro), significant molecular relations with SARS, and repurpose drugs. METHODS We have utilized its relative phylogenic similarity to SARS. Using the available omics data for SARS and the fewer data for COVID-19 to decode the mechanisms and their significant relations, We applied the Cytoscape analyzer, MCODE, STRING, and DAVID tools to predict the topographically crucial molecules, clusters, protein interaction mappings, and functional analysis. We also applied a novel approach to identify the significant relations between the two infections using the Fischer exact test for MCODE clusters. We then constructed and analyzed a drug-gene network using PharmGKB and DrugBank (retrieved using the dgidb). RESULTS Some of the shared identified crucial molecules, BPs and pathways included Kaposi sarcoma-associated herpesvirus infection, Influenza A, and NOD-like receptor signaling pathways. Besides, our identified crucial molecules specific to host response against SARS-CoV-2 included FGA, BMP4, PRPF40A, and IFI16. CONCLUSION We also introduced seven new repurposed candidate drugs based on the drug-gene network analysis for the identified crucial molecules. Therefore, we suggest that our newly recommended repurposed drugs be further investigated in Vitro and in Vivo against COVID-19.
Collapse
Affiliation(s)
- Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Dadashkhan
- Molecular Medicine Research Center, Universitätsklinikum Jena, Jena, Germany
| | - Sepideh Ghani
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Zhino-Gene Research Services Co., Tehran, Iran
| | - Effat Noori
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chowdary P, Agarwal B, Peralta MR, Bhagani S, Lee S, Goldring J, Lipman M, Waqif E, Phillips M, Philippou H, Foley JH, Mutch NJ, Ariëns RAS, Stringer KA, Ricciardi F, Watissée M, Hughes D, Nathwani A, Riddell A, Patch D, Buckley J, De Neef M, Dimber R, Diaz-Garcia C, Patel H, Nandani A, Dissanayake U, Chadwick N, Alkhatip AAAMM, Watkinson P, Raith E, Singh S, Wolff T, Jha R, Brill SE, Bakhai A, Evans A, Gilani F, Gomez K. Nebulized Recombinant Tissue Plasminogen Activator (rt-PA) for Acute COVID-19-Induced Respiratory Failure: An Exploratory Proof-of-Concept Trial. J Clin Med 2023; 12:5848. [PMID: 37762789 PMCID: PMC10531875 DOI: 10.3390/jcm12185848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury in COVID-19 results in diffuse alveolar damage with disruption of the alveolar-capillary barrier, coagulation activation, alveolar fibrin deposition and pulmonary capillary thrombi. Nebulized recombinant tissue plasminogen activator (rt-PA) has the potential to facilitate localized thrombolysis in the alveolar compartment and improve oxygenation. In this proof-of-concept safety study, adults with COVID-19-induced respiratory failure and a <300 mmHg PaO2/FiO2 (P/F) ratio requiring invasive mechanical ventilation (IMV) or non-invasive respiratory support (NIRS) received nebulized rt-PA in two cohorts (C1 and C2), alongside standard of care, between 23 April-30 July 2020 and 21 January-19 February 2021, respectively. Matched historical controls (MHC; n = 18) were used in C1 to explore efficacy. Safety co-primary endpoints were treatment-related bleeds and <1.0-1.5 g/L fibrinogen reduction. A variable dosing strategy with clinical efficacy endpoint and minimal safety concerns was determined in C1 for use in C2; patients were stratified by ventilation type to receive 40-60 mg rt-PA daily for ≤14 days. Nine patients in C1 (IMV, 6/9; NIRS, 3/9) and 26 in C2 (IMV, 12/26; NIRS, 14/26) received nebulized rt-PA for a mean (SD) of 6.7 (4.6) and 9.1(4.6) days, respectively. Four bleeds (one severe, three mild) in three patients were considered treatment related. There were no significant fibrinogen reductions. Greater improvements in mean P/F ratio from baseline to study end were observed in C1 compared with MHC (C1; 154 to 299 vs. MHC; 154 to 212). In C2, there was no difference in the baseline P/F ratio of NIRS and IMV patients. However, a larger improvement in the P/F ratio occurred in NIRS patients (NIRS; 126 to 240 vs. IMV; 120 to 188) and fewer treatment days were required (NIRS; 7.86 vs. IMV; 10.5). Nebulized rt-PA appears to be well-tolerated, with a trend towards improved oxygenation, particularly in the NIRS group. Randomized clinical trials are required to demonstrate the clinical effect significance and magnitude.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Banwari Agarwal
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Maria Rita Peralta
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Sanjay Bhagani
- Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Simon Lee
- Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - James Goldring
- Respiratory Medicine, Royal Free London NHS Foundation Trust, London NW1 2BU, UK
| | - Marc Lipman
- Respiratory Medicine, Royal Free London NHS Foundation Trust, London NW1 2BU, UK
- UCL Respiratory, University College London, London WC1E 6JF, UK;
| | - Emal Waqif
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Mark Phillips
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Helen Philippou
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Robert A. S. Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, College of Pharmacy University of Michigan, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Federico Ricciardi
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| | | | - Derralynn Hughes
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Amit Nathwani
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Anne Riddell
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Haemophilia & Thrombosis Laboratory (Health Services Laboratories), Royal Free Hospital, London WC1H 9AX, UK
| | - David Patch
- Department of Hepatology, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Jim Buckley
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Mark De Neef
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Rahul Dimber
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Cecilia Diaz-Garcia
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Honey Patel
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Aarti Nandani
- Clinical Trials Pharmacy, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Upuli Dissanayake
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Nick Chadwick
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Ahmed A. A. M. M. Alkhatip
- Department of Anaesthesia, Birmingham Children’s Hospital, Birmingham B4 6NH, UK
- Department of Anaesthesia, Faculty of Medicine, Beni-Suef University Hospital, Beni-Suef University, Beni-Suef 2721562, Egypt
| | - Peter Watkinson
- NIHR Biomedical Research Centre Oxford, Oxford University Hospitals NHS Trust, University of Oxford, Oxford OX3 9DU, UK
| | - Eamon Raith
- Bloomsbury Institute for Intensive Care Medicine, Department of Experimental and Translational Medicine, University College London, London WC1E 6JF, UK
- Discipline of Acute Care Medicine, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Suveer Singh
- Department of Respiratory and Critical Care Medicine, Chelsea & Westminster Hospital, London SW10 9NH, UK
- Department of Adult Intensive Care, Royal Brompton Hospital, London SW3 6NP, UK
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Tony Wolff
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Rajeev Jha
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Simon E. Brill
- UCL Respiratory, University College London, London WC1E 6JF, UK;
| | - Ameet Bakhai
- Department of Intensive Care and Anaesthesia, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, London NW3 2PS, UK
| | - Alison Evans
- University College London (UCL)/University College London Hospitals NHS Trust (UCLH) Joint Research Office, London WC1E 6BT, UK; (A.E.)
| | - Farhat Gilani
- University College London (UCL)/University College London Hospitals NHS Trust (UCLH) Joint Research Office, London WC1E 6BT, UK; (A.E.)
| | - Keith Gomez
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
10
|
Forgács R, Bokrétás GP, Monori Z, Molnár Z, Ruszkai Z. Thromboelastometry-Guided Individualized Fibrinolytic Treatment for COVID-19-Associated Severe Coagulopathy Complicated by Portal Vein Thrombosis: A Case Report. Biomedicines 2023; 11:2463. [PMID: 37760902 PMCID: PMC10525483 DOI: 10.3390/biomedicines11092463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19-associated coagulopathy (CAC), mainly characterized by hypercoagulability leading to micro- and macrovascular thrombotic events due to the fibrinolysis shutdown phenomenon, is a life-threatening complication of severe SARS-CoV-2 infection. However, optimal criteria to assess patients with the highest risk for progression of severe CAC are still unclear. Bedside point-of-care viscoelastic testing (VET) appears to be a promising tool to recognize CAC, to support the appropriate therapeutic decisions, and to monitor the efficacy of the treatment. The ClotPro VET has the potential to reveal fibrinolysis resistance indicated by a clot lysis time (LT) > 300 s on the TPA-test. We present a case of severe SARS-CoV-2 infection complicated by CAC-resulting portal vein thrombosis (PVT) and subsequent liver failure despite therapeutic anticoagulation. Since fibrinolysis shutdown (LT > 755 s) caused PVT, we performed a targeted systemic fibrinolytic therapy. We monitored the efficacy of the treatment with repeated TPA assays every three hours, while the dose of recombinant plasminogen activator (rtPA) was adjusted until fibrinolysis shutdown completely resolved and portal vein patency was confirmed by an ultrasound examination. Our case report highlights the importance of VET-guided personalized therapeutic approach during the care of severely ill COVID-19 patients, in order to appropriately treat CAC.
Collapse
Affiliation(s)
- Robin Forgács
- Department of Anesthesiology and Intensive Therapy, Flór Ferenc Hospital Kistarcsa, 2143 Kistarcsa, Hungary; (R.F.); (G.P.B.); (Z.M.); (Z.R.)
| | - Gergely Péter Bokrétás
- Department of Anesthesiology and Intensive Therapy, Flór Ferenc Hospital Kistarcsa, 2143 Kistarcsa, Hungary; (R.F.); (G.P.B.); (Z.M.); (Z.R.)
| | - Zoltán Monori
- Department of Anesthesiology and Intensive Therapy, Flór Ferenc Hospital Kistarcsa, 2143 Kistarcsa, Hungary; (R.F.); (G.P.B.); (Z.M.); (Z.R.)
| | - Zsolt Molnár
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1082 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1082 Budapest, Hungary
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Poznan University of Medical Sciences, 60-005 Poznan, Poland
| | - Zoltán Ruszkai
- Department of Anesthesiology and Intensive Therapy, Flór Ferenc Hospital Kistarcsa, 2143 Kistarcsa, Hungary; (R.F.); (G.P.B.); (Z.M.); (Z.R.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1082 Budapest, Hungary
| |
Collapse
|
11
|
Khatib R, Glowacki N, Lauffenburger JC, Reddy A, Dennert K, Triscari D. Association Between the 10-Year ASCVD Risk Score and COVID-19 Complications Among Healthy Adults (Analysis from the National Cohort COVID Collaborative). Am J Cardiol 2023; 202:201-207. [PMID: 37454637 DOI: 10.1016/j.amjcard.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 07/18/2023]
Abstract
COVID-19 complications have been linked to worse outcomes among patients with established atherosclerotic cardiovascular disease (ASCVD). Less is known about the cumulative consequences of multiple ASCVD risk factors on COVID-19 outcomes. We evaluated the dose-response associations between 10-year ASCVD risk scores and COVID-19 complications. The National COVID-19 Cohort Collaborative collects electronic health record data from over 70 US health systems. Our analysis was limited to patients with positive COVID-19 tests without documented ASCVD events at the time of the first positive test. We evaluated the dose-response associations between 10-year ASCVD risk scores, categorized into categorized as low (<7.5%), intermediate (7.5% to 20.0%), or high (>20.0%), and COVID-19 complications, including hospitalizations and mortality. We reported the outcomes using multivariable-adjusted hazard ratios and 95% confidence intervals (CIs). Our cohort included 120,335 patients with documented positive COVID-19 test results who were free of ASCVD events. The mean age was 51.9 ± 16.1 years, 59.4% were women, 15.3% were Black, and 13.7% were Hispanic/Latino. Overall, 15,363 patients (12.8%) were hospitalized and 2,058 (1.7%) died. Patients at intermediate risk of developing ASCVD were had a 1.49 (95% CI 1.41 to 1.56) increased risk of hospitalization and 1.77 (95% CI 1.76 to 1.79) increased risk of mortality compared with patients at low risk. Patients at high risk had a 2.23 (95% CI 2.10 to 2.38) increased risk of hospitalization and a 5.98 (95% CI 5.93 to 6.03) increased risk of mortality. In conclusion, patients in this nationwide cohort at high risk of developing ASCVD are at substantially greater risk of COVID-19 complications. COVID-19 mitigation efforts should focus on these patient populations.
Collapse
Affiliation(s)
- Rasha Khatib
- Advocate Aurora Health, Advocate Aurora Research Institute, Downers Grove, Illinois.
| | - Nicole Glowacki
- Advocate Aurora Health, Advocate Aurora Research Institute, Downers Grove, Illinois
| | - Julie C Lauffenburger
- Center for Healthcare Delivery Sciences (C4HDS), Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts; Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts
| | - Alex Reddy
- Advocate Aurora Health, Advocate Aurora Research Institute, Downers Grove, Illinois
| | - Kate Dennert
- Advocate Aurora Health, Advocate Aurora Research Institute, Downers Grove, Illinois
| | - David Triscari
- Advocate Aurora Health, Advocate Aurora Research Institute, Downers Grove, Illinois
| |
Collapse
|
12
|
Németh M, Mühl D, Csontos C, Nagy Á, Alizadeh H, Szakács Z. Acquired Hemophilia A after SARS-CoV-2 Infection: A Case Report and an Updated Systematic Review. Biomedicines 2023; 11:2400. [PMID: 37760842 PMCID: PMC10526109 DOI: 10.3390/biomedicines11092400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The role of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been implicated in the pathogenesis of acquired hemophilia A (AHA). The aim of this study is to report our case and to summarize clinical studies on de novo AHA after SARS-CoV-2 infection. We performed a systematic search on the association of SARS-CoV-2 with AHA in four medical databases up to 28 May 2023. Eligible studies should include de novo AHA patients who had SARS-CoV-2 infection before or concomitant with the diagnosis of AHA. Findings were synthesized narratively. In addition, we report the case of a 62-year-old female patient, who presented to our clinic with left flank pain 2 weeks after SARS-CoV-2 infection. Clinical investigations confirmed AHA and imaging studies revealed retroperitoneal bleeding. Her hemostasis was successfully secured with bypassing agents; however, despite immunosuppressive therapy, high inhibitor titer persisted. In the systematic review, we identified only 12 relevant cases with a questionable cause-effect relationship between SARS-CoV-2 infection and AHA. Based on the qualitative analysis of the relevant publications, current clinical evidence is insufficient to support a cause-effect relationship. The analysis of data from ongoing AHA registries can serve further evidence.
Collapse
Affiliation(s)
- Márton Németh
- Department of Anesthesiology and Intensive Therapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.N.); (D.M.); (C.C.)
| | - Diána Mühl
- Department of Anesthesiology and Intensive Therapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.N.); (D.M.); (C.C.)
| | - Csaba Csontos
- Department of Anesthesiology and Intensive Therapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.N.); (D.M.); (C.C.)
| | - Ágnes Nagy
- First Department of Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.N.); (Z.S.)
| | - Hussain Alizadeh
- First Department of Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.N.); (Z.S.)
| | - Zsolt Szakács
- First Department of Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.N.); (Z.S.)
| |
Collapse
|
13
|
Gupta B, Ahluwalia P, Gupta N, Gupta A. Role of Nebulized Heparin in Clinical Outcome of COVID-19 Patients with Respiratory Symptoms: A Systematic Review. Indian J Crit Care Med 2023; 27:572-579. [PMID: 37636853 PMCID: PMC10452767 DOI: 10.5005/jp-journals-10071-24511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is an extremely contagious illness caused by the SARS-CoV-2 virus and has been declared a pandemic by the World Health Organization (WHO). There are currently no particular treatments, however, nebulized heparin has been offered as a viable therapy. The purpose of this systematic review is to assess the efficacy of nebulized heparin in COVID-19 patients with respiratory symptoms. Methods Relevant studies were identified through a systematic search of the PubMed, Medline, Embase, Cochrane Library and Web of Science, and Scopus databases. The search terms included "nebulized heparin," "COVID-19," and "SARS-CoV-2." Studies that evaluated the use of nebulized heparin in COVID-19 patients with respiratory symptoms were included. The rest of the studies along with those that were not published in English were excluded. The systematic review was registered under PROSPERO-CRD42023413927. Observations Five studies have been included in this systematic review. Case reports, case series, observational studies, and randomized controlled trial (RCT) comprised the studies. The patient sample sizes ranged from 2 to 98. The studies assessed the efficacy of nebulized heparin in COVID-19 patients with variable disease severity. The evaluated outcomes included mortality, hospital stay duration, oxygen requirements, and laboratory parameters. Conclusion Based on the clinical studies included in this systematic review, nebulized heparin may be useful in the management of COVID-19. Oxygen saturation was greater, inflammatory indicators were lower, and hospital stays were shorter in these patients. However, the studies had limitations, including inconsistent sample sizes, varying dosages of nebulized heparin, and no control groups. Nebulized heparin in patients with COVID-19 needs to be studied further to determine its safety and effectiveness. How to cite this article Gupta B, Ahluwalia P, Gupta N, Gupta A. Role of Nebulized Heparin in Clinical Outcome of COVID-19 Patients with Respiratory Symptoms: A Systematic Review. Indian J Crit Care Med 2023;27(8):572-579.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Anaesthesia, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Pallavi Ahluwalia
- Department of Anaesthesia, Teerthanker Mahaveer Medical College, Moradabad, Uttar Pradesh, India
| | - Nidhi Gupta
- Department of Anesthesia and Critical Care, Doon Medical College, Dehradun, Uttarakhand, India
| | - Anish Gupta
- Department of CTVS, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
14
|
Gomes JC, de Freitas Barbosa VA, de Santana MA, de Lima CL, Calado RB, Júnior CRB, de Almeida Albuquerque JE, de Souza RG, de Araújo RJE, Moreno GMM, Soares LAL, Júnior LARM, de Souza RE, dos Santos WP. Rapid protocols to support COVID-19 clinical diagnosis based on hematological parameters. RESEARCH ON BIOMEDICAL ENGINEERING 2023; 39:509-539. [PMCID: PMC10239225 DOI: 10.1007/s42600-023-00286-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/22/2023] [Indexed: 08/27/2024]
Abstract
Purpose In December 2019, the Covid-19 pandemic began in the world. To reduce mortality, in addiction to mass vaccination, it is necessary to massify and accelerate clinical diagnosis, as well as creating new ways of monitoring patients that can help in the construction of specific treatments for the disease. Objective In this work, we propose rapid protocols for clinical diagnosis of COVID-19 through the automatic analysis of hematological parameters using evolutionary computing and machine learning. These hematological parameters are obtained from blood tests common in clinical practice. Method We investigated the best classifier architectures. Then, we applied the particle swarm optimization algorithm (PSO) to select the most relevant attributes: serum glucose, troponin, partial thromboplastin time, ferritin, D-dimer, lactic dehydrogenase, and indirect bilirubin. Then, we assessed again the best classifier architectures, but now using the reduced set of features. Finally, we used decision trees to build four rapid protocols for Covid-19 clinical diagnosis by assessing the impact of each selected feature. The proposed system was used to support clinical diagnosis and assessment of disease severity in patients admitted to intensive and semi-intensive care units as a case study in the city of Paudalho, Brazil. Results We developed a web system for Covid-19 diagnosis support. Using a 100-tree random forest, we obtained results for accuracy, sensitivity, and specificity superior to 99%. After feature selection, results were similar. The four empirical clinical protocols returned accuracies, sensitivities and specificities superior to 98%. Conclusion By using a reduced set of hematological parameters common in clinical practice, it was possible to achieve results of accuracy, sensitivity, and specificity comparable to those obtained with RT-PCR. It was also possible to automatically generate clinical decision protocols, allowing relatively accurate clinical diagnosis even without the aid of the web decision support system.
Collapse
Affiliation(s)
| | - Valter Augusto de Freitas Barbosa
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada, Brazil
- Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Whyte CS. All tangled up: interactions of the fibrinolytic and innate immune systems. Front Med (Lausanne) 2023; 10:1212201. [PMID: 37332750 PMCID: PMC10272372 DOI: 10.3389/fmed.2023.1212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
The hemostatic and innate immune system are intertwined processes. Inflammation within the vasculature promotes thrombus development, whilst fibrin forms part of the innate immune response to trap invading pathogens. The awareness of these interlinked process has resulted in the coining of the terms "thromboinflammation" and "immunothrombosis." Once a thrombus is formed it is up to the fibrinolytic system to resolve these clots and remove them from the vasculature. Immune cells contain an arsenal of fibrinolytic regulators and plasmin, the central fibrinolytic enzyme. The fibrinolytic proteins in turn have diverse roles in immunoregulation. Here, the intricate relationship between the fibrinolytic and innate immune system will be discussed.
Collapse
|
16
|
Sutanto H, Soegiarto G. Risk of Thrombosis during and after a SARS-CoV-2 Infection: Pathogenesis, Diagnostic Approach, and Management. Hematol Rep 2023; 15:225-243. [PMID: 37092518 PMCID: PMC10123679 DOI: 10.3390/hematolrep15020024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) increases the risk of thromboembolic events, especially in patients with severe infections requiring intensive care and cardiorespiratory support. COVID-19 patients with thromboembolic complications have a higher risk of death, and if they survive, these complications are expected to negatively affect these patients’ quality of life. Moreover, recent data reported that the risk of thromboembolism remains high months after a COVID-19 infection. Therefore, understanding the pathogenesis of thrombosis in the setting of COVID-19 may facilitate the early prevention and treatment of COVID-19-associated thromboembolism to reduce concomitant morbidity, mortality, and disability. This review will first discuss the clinical characteristics of COVID-19 infections, particularly with regard to the underlying pathophysiology. Then, the pathogenesis of COVID-19-associated thrombosis at the molecular and cellular levels will be comprehensively reviewed. Next, the clinical manifestations of venous and arterial thromboembolism in COVID-19 as well as the potential benefits of several laboratory markers of thrombosis will be further discussed. Lastly, the preventive and therapeutic management of thromboembolism during and after COVID-19 will also be explained.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo Teaching Hospital, Surabaya 60286, Indonesia
| | - Gatot Soegiarto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo Teaching Hospital, Surabaya 60286, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
17
|
Khimani F, Wolf AJ, Yoon B, Blancke A, Gerhart C, Endsley D, Dougherty A, Ray AK, Yango AF, Flynn SD, Lip GYH, Gonzalez SA, Sathyamoorthy M. Therapeutic considerations for prevention and treatment of thrombotic events in COVID-19. THROMBOSIS UPDATE 2023; 10:100126. [PMID: 38620822 PMCID: PMC9650687 DOI: 10.1016/j.tru.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombosis is a known complication of SARS-CoV-2 infection, particularly within a severely symptomatic subset of patients with COVID-19 disease, in whom an aggressive host immune response leads to cytokine storm syndrome (CSS). The incidence of thrombotic events coinciding with CSS may contribute to the severe morbidity and mortality observed in association with COVID-19. This review provides an overview of pharmacologic approaches based upon an emerging understanding of the mechanisms responsible for thrombosis across a spectrum of COVID-19 disease involving an interplay between immunologic and pro-thrombotic events, including endothelial injury, platelet activation, altered coagulation pathways, and impaired fibrinolysis.
Collapse
Affiliation(s)
- Faria Khimani
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Adam J Wolf
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Braian Yoon
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Amy Blancke
- Consultants in Cardiovascular Medicine and Science - Fort Worth, PLLC, Fort Worth, TX, United States
| | - Coltin Gerhart
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Dakota Endsley
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Alleyna Dougherty
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Anish K Ray
- Department of Pediatrics, Burnett School of Medicine at TCU, Fort Worth, TX, United States and Cook Children's Medical Center, Fort Worth, TX, United States
| | - Angelito F Yango
- Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, United States
| | - Stuart D Flynn
- Burnett School of Medicine at TCU, Fort Worth, TX, United States
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom, and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Stevan A Gonzalez
- Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, United States
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX, United States
- Consultants in Cardiovascular Medicine and Science - Fort Worth, PLLC, Fort Worth, TX, United States
| |
Collapse
|
18
|
Coupland LA, Rabbolini DJ, Schoenecker JG, Crispin PJ, Miller JJ, Ghent T, Medcalf RL, Aneman AE. Point-of-care diagnosis and monitoring of fibrinolysis resistance in the critically ill: results from a feasibility study. Crit Care 2023; 27:55. [PMID: 36765421 PMCID: PMC9912243 DOI: 10.1186/s13054-023-04329-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/22/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Fibrinolysisis is essential for vascular blood flow maintenance and is triggered by endothelial and platelet release of tissue plasminogen activator (t-PA). In certain critical conditions, e.g. sepsis, acute respiratory failure (ARF) and trauma, the fibrinolytic response is reduced and may lead to widespread thrombosis and multi-organ failure. The mechanisms underpinning fibrinolysis resistance include reduced t-PA expression and/or release, reduced t-PA and/or plasmin effect due to elevated inhibitor levels, increased consumption and/or clearance. This study in critically ill patients with fibrinolysis resistance aimed to evaluate the ability of t-PA and plasminogen supplementation to restore fibrinolysis with assessment using point-of-care ClotPro viscoelastic testing (VET). METHODS In prospective, observational studies, whole-blood ClotPro VET evaluation was carried out in 105 critically ill patients. In 32 of 58 patients identified as fibrinolysis-resistant (clot lysis time > 300 s on the TPA-test: tissue factor activated coagulation with t-PA accelerated fibrinolysis), consecutive experimental whole-blood VET was carried out with repeat TPA-tests spiked with additional t-PA and/or plasminogen and the effect on lysis time determined. In an interventional study in a patient with ARF and fibrinolysis resistance, the impact of a 24 h intravenous low-dose alteplase infusion on coagulation and fibrinolysis was prospectively monitored using standard ClotPro VET. RESULTS Distinct response groups emerged in the ex vivo experimental VET, with increased fibrinolysis observed following supplementation with (i) t-PA only or (ii) plasminogen and t-PA. A baseline TPA-test lysis time of > 1000 s was associated with the latter group. In the interventional study, a gradual reduction (25%) in serial TPA-test lysis times was observed during the 24 h low-dose alteplase infusion. CONCLUSIONS ClotPro viscoelastic testing, the associated TPA-test and the novel experimental assays may be utilised to (i) investigate the potential mechanisms of fibrinolysis resistance, (ii) guide corrective treatment and (iii) monitor in real-time the treatment effect. Such a precision medicine and personalised treatment approach to the management of fibrinolysis resistance has the potential to increase treatment benefit, while minimising adverse events in critically ill patients. TRIAL REGISTRATION VETtiPAT-ARF, a clinical trial evaluating ClotPro-guided t-PA (alteplase) administration in fibrinolysis-resistant patients with ARF, is ongoing (ClinicalTrials.gov NCT05540834 ; retrospectively registered September 15th 2022).
Collapse
Affiliation(s)
- Lucy A. Coupland
- grid.415994.40000 0004 0527 9653Intensive Care Unit, Liverpool Hospital, Liverpool, Australia ,grid.429098.eIngham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170 Australia
| | - David J. Rabbolini
- grid.1013.30000 0004 1936 834XKolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Sydney, Australia ,grid.410556.30000 0001 0440 1440Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jonathan G. Schoenecker
- grid.412807.80000 0004 1936 9916Department of Orthopaedics and Pharmacology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Philip J. Crispin
- grid.413314.00000 0000 9984 5644Haematology Department, The Canberra Hospital, Canberra, Australia ,grid.1001.00000 0001 2180 7477The Australian National University Medical School, Canberra, Australia
| | - Jennene J. Miller
- grid.415994.40000 0004 0527 9653Intensive Care Unit, Liverpool Hospital, Liverpool, Australia
| | - Tony Ghent
- grid.413154.60000 0004 0625 9072Intensive Care Unit, Gold Coast University Hospital, South Port, Australia
| | - Robert L. Medcalf
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Anders E. Aneman
- grid.415994.40000 0004 0527 9653Intensive Care Unit, Liverpool Hospital, Liverpool, Australia ,grid.429098.eIngham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170 Australia
| |
Collapse
|
19
|
Ghourabi M, Mourad-Chehade F, Chkeir A. Eye Recognition by YOLO for Inner Canthus Temperature Detection in the Elderly Using a Transfer Learning Approach. SENSORS (BASEL, SWITZERLAND) 2023; 23:1851. [PMID: 36850447 PMCID: PMC9964838 DOI: 10.3390/s23041851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Early detection of physical frailty and infectious diseases in seniors is important to avoid any fatal drawback and promptly provide them with the necessary healthcare. One of the major symptoms of viral infections is elevated body temperature. In this work, preparation and implementation of multi-age thermal faces dataset is done to train different "You Only Look Once" (YOLO) object detection models (YOLOv5,6 and 7) for eye detection. Eye detection allows scanning for the most accurate temperature in the face, which is the inner canthus temperature. An approach using an elderly thermal dataset is performed in order to produce an eye detection model specifically for elderly people. An application of transfer learning is applied from a multi-age YOLOv7 model to an elderly YOLOv7 model. The comparison of speed, accuracy, and size between the trained models shows that the YOLOv7 model performed the best (Mean average precision at Intersection over Union of 0.5 (mAP@.5) = 0.996 and Frames per Seconds (FPS) = 150). The bounding box of eyes is scanned for the highest temperature, resulting in a normalized error distance of 0.03. This work presents a fast and reliable temperature detection model generated using non-contact infrared camera and a deep learning approach.
Collapse
|
20
|
Zerangian N, Erabi G, Poudineh M, Monajjem K, Diyanati M, Khanlari M, Khalaji A, Allafi D, Faridzadeh A, Amali A, Alizadeh N, Salimi Y, Ghane Ezabadi S, Abdi A, Hasanabadi Z, ShojaeiBaghini M, Deravi N. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep 2023; 6:e1085. [PMID: 36778773 PMCID: PMC9900357 DOI: 10.1002/hsr2.1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is known to be a common respiratory and/or cardiovascular complication in hospitalized patients with viral infections. Numerous studies have proven human immunodeficiency virus infection to be a prothrombotic condition. An elevated VTE risk has been observed in critically ill H1N1 influenza patients. VTE risk is remarkably higher in patients infected with the Hepatitis C virus in contrast to uninfected subjects. The elevation of D-dimer levels supported the association between Chikungunya and the Zika virus and the rise of clinical VTE risk. Varicella-zoster virus is a risk factor for both cellulitis and the consequent invasive bacterial disease which may take part in thrombotic initiation. Eventually, hospitalized patients infected with the coronavirus disease of 2019 (COVID-19), the cause of the ongoing worldwide pandemic, could mainly suffer from an anomalous risk of coagulation activation with enhanced venous thrombosis events and poor quality clinical course. Although the risk of VTE in nonhospitalized COVID-19 patients is not known yet, there are a large number of guidelines and studies on thromboprophylaxis administration for COVID-19 cases. This study aims to take a detailed look at the effect of viral diseases on VTE, the epidemiology of VTE in viral diseases, and the diagnosis and treatment of VTE.
Collapse
Affiliation(s)
- Nasibeh Zerangian
- Health Education and Health Promotion, Department of Health Education and Health Promotion, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | | | - Kosar Monajjem
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Maryam Diyanati
- Student Research CommitteeRafsanjan University of Medical SciencesRafsanjanIran
| | - Maryam Khanlari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | | | - Diba Allafi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Arian Amali
- Student Research Committee, Paramedical DepartmentIslamic Azad University, Mashhad BranchMashhadIran
| | - Nilufar Alizadeh
- Doctor of Medicine (MD), School of MedicineIran University of Medical SciencesTehranIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sajjad Ghane Ezabadi
- Student's Scientific Research Center, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Hasanabadi
- Doctor of Medicine (MD), School of MedicineQazvin University of Medical ScienceQazvinIran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Savioli F, Ribeiro Dos Santos L, Duarte ML, Feitosa do Carmo AC, Gois A, Nakano L, Da Silva Ramos FJ, Pastore L, Costa ELV. Fibrinolytic therapy in patients with COVID-19 and ARDS: protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e066623. [PMID: 36593003 PMCID: PMC9808755 DOI: 10.1136/bmjopen-2022-066623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION In COVID-19-related acute respiratory distress syndrome (ARDS), the clot play a role in gas exchange abnormalities. Fibrinolytic therapy can improve alveolar ventilation by restoring blood flow. In this systematic review and meta-analysis protocol, we aim to assess the safety and efficacy of fibrinolytic therapy in such a population. METHODS We will perform a systematic search in MEDLINE, EMBASE, Cochrane CENTRAL and LILACS databases without language restrictions for relevant randomised controlled trials (RCTs) and quasi-RCTs. Two review authors will independently perform data extraction and quality assessments of data from included studies. In case of divergence, a third author will be contacted. The Cochrane handbook will be used for guidance. If the results are not appropriate for a meta-analysis, a descriptive analysis will be performed. DISCUSSION This systematic review and meta-analysis protocol will provide current evidence about the safety and efficacy of fibrinolytic therapy in patients with COVID-19 and ARDS. These findings will provide if fibrinolytic therapy might be an option for a desperate clinical setting, where all medical efforts have been used. PROSPERO REGISTRATION NUMBER PROSPERO CRD42020187482. ETHICS AND DISSEMINATION Ethics committee approval is not necessary. We intend to update the public registry, report any protocol amendments and publish the results in a widely accessible journal.
Collapse
Affiliation(s)
- Felicio Savioli
- Critical Care Medicine, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Evidence Based Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Marcio Luis Duarte
- Evidence Based Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Aecio Gois
- Evidence Based Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Luis Nakano
- Evidence Based Medicine, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Laerte Pastore
- Critical Care Medicine, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Eduardo Leite Vieira Costa
- Critical Care Medicine, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Cardiopulmonary Medicine, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, Brazil
- Instituto Sirio-Libanes de Ensino e Pesquisa, Sao Paulo, Brazil
| |
Collapse
|
22
|
Roberts SH, Goodwin ML, Bobba CM, Al-Qudsi O, Satyapriya SV, Tripathi RS, Papadimos TJ, Whitson BA. Continuous renal replacement therapy and extracorporeal membrane oxygenation: implications in the COVID-19 era. Perfusion 2023; 38:18-27. [PMID: 34494489 DOI: 10.1177/02676591211042561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2, SARS-CoV-2 (coronavirus Disease 19 (COVID-19)) was identified as the causative agent of viral pneumonias in Wuhan, China in December 2019, and has emerged as a pandemic causing acute respiratory distress syndrome (ARDS) and multiple organ dysfunction. Interim guidance by the World Health Organization states that extracorporeal membrane oxygenation (ECMO) should be considered as a rescue therapy in COVID-19-related ARDS. International registries tracking ECMO in COVID-19 patients reveal a 21%-70% incidence of acute renal injury requiring renal replacement therapy (RRT) during ECMO support. The indications for initiating RRT in patients on ECMO are similar to those for patients not requiring ECMO. RRT can be administered during ECMO via a temporary dialysis catheter, placement of a circuit in-line hemofilter, or direct connection of continuous RRT in-line with the ECMO circuit. Here we review methods for RRT during ECMO, RRT initiation and timing during ECMO, anticoagulation strategies, and novel cytokine filtration approaches to minimize COVID-19's pathophysiological impact.
Collapse
Affiliation(s)
- Sophia H Roberts
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,The Ohio State University College of Medicine, Columbus, OH, USA
| | - Matthew L Goodwin
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christopher M Bobba
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,The Ohio State University College of Medicine, Columbus, OH, USA
| | - Omar Al-Qudsi
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - S Veena Satyapriya
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ravi S Tripathi
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas J Papadimos
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryan A Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
23
|
Russell P, Esser L, Hagemeyer CE, Voelcker NH. The potential impact of nanomedicine on COVID-19-induced thrombosis. NATURE NANOTECHNOLOGY 2023; 18:11-22. [PMID: 36536042 DOI: 10.1038/s41565-022-01270-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Extensive reports of pulmonary embolisms, ischaemic stroke and myocardial infarctions caused by coronavirus disease 2019 (COVID-19), as well as a significantly increased long-term risk of cardiovascular diseases in COVID-19 survivors, have highlighted severe deficiencies in our understanding of thromboinflammation and the need for new therapeutic options. Due to the complexity of the immunothrombosis pathophysiology, the efficacy of treatment with conventional anti-thrombotic medication is questioned. Thrombolytics do appear efficacious, but are hindered by severe bleeding risks, limiting their use. Nanomedicine can have profound impact in this context, protecting delicate (bio)pharmaceuticals from degradation en route and enabling delivery in a targeted and on demand manner. We provide an overview of the most promising nanocarrier systems and design strategies that may be adapted to develop nanomedicine for COVID-19-induced thromboinflammation, including dual-therapeutic approaches with antiviral and immunosuppressants. Resultant targeted and side-effect-free treatment may aid greatly in the fight against the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Peije Russell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
24
|
Al Hashim AH, Al-Zakwani I, Al Jadidi A, Al Harthi R, Al Naabi M, Biyappu R, Kodange S, Asati NK, Al Barhi T, Mohan M, Jagadeesan J, Sachez M, Sycaayao PS, Al Amrani K, Al Khalili H, Al Mamari R, Al-Busaidi M. Early Prone versus Supine Positioning in Moderate to Severe Coronavirus Disease 2019 Patients with Acute Respiratory Distress Syndrome. Oman Med J 2023; 38:e465. [PMID: 36895639 PMCID: PMC9990371 DOI: 10.5001/omj.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022] Open
Abstract
Objectives This study sought to determine whether early prone positioning of patients with moderate to severe COVID-19-related acute respiratory distress syndrome (ARDS) lowers the mortality rate. Methods We conducted a retrospective study using data from intensive care units of two tertiary centers in Oman. Adult patients with moderate to severe COVID-19-related ARDS with a PaO2/FiO2 ratio < 150 on FiO2 of 60% or more and a positive end-expiratory pressure of at least 8 cm H2O who were admitted between 1 May 2020 and 31 October 2020 were selected as participants. All patients were intubated and subjected to mechanical ventilation within 48 hours of admission and placed in either prone or supine position. Mortality was measured and compared between the patients from the two groups. Results A total of 235 patients were included (120 in the prone group and 115 in the supine group). There were no significant differences in mortality (48.3% vs. 47.8%; p =0.938) and discharge rates (50.8% vs. 51.3%; p =0.942) between the prone and supine groups, respectively. Conclusions Early prone positioning of patients with COVID-19-related ARDS does not result in a significant reduction in mortality.
Collapse
Affiliation(s)
- Abdul Hakeem Al Hashim
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ibrahim Al-Zakwani
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Abdullah Al Jadidi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ruqaiya Al Harthi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Maadh Al Naabi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ramakrishna Biyappu
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Sonali Kodange
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Naveen Kumar Asati
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Tamadher Al Barhi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Mudhun Mohan
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Jayachandiran Jagadeesan
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Micheline Sachez
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Praisemabel S Sycaayao
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Khalfan Al Amrani
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Huda Al Khalili
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Rashid Al Mamari
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Mujahid Al-Busaidi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| |
Collapse
|
25
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Harcan NAH, Alexiou A, Batiha GES. Tranexamic Acid and Plasminogen/Plasmin Glaring Paradox in COVID-19. Endocr Metab Immune Disord Drug Targets 2023; 23:35-45. [PMID: 35927893 DOI: 10.2174/1871530322666220801102402] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a severe acute respiratory syndrome, coronavirus type 2 (SARS-CoV-2), leading to acute tissue injury and an overstated immune response. In COVID-19, there are noteworthy changes in the fibrinolytic system with the development of coagulopathy. Therefore, modulation of the fibrinolytic system may affect the course of COVID-19. Tranexamic acid (TXA) is an anti-fibrinolytic drug that reduces the conversion of plasminogen to plasmin, which is necessary for SARS-CoV-2 infectivity. In addition, TXA has anti-inflammatory, anti-platelet, and anti-thrombotic effects, which may attenuate the COVID-19 severity. Thus, in this narrative review, we try to find the beneficial and harmful effects of TXA in COVID-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyiah University, Baghdad, Iraq
| | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
26
|
Hajian K, Abdi Dezfouli R, Darvishi A, Radmanesh R, Heshmat R. Tenecteplase in managing acute ischemic stroke: a long-term cost-utility analysis in Iran. Expert Rev Pharmacoecon Outcomes Res 2023; 23:123-133. [PMID: 36420792 DOI: 10.1080/14737167.2023.2152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS The advantage of tenecteplase (TNK) over alteplase (ALT) in managing acute ischemic stroke (AIS) has been reported, but the cost-effectiveness of these two strategies has not received as much attention. The objective of this study was to compare TNK and ALT for the management of AIS patients in Iran in terms of cost-effectiveness. METHODS This study was carried out from the payer's perspective in Iran, with a lifetime horizon. A full economic evaluation model was designed as a decision tree and a Markov model. After defining different Markov states, each health state was assigned a utility value, and quality-adjusted life year (QALY) was estimated using that value. The incremental cost-effectiveness ratio (ICER) was ultimately used for evaluating the comparative cost-effectiveness. Both deterministic and probabilistic sensitivity analyses were carried out. RESULTS Compared to ALT, TNK can save approximately 4333.81 USD, and is able to increase one unit of QALY while saving approximately 17,450.29 USD. So, Base-case results showed that TNK strongly dominates ALT. Moreover, the base case results were strongly confirmed by deterministic and probabilistic sensitivity analysis. CONCLUSIONS Base-case and sensitivity analysis showed that TNK is the dominant strategy compared to ALT for the management of AIS patients.
Collapse
Affiliation(s)
- Kosar Hajian
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Abdi Dezfouli
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Darvishi
- Chronic Diseases Research Center, Endocrinology and Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ramin Radmanesh
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Dal Negro RW, Turco P, Povero M. Nebivolol: an effective option against long-lasting dyspnoea following COVID-19 pneumonia - a pivotal double-blind, cross-over controlled study. Multidiscip Respir Med 2022; 17:886. [PMID: 36636645 PMCID: PMC9830396 DOI: 10.4081/mrm.2022.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022] Open
Abstract
Background Pulmonary microvascular occlusions can aggravate SARS-CoV-2 pneumonia and result in a variable decrease in capillary blood volume (Vc). Dyspnoea may persist for several weeks after hospital discharge in many patients who have "radiologically recovered" from COVID-19 pneumonia. Dyspnoea is frequently "unexplained" in these cases because abnormalities in lung vasculature are understudied. Furthermore, even when they are identified, therapeutic options are still lacking in clinical practice, with nitric oxide (NO) supplementation being used only for severe respiratory failure in the hospital setting. Nebivolol is the only selective β1 adrenoceptor antagonist capable of inducing nitric oxide-mediated vasodilation by stimulating endothelial NO synthase via β3 agonism. The purpose of this study was to compare the effect of nebivolol versus placebo in patients who had low Vc and complained of dyspnoea for several weeks after COVID-19 pneumonia. Methods Patients of both genders, aged ≥18 years, non-smokers, who had a CT scan that revealed no COVID-related parenchymal lesions but still complaining of dyspnoea 12-16 weeks after hospital discharge, were recruited. Spirometrical volumes, blood haemoglobin, SpO2, simultaneous diffusing capacity for carbon monoxide (CO) and NO (DLCO and DLNO, respectively), DLNO/DLCO ratio, Vc and exhaled NO (eNO) were measured together with their dyspnoea score (DS), heart frequency (HF), and blood arterial pressure (BAP). Data were collected before and one week after both placebo (P) and nebivolol (N) (2.5 mg od) double-blind cross-over administered at a two-week interval. Data were statistically compared, and p<0.05 assumed as statistically significant. Results Eight patients (3 males) were investigated. In baseline, their mean DS was 2.5±0.6 SD, despite the normality of lung volumes. DLCO and DLNO mean values were lower than predicted, while mean DLNO/DLCO ratio was higher. Mean Vc proved substantially reduced. Placebo did not modify any variable (all p=ns) while N improved DLco and Vc significantly (+8.5%, p<0.04 and +17.7%, p<0.003, respectively). eNO also was significantly increased (+17.6%, p<0.002). Only N lowered the dyspnoea score (-76%, p<0.001). Systolic and diastolic BAP were slightly lowered (-7.5%, p<0.02 and -5.1%, p<0.04, respectively), together with HF (-16.8%, p<0.03). Conclusions The simultaneous assessment of DLNO, DLCO, DLNO/DLCO ratio, and Vc confirmed that long-lasting dyspnoea is related to hidden abnormalities in the lung capillary vasculature. These abnormalities can persist even after the complete resolution of parenchymal lesions regardless of the normality of lung volumes. Nebivolol, but not placebo, improves DS and Vc significantly. The mechanism suggested is the NO-mediated vasodilation via the β3 adrenoceptor stimulation of endothelial NO synthase. This hypothesis is supported by the substantial increase of eNO only assessed after nebivolol. As the nebivolol tolerability in these post-COVID normotensive patients was very good, the therapeutic use of nebivolol against residual and symptomatic signs of long-COVID can be suggested in out-patients.
Collapse
Affiliation(s)
- Roberto W. Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology - CESFAR, Verona ,National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology, Via G. Rossetti 4, 37124 Verona, Italy.
| | - Paola Turco
- Research & Clinical Governance, Verona, Italy
| | | |
Collapse
|
28
|
Hamidian M, Ansari R, Zarshenas MM, Foroughinia F. Cardiovascular implications of the COVID-19: Management of complications and drug safety concerns. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:92. [PMID: 36685029 PMCID: PMC9854922 DOI: 10.4103/jrms.jrms_895_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has rapidly spread worldwide and has been infected more than 219 million individuals with 4.55 million deaths worldwide as of September 2021, causing a pandemic. Preexisting cardiovascular (CV) comorbidities such as hypertension, diabetes, and coronary artery disease seem to be associated with greater severity of infection, worse prognosis, and higher mortality. Moreover, COVID-19 can contribute to CV complications, including acute myocardial injury, arrhythmia, acute coronary syndrome, and venous thromboembolism, emphasizing the importance of precocious detection and implementation of optimal therapeutic strategies. This review provides an overview of evidence-based data of CV complications of COVID-19, focusing on their management strategies, as well as potential cardiac adverse effects and drug interactions, due to off-label and investigational drugs used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Maliheh Hamidian
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Ansari
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Foroughinia
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Rani M, Uniyal A, Akhilesh, Tiwari V. Decrypting the cellular and molecular intricacies associated with COVID-19-induced chronic pain. Metab Brain Dis 2022; 37:2629-2642. [PMID: 35849300 PMCID: PMC9289353 DOI: 10.1007/s11011-022-01048-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/23/2022] [Indexed: 10/25/2022]
Abstract
Pain is one of the clinical manifestations that can vary from mild to severe symptoms in COVID-19 patients. Pain symptoms can be initiated by direct viral damage to the tissue or by indirect tissue injury followed by nociceptor sensitization. The most common types of pain that are reported to occur in COVID-19 patients are headache, myalgia, and chest pain. With more and more cases coming in the hospitals, many new and unique symptoms of pain are being reported. Testicular and abdominal pain are rare cases of pain that are also being reported and are associated with COVID-19. The SARS-CoV-2 virus has a high affinity for angiotensin-converting enzyme-2 receptor (ACE-2) which acts as an entry point for the virus. ACE-2/ Ang II/AT 1 receptor also participates directly in the transmission of pain signals from the dorsal horn of the spinal cord. It induces a series of complicated responses in the human body. Among which the cytokinetic storm and hypercoagulation are the most prominent pathways that mediate the sensitization of sensory neurons facilitating pain. The elevated immune response is also responsible for the activation of inflammatory lipid mediators such as COX-1 and COX-2 enzymes for the synthesis of prostaglandins (PGs). PG molecules especially PGE2 and PGD2 are involved in the pain transmission and are found to be elevated in COVID-19 patients. Though arachidonic acid pathway is one of the lesser discussed topics in COVID-19 pathophysiology, still it can be useful for explaining the unique and rarer symptoms of pain seen in COVID-19 patients. Understanding different pain pathways is very crucial for the management of pain and can help healthcare systems to end the current pandemic situation. We herein review the role of various molecules involved in the pain pathology of COVID-19.
Collapse
Affiliation(s)
- Mousmi Rani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
30
|
Cabrera-Garcia D, Miltiades A, Yim P, Parsons S, Elisman K, Mansouri MT, Wagener G, Harrison NL. Plasma biomarkers associated with survival and thrombosis in hospitalized COVID-19 patients. Int J Hematol 2022; 116:937-946. [PMID: 35994163 PMCID: PMC9395834 DOI: 10.1007/s12185-022-03437-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 10/26/2022]
Abstract
Severe coronavirus disease-19 (COVID-19) has been associated with fibrin-mediated hypercoagulability and thromboembolic complications. To evaluate potential biomarkers of coagulopathy and disease severity in COVID-19, we measured plasma levels of eight biomarkers potentially associated with coagulation, fibrinolysis, and platelet function in 43 controls and 63 COVID-19 patients, including 47 patients admitted to the intensive care unit (ICU) and 16 non-ICU patients. COVID-19 patients showed significantly elevated levels of fibrinogen, tissue plasminogen activator (t-PA), and its inhibitor plasminogen activation inhibitor 1 (PAI-1), as well as ST2 (the receptor for interleukin-33) and von Willebrand factor (vWF) compared to the control group. We found that higher levels of t-PA, ST2, and vWF at the time of admission were associated with lower survival rates, and that thrombotic events were more frequent in patients with initial higher levels of vWF. These results support a predictive role of specific biomarkers such as t-PA and vWF in the pathophysiology of COVID-19. The data provide support for the case that hypercoagulability in COVID-19 is fibrin-mediated, but also highlights the important role that vWF may play in the genesis of thromboses in the pathophysiology of COVID-19. Interventions designed to enhance fibrinolysis might prove to be useful adjuncts in the treatment of coagulopathy in a subset of COVID-19 patients.
Collapse
Affiliation(s)
- David Cabrera-Garcia
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Andrea Miltiades
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Peter Yim
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Samantha Parsons
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Katerina Elisman
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Mohammad Taghi Mansouri
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Gebhard Wagener
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Neil L Harrison
- Department of Anesthesiology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
32
|
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13:992384. [PMID: 36466841 PMCID: PMC9709252 DOI: 10.3389/fimmu.2022.992384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2023] Open
Abstract
COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Prevalence and Risk Factors of Venous Thromboembolism in Critically Ill Patients with Severe COVID-19 and the Association between the Dose of Anticoagulants and Outcomes. J Crit Care Med (Targu Mures) 2022; 8:249-258. [DOI: 10.2478/jccm-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Introduction
COVID-19 is characterized by a procoagulant state that increases the risk of venous and arterial thrombosis. The dose of anticoagulants in patients with severe COVID-19 pneumonia without suspected or confirmed thrombosis has been debated.
Aim of the study
We evaluated the prevalence, predictors, and outcomes of venous thromboembolism (VTE) in critically ill COVID-19 patients and assessed the association between the dose of anticoagulants and outcomes.
Materials and methods
This retrospective cohort included patients with COVID-19 who were admitted to the ICU between March and July 2020. Patients with clinically suspected and confirmed VTE were compared to those not diagnosed to have VTE.
Results
The study enrolled 310 consecutive patients with severe COVID-19 pneumonia: age 60.0±15.1 years, 67.1% required mechanical ventilation and 44.7% vasopressors. Most (97.1%) patients received anticoagulants during ICU stay: prophylactic unfractionated heparin (N=106), standard-dose enoxaparin (N=104) and intermediate-dose enoxaparin (N=57). Limb Doppler ultrasound was performed for 49 (15.8%) patients and chest computed tomographic angiography for 62 (20%). VTE was diagnosed in 41 (13.2%) patients; 20 patients had deep vein thrombosis and 23 had acute pulmonary embolism. Patients with VTE had significantly higher D-dimer on ICU admission. On multivariable Cox regression analysis, intermediate-dose enoxaparin versus standard-dose unfractionated heparin or enoxaparin was associated with lower VTE risk (hazard ratio, 0.06; 95% confidence interval, 0.01-0.74) and lower risk of the composite outcome of VTE or hospital mortality (hazard ratio, 0.42; 95% confidence interval, 0.23-0.78; p=0.006). Major bleeding was not different between the intermediate- and prophylactic-dose heparin groups.
Conclusions
In our study, clinically suspected and confirmed VTE was diagnosed in 13.2% of critically ill patients with COVID-19. Intermediate-dose enoxaparin versus standard-dose unfractionated heparin or enoxaparin was associated with decreased risk of VTE or hospital mortality.
Collapse
|
34
|
dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo Ferreira L, Trettel CDS, Gimenes GM, da Silva AF, Sousa-Filho CPB, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges FT, de Barros MP, Cury-Boaventura MF, Bertolini GL, Cassolla P, Marzuca-Nassr GN, Vitzel KF, Pithon-Curi TC, Masi LN, Curi R, Gorjao R, Hirabara SM. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol 2022; 13:1037467. [PMID: 36439786 PMCID: PMC9684198 DOI: 10.3389/fmicb.2022.1037467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.
Collapse
Affiliation(s)
| | - Luiz Eduardo Rodrigues
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Amanda Lins Alecrim-Zeza
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Liliane de Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Caio dos Santos Trettel
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gabriela Mandú Gimenes
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Adelson Fernandes da Silva
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Department of Molecular Pathobiology, University of New York, New York, NY, United States
| | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fernanda Teixeira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Paes de Barros
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, Brazil
| | - Renata Gorjao
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Zając P, Kaziród-Wolski K, Oleś I, Sielski J, Siudak Z. Role of Fibrinolysis in the Management of Patients with COVID-19 and Thromboembolic Complications: A Review. J Cardiovasc Dev Dis 2022; 9:356. [PMID: 36286308 PMCID: PMC9604283 DOI: 10.3390/jcdd9100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
An impaired fibrinolytic process has been demonstrated in patients infected with SARS-CoV-2, including those in severe or critical condition. Disruption of fibrinolysis leads to fibrin deposition, which exacerbates inflammation and fibrosis and damages the pulmonary surfactant. Numerous authors point out the different course of coagulopathy in patients with COVID-19. It is reported that they may have a state of secondary hyperfibrinolysis, which may explain, at least in part, the increased incidence of venous thromboembolism, even among those patients already receiving appropriate anticoagulant treatment. This raises the question of whether current guidelines for the prevention and treatment of embolic-thrombotic complications, among patients with severe COVID-19, are sufficient. Some studies show evidence of clinical improvement in patients who have received fibrinolytic therapy, beyond the current indications for its implementation. However, when considering the inclusion of systemic fibrinolytic therapy, the benefits of such treatment should always be weighed over the risk of adverse effects. Thromboelastography and rotational thromboelastometry can be helpful in making such decisions. The purpose of this study was to review the current knowledge regarding fibrinolysis and its role in the treatment of patients with severe COVID-19, including those with thromboembolic complications.
Collapse
Affiliation(s)
- Patrycja Zając
- The Reumatology Department, Province Hospital in Konskie, Poland ul. Gimnazjalna 41B, 26-200 Końskie, Poland
| | - Karol Kaziród-Wolski
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Izabela Oleś
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Janusz Sielski
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Zbigniew Siudak
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| |
Collapse
|
36
|
Bhattacharjee R, Das D, Bhadhuri R, Chakraborty S, Dey T, Buragohain R, Nath A, Muduli K, Barman P, Gundamaraju R. Cellular Landscaping of COVID-19 and Gynaecological Cancers: An Infrequent Correlation. JOURNAL OF ONCOLOGY 2022; 2022:5231022. [PMID: 36299504 PMCID: PMC9592241 DOI: 10.1155/2022/5231022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/16/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 resulted in a mortality rate of 3-6% caused by SARS-CoV-2 and its variant leading to unprecedented consequences of acute respiratory distress septic shock and multiorgan failure. In such a situation, evaluation, diagnosis, treatment, and care for cancer patients are difficult tasks faced by medical staff. Moreover, patients with gynaecological cancer appear to be more prone to severe infection and mortality from COVID-19 due to immunosuppression by chemotherapy and coexisting medical disorders. To deal with such a circumtances oncologists have been obliged to reconsider the entire diagnostic, treatment, and management approach. This review will provide and discuss the molecular link with gynaecological cancer under COVID-19 infection, providing a novel bilateral relationship between the two infections. Moreover, the authors have provided insights to discuss the pathobiology of COVID-19 in gynaecological cancer and their risks associated with such comorbidity. Furthermore, we have depicted the overall impact of host immunity along with guidelines for the treatment of patients with gynaecological cancer under COVID-19 infection. We have also discussed the feasible scope for the management of COVID-19 and gynaecological cancer.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Debanjan Das
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | | | | | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Rupam Buragohain
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Asim Nath
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Kartik Muduli
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pranjan Barman
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Division of Gastroenterology, School of Medicine, Washington University at St Louis, St Louis, MO, USA
| |
Collapse
|
37
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
38
|
Ashwathappa PG, Jacob I, Rangappa P, Rao K. Systemic thrombolytics as rescue therapy for COVID-19 patients with acute respiratory distress syndrome: A retrospective observational study. Int J Crit Illn Inj Sci 2022; 12:197-203. [PMID: 36779209 PMCID: PMC9910116 DOI: 10.4103/ijciis.ijciis_45_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) pneumonia with severe acute respiratory distress syndrome (ARDS) is often associated with a progressive respiratory failure that is refractory to maximal ventilatory support and other ARDS strategies. Studies show evidence of a hypercoagulable state in COVID-19 patients, including capillary thrombosis and alveolar fibrin deposits which impede normal gas exchange. In this context, thrombolysis is considered as a salvage therapy to rescue critically hypoxemic patients. Methods In this retrospective observational study, the efficacy of thrombolysis on outcome of COVID-19 ARDS with respiratory failure was analyzed. Patients with severe ARDS and d-dimer levels of 5 μg/ml or above were initiated on alteplase, as a 25 mg bolus followed by a 25 mg infusion over 22 h. Primary outcome was intensive care unit (ICU) mortality and secondary outcomes were change in PaO2/FiO2 24 h after thrombolysis, avoidance of intubation, ventilator free days (VFD), and ICU and hospital length-of-stay (LOS). Results Thirteen out of 34 patients with severe COVID ARDS underwent thrombolysis. They had lower ICU mortality than non-thrombolysed patients (23.1% vs. 71.4%, P = 0.006), greater percentage improvement in PaO2/FiO2 (116% vs. 31.5%, P = 0.002), more VFDs (13 days vs. 0 day, P = 0.004), and lesser requirement for intubation (23.1% vs. 76.2%, P = 0.004). ICU and hospital LOS were similar. Conclusion Thrombolysis can be considered as a rescue therapy for nonintubated COVID-19 ARDS patients with severe hypoxemic respiratory failure, who show evidence of a procoagulant state. Larger studies are needed before inclusion into the regular treatment protocol for COVID-19 patients.
Collapse
Affiliation(s)
| | - Ipe Jacob
- Department of Critical Care, Manipal Hospital, Bengaluru, Karnataka, India
| | - Pradeep Rangappa
- Department of Critical Care, Manipal Hospital, Bengaluru, Karnataka, India
| | - Karthik Rao
- Department of Critical Care, Manipal Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
39
|
Margiana R, Sharma SK, Khan BI, Alameri AA, Opulencia MJC, Hammid AT, Hamza TA, Babakulov SK, Abdelbasset WK, Jawhar ZH. RETRACTED: The pathogenicity of COVID-19 and the role of pentraxin-3: An updated review study. Pathol Res Pract 2022; 238:154128. [PMID: 36137396 PMCID: PMC9476367 DOI: 10.1016/j.prp.2022.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. In investigating concerns regarding the contributions of the authors to this article, the editors reached out to the authors for an explanation. In addition to the concerns regarding the contribution of each author, the editors discovered suspicious changes in authorship between the original submission and the revised version of this paper. The names of the authors Ameer A Alameri and Zanko Hassan Jawhar were added to the revised version of the article without explanation and without the exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship. The authors were unable to provide a reasonable explanation for either of the issues raised. The editor therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India.
| | | | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical laboratory techniques department, Al-Mustaqbal University College, Babylon, Iraq
| | - Sharaf Khamrakulovich Babakulov
- Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| |
Collapse
|
40
|
Dal Negro RW, Turco P, Povero M. Long-lasting dyspnoea in patients otherwise clinically and radiologically recovered from COVID pneumonia: a probe for checking persisting disorders in capillary lung volume as a cause. Multidiscip Respir Med 2022; 17:875. [PMID: 36268261 PMCID: PMC9577559 DOI: 10.4081/mrm.2022.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 01/08/2023] Open
Abstract
Background During SARS-CoV-2 infection, diffuse alveolar damage and pulmonary microvascular abnormalities are critical events that result in gas exchange disorders of varying severity and duration. The only measure of carbon monoxide (CO) diffusing capacity (DLCO) is unable to distinguish the alveolar from the vascular side of present and residual diffusive abnormalities, and measure of nitric oxide (NO) diffusing capacity (DLNO) is also recommended. Dyspnoea, despite being understudied, persists in a significant proportion of patients for several weeks after hospital discharge. The goal of this study was to look into the underlying cause of long-term dyspnoea in patients who were "clinically and radiologically recovered" from COVID pneumonia by assessing DLCO and DLNO at the same time. Methods Patients of both genders, aged ≥18 years, who had a CT scan showing complete resolution of COVID-related parenchymal lesions were recruited consecutively. Spirometrical volumes, blood haemoglobin, SpO2, DLCO, DLNO and capillary blood volume (Vc) were measured. Data from patients without dyspnoea (group A) and from patients still claiming dyspnoea after 12-16 weeks from their hospital discharge (group B) were statistically compared. Results Forty patients were recruited: 19 in group A and 21 in group B. Groups were comparable for their general characteristics and spirometrical volumes, that were in the normal range. Mean values for DLCO, DLNO and Vc were significantly and substantially lower than predicted only in patients of group B (p<0.011; p<0.0036; p<0.02; p<0.001, respectively). The DLNO/ DLCO ratio was higher in group B (p<0.001) and inversely correlated to Vc values (-0.3636). Conclusions The single-breath, simultaneous measurement of DLCO, DLNO, and Vc demonstrated that problems with blood gas exchange can persist even after parenchymal lesions have healed completely. Regardless of the normality of spirometric volumes, there was a significant reduction in lung capillary blood volume. In these patients, the cause of long-term dyspnoea may be related to hidden abnormalities in the vascular side of diffusive function. In the near future, novel therapeutic approaches against residual and symptomatic signs of long-COVID are possible.
Collapse
|
41
|
Wifi MN, Morad MA, El Sheemy R, Abdeen N, Afify S, Abdalgaber M, Abdellatef A, Zaghloul M, Alboraie M, El-Kassas M. Hemostatic system and COVID-19 crosstalk: A review of the available evidence. World J Methodol 2022; 12:331-349. [PMID: 36186748 PMCID: PMC9516549 DOI: 10.5662/wjm.v12.i5.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/17/2022] [Accepted: 07/22/2022] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant coronavirus disease 2019 (COVID-19) pandemic, respiratory manifestations have been the mainstay of clinical diagnosis, laboratory evaluations, and radiological investigations. As time passed, other pathological aspects of SARS-CoV-2 have been revealed. Various hemostatic abnormalities have been reported since the rise of the pandemic, which was sometimes superficial, transient, or fatal. Mild thrombocytopenia, thrombocytosis, venous, arterial thromboembolism, and disseminated intravascular coagulation are among the many hemostatic events associated with COVID-19. Venous thromboembolism necessitating therapeutic doses of anticoagulants is more frequently seen in severe cases of COVID-19, especially in patients admitted to intensive care units. Hemorrhagic complications rarely arise in COVID-19 patients either due to a hemostatic imbalance resulting from severe disease or as a complication of over anticoagulation. Although the pathogenesis of coagulation disturbance in SARS-CoV-2 infection is not yet understood, professional societies recommend prophylactic antithrombotic therapy in severe cases, especially in the presence of abnormal coagulation indices. The review article discusses the various available evidence on coagulation disorders, management strategies, outcomes, and prognosis associated with COVID-19 coagulopathy, which raises awareness about the importance of anticoagulation therapy for COVID-19 patients to guard against possible thromboembolic events.
Collapse
Affiliation(s)
- Mohamed-Naguib Wifi
- Department of Internal Medicine, Hepatogastro- enterology Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo 11451, Egypt
| | - Mohamed Abdelkader Morad
- Clinical Hematology Unit, Department of Internal Medicine, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo 11451, Egypt
| | - Reem El Sheemy
- Department of Tropical Medicine, Minia Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Nermeen Abdeen
- Department of Tropical Medicine, Faculty of Medicine, Alexandria University, Alexandria 21523, Egypt
| | - Shimaa Afify
- Department of Gastroenterology, National Hepatology and Tropical Medicine, National Hepatology and Tropical Medicine Research Institute, Cairo 11451, Egypt
| | - Mohammad Abdalgaber
- Department of Gastroenterology and Hepatology, Police Authority Hospital, Agoza, Giza 12511, Egypt
| | - Abeer Abdellatef
- Department of Internal Medicine, Hepatogastro- enterology Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo 11451, Egypt
| | - Mariam Zaghloul
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Helwan 11731, Egypt
| |
Collapse
|
42
|
Vigneshwar NG, Masood MF, Vasic I, Krause M, Bartels K, Lucas MT, Bronsert M, Selzman CH, Thompson S, Rove JY, Reece TB, Cleveland JC, Pal JD, Fullerton DA, Aftab M. Venovenous extracorporeal membrane oxygenation support in patients with COVID-19 respiratory failure: A multicenter study. JTCVS OPEN 2022; 12:211-220. [PMID: 36097635 PMCID: PMC9451935 DOI: 10.1016/j.xjon.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023]
Abstract
Objective The COVID-19 pandemic presents a high mortality rate amongst patients who develop severe acute respiratory distress syndrome (ARDS). The purpose of this study was to evaluate the outcomes of venovenous extracorporeal membrane oxygenation (VV-ECMO) in COVID-19-related ARDS and identify the patients who benefit the most from this procedure. Methods Adult patients with COVID-19 and severe ARDS requiring VV-ECMO support at 4 academic institutions between March and October 2020 were included. Data were collected through retrospective chart reviews. Bivariate and multivariable analyses were performed with the primary outcome of in-hospital mortality. Results Fifty-one consecutive patients underwent VV-ECMO with a mean age of 50.4 years; 64.7% were men. Survival to hospital discharge was 62.8%. Median intensive care unit and hospitalization duration were 27.4 days (interquartile range [IQR], 17-37 days) and 34.5 days (IQR, 23-43 days), respectively. Survivors and nonsurvivors had a median ECMO cannulation time of 11 days (IQR, 8-18) and 17 days (IQR, 12-25 days). The average postdecannulation length of stay was 17.5 days (IQR, 12.4-25 days) for survivors and 0 days for nonsurvivors (IQR, 0-6 days). Only 1 nonsurvivor was able to be decannulated. Clinical characteristics associated with mortality between nonsurviors and survivors included increasing age (P = .0048), hemorrhagic stroke (P = .0014), and postoperative dialysis (P = .0013) were associated with mortality in a bivariate model and retained statistical significance in a multivariable model. Conclusions This multicenter study confirms the effectiveness of VV-ECMO in selected critically ill patients with COVID-19-related severe ARDS. The survival of these patients is comparable to non-COVID-19-related ARDS.
Collapse
Affiliation(s)
- Navin G. Vigneshwar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Muhammad F. Masood
- Division of Cardiothoracic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St Louis, Mo
| | - Ivana Vasic
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Martin Krause
- Department of Anesthesiology, University of San Diego, San Diego, Calif
| | - Karsten Bartels
- Division of Critical Care, Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Neb
| | - Mark T. Lucas
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Michael Bronsert
- Colorado Health Outcomes Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Craig H. Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Shaun Thompson
- Division of Critical Care, Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Neb
| | - Jessica Y. Rove
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Thomas B. Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Joseph C. Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Jay D. Pal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - David A. Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colo,Address for reprints: Muhammad Aftab, MD, Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, 12631 E 17th Ave, C-310, Room 6602, Aurora, CO 80045.
| |
Collapse
|
43
|
Amini S, Labbani‐Motlagh Z, Aliannejad R, Pourabbas S, Vasei M. Case series of nebulizing r-tPA for COVID-19 induced acute respiratory distress syndrome. Clin Case Rep 2022; 10:e6283. [PMID: 36093444 PMCID: PMC9445426 DOI: 10.1002/ccr3.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022] Open
Abstract
Fibrin deposition in the alveolar spaces during pulmonary involvement of COVID-19 impairs the O2/CO2 exchange and leads to respiratory symptoms. In this report, Recombinant Tissue Plasminogen Activator (r-tPA) has been nebulized to 3 critically ill COVID-19 patients in order to resolve the deposited fibrin while avoiding the risk of bleeding. Based on these observations, nebulization of r-tPA may be a potential therapeutic approach and new area of research for future studies.
Collapse
Affiliation(s)
- Shahideh Amini
- Department of Clinical Pharmacy, Faculty of PharmacyTehran University of Medical ScienceTehranIran
- Advanced Thoracic Research centerTehran University of Medical ScienceTehranIran
| | | | - Rasoul Aliannejad
- Department of Clinical Pharmacy, Faculty of PharmacyTehran University of Medical ScienceTehranIran
- Advanced Thoracic Research centerTehran University of Medical ScienceTehranIran
| | - Seyed Mohammad Pourabbas
- Department of Internal Medicine, Shari'ati HospitalTehran University of Medical ScienceTehranIran
| | - Mohammad Vasei
- Cell‐Based Therapies Research Center, Digestive Disease Research Institute, Shari'ati HospitalTehran University of Medical ScienceTehranIran
| |
Collapse
|
44
|
Liu L, Jing H, Wu X, Xiang M, Novakovic VA, Wang S, Shi J. The cross-talk of lung and heart complications in COVID-19: Endothelial cells dysfunction, thrombosis, and treatment. Front Cardiovasc Med 2022; 9:957006. [PMID: 35990983 PMCID: PMC9390946 DOI: 10.3389/fcvm.2022.957006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic respiratory illness SARS-CoV-2 has increasingly been shown to be a systemic disease that can also have profound impacts on the cardiovascular system. Although associated cardiopulmonary sequelae can persist after infection, the link between viral infection and these complications remains unclear. There is now a recognized link between endothelial cell dysfunction and thrombosis. Its role in stimulating platelet activation and thrombotic inflammation has been widely reported. However, the procoagulant role of microparticles (MPs) in COVID-19 seems to have been neglected. As membrane vesicles released after cell injury or apoptosis, MPs exert procoagulant activity mainly by exposing phosphatidylserine (PS) on their lipid membranes. It can provide a catalytic surface for the assembly of the prothrombinase complex. Therefore, inhibiting PS externalization is a potential therapeutic strategy. In this paper, we describe the pathophysiological mechanism by which SARS-CoV-2 induces lung and heart complications through injury of endothelial cells, emphasizing the procoagulant effect of MPs and PS, and demonstrate the importance of early antithrombotic therapy. In addition, we will detail the mechanisms underlying hypoxia, another serious pulmonary complication related to SARS-CoV-2-induced endothelial cells injury and discuss the use of oxygen therapy. In the case of SARS-CoV-2 infection, virus invades endothelial cells through direct infection, hypoxia, imbalance of the RAAS, and cytokine storm. These factors cause endothelial cells to release MPs, form MPs storm, and eventually lead to thrombosis. This, in turn, accelerates hypoxia and cytokine storms, forming a positive feedback loop. Given the important role of thrombosis in the disease, early antithrombotic therapy is an important tool for COVID-19. It may maintain normal blood circulation, accelerating the clearance of viruses, waning the formation of MPs storm, and avoiding disease progression.
Collapse
Affiliation(s)
- Langjiao Liu
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Shuye Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Shuye Wang
| | - Jialan Shi
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jialan Shi ;
| |
Collapse
|
45
|
Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022; 15:727-745. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED This article reviews the pathophysiological role of platelets, neutrophils and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION Virus-induced platelet, neutrophil and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signalling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.
Collapse
Affiliation(s)
- E Falcinelli
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
46
|
Coronavirus Disease 2019-Associated Coagulopathy. Microorganisms 2022; 10:microorganisms10081556. [PMID: 36013974 PMCID: PMC9415473 DOI: 10.3390/microorganisms10081556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19)-associated coagulopathy is an acute illness characterized by thrombosis with or without hemorrhage after COVID-19 infection. Clinical symptoms of COVID-19-associated coagulopathy can occur at any anatomical site. Various forms of venous thromboembolism, including deep vein thrombosis and pulmonary embolism, are common in acutely ill patients with COVID-19. Laboratory findings, such as D-dimer and platelet counts, can help diagnose COVID-19-associated coagulopathy. Anticoagulation using direct oral anticoagulants and low-molecular-weight heparin is essential for the treatment of COVID-19-associated coagulopathy. Prophylactic anticoagulants are important in preventing COVID-19-associated coagulopathy in patients with severe COVID-19. In particular, the early initiation of prophylactic anticoagulation in patients with COVID-19 can improve survival rates without the risk of serious bleeding events.
Collapse
|
47
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
High levels of von Willebrand factor with reduced specific activities in hospitalized patients with or without COVID-19. J Thromb Thrombolysis 2022; 54:211-216. [PMID: 35881214 PMCID: PMC9314532 DOI: 10.1007/s11239-022-02679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic is often accompanied by severe respiratory illness and thrombotic complications. Von Willebrand Factor (VWF) levels are highly elevated in this condition. However, limited data are available on the qualitative activity of VWF in COVID-19. We measured plasma VWF levels quantitatively (VWF antigen) and qualitatively (ristocetin-induced platelet agglutination, glycoprotein IbM (GPIbM) binding, and collagen binding). Consistent with prior reports, VWF antigen levels were significantly elevated in hospitalized patients with or without COVID-19. The GPIbM and collagen binding activity-to-antigen ratios were significantly reduced, consistent with qualitative changes in VWF in COVID-19. Of note, critically ill hospitalized patients without COVID-19 had similar reductions in VWF activity-to-antigen ratios as patients with COVID-19. Our data suggest that qualitative changes in VWF in COVID-19 may not be specific to COVID-19. Future studies are warranted to determine the mechanisms responsible for qualitative changes in VWF in COVID-19 and other critical illnesses.• VWF levels were increased in COVID-19 compared to healthy controls.• VWF activity-to-antigen ratios were decreased in COVID-19 compared to healthy controls.• There were no differences in VWF activity-to-antigen ratios between hospitalized patients with or without COVID-19.• These findings are consistent with qualitative changes in VWF in systemic inflammation which are not specific to COVID-19.• Future studies are needed to define possible roles of changes in conformation or multimer length in the qualitative changes in VWF in systemic inflammation.
Collapse
|
49
|
Pu D, Zhai X, Zhou Y, Xie Y, Tang L, Yin L, Liu H, Li L. A narrative review of COVID-19-related acute respiratory distress syndrome (CARDS): "typical" or "atypical" ARDS? ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:908. [PMID: 36111011 PMCID: PMC9469157 DOI: 10.21037/atm-22-3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective The coronavirus disease of 2019 (COVID-19) is highly infectious and mainly involves the respiratory system, with some patients rapidly progress to acute respiratory distress syndrome (ARDS), which is the leading cause of death in COVID-19 patients. Hence, fully understanding the features of COVID-19-related ARDS (CARDS) and early management of this disease would improve the prognosis and reduce the mortality of severe COVID-19. With the development of recent studies which have focused on CARDS, whether CARDS is "typical" or "atypical" ARDS has become a hotly debated topic. Methods We searched for relevant literature from 1999 to 2021 published in PubMed by using the following keywords and their combinations: "COVID-19", "CARDS", "ARDS", "pathophysiological mechanism", "clinical manifestations", "prognosis", and "clinical trials". Then, we analyzed, compared and highlighted the differences between classic ARDS and CARDS from all of the aspects above. Key Content and Findings Classical ARDS commonly occurs within 1 week after a predisposing cause, yet the median time from symptoms onset to CARDS is longer than that of classical ARDS, manifesting within a period of 9.0-12.0 days. Although the lung mechanics exhibited in CARDS grossly match those of classical ARDS, there are some atypical manifestations of CARDS: the severity of hypoxemia seemed not to be proportional to injury of lung mechanics and an increase of thrombogenic processes. Meanwhile, some patients' symptoms do not correspond with the extent of the organic injury: a chest computed tomography (CT) will reveal the severe and diffuse lung injuries, yet the clinical presentations of patients can be mild. Conclusions Despite the differences between the CARDS and ARDS, in addition to the treatment of antivirals, clinicians should continue to follow the accepted evidence-based framework for managing all ARDS cases, including CARDS.
Collapse
Affiliation(s)
- Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqian Zhai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Liansha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hangtian Liu
- Data Science and Big Data Technology, Chengdu University of Information Technology, Chengdu, China
| | - Lu Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Amini S, Rezabakhsh A, Hashemi J, Saghafi F, Azizi H, Sureda A, Habtemariam S, Khayat Kashani HR, Hesari Z, Sahebnasagh A. Pharmacotherapy consideration of thrombolytic medications in COVID-19-associated ARDS. J Intensive Care 2022; 10:38. [PMID: 35908022 PMCID: PMC9338522 DOI: 10.1186/s40560-022-00625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is responsible for coronavirus disease (COVID-19), was identified as the new pathogen to lead pneumonia in Wuhan, China, which has spread all over the world and developed into a pandemic. Despite the over 1 year of pandemic, due to the lack of an effective treatment plan, the morbidity and mortality of COVID-19 remains high. Efforts are underway to find the optimal management for this viral disease. MAIN BODY SARS-CoV-2 could simultaneously affect multiple organs with variable degrees of severity, from mild to critical disease. Overproduction of pro-inflammatory mediators, exacerbated cellular and humoral immune responses, and coagulopathy such as Pulmonary Intravascular Coagulopathy (PIC) contributes to cell injuries. Considering the pathophysiology of the disease and multiple microthrombi developments in COVID-19, thrombolytic medications seem to play a role in the management of the disease. Beyond the anticoagulation, the exact role of thrombolytic medications in the management of patients with COVID-19-associated acute respiratory distress syndrome (ARDS) is not explicit. This review focuses on current progress in underlying mechanisms of COVID-19-associated pulmonary intravascular coagulopathy, the historical use of thrombolytic drugs in the management of ARDS, and pharmacotherapy considerations of thrombolytic therapy, their possible benefits, and pitfalls in COVID-19-associated ARDS. CONCLUSIONS Inhaled or intravenous administration of thrombolytics appears to be a salvage therapy for severe ARDS associated with COVID-19 by prompt attenuation of lung injury. Considering the pathogenesis of COVID-19-related ARDS and mechanism of action of thrombolytic agents, thrombolytics appear attractive options in stable patients without contraindications.
Collapse
Affiliation(s)
- Shahideh Amini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group On Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | | | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|