1
|
Zahid AA, Chakraborty A, Shamiya Y, Wilson RB, Borradaile N, Paul A. Cell Membrane-Derived Nanoparticles as Biomimetic Nanotherapeutics to Alleviate Fatty Liver Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39117-39128. [PMID: 39022877 DOI: 10.1021/acsami.4c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prevalence of metabolic dysfunction associated-steatotic liver disease (MASLD) (formerly known as nonalcoholic fatty liver disease; NAFLD) is estimated at around 32% of the world's population, resulting in a major healthcare concern in recent times. Current pharmaceutical methods lack efficacy for the treatment of the disease because of suboptimal pharmacokinetic parameters including poor bioavailability, short half-life, and premature clearance. Designing an efficient drug delivery system that provides a protective environment is critical for addressing these challenges. Such a system should aim to enhance the cellular uptake of drugs, improve their bioavailability, and reduce the chances of rapid clearance. Here, we developed nanoengineered natural cell membrane-derived nanoparticles (CMNs) incorporated with a model drug, rosuvastatin, in the bilayer assembly of CMNs to reduce the accumulation of lipids in hepatocytes, a hallmark of MASLD. We used a cell extrusion technique to develop self-assembled CMNs with precise size control compared to the cell shearing method. Interestingly, the prepared CMNs were found to be nonphagocytic, representing around 1.13% of phosphatidylserine receptors on healthy cells, which allows the possibility of their use as stealth nanoparticles for drug delivery. Furthermore, CMNs exhibit higher drug-loading efficiency, excellent cytocompatibility, and enhanced cellular internalization capabilities. Moreover, we show that the delivery of rosuvastatin-loaded CMNs in the in vitro MASLD model efficiently reduced hepatocyte lipid accumulation, including total cholesterol (26.8 ± 3.1%) and triglycerides (11.8 ± 0.8%), compared to the negative control. Taken together, the nanoengineered biomimetic CMNs enhance the drug's bioactivity in hepatic cells, establishing a foundation for further investigation of this drug delivery system in treating MASLD.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Nica Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
2
|
Jeon D, Cha HR, Chung SW, Choi J, Lee D, Shim JH, Kim KM, Lim YS, Lee HC, Lee SW, Choi WM. Association between statin use and the prognosis of hepatocellular carcinoma after resection: a nationwide cohort study. EClinicalMedicine 2023; 65:102300. [PMID: 37965429 PMCID: PMC10641481 DOI: 10.1016/j.eclinm.2023.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background The majority of patients with hepatocellular carcinoma (HCC) following hepatic resection experience tumor recurrence. Statin use is associated with a reduced risk of HCC development; however, the association between statin use and the prognosis of HCC after resection remains unclear. We aimed to investigate the effect of statin use on the prognosis after hepatic resection among patients with HCC. Methods A nationwide cohort study was performed with data from the National Health Insurance Service Database in Korea. Among 65,101 HCC patients who underwent hepatic resection between January 2002 and December 2017, we included 21,470 patients. For validation, a hospital-based cohort of 3366 patients with very early or early-stage HCC who received curative-intent hepatic resection between January 2010 and December 2018 was analyzed. Recurrence-free survival (RFS) and overall survival (OS) was compared between statin users and non-users. Findings Among the nationwide cohort of 21,470 patients, 2399 (11.2%) used statins and 19,071 (88.8%) did not. Among the hospital cohort of 3366 patients, 363 (10.8%) used statins and 3003 (89.2%) did not. In the propensity score-matched nationwide cohort, statin users had better RFS (hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.56-0.64; P < 0.001) and OS (HR, 0.49; 95% CI, 0.45-0.53; P < 0.001), with a duration-response relationship. In the propensity score-matched validation hospital cohort, statin treatment was significantly associated with better RFS (HR, 0.73; 95% CI, 0.59-0.90; P = 0.003) and OS (HR, 0.48; 95% CI, 0.32-0.72; P < 0.001). The beneficial effects of statins were more prominent in non-cirrhotics, tumors sized ≥3 cm, tumors with microscopic vascular invasion, or early HCC recurrence (<2 years after resection). Interpretation Statin use was associated with a better prognosis in a population-based cohort of patients with HCC after hepatic resection, which was further validated in a large hospital-based cohort. Funding Asan Institute for Life Sciences and Corporate Relations; Korean Association for the Study of the Liver.
Collapse
Affiliation(s)
- Dongsub Jeon
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Ryeong Cha
- Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Sung Won Chung
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jonggi Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Danbi Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han Chu Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Won-Mook Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Vachliotis ID, Polyzos SA. The Role of Tumor Necrosis Factor-Alpha in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Curr Obes Rep 2023; 12:191-206. [PMID: 37407724 PMCID: PMC10482776 DOI: 10.1007/s13679-023-00519-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW To summarize experimental and clinical evidence on the association between tumor necrosis factor-α (TNF-α) and nonalcoholic fatty liver disease (NAFLD) and discuss potential treatment considerations. RECENT FINDINGS Experimental evidence suggests that TNF-α is a cytokine with a critical role in the pathogenesis of NAFLD. Although, the production of TNF-α may be an early event during the course of nonalcoholic fatty liver (NAFL), TNF-α may play a more substantial role in the pathogenesis of nonalcoholic steatohepatitis (NASH) and NAFLD-associated fibrosis. Moreover, TNF-α may potentiate hepatic insulin resistance, thus interconnecting inflammatory with metabolic signals and possibly contributing to the development of NAFLD-related comorbidities, including cardiovascular disease, hepatocellular carcinoma, and extra-hepatic malignancies. In clinical terms, TNF-α is probably associated with the severity of NAFLD; circulating TNF-α gradually increases from controls to patients with NAFL, and then, to patients with NASH. Given this potential association, various therapeutic interventions (obeticholic acid, peroxisome proliferator-activated receptors, sodium-glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, probiotics, synbiotics, rifaximin, vitamin E, pentoxifylline, ursodeoxycholic acid, fibroblast growth factor-21, n-3 polyunsaturated fatty acids, statins, angiotensin receptor blockers) have been evaluated for their effect on TNF-α and NAFLD. Interestingly, anti-TNF biologics have shown favorable metabolic and hepatic effects, which may open a possible therapeutic window for the management of advanced NAFLD. The potential key pathogenic role of TNF-α in NAFLD warrants further investigation and may have important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Second Department of Internal Medicine, 424 General Military Hospital, Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Mik P, Barannikava K, Surkova P. Biased Quantification of Rat Liver Fibrosis-Meta-Analysis with Practical Recommendations and Clinical Implications. J Clin Med 2023; 12:5072. [PMID: 37568474 PMCID: PMC10420125 DOI: 10.3390/jcm12155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
Collapse
Affiliation(s)
- Patrik Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Biomedical Center and Department of Histology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Katsiaryna Barannikava
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Polina Surkova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
5
|
Inia JA, Stokman G, Pieterman EJ, Morrison MC, Menke AL, Verschuren L, Caspers MPM, Giera M, Jukema JW, van den Hoek AM, Princen HMG. Atorvastatin Attenuates Diet-Induced Non-Alcoholic Steatohepatitis in APOE*3-Leiden Mice by Reducing Hepatic Inflammation. Int J Mol Sci 2023; 24:ijms24097818. [PMID: 37175538 PMCID: PMC10178767 DOI: 10.3390/ijms24097818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with metabolic syndrome are often prescribed statins to prevent the development of cardiovascular disease. Conversely, data on their effects on non-alcoholic steatohepatitis (NASH) are lacking. We evaluated these effects by feeding APOE*3-Leiden mice a Western-type diet (WTD) with or without atorvastatin to induce NASH and hepatic fibrosis. Besides the well-known plasma cholesterol lowering (-30%) and anti-atherogenic effects (severe lesion size -48%), atorvastatin significantly reduced hepatic steatosis (-22%), the number of aggregated inflammatory cells in the liver (-80%) and hepatic fibrosis (-92%) compared to WTD-fed mice. Furthermore, atorvastatin-treated mice showed less immunohistochemically stained areas of inflammation markers. Atorvastatin prevented accumulation of free cholesterol in the form of cholesterol crystals (-78%). Cholesterol crystals are potent inducers of the NLRP3 inflammasome pathway and atorvastatin prevented its activation, which resulted in reduced expression of the pro-inflammatory cytokines interleukin (IL)-1β (-61%) and IL-18 (-26%). Transcriptome analysis confirmed strong reducing effects of atorvastatin on inflammatory mediators, including NLRP3, NFκB and TLR4. The present study demonstrates that atorvastatin reduces hepatic steatosis, inflammation and fibrosis and prevents cholesterol crystal formation, thereby precluding NLRP3 inflammasome activation. This may render atorvastatin treatment as an attractive approach to reduce NAFLD and prevent progression into NASH in dyslipidemic patients.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | - Geurt Stokman
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Elsbet J Pieterman
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
- Netherlands Heart Institute, 3511 EP Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| |
Collapse
|
6
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Helal KM, Cahyadi H, Taylor JN, Okajima A, Tabata K, Kumamoto Y, Mochizuki K, Itoh Y, Takamatsu T, Tanaka H, Fujita K, Komatsuzaki T, Harada Y. Raman imaging of rat nonalcoholic fatty liver tissues reveals distinct biomolecular states. FEBS Lett 2023. [PMID: 36807196 DOI: 10.1002/1873-3468.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/20/2023]
Abstract
An essential challenge in diagnosing states of nonalcoholic fatty liver disease (NAFLD) is the early prediction of progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) before the disease progresses. Histological diagnoses of NAFLD rely on the appearance of anomalous tissue morphologies, and it is difficult to segment the biomolecular environment of the tissue through a conventional histopathological approach. Here, we show that hyperspectral Raman imaging provides diagnostic information on NAFLD in rats, as spectral changes among disease states can be detected before histological characteristics emerge. Our results demonstrate that Raman imaging of NAFLD can be a useful tool for histopathologists, offering biomolecular distinctions among tissue states that cannot be observed through standard histopathological means.
Collapse
Affiliation(s)
- Khalifa Mohammad Helal
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Japan.,Department of Mathematics, Comilla University, Cumilla, Bangladesh
| | - Harsono Cahyadi
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - J Nicholas Taylor
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Akira Okajima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Koji Tabata
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan.,Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, Dijon Cedex, France
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
8
|
Li H, Wang S, Wang S, Yu H, Yu W, Ma X, He X. Atorvastatin Inhibits High-Fat Diet-Induced Lipid Metabolism Disorders in Rats by Inhibiting Bacteroides Reduction and Improving Metabolism. Drug Des Devel Ther 2022; 16:3805-3816. [PMID: 36349306 PMCID: PMC9637332 DOI: 10.2147/dddt.s379335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The prevalence of hyperlipidemia and related illnesses is on its rise, and atorvastatin is the frequently used hypolipidemic agent. However, there is still uncertainty about the mechanisms, especially the relationship between the lipid-lowering effect, intestinal microbiome, and metabolic profiles. We aim to intensively explain the mechanism of the hypolipidemic effect of atorvastatin through multi-omics perspective of intestinal microbiome and metabolomics. METHODS Multi-omics methods play an increasingly important role in the analysis of intestinal triggers and evaluation of metabolic disorders such as obesity, hyperlipidemia, and diabetes. Therefore, we were prompted to explore intestinal triggers, underlying biomarkers, and potential intervention targets of atorvastatin in the treatment of dyslipidemia through multi-omics. To achieve this, SPF Wistar rats were fed a high-fat diet or normal diet for 8 weeks. Atorvastatin was then administered to high-fat diet-fed rats. RESULTS By altering intestinal microbiome, a high-fat diet can affect feces and plasma metabolic profiles. Treatment with atorvastatin possibly increases the abundance of Bacteroides, thereby improving "propanoate metabolism" and "glycine, serine and threonine metabolism" in feces and plasma, and contributing to blood lipid reduction. CONCLUSION Our study elucidated the intestinal triggers and metabolites of high-fat diet-induced dyslipidemia from the perspective of intestinal microbiome and metabolomics. It equally identified potential intervention targets of atorvastatin. This further explains the mechanism of the hypolipidemic effect of atorvastatin from a multi-omics perspective.
Collapse
Affiliation(s)
- Huimin Li
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,National Human Genetic Resources Center; National Research Institute for Health and Family Planning; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shue Wang
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hai Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Wenhao Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaomin Ma
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China,Correspondence: Xiaodong He, Tel/Fax +86 531 88382554, Email
| |
Collapse
|
9
|
Takemura M, Mochizuki K, Harada Y, Okajima A, Hayakawa M, Dai P, Itoh Y, Tanaka H. Label-free Assessment of the Nascent State of Rat Non-alcoholic Fatty Liver Disease Using Spontaneous Raman Microscopy. Acta Histochem Cytochem 2022; 55:57-66. [PMID: 35509867 PMCID: PMC9043435 DOI: 10.1267/ahc.22-00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous Raman microscopy, which can detect molecular vibrations in cells and tissues, could be a useful tool for the label-free assessment of non-alcoholic fatty liver disease (NAFLD). However, it is unclear whether it can be used to evaluate the nascent state of NAFLD. To address this, we analyzed the Raman spectra of rat liver tissues in the nascent state of NAFLD upon excitation at 532 nm. Raman and histochemical analyses were performed of liver tissues from rats fed a high-fat, high-cholesterol diet (HFHCD). Raman microscopic imaging analysis of formalin-fixed thin tissue slices showed hepatic steatosis, as revealed by the Raman band at 2,854 cm-1, whereas lipid droplets were not detectable by hematoxylin-eosin staining of images until 3 days after feeding a HFHCD. Raman signals of retinol at 1,588 cm-1 emitted from hepatic stellate cells were distributed alongside hepatic cords; the retinol content rapidly decreased after feeding a HFHCD, whereas hepatic lipid content increased inversely. Raman microscopic analysis of the surface of fresh ex vivo livers enabled early detection of lipid accumulation after a 1-day feeding a HFHCD. In conclusion, spontaneous Raman microscopy can be applied to the label-free evaluation of the nascent state of NAFLD liver tissues.
Collapse
Affiliation(s)
- Masashi Takemura
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Akira Okajima
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| |
Collapse
|
10
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
11
|
Atorvastatin Modulates Bile Acid Homeostasis in Mice with Diet-Induced Nonalcoholic Steatohepatitis. Int J Mol Sci 2021; 22:ijms22126468. [PMID: 34208774 PMCID: PMC8235314 DOI: 10.3390/ijms22126468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) play a significant role in the pathophysiology of nonalcoholic steatohepatitis (NASH). The present study evaluates the modulation of bile acid metabolomics by atorvastatin, a cholesterol-lowering agent commonly used to treat cardiovascular complications accompanying NASH. NASH was induced in mice by 24 weeks of consuming a high–saturated fat, high-fructose, and high-cholesterol diet (F), with atorvastatin administered orally (20 mg/kg/day) during the last three weeks. Biochemical and histological analyses confirmed the effectiveness of the F diet in inducing NASH. Untreated NASH animals had significantly reduced biliary secretion of BA and increased fecal excretion of BA via decreased apical sodium-dependent bile salt transporter (Asbt)-mediated reabsorption. Atorvastatin decreased liver steatosis and inflammation in NASH animals consistently with a reduction in crucial lipogenic enzyme stearoyl–coenzyme A (CoA) desaturase-1 and nuclear factor kappa light chain enhancer of activated B-cell pro-inflammatory signaling, respectively. In this group, atorvastatin also uniformly enhanced plasma concentration, biliary secretion and fecal excretion of the secondary BA, deoxycholic acid (DCA). However, in the chow diet–fed animals, atorvastatin decreased plasma concentrations of BA, and reduced BA biliary secretions. These changes stemmed primarily from the increased fecal excretion of BA resulting from the reduced Asbt-mediated BA reabsorption in the ileum and suppression of synthesis in the liver. In conclusion, our results reveal that atorvastatin significantly modulates BA metabolomics by altering their intestinal processing and liver synthesis in control and NASH mice.
Collapse
|
12
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Statins, toxicity, and their adverse effects via oxidative imbalance. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
He XL, He YM, Zhang D, Li HS, Zhang Q, Yuan SS, Zhang Z, Wang YY, Liu CH, Fan CH, Li YH, Zheng M, Yang HJ, Zhou P. Efficacy and Mechanism of a Chinese Classic Prescription of Yueju in Treating Nonalcoholic Steatohepatitis and Protecting Hepatocytes from Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8888040. [PMID: 33178326 PMCID: PMC7644301 DOI: 10.1155/2020/8888040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/03/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Yueju, a famous classic Chinese prescription, has been extensively used in treating depression syndromes for hundreds of years. Recent studies have reported that Yueju showed good effects in treating metabolic diseases, such as obesity and hyperlipidemia. Nonalcoholic steatohepatitis (NASH), which leads to cirrhosis and severe cardiovascular diseases, is closely linked to obesity and abnormal lipid metabolism. In this study, Yueju could decrease the levels of alanine aminotransferase, aspartate transaminase, triglyceride, cholesterol, and low-density lipoprotein-C but increase the high-density lipoprotein-C in the serum of the NASH rat model induced by high-fat and high-cholesterol diet. Yueju could alleviate hepatosteatosis by increasing the phosphorylation of acetyl-CoA carboxylase and inhibiting the expression of fatty acid synthase and stearoyl-CoA desaturase 1. Yueju downregulated the expression of α-smooth muscle actin and collagen type 1A1, ameliorating the liver fibrilization. Yueju could also protect the hepatocytes from apoptosis by upregulating antiapoptosis protein Bcl-2 and X-linked inhibitor of apoptosis protein and downregulating apoptotic proteins Bax and cleaved poly ADP-ribose polymerase. Thus, Yueju could improve liver function, regulate lipid metabolism, alleviate hepatosteatosis and fibrosis, and protect hepatocytes from apoptosis against NASH. Yueju may be used as an alternative effective medicine for NASH treatment.
Collapse
Affiliation(s)
- Xiao-Li He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan-Ming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong-Shan Li
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, 41 Xibei Road, Ningbo 315010, China
| | - Qiang Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Sha-Sha Yuan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan-Yan Wang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Cheng-Hao Liu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chao-Hua Fan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yun-Hao Li
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Min Zheng
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong-Jie Yang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
15
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
16
|
Wikan N, Tocharus J, Sivasinprasasn S, Kongkaew A, Chaichompoo W, Suksamrarn A, Tocharus C. Capsaicinoid nonivamide improves nonalcoholic fatty liver disease in rats fed a high-fat diet. J Pharmacol Sci 2020; 143:188-198. [PMID: 32414691 DOI: 10.1016/j.jphs.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease that causes morbidity associated with metabolic syndrome. NAFLD is a worldwide problem and represents a major cause of liver injury, which can lead to liver cell death. We investigated the effects of nonivamide (pelargonic acid vanillylamide, PAVA; 1 mg/kg) and rosuvastatin (RSV; 10 mg/kg) on hepatic steatosis induced by a high-fat diet (HFD). Male Sprague-Dawley rats were fed a HFD for 16 weeks then received PAVA or RSV for 4 additional weeks. We examined the metabolic parameters, function, fat content, histological alterations, reactive oxygen species production, and apoptotic cell death of the liver, in addition to the expression of the following important molecules: transient receptor potential cation channel subfamily V member 1 (TRPV1) phosphorylation of sterol regulatory element binding protein (pSREBP-1c/SREBP-1c), total and membrane glucose transporter 2 (GLUT2), 4-hydroxynonenal (4-HNE), and cleaved caspase-3. HFD-induced hepatic steatosis was associated with significantly increased morphological disorganization, injury markers, oxidative stress, lipid peroxidation, and apoptosis. However, metabolic dysfunction and hepatic injury were reduced by RSV and PAVA treatment. PAVA regulated lipid deposition, improved insulin resistance, and decreased oxidative stress and apoptotic cell death. Therefore, PAVA represents a promising therapeutic approach for treating metabolic disorders in patients with NAFLD.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
17
|
Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK, Hurt RT. Evolution of NAFLD and Its Management. Nutr Clin Pract 2019; 35:72-84. [PMID: 31840865 DOI: 10.1002/ncp.10449] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) is estimated to be 25% and continues to rise worldwide in the setting of the obesity epidemic. This increase is especially concerning because NAFLD is often a progressive disease that can be associated with significant complications such as liver cirrhosis, hepatocellular carcinoma, and an increase in liver-related and overall mortality. Because of the devastating complications and comorbidities, NAFLD is a very costly disease for the healthcare system, with estimated annual direct medical costs exceeding $100 billion in the United States alone. Given this progressive course, it is imperative to make the diagnosis in patients with risk factors (metabolic syndrome, weight gain, and insulin resistance/diabetes). Once the diagnosis is made, the focus should shift to treatment and monitoring for the development of associated complications. Given that currently no pharmaceutical intervention is approved for the treatment of NAFLD, focus shifts instead to mitigation of risk factors through avoidance of foods that are rich in red meat, trans fats, refined carbohydrates, and high-fructose corn syrup; are low fiber; and have high energy density. The landmark of treatment, however, continues to be weight loss and improvement of insulin resistance, often through a multimodality approach. The current manuscript reviews the clinical phenotypes of NAFLD, its risk factors, and pathogenesis, as well as treatment options including lifestyle modifications and dietary interventions, medical therapies, endoscopic bariatric interventions, and bariatric surgery.
Collapse
Affiliation(s)
- Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Saketh Velapati
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Janki Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Todd A Kellogg
- Division of Breast, Endocrine, Metabolic, and GI surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan T Hurt
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA.,Division of Breast, Endocrine, Metabolic, and GI surgery, Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Klaebel JH, Skjødt M, Skat-Rørdam J, Rakipovski G, Ipsen DH, Schou-Pedersen AMV, Lykkesfeldt J, Tveden-Nyborg P. Atorvastatin and Vitamin E Accelerates NASH Resolution by Dietary Intervention in a Preclinical Guinea Pig Model. Nutrients 2019; 11:E2834. [PMID: 31752351 PMCID: PMC6893630 DOI: 10.3390/nu11112834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Despite affecting millions of patients worldwide, no pharmacological treatment has yet proved effective against non-alcoholic steatohepatitis (NASH) induced liver fibrosis. Current guidelines recommend lifestyle modifications including reductions in dietary energy intake. Recently, therapy with atorvastatin and vitamin E (vitE) has been recommended, although clinical studies on the resolution of hepatic fibrosis are inconclusive. Targeting NASH-induced hepatic end-points, this study evaluated the effects of atorvastatin and vitE alone or in combination with a dietary intervention in the guinea pig NASH model. Guinea pigs (n = 72) received 20 weeks of high fat feeding before allocating to four groups: continued HF feeding (HF), HF diet with atorvastatin and vitE (HF+), low-fat diet (LF) and low-fat with atorvastatin and vitE (LF+), for four or eight weeks of intervention. Both LF and LF+ decreased liver weight, cholesterol and plasma dyslipidemia. LF+ further improved hepatic histopathological hallmarks (p < 0.05), liver injury markers aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (p < 0.05) and reduced the expression of target genes of hepatic inflammation and fibrosis (p < 0.05), underlining an increased effect on NASH resolution in this group. Collectively, the data support an overall beneficial effect of diet change, and indicate that atorvastatin and vitE therapy combined with a diet change act synergistically in improving NASH-induced endpoints.
Collapse
Affiliation(s)
- Julie Hviid Klaebel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| | - Mia Skjødt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| | - Josephine Skat-Rørdam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| | - Günaj Rakipovski
- CV Research, Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark;
| | - David H. Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| | - Anne Marie V. Schou-Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark; (J.H.K.); (M.S.); (J.S.-R.); (D.H.I.); (A.M.V.S.-P.); (J.L.)
| |
Collapse
|
19
|
Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS One 2019; 14:e0210068. [PMID: 30689650 PMCID: PMC6349312 DOI: 10.1371/journal.pone.0210068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Tabernaemontana divaricate, attenuates hepatic fibrosis in mice. We have previously shown that CnP inhibits non-alcoholic steatohepatitis (NASH) using a methionine-choline-deficient (MCD) diet-fed mouse model. However, little is known about the CnP mediated inhibition of hepatic steatosis in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse models. CnP (0.5 and 1 μg/g/body weight) was co-administered along with a high-fat diet to male BALB/c mice. After nine weeks of administering the high-fat diet, hepatic steatosis, triglyceride, and hepatic fat metabolism-related markers were examined. Administration of a high-fat diet for 9 weeks was found to induce hepatic steatosis. CnP dose-dependently attenuated the high-fat diet-induced hepatic steatosis. The diet also attenuated hepatic peroxisome proliferator-activated receptor alpha (PPARA) mRNA levels. PPARA is known to be involved in β-oxidation. CnP upregulated the mRNA levels of hepatic PPARA and its target genes, such as carnitine palmitoyl transferase 1 (CPT1) and CPT2, in a dose-dependent manner in the liver. Furthermore, levels of hepatic β-hydroxybutyrate, which is a type of ketone body, were increased by CnP in a dose-dependent manner. Finally, CnP increased the expression of the autophagosomal marker LC3-II and decreased the expression of p62, which are known to be selectively degraded during autophagy. These results indicate that CnP inhibits hepatic steatosis through the stimulation of β-oxidation and autophagy in the liver. Therefore, CnP might prove to be a suitable therapeutic target for NAFLD.
Collapse
|
20
|
Taketani H, Nishikawa T, Nakajima H, Kodo K, Sugimoto S, Aoi W, Horike SI, Meguro-Horike M, Ishiba H, Seko Y, Umemura A, Yamaguchi K, Moriguchi M, Yasui K, Itoh Y. Aging-associated impairment in metabolic compensation by subcutaneous adipose tissue promotes diet-induced fatty liver disease in mice. Diabetes Metab Syndr Obes 2019; 12:1473-1492. [PMID: 31692556 PMCID: PMC6711723 DOI: 10.2147/dmso.s214093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome, and its progression is associated with aging-associated impairment in metabolic homeostasis. Recently, energy metabolism in adipose tissue has been the subject of renewed interest, because significant energy expenditure can be induced in cells derived from white adipose tissue progenitors, in addition to brown adipose tissue (BAT). Here we evaluated whether aging-associated change in various adipose tissue depots affects the progression of NAFLD. METHODS Six-week-old male C57BL/6NCrSlc mice were fed control chow (C) or high-fat diet (60% fat; HF) for 12 or 24 weeks (12w/C, 12w/HF, 24w/C and 24w/HF groups, respectively) or switched from C to HF diet at 18 weeks of age (24w/C/HF group) and fed for a further 24 weeks. Some 24w/HF mice received a subcutaneous transplantation of adipose progenitors (106 cells/mouse) from young donor mice. Basal energy expenditure, glucose tolerance, and liver and adipose tissue histology were then evaluated. In addition, features of senescence and the capacity of adipose progenitors to "brown" were compared in mice of various ages. RESULTS 12w/HF mice demonstrated compensation in the forms of hypertrophy of interscapular classical BAT and the appearance of subcutaneous beige adipocytes, consistent with improved metabolic homeostasis. In contrast, 24w/HF and 24w/C/HF mice developed obesity, glucose intolerance, and severe NAFLD, with accelerated senescence and loss of adipose progenitors in subcutaneous fat tissues. Recruitment of adipose progenitors ameliorated these findings in 24w/HF mice. CONCLUSION Impaired metabolic compensation in adipose tissue resulted in the progression of NAFLD, which was associated with aging-related deterioration in adipose progenitors. A new approach targeting adipose tissue progenitors might represent a potential strategy for the prevention of NAFLD.
Collapse
Affiliation(s)
- Hiroyoshi Taketani
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Correspondence: Taichiro NishikawaKyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachidouri Hirokouji Agaru, Kamigyo-ku, Kyoto602-8566, JapanTel +81 75 251 5519Fax +81 75 251 1017Email
| | - Hisakazu Nakajima
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shin-ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Hiroshi Ishiba
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohichiroh Yasui
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Rattanachaisit P, Susantitaphong P, Thanapirom K, Chaiteerakij R, Komolmit P, Tangkijvanich P, Treeprasertsuk S. Statin use and histopathological change in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. ASIAN BIOMED 2018. [DOI: 10.1515/abm-2018-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver disease. The primary treatment of NAFLD by statins has not been clearly elucidated.
Objectives
To evaluate the effectiveness of statin use in patients with biopsy-proven NAFLD or non-alcoholic steatohepatitis on the change in liver histology.
Methods
We searched MEDLINE, Scopus, Google Scholar, and the Cochrane Central Register of Controlled Trials for clinical trials and observational studies investigating the effects of statins on histological change regardless of type or dosage from inception to December 2015. Random-effect model meta-analyses were used to compute changes in outcomes of interest. The study protocol was registered in advance with the International Prospective Register of Systematic Reviews (PROSPERO 2016 CRD42016033132).
Results
We identified 6 studies (111 patients), representing 5 cohort studies and 1 randomized controlled clinical trial. There was significant decrease in steatosis grading with a standardized mean difference of –2.580 (95% confidence interval [CI] –4.623 to –0.536; P = 0.013) and NAFLD activity score standardized mean difference of –1.488 (95% CI –2.506 to –0.471; P = 0.004). However, there was no significant change in fibrosis stage (0.156; 95% CI –0.553 to 0.865; P = 0.667).
Conclusions
Statin use can possibly reduce the extent of steatohepatitis but not the stage of fibrosis. Further randomized controlled studies to assess histological evidence with adequate sample size and duration are required in order to establish the role of statin as a primary treatment of NAFLD.
Collapse
Affiliation(s)
- Pakkapon Rattanachaisit
- Department of Medicine, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
- The Thai Red Cross Society , Bangkok 10330 Bangkok , Thailand
| | - Paweena Susantitaphong
- Department of Medicine, Division of Nephrology, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
- The Thai Red Cross Society , Bangkok 10330 Bangkok , Thailand
| | - Kessarin Thanapirom
- Department of Medicine, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
- The Thai Red Cross Society , Bangkok 10330 Bangkok , Thailand
| | - Roongruedee Chaiteerakij
- Department of Medicine, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
- The Thai Red Cross Society , Bangkok 10330 Bangkok , Thailand
| | - Piyawat Komolmit
- Department of Medicine, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
- The Thai Red Cross Society , Bangkok 10330 Bangkok , Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
| | - Sombat Treeprasertsuk
- Department of Medicine, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 Bangkok , Thailand
- The Thai Red Cross Society , Bangkok 10330 Bangkok , Thailand
| |
Collapse
|
22
|
Gurzeler E, Aavik E, Laine A, Valkama T, Niskanen H, Huusko J, Kaikkonen MU, Ylä-Herttuala S. Therapeutic effects of rosuvastatin in hypercholesterolemic prediabetic mice in the absence of low density lipoprotein receptor. Biochim Biophys Acta Gen Subj 2018; 1863:481-490. [PMID: 30508567 DOI: 10.1016/j.bbagen.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/27/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Statins are effective drugs used to prevent and treat cardiovascular diseases but their effects in the absence of low density lipoprotein receptor (LDLR) and on the risk of diabetes are not yet well characterized. The aim of this study was to clarify systemic and pleiotropic effects of rosuvastatin on cardiovascular and diabetic phenotypes. IGF-II/LDLR-/-ApoB100/100 hypercholesterolemic prediabetic mice were used to test the effects of rosuvastatin on plasma glucose, insulin, lipids, atherosclerosis and liver steatosis. To get a more comprehensive view about changes in gene expression RNA-sequencing was done from the liver. Rosuvastatin significantly reduced plasma cholesterol in hypercholesterolemic mice in the absence of LDLR but had no effects on atherosclerosis at aortic sinus level or in coronary arteries. Rosuvastatin also significantly reduced liver steatosis without any harmful effects on glucose or insulin metabolism. RNA-sequencing showed relatively specific effects of rosuvastatin on genes involved in cholesterol metabolism together with a significant anti-inflammatory gene expression profile in the liver. In addition, significant changes were found in the expression of Perilipin 4 and 5 which are involved in lipid droplet formation in the liver. For the first time it could be shown that Tribbles proteins are affected by rosuvastatin treatment in the hyperlipidemic mice. Rosuvastatin had several positive effects on hypercholesterolemic mice showing early signs of diabetes, many of which are unrelated to cholesterol and lipoprotein metabolism. These results increase our understanding about the systemic and pleiotropic effects of rosuvastatin in the absence of LDLR expression.
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Laine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Teemu Valkama
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jenni Huusko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, 70211 Kuopio, Finland; Heart Center, Kuopio University Hospital, 70211 Kuopio, Finland.
| |
Collapse
|
23
|
The potential role of vascular alterations and subsequent impaired liver blood flow and hepatic hypoxia in the pathophysiology of non-alcoholic steatohepatitis. Med Hypotheses 2018; 122:188-197. [PMID: 30593409 DOI: 10.1016/j.mehy.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disease ranging from steatosis to steatohepatitis (NASH) and fibrosis, but the underlying pathophysiological mechanisms remain largely unknown. As there is currently no approved pharmacological therapy and the prevalence of NAFLD keeps increasing, understanding of its pathophysiology is crucial. We hypothesise that vascular alterations in early NAFLD play a role in the progression of the disease by inducing an increased intrahepatic vascular resistance and consequently relative hypoxia in the liver. Evidence of the detrimental effects of hypoxia in NAFLD has already been observed in liver surgery, where the outcomes of steatotic livers after ischaemia-reperfusion are worse than in healthy livers, and in obstructive sleep apnoea, which is an independent risk factor of NAFLD. Moreover, early histological damage in NAFLD is situated in the pericentral zone, which is also the first zone to be affected by a decreased oxygen tension because of the unique hepatic vacsular anatomy that causes the pericentral oxygen tension to be the lowest. Angiogenesis is also a characteristic of NAFLD, driven by hypoxia-induced mechanisms, as demonstrated in both animal models and in humans with NAFLD. Relative hypoxia is most probably induced by impaired blood flow to the liver, caused by increased intrahepatic vascular resistance. An increased intrahepatic vascular resistance early in the development of disease has been convincingly demonstrated in several animal models of NAFLD, whereas an increased portal pressure, a consequence of increased intrahepatic vascular resistance, has been proven in patients with NAFLD. Animal studies demonstrated a decreased intrahepatic effect of vasodilators and an increased reactivity to vasoconstrictors that results in an increased intrahepatic vascular resistance, thus the presence of a functional component. Pharmacological products that target vasoregulation can hence improve the intrahepatic vascular resistance and this might prevent or reverse progression of NAFLD, representing an important therapeutic option to study. Some of the drugs currently under evaluation in clinical trials for NASH have interesting properties related to the hepatic vasculature. Some other interesting drugs have been tested in animal models but further study in patients with NAFLD is warranted. In summary, in this paper we summarise the evidence that leads to the hypothesis that an increased intrahepatic vascular resistance and subsequent parenchymal hypoxia in early NAFLD is an important pathophysiological driving mechanism for the progression of the disease.
Collapse
|
24
|
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, Podechard N. Membrane Remodeling as a Key Player of the Hepatotoxicity Induced by Co-Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae. Biomolecules 2018; 8:biom8020026. [PMID: 29757947 PMCID: PMC6023014 DOI: 10.3390/biom8020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties of the plasma membrane in vitro thus causing membrane remodeling—changes in membrane fluidity and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane’s remodeling was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which could be considered as a good target mechanism for developing combination therapy to deal with steatohepatitis.
Collapse
Affiliation(s)
- Muhammad Imran
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Odile Sergent
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Arnaud Tête
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Isabelle Gallais
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Martine Chevanne
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| |
Collapse
|
25
|
Imprialos KP, Stavropoulos K, Doumas M, Skalkou A, Zografou I, Athyros VG. The potential role of statins in treating liver disease. Expert Rev Gastroenterol Hepatol 2018; 12:331-339. [PMID: 29431526 DOI: 10.1080/17474124.2018.1439379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins are commonly use for the management of dyslipidemia, worldwide. Various studies have demonstrated that statins offer significant reduction in the risk of cardiovascular morbidity and mortality. However, this class of drugs has been implicated in potential liver toxicity, thus has been considered as a 'forbidden-drug' in patients with increased liver enzymes. Areas covered: Studies have shown that statins might offer clinical benefits in the setting of viral hepatitis, progression of cirrhosis, and hepatocellular carcinoma. More importantly, this class of drugs was shown to ameliorate liver histological (in both imaging and biopsy studies) and functional alterations in patients with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. In addition, two large survival studies have demonstrated reduction in the risk for cardiovascular events with statin use in patients with elevated transaminase levels at baseline. Expert commentary: These benefits were of greater extent compared with patients with normal liver function tests at baseline. However, current international guidelines seem to neglect these findings and are not including statins in the management algorithm of patients with non-alcoholic fatty liver disease or steatohepatitis. Future randomized studies providing biopsy-proven benefits will establish the use of statins in the prevention of cardiovascular events and therapeutic algorithm of these patients.
Collapse
Affiliation(s)
- Konstantinos P Imprialos
- a Second Propedeutic Department of Internal Medicine , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Konstantinos Stavropoulos
- a Second Propedeutic Department of Internal Medicine , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Michael Doumas
- b Veterans Affairs Medical Center , George Washington University , Washington , DC , USA
| | - Anastasia Skalkou
- a Second Propedeutic Department of Internal Medicine , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Ioanna Zografou
- a Second Propedeutic Department of Internal Medicine , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Vasilios G Athyros
- a Second Propedeutic Department of Internal Medicine , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
26
|
Catalán Ú, López de las Hazas MC, Piñol C, Rubió L, Motilva MJ, Fernandez-Castillejo S, Solà R. Hydroxytyrosol and its main plasma circulating metabolites attenuate the initial steps of atherosclerosis through inhibition of the MAPK pathway. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Zhang W, Yang X, Chen Y, Hu W, Liu L, Zhang X, Liu M, Sun L, Liu Y, Yu M, Li X, Li L, Zhu Y, Miao QR, Han J, Duan Y. Activation of hepatic Nogo-B receptor expression-A new anti-liver steatosis mechanism of statins. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:177-190. [PMID: 29217477 DOI: 10.1016/j.bbalip.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression.
Collapse
Affiliation(s)
- Wenwen Zhang
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Xiaoxiao Yang
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; Key Laboratory of Immuno Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Wenquan Hu
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lipei Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaomeng Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mengyang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Miao Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Jihong Han
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Life Sciences, Nankai University, Tianjin, China.
| | - Yajun Duan
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
28
|
Vargas JI, Arrese M, Shah VH, Arab JP. Use of Statins in Patients with Chronic Liver Disease and Cirrhosis: Current Views and Prospects. Curr Gastroenterol Rep 2017; 19:43. [PMID: 28752475 DOI: 10.1007/s11894-017-0584-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to analyze the current evidence regarding the use of statins in patients with chronic liver disease and cirrhosis. RECENT FINDINGS Chronic liver disease (CLD), cirrhosis, and its complications, including hepatocellular carcinoma (HCC), are significant public health problems. The use of statins in patients with CLD has been a matter of concern, and physicians are often reluctant to its prescription in these patients. This mainly relates to the potential occurrence of drug-induced liver injury. However, newer evidence from pre-clinical and clinical research has shown that statins are drugs with a potentially beneficial impact on the natural history of cirrhosis, on portal hypertension, and in HCC prevention. In this review, we summarize current evidence regarding the influence of statins in endothelial dysfunction in CLD, their ability to modulate hepatic fibrogenesis, and their vasoprotective effects in portal hypertension; we also focus on existing data about the impact of statins in cirrhosis development, progression, and complications and critically assess the current concerns about its use in patients with CLD.
Collapse
Affiliation(s)
- Jose Ignacio Vargas
- Department of Gastroenterology School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Department of Gastroenterology School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| | - Juan Pablo Arab
- Department of Gastroenterology School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Marinho TDS, Kawasaki A, Bryntesson M, Souza-Mello V, Barbosa-da-Silva S, Aguila MB, Mandarim-de-Lacerda CA. Rosuvastatin limits the activation of hepatic stellate cells in diet-induced obese mice. Hepatol Res 2017; 47:928-940. [PMID: 27653239 DOI: 10.1111/hepr.12821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
AIM The aim of this study was to investigate the effects of rosuvastatin in a model of diet-induced obesity and non-alcoholic fatty liver disease, with attention to the activation of hepatic stellate cells (HSCs). METHOD Male C57BL/6 mice received a control diet (C; 10% energy as lipids) or a high-fat diet (HF; 50% energy as lipids) for 12 weeks, followed by 7 weeks of treatment. Group CR received control diet + rosuvastatin; group HFR received high-fat diet + rosuvastatin. RESULTS The HF group showed higher insulin, total cholesterol, triacylglycerol, and leptin levels than the C group, all of which were significantly diminished by rosuvastatin in the HFR group. The HF group had greater steatosis and activated HSCs than the C group, whereas rosuvastatin diminished the steatosis (less 21%, P < 0.001) and significantly inhibited the activation of the HSCs in the HFR group compared to the HF group. The sterol regulatory element-binding protein-1 and the peroxisome proliferator-activated receptor (PPAR)-γ protein expressions were increased in HF animals and reduced after treatment in the HFR group. By contrast, low PPAR-α and carnitine palmitoyltransferase-1 expressions were found in the HF group, and were restored by rosuvastatin treatment in the HFR group. CONCLUSION Rosuvastatin mitigated hepatic steatosis by modulating PPAR balance, favoring PPAR-α over PPAR-γ downstream effects. The effects were accompanied by a diminishing of insulin resistance, the anti-inflammatory adipokine profile, and HSC activation, avoiding non-alcoholic fatty liver disease progression and non-alcoholic steatohepatitis onset in this model.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Kawasaki
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Ding YH, Ma Y, Qian LY, Xu Q, Wang LH, Huang DS, Zou H. Linking atrial fibrillation with non-alcoholic fatty liver disease: potential common therapeutic targets. Oncotarget 2017; 8:60673-60683. [PMID: 28948002 PMCID: PMC5601170 DOI: 10.18632/oncotarget.19522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atrial fibrillation (AF) are common chronic non-infectious diseases with rising incidences. NAFLD is an independent risk factor for the onset of AF, after adjusting potentially related factors. The pathogenesis of these diseases share several mechanisms including reduced adiponectin level, insulin resistance, and renin angiotensin aldosterone system (RAAS) activation, in addition to activation of common disease pathways that promote inflammation, oxidative stress, and fibrosis. Furthermore, statins and RAAS blockers exert therapeutic effects concurrently on NAFLD and AF. The common pathogenesis of NAFLD and AF may serve as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yuan Ma
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Lin-Yan Qian
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Qiang Xu
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Li-Hong Wang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
31
|
Selim A, khalaf MM, Gad AM, Abd El-Raouf OM. Evaluation of the possible nephroprotective effects of vitamin E and rosuvastatin in amikacin-induced renal injury in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28683192 DOI: 10.1002/jbt.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmed Selim
- Department of Pharmacology; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Marwa M. khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
| | - Amany M. Gad
- Department of Pharmacology; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Ola M. Abd El-Raouf
- Department of Pharmacology; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| |
Collapse
|
32
|
Nakade Y, Sakamoto K, Yamauchi T, Inoue T, Kobayashi Y, Yamamoto T, Ishii N, Ohashi T, Sumida Y, Ito K, Nakao H, Fukuzawa Y, Umezawa K, Yoneda M. Conophylline inhibits non-alcoholic steatohepatitis in mice. PLoS One 2017; 12:e0178436. [PMID: 28594915 PMCID: PMC5464552 DOI: 10.1371/journal.pone.0178436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/12/2017] [Indexed: 01/18/2023] Open
Abstract
Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Ervatamia microphylla, attenuates hepatic fibrosis in mice. However, little is known about whether CnP inhibits steatosis, inflammation, and fibrosis in non-alcoholic steatohepatitis (NASH) in mice. A methionine-choline-deficient (MCD) diet was administered to male db/db mice as a NASH model, and CnP (1 μg/kg/d) was co-administered. Eight weeks after the commencement of the MCD diet, hepatic steatosis, inflammation, and fibrosis, and hepatic fat metabolism-, inflammation-, and fibrosis-related markers were examined. Feeding on an MCD for 8 weeks induced hepatic steatosis, inflammation, and fibrosis. CnP significantly attenuated the MCD-induced increases in hepatic steatosis, as well as hepatic inflammation and fibrosis. The MCD diet increased hepatic transforming growth factor-β (TGF-β) mRNA levels, which are correlated with hepatic steatosis, inflammation, and fibrosis. The diet also attenuated acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1 (CPT1) mRNA levels, which are involved in β-oxidation. The putative mechanism of the CnP effect involves reduced hepatic TGF-β mRNA levels, and increased mRNA levels of hepatic peroxisome proliferator-activated receptor (PPAR) α and its target genes ACOX1 and CPT1. The results of this study indicate that CnP inhibits steatohepatitis, possibly through the inhibition of hepatic TGF-β mRNA levels, and induces an increase in PPARα mRNA levels, resulting in the attenuation of hepatic steatosis, inflammation, and fibrosis in mice. CnP might accordingly be a suitable therapeutic option for NASH.
Collapse
Affiliation(s)
- Yukiomi Nakade
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
- * E-mail:
| | - Kazumasa Sakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Taeko Yamauchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tadahisa Inoue
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takaya Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Norimitsu Ishii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiko Ohashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshio Sumida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kiyoaki Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Haruhisa Nakao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshitaka Fukuzawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University, Nagakute, Aichi, Japan
| | - Masashi Yoneda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
33
|
Athyros VG, Alexandrides TK, Bilianou H, Cholongitas E, Doumas M, Ganotakis ES, Goudevenos J, Elisaf MS, Germanidis G, Giouleme O, Karagiannis A, Karvounis C, Katsiki N, Kotsis V, Kountouras J, Liberopoulos E, Pitsavos C, Polyzos S, Rallidis LS, Richter D, Tsapas AG, Tselepis AD, Tsioufis K, Tziomalos K, Tzotzas T, Vasiliadis TG, Vlachopoulos C, Mikhailidis DP, Mantzoros C. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71:17-32. [PMID: 28521870 DOI: 10.1016/j.metabol.2017.02.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is characterized by accumulation of fat (>5% of the liver tissue), in the absence of alcohol abuse or other chronic liver diseases. It is closely related to the epidemic of obesity, metabolic syndrome or type 2 diabetes mellitus (T2DM). NAFLD can cause liver inflammation and progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis or hepatocellular cancer (HCC). Nevertheless, cardiovascular disease (CVD) is the most common cause of death in NAFLD/NASH patients. Current guidelines suggest the use of pioglitazone both in patients with T2DM and in those without. The use of statins, though considered safe by the guidelines, have very limited use; only 10% in high CVD risk patients are on statins by tertiary centers in the US. There are data from several animal studies, 5 post hoc analyses of prospective long-term survival studies, and 5 rather small biopsy proven NASH studies, one at baseline and on at the end of the study. All these studies provide data for biochemical and histological improvement of NAFLD/NASH with statins and in the clinical studies large reductions in CVD events in comparison with those also on statins and normal liver. Ezetimibe was also reported to improve NAFLD. Drugs currently in clinical trials seem to have potential for slowing down the evolution of NAFLD and for reducing liver- and CVD-related morbidity and mortality, but it will take time before they are ready to be used in everyday clinical practice. The suggestion of this Expert Panel is that, pending forthcoming randomized clinical trials, physicians should consider using a PPARgamma agonist, such as pioglitazone, or, statin use in those with NAFLD/NASH at high CVD or HCC risk, alone and/or preferably in combination with each other or with ezetimibe, for the primary or secondary prevention of CVD, and the avoidance of cirrhosis, liver transplantation or HCC, bearing in mind that CVD is the main cause of death in NAFLD/NASH patients.
Collapse
Affiliation(s)
- Vasilios G Athyros
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece.
| | - Theodore K Alexandrides
- Department of Internal Medicine, Division of Endocrinology, University of Patras Medical School, Patras, Greece
| | - Helen Bilianou
- Lipid Clinic, Cardiology Department, Tzaneio Hospital, Piraeus, Greece
| | - Evangelos Cholongitas
- 4th Prop. Department of Internal Medicine, Hippocration Hospital, Division of Gastroenterology and Hepatology, Medical School of Aristotle University Thessaloniki, Greece
| | - Michael Doumas
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Emmanuel S Ganotakis
- Department of Internal Medicine University Hospital of Crete, University of Crete Medical School, Heraklion, Greece
| | - John Goudevenos
- Department of Cardiology Medical School, University Hospital of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Georgios Germanidis
- 1st Department of Internal Medicine, Gastroenterology and Hepatology Section, AHEPA Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Olga Giouleme
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Asterios Karagiannis
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Charalambos Karvounis
- First Cardiology Department, AHEPA Hospital, Medical School, Aristotle University Thessaloniki, Greece
| | - Niki Katsiki
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Jannis Kountouras
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Evangelos Liberopoulos
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos Pitsavos
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios Polyzos
- 2nd Prop. Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Loukianos S Rallidis
- 2nd Department of Cardiology, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Apostolos G Tsapas
- 2nd Department of Internal Medicine-Diabetology, Hippocration Hospital, Aristotle University Thessaloniki, Medical School, Thessaloniki, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tziomalos
- 1st Prop. Department of Internal Medicine, AHEPA Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | | | - Themistoklis G Vasiliadis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Charalambos Vlachopoulos
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis. Biomed Pharmacother 2017; 86:205-212. [DOI: 10.1016/j.biopha.2016.11.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
|
35
|
Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, Yan BP, Liu T, Li G, Wong WT, Keung W, Tse G. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 2017; 16:12. [PMID: 28095860 PMCID: PMC5240327 DOI: 10.1186/s12944-016-0402-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis represents a significant cause of morbidity and mortality in both the developed and developing countries. Animal models of atherosclerosis have served as valuable tools for providing insights on its aetiology, pathophysiology and complications. They can be used for invasive interrogation of physiological function and provide a platform for testing the efficacy and safety of different pharmacological therapies. Compared to studies using human subjects, animal models have the advantages of being easier to manage, with controllable diet and environmental risk factors. Moreover, pathophysiological changes can be induced either genetically or pharmacologically to study the harmful effects of these interventions. There is no single ideal animal model, as different systems are suitable for different research objectives. A good understanding of the similarities and differences to humans enables effective extrapolation of data for translational application. In this article, we will examine the different mouse models for the study and elucidation of the pathophysiological mechanisms underlying atherosclerosis. We also review recent advances in the field, such as the role of oxidative stress in promoting endoplasmic reticulum stress, mitochondrial dysfunction and mitochondrial DNA damage, which can result in vascular inflammation and atherosclerosis. Finally, novel therapeutic approaches to reduce vascular damage caused by chronic inflammation using microRNA and nano-medicine technology, are discussed.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | | | | | - Olivia Tsz Ling To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR People’s Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| |
Collapse
|
36
|
Ma Z, Chu L, Liu H, Li J, Zhang Y, Liu W, Dai J, Yi J, Gao Y. Paeoniflorin alleviates non-alcoholic steatohepatitis in rats: Involvement with the ROCK/NF-κB pathway. Int Immunopharmacol 2016; 38:377-84. [PMID: 27351828 DOI: 10.1016/j.intimp.2016.06.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Paeoniflorin (PF) is one of the major active ingredients of Paeonia lactiflora and has been suggested as a dietary therapy for non-alcoholic steatohepatitis (NASH); however, the involved mechanism remains obscure. The present work investigates the anti-inflammatory effects of PF and explores the possible mechanisms in a rat model of NASH. Male Sprague-Dawley rats were fed a high-cholesterol and high-fat (HCF) diet for 12weeks to induce the NASH model, and PF (20mg/kg/d) was orally administered to the NASH rats during the last four weeks of the study. Our results showed that PF significantly decreased serum alanine transferase (ALT) and aspartate transferase (AST) activities and also significantly decreased total levels of cholesterol (TC), low-density lipoprotein (LDL), and tumor necrosis factor alpha (TNF-α) (all P<0.05). Moreover, PF ameliorated the hepatic steatosis and inflammation and inhibited CD68 and transforming growth factor beta (TGF-β)-1 expression (both P<0.05). PF also down-regulated the activity of Rho kinase (ROCK) and suppressed the activation of the nuclear factor (NF)-κB signaling pathway in liver tissue. PF has liver protective and anti-inflammatory effects in HCF diet-induced NASH rats. The possible mechanisms may be associated with inhibition of the ROCK/NF-κB signaling pathway in the NASH liver.
Collapse
Affiliation(s)
- Zhihong Ma
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun 336000, China; Department of Immunology and Pathobiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li Chu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongying Liu
- Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jieru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yuanyuan Zhang
- Department of Pharmaceutics, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Wentai Liu
- Department of Immunology and Pathobiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jun Dai
- Department of Immunology and Pathobiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun 336000, China.
| | - Yue Gao
- Pharmacology and Toxicology Department, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
37
|
Rosuvastatin: Beyond the cholesterol-lowering effect. Pharmacol Res 2016; 107:1-18. [PMID: 26930419 DOI: 10.1016/j.phrs.2016.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/13/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022]
|
38
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
39
|
Tziomalos K, Athyros VG, Paschos P, Karagiannis A. Nonalcoholic fatty liver disease and statins. Metabolism 2015; 64:1215-23. [PMID: 26234727 DOI: 10.1016/j.metabol.2015.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of elevated transaminase levels and affects approximately one third of the general population. Patients with NAFLD are at increased risk for cardiovascular events, which represent the leading cause of death in this population. We discuss the safety and efficacy of statins in this population. MATERIALS/METHODS We reviewed the most recent literature on the safety of statins in patients with NAFLD and on their effects on liver histology and cardiovascular events. RESULTS It appears that statins can be safely administered to patients with NAFLD, including those with elevated transaminase levels (<3 times the upper limit of normal). Post-hoc analyses of randomized controlled trials also suggest that statins might reduce cardiovascular morbidity in this population. On the other hand, there are few and controversial data on the effects of statins on liver histology in patients with NAFLD. CONCLUSIONS Statins appear to be safe and might also reduce cardiovascular events in patients with NAFLD. Ongoing and future studies will clarify whether statins might also have a role in the treatment of NAFLD.
Collapse
Affiliation(s)
- Konstantinos Tziomalos
- First Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| | - Vasilios G Athyros
- Second Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Paschalis Paschos
- Second Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
40
|
Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1765-78. [DOI: 10.1016/j.bbadis.2015.05.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
41
|
El-Ashmawy NE, El-Bahrawy HA, Shamloula MM, Ibrahim AO. Antifibrotic effect of AT-1 blocker and statin in rats with hepatic fibrosis. Clin Exp Pharmacol Physiol 2015; 42:979-987. [PMID: 26175230 DOI: 10.1111/1440-1681.12446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 01/30/2023]
Abstract
Hepatic fibrosis is an outcome of chronic liver injury. Angiotensin II (ANG II) may play a role in the pathogenesis of hepatic fibrosis. Certain drugs such as ACE inhibitors, ANG II antagonists, and even statins could interfere with the renin angiotensin system and modulate its deleterious effects. This study was carried out to investigate the possible role of losartan and atorvastatin in liver fibrosis. Liver fibrosis was induced in rats by i.p. injection of 50% CCl4 twice per week for 8 weeks. The rats intoxicated with CCl4 were divided into four groups: fibrosis control; losartan group; atorvastatin group; and co-treated group. A fifth group of normal healthy rats served as a control group. The results showed that losartan and atorvastatin, either alone or in combination, significantly decreased ALT, AST, hyaluronic acid and hydroxyproline levels in their groups compared to those of the fibrosis control group. A significant decrease in TGF-β was found in the losartan and co-treated groups but not in the atorvastatin group. These biochemical data were supported by liver histopathology and α-SMA. The results indicate that the combined treatment with both losartan and atorvastatin produced a greater effect than either drug alone and proved a beneficial role in inhibiting or reversing liver fibrosis.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maha M Shamloula
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
42
|
Leong XF, Ng CY, Jaarin K. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528757. [PMID: 26064920 PMCID: PMC4433641 DOI: 10.1155/2015/528757] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 01/07/2023]
Abstract
Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies.
Collapse
Affiliation(s)
- Xin-Fang Leong
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
- Department of Clinical Oral Biology, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Chun-Yi Ng
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Kamsiah Jaarin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Stojsavljević S, Gomerčić Palčić M, Virović Jukić L, Smirčić Duvnjak L, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:18070-18091. [PMID: 25561778 PMCID: PMC4277948 DOI: 10.3748/wjg.v20.i48.18070] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/22/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient with no history of alcohol abuse or other causes for secondary hepatic steatosis. The pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) has not been fully elucidated. The “two-hit“ hypothesis is probably a too simplified model to elaborate complex pathogenetic events occurring in patients with NASH. It should be better regarded as a multiple step process, with accumulation of liver fat being the first step, followed by the development of necroinflammation and fibrosis. Adipose tissue, which has emerged as an endocrine organ with a key role in energy homeostasis, is responsive to both central and peripheral metabolic signals and is itself capable of secreting a number of proteins. These adipocyte-specific or enriched proteins, termed adipokines, have been shown to have a variety of local, peripheral, and central effects. In the current review, we explore the role of adipocytokines and proinflammatory cytokines in the pathogenesis of NAFLD. We particularly focus on adiponectin, leptin and ghrelin, with a brief mention of resistin, visfatin and retinol-binding protein 4 among adipokines, and tumor necrosis factor-α, interleukin (IL)-6, IL-1, and briefly IL-18 among proinflammatory cytokines. We update their role in NAFLD, as elucidated in experimental models and clinical practice.
Collapse
|
44
|
Lim S, Barter P. Antioxidant effects of statins in the management of cardiometabolic disorders. J Atheroscler Thromb 2014; 21:997-1010. [PMID: 25132378 DOI: 10.5551/jat.24398] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Redox systems are key players in vascular health. A shift in redox homeostasis-that results in an imbalance between reactive oxygen species (ROS) generation and endogenous antioxidant defenses has the potential to create a state of oxidative stress that subsequently plays a role in the pathogenesis of a number of diseases, including those of the cardiovascular and metabolic system. Statins, which are primarily used to reduce the concentration of low-density lipoprotein cholesterol, have also been shown to reduce oxidative stress by modulating redox systems. Studies conducted both in vitro and in vivo support the role of oxidative stress in the development of atherosclerosis and cardiovascular diseases. Oxidative stress may also be responsible for various diabetic complications and the development of fatty liver. Statins reduce oxidative stress by blocking the generation of ROS and reducing the NAD+/NADH ratio. These drugs also have effects on nitric oxide synthase, lipid peroxidation and the adiponectin levels. It is possible that the antioxidant properties of statins contribute to their protective cardiovascular effects, independent of the lipid-lowering actions of these agents. However, possible adverse effects of statins on glucose homeostasis may be related to the redox system. Therefore, studies investigating the modulation of redox signaling by statins are warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine
| | | |
Collapse
|
45
|
Kostapanos MS, Rizos CV, Elisaf MS. Benefit–Risk Assessment of Rosuvastatin in the Treatment of Atherosclerosis and Related Diseases. Drug Saf 2014; 37:481-500. [PMID: 24788803 DOI: 10.1007/s40264-014-0169-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael S Kostapanos
- Department of Internal Medicine, Medical School, University of Ioannina, St. Niarchou Avenue, 45110, Ioannina, Greece
| | | | | |
Collapse
|
46
|
Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders. Cytokine 2014; 66:133-42. [PMID: 24491813 DOI: 10.1016/j.cyto.2013.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/14/2013] [Accepted: 12/30/2013] [Indexed: 01/12/2023]
Abstract
Hepatic lipid dysregulation can lead to spectrum of metabolic disease conditions including metabolic syndrome (MS), fatty liver and diabetes. Liver lipids are regulated by a complex set of extra-hepatic and intra-hepatic factors including cellular cross-talk with variety of cells, inducing various cytokines. Interleukin 6(IL-6) is a pleiotropic cytokine that exerts both pro-inflammatory and anti-inflammatory effects on hepatic system through either JNK/STAT or ERK/MAPK signaling. Although, IL-6 has shown to protect the liver from fat storage in both rodent and human models and various IL-6(-/-) studies have supported this notion yet a question remains over its deleterious pro-inflammatory effects on hepatocytes. IL-6 ability to produce reactive oxygen species (ROS) and subsequently disturb the hepatic lipid balance has created a conundrum. Furthermore, IL-6 has shown to behave differently under different disease states within hepatocytes and hence, modulating the hepatic lipids accordingly. This review deals with the role of IL-6 on hepatic lipid metabolism and analyzes various data presented on this topic.
Collapse
|
47
|
Fruci B, Giuliano S, Mazza A, Malaguarnera R, Belfiore A. Nonalcoholic Fatty liver: a possible new target for type 2 diabetes prevention and treatment. Int J Mol Sci 2013; 14:22933-66. [PMID: 24264040 PMCID: PMC3856099 DOI: 10.3390/ijms141122933] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Several lines of evidence have indicated a pathogenic role of insulin resistance, and a strong association with type 2 diabetes (T2MD) and metabolic syndrome. Importantly, NAFLD appears to enhance the risk for T2MD, as well as worsen glycemic control and cardiovascular disease in diabetic patients. In turn, T2MD may promote NAFLD progression. The opportunity to take into account NAFLD in T2MD prevention and care has stimulated several clinical studies in which antidiabetic drugs, such as metformin, thiazolidinediones, GLP-1 analogues and DPP-4 inhibitors have been evaluated in NAFLD patients. In this review, we provide an overview of preclinical and clinical evidences on the possible efficacy of antidiabetic drugs in NAFLD treatment. Overall, available data suggest that metformin has beneficial effects on body weight reduction and metabolic parameters, with uncertain effects on liver histology, while pioglitazone may improve liver histology. Few data, mostly preclinical, are available on DPP4 inhibitors and GLP-1 analogues. The heterogeneity of these studies and the small number of patients do not allow for firm conclusions about treatment guidelines, and further randomized, controlled studies are needed.
Collapse
Affiliation(s)
- Barbara Fruci
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | | | | | | | | |
Collapse
|
48
|
Wang W, Zhao C, Zhou J, Zhen Z, Wang Y, Shen C. Simvastatin ameliorates liver fibrosis via mediating nitric oxide synthase in rats with non-alcoholic steatohepatitis-related liver fibrosis. PLoS One 2013; 8:e76538. [PMID: 24098525 PMCID: PMC3788732 DOI: 10.1371/journal.pone.0076538] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022] Open
Abstract
Background Simvastatin exerts pleiotropic effects on cardiovascular system. However, its effect on non-alcoholic fatty liver disease, especially the liver fibrosis, remains obscure. We aimed to clarify the relationship between simvastatin and liver fibrosis both in vivo and in vitro. Methods A High-fat diet was given to establish rat models with non-alcoholic steatohepatitis (NASH)-related liver fibrosis and simvastatin (4mg·kg-1·d-1) was administrated intragastrically until hepatic histological findings confirmed the appearance of fibrosis. Human hepatic stellate cell (HSC) line lx-2 cells were cultured in an adipogenic differentiating mixture (ADM) and then were treated with transforming growth factorβ1 (TGF-β1), served as a positive control, simvastatin, TGF-β1 plus simvastatin, Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a inhibitor of nitric oxide synthase), and L-NAME plus simvastatin, respectively. The expressions of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and Collagen І as well as cellular α-smooth muscle actin (α-SMA) were measured by real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot in liver tissue and HSC. Results With the progress of NASH-related fibrosis, hepatic mRNA and protein expressions of iNOS, α-SMA, and Collagen І were increased while those of eNOS were decreased. Compared with model rats in 24th week group, rats in simvastatin group had less expressions of iNOS, α-SMA, and Collagen І and more expressions of eNOS. In vitro, LX-2 cells acquired quiescent phenotype when cultured in ADM, and TGF-β1 could activate the quiescent HSC. Simvastatin inhibited LX-2 cells activation due to TGF-β1 or L-NAME by increasing the expression of eNOS and decreasing the expression of iNOS. Conclusions Simvastatin improves the prognosis of NASH-related fibrosis by increasing the expression of eNOS, decreasing the expression of iNOS, and inhibiting the activation of HSC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Infectious Diseases, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Caiyan Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- * E-mail:
| | - Junying Zhou
- Department of Infectious Diseases, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhen Zhen
- Department of Infectious Diseases, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yadong Wang
- Department of Infectious Diseases, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chuan Shen
- Department of Infectious Diseases, the Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|