1
|
Cooper KK, Mourkas E, Schiaffino F, Parker CT, Pinedo Vasquez TN, Garcia Bardales PF, Peñataro Yori P, Paredes Olortegui M, Manzanares Villanueva K, Romaina Cachique L, Silva Delgado H, Hitchings MD, Huynh S, Sheppard SK, Pascoe B, Kosek MN. Sharing of cmeRABC alleles between C. coli and C. jejuni associated with extensive drug resistance in Campylobacter isolates from infants and poultry in the Peruvian Amazon. mBio 2025; 16:e0205424. [PMID: 39727415 PMCID: PMC11796421 DOI: 10.1128/mbio.02054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Campylobacter is a serious health threat because of the rapid progressive evolution of antimicrobial resistance and efficient transmission from zoonotic as well as human sources. Resistance to fluoroquinolones and macrolides is particularly concerning as this compromises the two most effective oral antibiotic agents currently available for human campylobacteriosis. Here, we report on the prevalence and worldwide distribution of the operon cmeRABC, which encodes an efflux pump conferring high levels of combined resistance to fluoroquinolones and macrolides in Campylobacter strains isolated from poultry (n = 75) and children (n = 177). These mutations were found to be highly prevalent in isolates from poultry (62.7%) and children (29.4%) in Iquitos, Peru. We investigated the population structure of genes in the cmeRABC operon and identified a potential genetic bottleneck for the cmeA and cmeB genes. While most cmeB alleles segregate by species, alleles associated with high resistance to fluoroquinolones and macrolides were found in both Campylobacter jejuni and Campylobacter coli. We inferred that the likely ancestry of these alleles was from C. jejuni and was later acquired by C. coli through recombination. Publicly accessible global genomic data from 16,120 Campylobacter genomes identified these mutations in approximately 6% of C. jejuni and C. coli isolates globally, with higher prevalence in samples from poultry in many countries, including Peru. Our findings suggest that these extensively drug-resistant Campylobacter strains originated from C. jejuni in poultry.IMPORTANCEAntimicrobial resistance in Campylobacter is a growing public health concern, driven by the rapid evolution and zoonotic transmission of resistant strains. This study focuses on mutations in the cmeABC efflux pump, which confer high resistance to fluoroquinolones and macrolides, the two most effective oral antibiotics for human campylobacteriosis. By analyzing genomes from poultry and children in Iquitos, Peru, as well as global genomic data sets, we identified a significant prevalence of these resistance-associated mutations, particularly in poultry and children. Our findings suggest that these mutations originated in Campylobacter jejuni and spread to C. coli through recombination. Globally, these mutations are found in approximately 6% of isolates, with higher prevalence in poultry in multiple countries. This research underscores the critical role of genomic epidemiology in understanding the origins, evolution, and dissemination of antimicrobial resistance and highlights the need to address poultry as a reservoir for resistant Campylobacter.
Collapse
Affiliation(s)
- Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Evangelos Mourkas
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Francesca Schiaffino
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | | | | | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| | | | | | | | - Hermann Silva Delgado
- School of Human Medicine, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottsville, Virginia, USA
- Asociacion Benefica Prisma, Iquitos, Peru
| |
Collapse
|
2
|
Cribb DM, Biggs PJ, McLure AT, Wallace RL, French NP, Glass K, Kirk MD. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolates recovered from human and poultry in Australia and New Zealand, 2017 to 2019. Microb Genom 2024; 10:001319. [PMID: 39499243 PMCID: PMC11893275 DOI: 10.1099/mgen.0.001319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
We used genomic and epidemiological data to assess and compare the population structure and origins of Campylobacter, a major foodborne pathogen, in two neighbouring countries with strong trade and cultural links, similar poultry production systems and frequent movement of people and food products. The most common sequence types (STs) differed between Australia and New Zealand, with many unique to each country. Over half of all STs were represented by a single isolate. Multidrug-resistant (MDR) genotypes were detected in 0.8% of all samples, with no MDR isolates detected in poultry. Quinolone and tetracycline resistant ST6964 was prevalent in New Zealand (10.6% of C. jejuni). Closely related isolates suggested some similar food sources or contacts. We have shown that there is little genetic overlap in human and poultry STs of Campylobacter between the countries, which highlights that this common foodborne pathogen has domestic origins in Australia and New Zealand.
Collapse
Affiliation(s)
- Danielle M. Cribb
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Patrick J. Biggs
- Massey University, Tāwharau Ora|School of Veterinary Science, Palmerston North, New Zealand
- Massey University, School of Natural Sciences, Palmerston North, New Zealand
- Massey University, New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - Angus T. McLure
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Rhiannon L. Wallace
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Nigel P. French
- Massey University, Tāwharau Ora|School of Veterinary Science, Palmerston North, New Zealand
| | - Kathryn Glass
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| | - Martyn D. Kirk
- Australian National University, National Centre for Epidemiology and Population Health, Canberra, Australia
| |
Collapse
|
3
|
Pascoe B, Futcher G, Pensar J, Bayliss SC, Mourkas E, Calland JK, Hitchings MD, Joseph LA, Lane CG, Greenlee T, Arning N, Wilson DJ, Jolley KA, Corander J, Maiden MCJ, Parker CT, Cooper KK, Rose EB, Hiett K, Bruce BB, Sheppard SK. Machine learning to attribute the source of Campylobacter infections in the United States: A retrospective analysis of national surveillance data. J Infect 2024; 89:106265. [PMID: 39245152 DOI: 10.1016/j.jinf.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES Integrating pathogen genomic surveillance with bioinformatics can enhance public health responses by identifying risk and guiding interventions. This study focusses on the two predominant Campylobacter species, which are commonly found in the gut of birds and mammals and often infect humans via contaminated food. Rising incidence and antimicrobial resistance (AMR) are a global concern, and there is an urgent need to quantify the main routes to human infection. METHODS During routine US national surveillance (2009-2019), 8856 Campylobacter genomes from human infections and 16,703 from possible sources were sequenced. Using machine learning and probabilistic models, we target genetic variation associated with host adaptation to attribute the source of human infections and estimate the importance of different disease reservoirs. RESULTS Poultry was identified as the primary source of human infections, responsible for an estimated 68% of cases, followed by cattle (28%), and only a small contribution from wild birds (3%) and pork sources (1%). There was also evidence of an increase in multidrug resistance, particularly among isolates attributed to chickens. CONCLUSIONS National surveillance and source attribution can guide policy, and our study suggests that interventions targeting poultry will yield the greatest reductions in campylobacteriosis and spread of AMR in the US. DATA AVAILABILITY All sequence reads were uploaded and shared on NCBI's Sequence Read Archive (SRA) associated with BioProjects; PRJNA239251 (CDC / PulseNet surveillance), PRJNA287430 (FSIS surveillance), PRJNA292668 & PRJNA292664 (NARMS) and PRJNA258022 (FDA surveillance). Publicly available genomes, including reference genomes and isolates sampled worldwide from wild birds are associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755, PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879, PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Contiguous assemblies of all genome sequences compared are available at Mendeley data (assembled C. coli genomes doi: 10.17632/gxswjvxyh3.1; assembled C. jejuni genomes doi: 10.17632/6ngsz3dtbd.1) and individual project and accession numbers can be found in Supplementary tables S1 and S2, which also includes pubMLST identifiers for assembled genomes. Figshare (10.6084/m9.figshare.20279928). Interactive phylogenies are hosted on microreact separately for C. jejuni (https://microreact.org/project/pascoe-us-cjejuni) and C. coli (https://microreact.org/project/pascoe-us-ccoli).
Collapse
Affiliation(s)
- Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Georgina Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Johan Pensar
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Sion C Bayliss
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica K Calland
- Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology, Oslo, Norway
| | - Matthew D Hitchings
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Lavin A Joseph
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charlotte G Lane
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tiffany Greenlee
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Nicolas Arning
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| | - Daniel J Wilson
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom; Department for Continuing Education, University of Oxford, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jukka Corander
- Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology, Oslo, Norway; Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Erica B Rose
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kelli Hiett
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, USA
| | - Beau B Bruce
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel K Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Beeloo R, Zomer A, Deorowicz S, Dutilh B. Graphite: painting genomes using a colored de Bruijn graph. NAR Genom Bioinform 2024; 6:lqae142. [PMID: 39445080 PMCID: PMC11497850 DOI: 10.1093/nargab/lqae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/02/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
The recent growth of microbial sequence data allows comparisons at unprecedented scales, enabling the tracking of strains, mobile genetic elements, or genes. Querying a genome against a large reference database can easily yield thousands of matches that are tedious to interpret and pose computational challenges. We developed Graphite that uses a colored de Bruijn graph (cDBG) to paint query genomes, selecting the local best matches along the full query length. By focusing on the best genomic match of each query region, Graphite reduces the number of matches while providing the most promising leads for sequence tracking or genomic forensics. When applied to hundreds of Campylobacter genomes we found extensive gene sharing, including a previously undetected C. coli plasmid that matched a C. jejuni chromosome. Together, genome painting using cDBGs as enabled by Graphite, can reveal new biological phenomena by mitigating computational hurdles.
Collapse
Affiliation(s)
- Rick Beeloo
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Sebastian Deorowicz
- Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, Gliwice PL-44100, Poland
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
5
|
Gharbi M, Tiss R, Hamdi C, Hamrouni S, Maaroufi A. Occurrence of Florfenicol and Linezolid Resistance and Emergence of optrA Gene in Campylobacter coli Isolates from Tunisian Avian Farms. Int J Microbiol 2024; 2024:1694745. [PMID: 39135629 PMCID: PMC11319055 DOI: 10.1155/2024/1694745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Campylobacter species, especially C. coli and C. jejuni, have been associated with a range of human gastrointestinal diseases. During the last two decades, due to the irrational use of antibiotics in poultry farms, high rates of antimicrobial resistance have been globally reported in C. coli and C. jejuni isolates. Recently, acquired linezolid-resistance mechanisms have been reported in Campylobacter spp. isolates, which is a cause of concern to human health. In this study, we performed a retrospective analysis of 139 C. coli isolates previously collected from broilers (n = 41), laying hens (n = 53), eggs (n = 4), and environment (n = 41) to detect acquired genes implicated in linezolid resistance. Isolates were tested for their susceptibility to antimicrobial agents using the Kirby-Bauer disk diffusion assay. Chloramphenicol- and linezolid-resistant isolates were subjected to PCR screening for the following genes: fexA, fexB, floR, RE-cmeABC, cfrA, and optrA. The genetic relatedness of eight multidrug-resistant isolates was determined by multilocus sequence typing (MLST). Among the 139 C. coli isolates, high rates of resistance (57.55%-100%) were detected toward nalidixic acid, ciprofloxacin, erythromycin, azithromycin, ampicillin, chloramphenicol, linezolid, and kanamycin. Among 135 chloramphenicol-resistant isolates, the optrA, cfr, fexA floR, RE-cmeABC, and fexB genes were detected in 124 (124/135, 91.85%), 108 (80%), 105 (77.7%), 64 (47.4%), 56 (41, 48%), and 27 (20%) isolates, respectively. In addition, the majority of isolates harbored more than one of these genes. The selected eight isolates belonged to the same sequence type ST13450, which is a new sequence type (ST), not belonging to ST828 and ST1150 complexes. In conclusion, the emergence of optrA gene in Campylobacter spp. isolates makes this genus an optrA reservoir and vector to other pathogens such as Staphylococcus aureus and Enterococcus spp., which is a cause of concern for human and animal health.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Rihab Tiss
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Chadlia Hamdi
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Safa Hamrouni
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
6
|
Taylor AJ, Yahara K, Pascoe B, Ko S, Mageiros L, Mourkas E, Calland JK, Puranen S, Hitchings MD, Jolley KA, Kobras CM, Bayliss S, Williams NJ, van Vliet AHM, Parkhill J, Maiden MCJ, Corander J, Hurst LD, Falush D, Keim P, Didelot X, Kelly DJ, Sheppard SK. Epistasis, core-genome disharmony, and adaptation in recombining bacteria. mBio 2024; 15:e0058124. [PMID: 38683013 PMCID: PMC11237541 DOI: 10.1128/mbio.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Collapse
Affiliation(s)
- Aidan J Taylor
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Seungwon Ko
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, United Kingdom
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Laurence D Hurst
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
| | - Paul Keim
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Xavier Didelot
- Department of Statistics, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J Kelly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
7
|
Avila Cartes J, Bonizzoni P, Ciccolella S, Della Vedova G, Denti L, Didelot X, Monti DC, Pirola Y. RecGraph: recombination-aware alignment of sequences to variation graphs. Bioinformatics 2024; 40:btae292. [PMID: 38676570 PMCID: PMC11256948 DOI: 10.1093/bioinformatics/btae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
MOTIVATION Bacterial genomes present more variability than human genomes, which requires important adjustments in computational tools that are developed for human data. In particular, bacteria exhibit a mosaic structure due to homologous recombinations, but this fact is not sufficiently captured by standard read mappers that align against linear reference genomes. The recent introduction of pangenomics provides some insights in that context, as a pangenome graph can represent the variability within a species. However, the concept of sequence-to-graph alignment that captures the presence of recombinations has not been previously investigated. RESULTS In this paper, we present the extension of the notion of sequence-to-graph alignment to a variation graph that incorporates a recombination, so that the latter are explicitly represented and evaluated in an alignment. Moreover, we present a dynamic programming approach for the special case where there is at most a recombination-we implement this case as RecGraph. From a modelling point of view, a recombination corresponds to identifying a new path of the variation graph, where the new arc is composed of two halves, each extracted from an original path, possibly joined by a new arc. Our experiments show that RecGraph accurately aligns simulated recombinant bacterial sequences that have at most a recombination, providing evidence for the presence of recombination events. AVAILABILITY AND IMPLEMENTATION Our implementation is open source and available at https://github.com/AlgoLab/RecGraph.
Collapse
Affiliation(s)
- Jorge Avila Cartes
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Simone Ciccolella
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Gianluca Della Vedova
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Luca Denti
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Xavier Didelot
- Department of Statistics and School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Davide Cesare Monti
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Yuri Pirola
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| |
Collapse
|
8
|
Patané JSL, Martins J, Setubal JC. A Guide to Phylogenomic Inference. Methods Mol Biol 2024; 2802:267-345. [PMID: 38819564 DOI: 10.1007/978-1-0716-3838-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. Phylogenomics has significant applications in fields such as evolutionary biology, systematics, comparative genomics, and conservation genetics, providing valuable insights into the origins and relationships of species and contributing to our understanding of biological diversity and evolution. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração/Heart Institute Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo São Paulo, São Paulo, SP, Brazil
| | - Joaquim Martins
- Integrative Omics group, Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - João Carlos Setubal
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Henaut-Jacobs S, Passarelli-Araujo H, Venancio TM. Comparative genomics and phylogenomics of Campylobacter unveil potential novel species and provide insights into niche segregation. Mol Phylogenet Evol 2023; 184:107786. [PMID: 37105244 DOI: 10.1016/j.ympev.2023.107786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Campylobacter is a bacterial genus associated with community outbreaks and gastrointestinal symptoms. Studies on Campylobacter generally focus on specific pathogenic species such as C. coli and C. jejuni. Currently, there are thousands of publicly available Campylobacter genomes, allowing a more complete assessment of the genus diversity. In this work, we report a network-based analysis of all available Campylobacter genomes to explore the genus structure and diversity, revealing potentially new species and elucidating genus features. We also hypothesize that the previously established Clade III of C. coli is in fact a novel species (referred here as Campylobacter spp12). Finally, we found a negative correlation between pangenome fluidity and saturation coefficient, with potential implications to the lifestyles of distinct Campylobacter species. Since pangenome analysis depends on the number of available genomes, this correlation could help estimate pangenome metrics of Campylobacter species with less sequenced genomes, helping understand their lifestyle and niche adaptation. Together, our results indicate that the Campylobacter genus should be re-evaluated, with particular attention to the interplay between genome structure and niche segregation.
Collapse
Affiliation(s)
- Sarah Henaut-Jacobs
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
10
|
Stoakes E, Turner K, Baker DJ, Suau Sans M, Yasir M, Kalmar L, Costigan R, Lott M, Grant AJ. Application of TraDIS to define the core essential genome of Campylobacter jejuni and Campylobacter coli. BMC Microbiol 2023; 23:97. [PMID: 37024800 PMCID: PMC10077673 DOI: 10.1186/s12866-023-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Campylobacter species are the major cause of bacterial gastroenteritis. As there is no effective vaccine, combined with the rapid increase in antimicrobial resistant strains, there is a need to identify new targets for intervention. Essential genes are those that are necessary for growth and/or survival, making these attractive targets. In this study, comprehensive transposon mutant libraries were created in six C. jejuni strains, four C. coli strains and one C. lari and C. hyointestinalis strain, allowing for those genes that cannot tolerate a transposon insertion being called as essential. Comparison of essential gene lists using core genome analysis can highlight those genes which are common across multiple strains and/or species. Comparison of C. jejuni and C. coli, the two species that cause the most disease, identified 316 essential genes. Genes of interest highlighted members of the purine pathway being essential for C. jejuni whilst also finding that a functional potassium uptake system is essential. Protein-protein interaction networks using these essential gene lists also highlighted proteins in the purine pathway being major 'hub' proteins which have a large number of interactors across the network. When adding in two more species (C. lari and C. hyointestinalis) the essential gene list reduces to 261. Within these 261 essential genes, there are many genes that have been found to be essential in other bacteria. These include htrB and PEB4, which have previously been found as core virulence genes across Campylobacter species in other studies. There were 21 genes which have no known function with eight of these being associated with the membrane. These surface-associated essential genes may provide attractive targets. The essential gene lists presented will help to prioritise targets for the development of novel therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ruby Costigan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Martin Lott
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
11
|
Santos LS, Rossi DA, Braz RF, Fonseca BB, Guidotti–Takeuchi M, Alves RN, Beletti ME, Almeida-Souza HO, Maia LP, Santos PDS, de Souza JB, de Melo RT. Roles of viable but non-culturable state in the survival of Campylobacter jejuni. Front Cell Infect Microbiol 2023; 13:1122450. [PMID: 37056707 PMCID: PMC10086134 DOI: 10.3389/fcimb.2023.1122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Despite being considered fragile and fastidious, Campylobacter jejuni is the most prevalent cause of foodborne bacterial gastroenteritis, and chicken meat is considered the main vehicle of transmission to humans. This agent can survive adverse conditions in the form of biofilms, but extreme stress (nutritional, oxidative and thermal) promotes the acquisition of a state called viable but not culturable (VBNC). The emergence of this pathogen worldwide and the recent international requirements in its control instigated us to qualitatively and quantitatively estimate the time required for the acquisition of the VBNC form in 27 strains of C. jejuni, characterize morphological aspects, determine its adaptive and invasive potential and perform comparative metabolomic evaluation. Extreme stress promoted the complete acquisition of the VBNC form in a mean time of 26 days. Starting from an average initial count of 7.8 log CFU/mL, the first four days determined the greatest average reduction of the culturable form of 3.2 log CFU/mL. The scanning and transmission image analyses showed a transition from the typical viable form (VT) to the VBNC form, with initial acquisition of the straight rod shape, followed by loss of the flagella and subdivision into two to 11 imperfect cocci arranged in a chain and rich in cellular content, until their individual release. RT-PCR identified the presence of ciaB and p19 transcripts in the 27 cultivable C. jejuni strains, a character maintained in the VBNC form only for p19 and in 59.3% (16/27) of the VBNC strains for the ciaB gene. The average inoculation of 1.8 log CFU/mL of C. jejuni VBNC into primary chicken embryo hepatocyte cells promoted the occurrence of apoptosis processes significantly after 24 hours of contact by one of the strains tested. In C. jejuni VBNC, we detected higher expression of metabolites linked to protective and adaptation mechanisms and of volatile organic precursor compounds indicative of metabolism interruption. The oscillations in the time of acquisition of the VBNC form together with the presence of transcripts for ciaB and p19, the identification of cell lysis and metabolites that ensure the maintenance of the pathogen alert to the fact that C. jejuni VBNC remains virulent and adapted to stress, which makes evident the potential danger of this latent form, which is not detectable by official methodologies.
Collapse
Affiliation(s)
- Leticia Silva Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | | | | | | | | | - Larissa Prado Maia
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
- *Correspondence: Roberta Torres de Melo,
| |
Collapse
|
12
|
Ferrari S, Ástvaldsson Á, Jernberg T, Stingl K, Messelhäußer U, Skarin H. Validation of PCR methods for confirmation and species identification of thermotolerant Campylobacter as part of EN ISO 10272 - Microbiology of the food chain - Horizontal method for detection and enumeration of Campylobacter spp. Int J Food Microbiol 2023; 388:110064. [PMID: 36610236 DOI: 10.1016/j.ijfoodmicro.2022.110064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
This article describes the outline and organisation of the validation of three multiplex PCR methods for species identification and/or confirmation of thermotolerant Campylobacter spp. The three PCR methods were validated against the reference method described in the EN ISO standard 10272:2017. The results of the PCR methods were compared against the reference method in a method comparison study and an interlaboratory study based on EN ISO 16140-6:2019. The performance, in terms of inclusivity and exclusivity, of each of the eight PCR targets were comparable to the performance of the reference method: close, equal, or better depending on the target. In total, all three PCR methods were concluded to be equally qualified as the reference method for molecular identification and/or confirmation of thermotolerant Campylobacter spp., C. jejuni, C. coli and C. lari isolated from the food chain and have been included in Amendment 1 of ISO 10272:2017.
Collapse
Affiliation(s)
| | | | | | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany
| | - Ute Messelhäußer
- Bavarian Health and Food Safety Authority, 91058 Erlangen, Bavaria, Germany
| | - Hanna Skarin
- National Veterinary Institute, 751 89 Uppsala, Sweden.
| |
Collapse
|
13
|
Didelot X. Phylogenetic Analysis of Bacterial Pathogen Genomes. Methods Mol Biol 2023; 2674:87-99. [PMID: 37258962 DOI: 10.1007/978-1-0716-3243-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of high-throughput sequencing technology has led to a significant reduction in the time and cost of sequencing whole genomes of bacterial pathogens. Studies can sequence and compare hundreds or even thousands of genomes within a given bacterial population. A phylogenetic tree is the most frequently used method of depicting the relationships between these bacterial pathogen genomes. However, the presence of homologous recombination in most bacterial pathogen species can invalidate the application of standard phylogenetic tools. Here we describe a method to produce phylogenetic analyses that accounts for the disruptive effect of recombination. This allows users to investigate the recombination events that have occurred, as well as to produce more meaningful phylogenetic analyses which recover the clonal genealogy representing the clonal relationships between genomes.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
14
|
Diop A, Torrance EL, Stott CM, Bobay LM. Gene flow and introgression are pervasive forces shaping the evolution of bacterial species. Genome Biol 2022; 23:239. [PMID: 36357919 PMCID: PMC9650840 DOI: 10.1186/s13059-022-02809-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although originally thought to evolve clonally, studies have revealed that most bacteria exchange DNA. However, it remains unclear to what extent gene flow shapes the evolution of bacterial genomes and maintains the cohesion of species. RESULTS Here, we analyze the patterns of gene flow within and between >2600 bacterial species. Our results show that fewer than 10% of bacterial species are truly clonal, indicating that purely asexual species are rare in nature. We further demonstrate that the taxonomic criterion of ~95% genome sequence identity routinely used to define bacterial species does not accurately represent a level of divergence that imposes an effective barrier to gene flow across bacterial species. Interruption of gene flow can occur at various sequence identities across lineages, generally from 90 to 98% genome identity. This likely explains why a ~95% genome sequence identity threshold has empirically been judged as a good approximation to define bacterial species. Our results support a universal mechanism where the availability of identical genomic DNA segments required to initiate homologous recombination is the primary determinant of gene flow and species boundaries in bacteria. We show that these barriers of gene flow remain porous since many distinct species maintain some level of gene flow, similar to introgression in sexual organisms. CONCLUSIONS Overall, bacterial evolution and speciation are likely shaped by similar forces driving the evolution of sexual organisms. Our findings support a model where the interruption of gene flow-although not necessarily the initial cause of speciation-leads to the establishment of permanent and irreversible species borders.
Collapse
Affiliation(s)
- Awa Diop
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Ellis L. Torrance
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Caroline M. Stott
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Louis-Marie Bobay
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| |
Collapse
|
15
|
Didelot X, Parkhill J. A scalable analytical approach from bacterial genomes to epidemiology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210246. [PMID: 35989600 PMCID: PMC9393561 DOI: 10.1098/rstb.2021.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses, depending on the proportion of cases for which genomes are available. A key feature of this approach is computational scalability and in particular the ability to process hundreds or thousands of genomes within a matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other advantages and disadvantages of the approach, as well as potential improvements and avenues for future research. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
16
|
Mouftah SF, Pascoe B, Calland JK, Mourkas E, Tonkin N, Lefevre C, Deuker D, Smith S, Wickenden H, Hitchings MD, Sheppard SK, Elhadidy M. Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Microb Genom 2022; 8. [PMID: 35675117 PMCID: PMC9455717 DOI: 10.1099/mgen.0.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ben Pascoe
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Chiang Mai University, Chiang Mai, Thailand
| | - Jessica K Calland
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Naomi Tonkin
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Charlotte Lefevre
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Danielle Deuker
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Sunny Smith
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Harry Wickenden
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | | | - Samuel K Sheppard
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
18
|
Genomic Screening of Antimicrobial Resistance Markers in UK and US Campylobacter Isolates Highlights Stability of Resistance over an 18-Year Period. Antimicrob Agents Chemother 2022; 66:e0168721. [PMID: 35404076 PMCID: PMC9112873 DOI: 10.1128/aac.01687-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are important bacterial causes of human foodborne illness. Despite several years of reduced antibiotics usage in livestock production in the United Kingdom (UK) and United States (US), a high prevalence of antimicrobial resistance (AMR) persists in Campylobacter. Both countries have instigated genome sequencing-based surveillance programs for Campylobacter, and in this study, we have identified AMR genes in 32,256 C. jejuni and 8,776 C. coli publicly available genome sequences to compare the prevalence and trends of AMR in Campylobacter isolated in the UK and US between 2001 and 2018. AMR markers were detected in 68% of C. coli and 53% of C. jejuni isolates, with 15% of C. coli isolates being multidrug resistant (MDR), compared to only 2% of C. jejuni isolates. The prevalence of aminoglycoside, macrolide, quinolone, and tetracycline resistance remained fairly stable from 2001 to 2018 in both C. jejuni and C. coli, but statistically significant differences were observed between the UK and US. There was a statistically significant higher prevalence of aminoglycoside and tetracycline resistance for US C. coli and C. jejuni isolates and macrolide resistance for US C. coli isolates. In contrast, UK C. coli and C. jejuni isolates showed a significantly higher prevalence of quinolone resistance. Specific multilocus sequence type (MLST) clonal complexes (e.g., ST-353/464) showed >95% quinolone resistance. This large-scale comparison of AMR prevalence has shown that the prevalence of AMR remains stable for Campylobacter in the UK and the US. This suggests that antimicrobial stewardship and restricted antibiotic usage may help contain further expansion of AMR prevalence in Campylobacter but are unlikely to reduce it in the short term.
Collapse
|
19
|
Hameed A, Ketley JM, Woodacre A, Machado LR, Marsden GL. Molecular and in silico typing of the lipooligosaccharide biosynthesis gene cluster in Campylobacter jejuni and Campylobacter coli. PLoS One 2022; 17:e0265585. [PMID: 35358234 PMCID: PMC8970381 DOI: 10.1371/journal.pone.0265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
The extensive genetic variation in the lipooligosaccharide (LOS) core biosynthesis gene cluster has led to the development of a classification system; with 8 classes (I-VIII) for Campylobacter coli (C. coli) LOS region and with 23 classes (A-W) or four groups (1–4) for Campylobacter jejuni (C. jejuni) LOS region. PCR based LOS locus type identification for C. jejuni clinical isolates from a UK hospital as well as in silico LOS locus analysis for C. jejuni and C. coli genome sequences from GenBank was carried out to determine the frequencies of various LOS genotypes in C. jejuni and C. coli. Analysis of LOS gene content in 60 clinical C. jejuni isolates and 703 C. jejuni genome sequences revealed that class B (Group 1) was the most abundant LOS class in C. jejuni. The hierarchy of C. jejuni LOS group prevalence (group 1 > group 2 > group 3 > group 4) as well as the hierarchy of the frequency of C. jejuni LOS classes present within the group 1 (B > C > A > R > M > V), group 2 (H/P > O > E > W), group 3 (F > K > S) and group 4 (G > L) was identified. In silico analysis of LOS gene content in 564 C. coli genome sequences showed class III as the most abundant LOS locus type in C. coli. In silico analysis of LOS gene content also identified three novel LOS types of C. jejuni and previously unknown LOS biosynthesis genes in C. coli LOS locus types I, II, III, V and VIII. This study provides C. jejuni and C. coli LOS loci class frequencies in a smaller collection of C. jejuni clinical isolates as well as within the larger, worldwide database of C. jejuni and C. coli.
Collapse
Affiliation(s)
- Amber Hameed
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Alexandra Woodacre
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lee R. Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | | |
Collapse
|
20
|
Tanoeiro L, Oleastro M, Nunes A, Marques AT, Duarte SV, Gomes JP, Matos APA, Vítor JMB, Vale FF. Cryptic Prophages Contribution for Campylobacter jejuni and Campylobacter coli Introgression. Microorganisms 2022; 10:microorganisms10030516. [PMID: 35336092 PMCID: PMC8955182 DOI: 10.3390/microorganisms10030516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Campylobacter coli and C. jejuni, the causing agents of campylobacteriosis, are described to be undergoing introgression events, i.e., the transference of genetic material between different species, with some isolates sharing almost a quarter of its genome. The participation of phages in introgression events and consequent impact on host ecology and evolution remain elusive. Three distinct prophages, named C. jejuni integrated elements 1, 2, and 4 (CJIE1, CJIE2, and CJIE4), are described in C. jejuni. Here, we identified two unreported prophages, Campylobacter coli integrated elements 1 and 2 (CCIE1 and CCIE2 prophages), which are C. coli homologues of CJIE1 and CJIE2, respectively. No induction was achieved for both prophages. Conversely, induction assays on CJIE1 and CJIE2 point towards the inducibility of these prophages. CCIE2-, CJIE1-, and CJIE4-like prophages were identified in a Campylobacter spp. population of 840 genomes, and phylogenetic analysis revealed clustering in three major groups: CJIE1-CCIE1, CJIE2-CCIE2, and CJIE4, clearly segregating prophages from C. jejuni and C. coli, but not from human- and nonhuman-derived isolates, corroborating the flowing between animals and humans in the agricultural context. Punctual bacteriophage host-jumps were observed in the context of C. jejuni and C. coli, and although random chance cannot be fully discarded, these observations seem to implicate prophages in evolutionary introgression events that are modulating the hybridization of C. jejuni and C. coli species.
Collapse
Affiliation(s)
- Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal;
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal; (A.N.); (J.P.G.)
| | - Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Sílvia Vaz Duarte
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal;
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal; (A.N.); (J.P.G.)
| | - António Pedro Alves Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Cooperativa de Ensino Superior Egas Moniz, Quinta da Granja, 2829-511 Caparica, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
- Correspondence: or
| |
Collapse
|
21
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
22
|
Evolutionary Processes Driving the Rise and Fall of Staphylococcus aureus ST239, a Dominant Hybrid Pathogen. mBio 2021; 12:e0216821. [PMID: 34903061 PMCID: PMC8669471 DOI: 10.1128/mbio.02168-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selection plays a key role in the spread of antibiotic resistance, but the evolutionary drivers of clinically important resistant strains remain poorly understood. Here, we use genomic analyses and competition experiments to study Staphylococcus aureus ST239, a prominent MRSA strain that is thought to have been formed by large-scale recombination between ST8 and ST30. Genomic analyses allowed us to refine the hybrid model for the origin of ST239 and to date the origin of ST239 to 1920 to 1945, which predates the clinical introduction of methicillin in 1959. Although purifying selection has dominated the evolution of ST239, parallel evolution has occurred in genes involved in antibiotic resistance and virulence, suggesting that ST239 has evolved toward an increasingly pathogenic lifestyle. Crucially, ST239 isolates have low competitive fitness relative to both ST8 and ST30 isolates, supporting the idea that fitness costs have driven the demise of this once-dominant pathogen strain.
Collapse
|
23
|
Svensson SL, Sharma CM. Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria. Mol Microbiol 2021; 117:215-233. [PMID: 34818434 DOI: 10.1111/mmi.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators controlling bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologues can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologues in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR of the upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| |
Collapse
|
24
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
25
|
Dieckmann AL, Riedel T, Bunk B, Spröer C, Overmann J, Groß U, Bader O, Bohne W, Morgenstern B, Hosseini M, Zautner AE. Genome and Methylome analysis of a phylogenetic novel Campylobacter coli cluster with C. jejuni introgression. Microb Genom 2021; 7. [PMID: 34661518 PMCID: PMC8627207 DOI: 10.1099/mgen.0.000679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intriguing recent discovery of Campylobacter coli strains, especially of clade 1, that (i) possess mosaic C. coli/C. jejuni alleles, (ii) demonstrate mixed multilocus sequence types (MLSTs) and (iii) have undergone genome-wide introgression has led to the speculation that these two species may be involved in an accelerated rate of horizontal gene transfer that is progressively leading to the merging of both species in a process coined ‘despeciation’. In an MLST-based neighbour-joining tree of a number of C. coli and C. jejuni isolates of different clades, three prominent Campylobacter isolates formed a seemingly separate cluster besides the previously described C. coli and C. jejuni clades. In the light of the suspected, ongoing genetic introgression between the C. coli and C. jejuni species, this cluster of Campylobacter isolates is proposed to present one of the hybrid clonal complexes in the despeciation process of the genus. Specific DNA methylation as well as restriction modification systems are known to be involved in selective uptake of external DNA and their role in such genetic introgression remains to be further investigated. In this study, the phylogeny and DNA methylation of these putative C. coli/C. jejuni hybrid strains were explored, their genomic mosaic structure caused by C. jejuni introgression was demonstrated and basic phenotypic assays were used to characterize these isolates. The genomes of the three hybrid Campylobacter strains were sequenced using PacBio SMRT sequencing, followed by methylome analysis by Restriction-Modification Finder and genome analysis by Parsnp, Smash++ and blast. Additionally, the strains were phenotypically characterized with respect to growth behaviour, motility, eukaryotic cell invasion and adhesion, autoagglutination, biofilm formation, and water survival ability. Our analyses show that the three hybrid Campylobacter strains are clade 1 C. coli strains, which have acquired between 8.1 and 9.1 % of their genome from C. jejuni. The C. jejuni genomic segments acquired are distributed over the entire genome and do not form a coherent cluster. Most of the genes originating from C. jejuni are involved in chemotaxis and motility, membrane transport, cell signalling, or the resistance to toxic compounds such as bile acids. Interspecies gene transfer from C. jejuni has contributed 8.1–9.1% to the genome of three C. coli isolates and initiated the despeciation between C. jejuni and C. coli. Based on their functional annotation, the genes originating from C. jejuni enable the adaptation of the three strains to an intra-intestinal habitat. The transfer of a fused type II restriction-modification system that recognizes the CAYNNNNNCTC/GAGNNNNNRTG motif seems to be the key for the recombination of the C. jejuni genetic material with C. coli genomes.
Collapse
Affiliation(s)
- Anastasia-Lisa Dieckmann
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Thomas Riedel
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) Hannover-Braunschweig, Braunschweig, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Oliver Bader
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Universität Göttingen, Göttingen, Germany
| | - Morteza Hosseini
- Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Universität Göttingen, Göttingen, Germany.,IEETA/DETI, University of Aveiro, Aveiro, Portugal
| | - Andreas E Zautner
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E, Thorpe HA, Hitchings MD, Feil EJ, Corander J, Blaser MJ, Falush D, Sheppard SK. Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829. [PMID: 34582435 PMCID: PMC8500405 DOI: 10.1371/journal.pgen.1009829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.
Collapse
Affiliation(s)
- Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Elvire Berthenet
- French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, Bordeaux, France
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Harry A. Thorpe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Matthew D. Hitchings
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Edward J. Feil
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Falush
- Centre for Microbes, Development and Health, Institute Pasteur of Shanghai, Shanghai, China
- * E-mail: (DF); (SKS)
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DF); (SKS)
| |
Collapse
|
27
|
Kürekci C, Sakin F, Epping L, Knüver MT, Semmler T, Stingl K. Characterization of Campylobacter spp. Strains Isolated From Wild Birds in Turkey. Front Microbiol 2021; 12:712106. [PMID: 34489902 PMCID: PMC8416542 DOI: 10.3389/fmicb.2021.712106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Turkey is an important stopover site for many migrating birds between Europe, Asia and Africa. Campylobacter spp. are frequently found in wildlife, in particular waterfowl, and distinct strains are disseminated within this reservoir. In this study, 183 wild birds of hunting areas in Turkey were collected and thermophilic Campylobacter spp. from cloacal swabs were isolated at a prevalence of 5.2% from song thrushes (6/116) and 93% from Eurasian coots (41/44). After PCR species differentiation and flaA restriction profiles determination, C. jejuni and C. coli strains were further investigated by whole genome sequencing. PCR target amplification of the ceuE gene, commonly used for C. coli species-identification was inefficient and even hampered in one isolate. A close look on the ceuE sequence revealed that various mismatches in the ceuE oligo annealing sites caused less efficient diagnostic detection. All C. coli isolates belonged to the environmental clade II and clade III, for which thirty-six novel MLST types were identified. Further single nucleotide polymorphism (SNP) analysis showed a high genomic divergence between the C. coli isolates. High variability was also implicated for putative plasmid-located genes detected in 51% of the C. coli isolates. Distinct gene variants in clades II and III C. coli were identified by a k-mer analysis. After substracting k-mers in common with C. coli clade I database, 11 and 35 distinct genes were identified in clades II and III isolates, mainly involved in surface structures and modifications as well as signal transduction, suggesting niche adaptation of C. coli strains in wild birds. All strains were susceptible against (fluoro-)quinolones, erythromycin, tetracycline, gentamicin and only one isolate was resistant against streptomycin, suggesting that the sensitive phenotype was due to absence of selective pressure and niche separation in wild birds in Turkey. We conclude that Campylobacter spp. isolates from wildlife and environmental sources are still scarce in the databases and that there is a need for more studies on thermophilic Campylobacter spp. from different places all over the world in order to complement our understanding on dissemination and adaptation to distinct niches of this global food-borne pathogen.
Collapse
Affiliation(s)
- Cemil Kürekci
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Fatih Sakin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Lennard Epping
- Robert Koch Institute, Genome Sequencing and Genomic Epidemiology, Berlin, Germany
| | - Marie-Theres Knüver
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute, Genome Sequencing and Genomic Epidemiology, Berlin, Germany
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| |
Collapse
|
28
|
Costa D, Lévesque S, Kumar N, Fresia P, Ferrés I, Lawley TD, Iraola G. Pangenome analysis reveals genetic isolation in Campylobacter hyointestinalis subspecies adapted to different mammalian hosts. Sci Rep 2021; 11:3431. [PMID: 33564053 PMCID: PMC7873201 DOI: 10.1038/s41598-021-82993-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/24/2021] [Indexed: 11/10/2022] Open
Abstract
Campylobacter hyointestinalis is an emerging pathogen currently divided in two subspecies: C. hyointestinalis subsp. lawsonii which is predominantly recovered from pigs, and C. hyointestinalis subsp. hyointestinalis which can be found in a much wider range of mammalian hosts. Despite C. hyointestinalis being reported as an emerging pathogen, its evolutionary and host-associated diversification patterns are still vastly unexplored. For this reason, we generated whole-genome sequences of 13 C. hyointestinalis subsp. hyointestinalis strains and performed a comprehensive comparative analysis including publicly available C. hyointestinalis subsp. hyointestinalis and C. hyointestinalis subsp. lawsonii genomes, to gain insight into the genomic variation of these differentially-adapted subspecies. Both subspecies are distinct phylogenetic lineages which present an apparent barrier to homologous recombination, suggesting genetic isolation. This is further supported by accessory gene patterns that recapitulate the core genome phylogeny. Additionally, C. hyointestinalis subsp. hyointestinalis presents a bigger and more diverse accessory genome, which probably reflects its capacity to colonize different mammalian hosts unlike C. hyointestinalis subsp. lawsonii that is presumably host-restricted. This greater plasticity in the accessory genome of C. hyointestinalis subsp. hyointestinalis correlates to a higher incidence of genome-wide recombination events, that may be the underlying mechanism driving its diversification. Concordantly, both subspecies present distinct patterns of gene families involved in genome plasticity and DNA repair like CRISPR-associated proteins and restriction-modification systems. Together, our results provide an overview of the genetic mechanisms shaping the genomes of C. hyointestinalis subspecies, contributing to understand the biology of Campylobacter species that are increasingly recognized as emerging pathogens.
Collapse
Affiliation(s)
- Daniela Costa
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay.,Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Simon Lévesque
- Laboratoire de Santé Publique du Québec, Quebec City, Canada
| | - Nitin Kumar
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Pablo Fresia
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay.,Unidad Mixta UMPI, Institut Pasteur de Montevideo + Instituto Nacional de Investigación Agropecuaria INIA, Montevideo, Uruguay
| | - Ignacio Ferrés
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay
| | | | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay. .,Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK. .,Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile.
| |
Collapse
|
29
|
Olkkola S, Rossi M, Jaakkonen A, Simola M, Tikkanen J, Hakkinen M, Tuominen P, Huitu O, Niemimaa J, Henttonen H, Kivistö R. Host-Dependent Clustering of Campylobacter Strains From Small Mammals in Finland. Front Microbiol 2021; 11:621490. [PMID: 33584588 PMCID: PMC7873845 DOI: 10.3389/fmicb.2020.621490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023] Open
Abstract
Small mammals are known to carry Campylobacter spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010-2017, and in close proximity to 40 pig or cattle farms in 2017. The animals were trapped using traditional Finnish metal snap traps. Campylobacter spp. were isolated from the intestinal content using direct plating on mCCDA. A total of 19% of the captured wild animals (n = 577) and 41% of the pooled farm samples (n = 227) were positive for C. jejuni, which was the only Campylobacter species identified. The highest prevalence occurred in yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) which carried Campylobacter spp. in 66.3 and 63.9% of the farm samples and 41.5 and 24.4% of individual animals trapped from natural habitats, respectively. Interestingly, all house mouse (Mus musculus) and shrew (Sorex spp.) samples were negative for Campylobacter spp. C. jejuni isolates (n = 145) were further characterized by whole-genome sequencing. Core genome multilocus sequence typing (cgMLST) clustering showed that mouse and vole strains were separated from the rest of the C. jejuni population (636 and 671 allelic differences, 94 and 99% of core loci, respectively). Very little or no alleles were shared with C. jejuni genomes described earlier from livestock or human isolates. FastANI results further indicated that C. jejuni strains from voles are likely to represent a new previously undescribed species or subspecies of Campylobacter. Core-genome phylogeny showed that there was no difference between isolates originating from the farm and wild captured animals. Instead, the phylogeny followed the host species-association. There was some evidence (one strain each) of livestock-associated C. jejuni occurring in a farm-caught A. flavicollis and a brown rat (Rattus norvegicus), indicating that although small mammals may not be the original reservoir of Campylobacter colonizing livestock, they may sporadically carry C. jejuni strains occurring mainly in livestock and be associated with disease in humans.
Collapse
Affiliation(s)
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- European Food Safety Authority (EFSA), Parma, Italy
| | | | | | | | | | | | - Otso Huitu
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jukka Niemimaa
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Epping L, Antão EM, Semmler T. Population Biology and Comparative Genomics of Campylobacter Species. Curr Top Microbiol Immunol 2021; 431:59-78. [PMID: 33620648 DOI: 10.1007/978-3-030-65481-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zoonotic pathogen Campylobacter is the leading cause for bacterial foodborne infections in humans. Campylobacters are most commonly transmitted via the consumption of undercooked poultry meat or raw milk products. The decreasing costs of whole genome sequencing enabled large genome-based analyses of the evolution and population structure of this pathogen, as well as the development of novel high-throughput molecular typing methods. Here, we review the evolutionary development and the population diversity of the two most clinically relevant Campylobacter species; C. jejuni and C. coli. The state-of-the-art phylogenetic studies showed clustering of C. jejuni lineages into host specialists and generalists with coexisting lifestyles in chicken and livestock-associated hosts, as well as the separation of C. coli isolates of riparian origin (waterfowl, water) from C. coli isolated from clinical and farm-related samples. We will give an overview of recombination between both species and the potential impact of horizontal gene transfer on host adaptation in Campylobacter. Additionally, this review briefly places the current knowledge of the population structure of other Campylobacter species such as C. lari, C. concisus and C. upsaliensis into perspective. We also provide an overview of how molecular typing methods such as multilocus sequence typing (MLST) and whole genome MLST have been used to detect and trace Campylobacter outbreaks along the food chain.
Collapse
Affiliation(s)
- Lennard Epping
- Microbial Genomics, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | | | - Torsten Semmler
- Microbial Genomics, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
31
|
Genome-Wide Identification of Host-Segregating Single-Nucleotide Polymorphisms for Source Attribution of Clinical Campylobacter coli Isolates. Appl Environ Microbiol 2020; 86:AEM.01787-20. [PMID: 33036986 DOI: 10.1128/aem.01787-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Campylobacter is among the most common causes of gastroenteritis worldwide. Campylobacter jejuni and Campylobacter coli are the most common species causing human disease. DNA sequence-based methods for strain characterization have focused largely on C. jejuni, responsible for 80 to 90% of infections, meaning that C. coli epidemiology has lagged behind. Here, we have analyzed the genome of 450 C. coli isolates to determine genetic markers that can discriminate isolates sampled from 3 major reservoir hosts (chickens, cattle, and pigs). These markers then were applied to identify the source of infection of 147 C. coli strains from French clinical cases. Using STRUCTURE software, 259 potential host-segregating markers were revealed by probabilistic characterization of single-nucleotide polymorphism (SNP) frequency variation in strain collections from three different hosts. These SNPs were found in 41 genes or intergenic regions, mostly coding for proteins involved in motility and membrane functions. Source attribution of clinical isolates based on the differential presence of these markers confirmed chickens as the most common source of C. coli infection in France.IMPORTANCE Genome-wide and source attribution studies based on Campylobacter species have shown their importance for the understanding of foodborne infections. Although the use of multilocus sequence typing based on 7 genes from C. jejuni is a powerful method to structure populations, when applied to C. coli, results have not clearly demonstrated its robustness. Therefore, we aim to provide more accurate data based on the identification of single-nucleotide polymorphisms. Results from this study reveal an important number of host-segregating SNPs, found in proteins involved in motility, membrane functions, or DNA repair systems. These findings offer new, interesting opportunities for further study of C. coli adaptation to its environment. Additionally, the results demonstrate that poultry is potentially the main reservoir of C. coli in France.
Collapse
|
32
|
González-Gómez JP, Soto-Rodriguez S, López-Cuevas O, Castro-Del Campo N, Chaidez C, Gomez-Gil B. Phylogenomic Analysis Supports Two Possible Origins for Latin American Strains of Vibrio parahaemolyticus Associated with Acute Hepatopancreatic Necrosis Disease (AHPND). Curr Microbiol 2020; 77:3851-3860. [PMID: 32959087 DOI: 10.1007/s00284-020-02214-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a severe disease affecting recently stocked cultured shrimps. The disease is mainly caused by V. parahaemolyticus that harbors the pVA1 plasmid; this plasmid contains the pirA and pirB genes, which encode a delta-endotoxin. AHPND originated in China in 2009 and has since spread to several other Asian countries and recently to Latin America (2013). Many Asian strains have been sequenced, and their sequences are publicly accessible in scientific databases, but only four strains from Latin America have been reported. In this study, we analyzed nine pVA1-harboring V. parahaemolyticus sequences from strains isolated in Mexico along with the 38 previously available pVA1-harboring V. parahaemolyticus sequences and the reference strain RIMD 2210633. The studied sequences were clustered into three phylogenetic clades (Latin American, Malaysian, and Cosmopolitan) through pangenomic and phylogenomic analysis. The nucleotide sequence alignment of the pVA1 plasmids harbored by the Asian and Latin American strains confirmed that the main structural difference in the plasmid between the Asian and Latin American strains is the absence of the Tn3 transposon in the Asian strains; in addition, some deletions in the pirAB region were found in two of the Latin American strains. Our study represents the most robust and inclusive phylogenomic analysis of pVA1-harboring V. parahaemolyticus conducted to date and provides insight into the epidemiology of AHPND. In addition, this study highlights that disease diagnosis through the detection of the pirA and pirB genes is an inadequate approach due to the instability of these genes.
Collapse
Affiliation(s)
- Jean Pierre González-Gómez
- Laboratorio Nacional Para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Sonia Soto-Rodriguez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, AP 711, Mazatlán, Sinaloa, Mexico
| | - Osvaldo López-Cuevas
- Laboratorio Nacional Para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional Para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Cristóbal Chaidez
- Laboratorio Nacional Para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico.
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, AP 711, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
33
|
On SLW, Miller WG, Biggs PJ, Cornelius AJ, Vandamme P. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst Appl Microbiol 2020; 43:126108. [PMID: 32847783 DOI: 10.1016/j.syapm.2020.126108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
The proposal to restructure the genus Arcobacter into six distinct genera was critically examined using: comparative analyses of up to 80 Epsilonproteobacterial genome sequences (including 26 arcobacters); phylogenetic analyses of three housekeeping genes and also 342 core genes; and phenotypic criteria. Genome sequences were analysed with tools to calculate Percentage of Conserved Proteins, Average Amino-acid Identity, BLAST-based Average Nucleotide Identity, in silico DNA-DNA hybridisation values, genome-wide Average Nucleotide Identity, Alignment Fractions and G+C percentages. Genome analyses revealed the genus Arcobacter sensu lato to be relatively homogenous, and phylogenetic analyses clearly distinguished the group from other Epsilonproteobacteria. Genomic distinction of the genera proposed by Pérez-Cataluña et al. [2018] was not supported by any of the measures used and a subsequent risk of strain misidentification clearly identified. Similarly, phenotypic analyses supported the delineation of Arcobacter sensu lato but did not justify the position of the proposed novel genera. The present polyphasic taxonomic study strongly supports the continuance of the classification of "aerotolerant campylobacters" as Arcobacter and refutes the proposed genus-level subdivision of Pérez-Cataluña et al. [2018].
Collapse
Affiliation(s)
- Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Springs Road, Lincoln 7467, New Zealand.
| | - William G Miller
- US Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Patrick J Biggs
- Bioinformatics and Statistics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Angela J Cornelius
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
34
|
Mehat JW, La Ragione RM, van Vliet AHM. Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay. BMC Genomics 2020; 21:314. [PMID: 32306949 PMCID: PMC7168839 DOI: 10.1186/s12864-020-6704-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter. Results Two capC-like autotransporter families, designated capC and capD, were identified by homology searches of genomes of the genus Campylobacter. Each family contained four distinct orthologs of CapC and CapD. The distribution of these autotransporter genes was determined in 5829 C. jejuni and 1347 C. coli genomes. Autotransporter genes were found as intact, complete copies and inactive formats due to premature stop codons and frameshift mutations. Presence of inactive and intact autotransporter genes was associated with C. jejuni and C. coli multi-locus sequence types, but for capC, inactivation was independent from the length of homopolymeric tracts in the region upstream of the capC gene. Inactivation of capC or capD genes appears to represent lineage-specific gene decay of autotransporter genes. Intact capC genes were predominantly associated with the C. jejuni ST-45 and C. coli ST-828 generalist lineages. The capD3 gene was only found in the environmental C. coli Clade 3 lineage. These combined data support a scenario of inter-lineage and interspecies exchange of capC and subsets of capD autotransporters. Conclusions In this study we have identified two novel, related autotransporter gene families in the genus Campylobacter, which are not uniformly present and exhibit lineage-specific associations and gene decay. The distribution and decay of the capC and capD genes exemplifies the erosion of species barriers between certain lineages of C. jejuni and C. coli, probably arising through co-habitation. This may have implications for the phenotypic variability of these two pathogens and provide opportunity for new, hybrid genotypes to emerge.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| |
Collapse
|
35
|
Hetman BM, Mutschall SK, Carrillo CD, Thomas JE, Gannon VPJ, Inglis GD, Taboada EN. "These Aren't the Strains You're Looking for": Recovery Bias of Common Campylobacter jejuni Subtypes in Mixed Cultures. Front Microbiol 2020; 11:541. [PMID: 32328044 PMCID: PMC7160300 DOI: 10.3389/fmicb.2020.00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
Microbiological surveillance of the food chain plays a critical role in improving our understanding of the distribution and circulation of food-borne pathogens along the farm to fork continuum toward the development of interventions to reduce the burden of illness. The application of molecular subtyping to bacterial isolates collected through surveillance has led to the identification of strains posing the greatest risk to public health. Past evidence suggests that enrichment methods for Campylobacter jejuni, a leading bacterial foodborne pathogen worldwide, may lead to the differential recovery of subtypes, obscuring our ability to infer the composition of a mixed-strain sample and potentially biasing prevalence estimates in surveillance data. To assess the extent of potential selection bias resulting from enrichment-based isolation methods, we compared enrichment and non-enrichment isolation of mixed subtype cultures of C. jejuni, followed by subtype-specific enumeration using both colony plate-counts and digital droplet PCR. Results differed from the null hypothesis that similar proportions of C. jejuni subtypes are recovered from both methods. Our results also indicated a significant effect of subtype prevalence on isolation frequency post-recovery, with the recovery of more common subtypes being consistently favored. This bias was exacerbated when an enrichment step was included in the isolation procedure. Taken together, our results emphasize the importance of selecting multiple colonies per sample, and where possible, the use of both enrichment and non-enrichment isolation procedures to maximize the likelihood of recovering multiple subtypes present in a sample. Moreover, the effects of subtype-specific recovery bias should be considered in the interpretation of strain prevalence data toward improved risk assessment from microbiological surveillance data.
Collapse
Affiliation(s)
- Benjamin M Hetman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.,National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - Steven K Mutschall
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Catherine D Carrillo
- Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, ON, Canada
| | - James E Thomas
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Golz JC, Epping L, Knüver MT, Borowiak M, Hartkopf F, Deneke C, Malorny B, Semmler T, Stingl K. Whole genome sequencing reveals extended natural transformation in Campylobacter impacting diagnostics and the pathogens adaptive potential. Sci Rep 2020; 10:3686. [PMID: 32111893 PMCID: PMC7048796 DOI: 10.1038/s41598-020-60320-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Campylobacter is the major bacterial agent of human gastroenteritis worldwide and represents a crucial global public health burden. Species differentiation of C. jejuni and C. coli and phylogenetic analysis is challenged by inter-species horizontal gene transfer. Routine real-time PCR on more than 4000 C. jejuni and C. coli field strains identified isolates with ambiguous PCR results for species differentiation, in particular, from the isolation source eggs. K-mer analysis of whole genome sequencing data indicated the presence of C. coli hybrid strains with huge amounts of C. jejuni introgression. Recombination events were distributed over the whole chromosome. MLST typing was impaired, since C. jejuni sequences were also found in six of the seven housekeeping genes. cgMLST suggested that the strains were phylogenetically unrelated. Intriguingly, the strains shared a stress response set of C. jejuni variant genes, with proposed roles in oxidative, osmotic and general stress defence, chromosome maintenance and repair, membrane transport, cell wall and capsular biosynthesis and chemotaxis. The results have practical impact on routine typing and on the understanding of the functional adaption to harsh environments, enabling successful spreading and persistence of Campylobacter.
Collapse
Affiliation(s)
- Julia C Golz
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Lennard Epping
- Robert Koch Institute, Microbial Genomics, Berlin, Germany
| | - Marie-Theres Knüver
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Maria Borowiak
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | - Felix Hartkopf
- Robert Koch Institute, Microbial Genomics, Berlin, Germany
| | - Carlus Deneke
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | - Burkhard Malorny
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | | | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany.
| |
Collapse
|
37
|
Mourkas E, Florez‐Cuadrado D, Pascoe B, Calland JK, Bayliss SC, Mageiros L, Méric G, Hitchings MD, Quesada A, Porrero C, Ugarte‐Ruiz M, Gutiérrez‐Fernández J, Domínguez L, Sheppard SK. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ Microbiol 2019; 21:4597-4613. [PMID: 31385413 PMCID: PMC6916351 DOI: 10.1111/1462-2920.14760] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
The use of antimicrobials in human and veterinary medicine has coincided with a rise in antimicrobial resistance (AMR) in the food-borne pathogens Campylobacter jejuni and Campylobacter coli. Faecal contamination from the main reservoir hosts (livestock, especially poultry) is the principal route of human infection but little is known about the spread of AMR among source and sink populations. In particular, questions remain about how Campylobacter resistomes interact between species and hosts, and the potential role of sewage as a conduit for the spread of AMR. Here, we investigate the genomic variation associated with AMR in 168 C. jejuni and 92 C. coli strains isolated from humans, livestock and urban effluents in Spain. AMR was tested in vitro and isolate genomes were sequenced and screened for putative AMR genes and alleles. Genes associated with resistance to multiple drug classes were observed in both species and were commonly present in multidrug-resistant genomic islands (GIs), often located on plasmids or mobile elements. In many cases, these loci had alleles that were shared among C. jejuni and C. coli consistent with horizontal transfer. Our results suggest that specific antibiotic resistance genes have spread among Campylobacter isolated from humans, animals and the environment.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
| | | | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
| | - Sion C. Bayliss
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- Cambridge Baker Systems Genomics InitiativeBaker Heart and Diabetes Institute, 75 Commercial RdMelbourne3004VictoriaAustralia
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | | | - Alberto Quesada
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary MedicineUniversity of ExtremaduraCáceresSpain
| | - Concepción Porrero
- VISAVET Health Surveillance CentreUniversidad Complutense MadridMadridSpain
| | - María Ugarte‐Ruiz
- VISAVET Health Surveillance CentreUniversidad Complutense MadridMadridSpain
| | | | - Lucas Domínguez
- VISAVET Health Surveillance CentreUniversidad Complutense MadridMadridSpain
- Department of Animal Health, Faculty of Veterinary MedicineUniversidad Complutense MadridMadridSpain
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBA27AYBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
- Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|
38
|
Johansson C, Nilsson A, Kaden R, Rautelin H. Differences in virulence gene expression between human blood and stool Campylobacter coli clade 1 ST828CC isolates. Gut Pathog 2019; 11:42. [PMID: 31388358 PMCID: PMC6669978 DOI: 10.1186/s13099-019-0322-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter colonise the gastrointestinal tract of warm-blooded animals and are major enteropathogens in humans. C. coli is less common than C. jejuni and accounts for about 10% of the total number of Campylobacter infections although the two species seem to share many virulence determinants. Campylobacter bacteraemia is rare, estimated to occur in less than 1% of the infections, and the exact mechanisms regulating the progression of the infection from the gastrointestinal tract to the blood stream are unclear. Here, we looked at the contribution of C. coli to Campylobacter infections and further compared various virulence traits in C. coli clade 1 blood and stool isolates. RESULTS We assessed the numbers of C. jejuni and C. coli among typed isolates in the PubMLST database and found that C. coli accounted for 25.9% of blood isolates, but only 8.9% of the stool isolates. Phylogenetic analysis of 128 C. coli clade 1 whole genome sequences deposited to NCBI revealed no specific clustering of the human blood, stool or animal isolates. Of the six C. coli isolates chosen for phenotypic analyses, stool isolates adhered significantly better to human HT-29 colon cancer cells than the blood isolates, while there was no difference in induced IL-8 levels between the isolates. Furthermore, the stool isolates had two- to fourfold higher RNA expression levels of the flpA, ciaB, iamA and cdt virulence genes than the blood isolates. Finally, we looked at the gene structure of the cdtA, B and C toxin genes and found numerous nucleotide additions and deletions disrupting the open reading frames. In contrast to 58% isolates of animal origin, only 38% and 32% of human blood and stool isolates, respectively, had all three cdt genes intact, a prerequisite to produce functional toxins. CONCLUSIONS This study reveals interesting differences between C. coli clade 1 isolates of human and animal origin on one hand, and also between human blood and stool isolates, on the other. The results suggest that C. coli might downregulate and/or inactivate various virulence determinants as the isolates pass from the animal host to the human gastrointestinal tract and enter the human blood stream.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Present Address: Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - René Kaden
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Criscuolo A, Issenhuth-Jeanjean S, Didelot X, Thorell K, Hale J, Parkhill J, Thomson NR, Weill FX, Falush D, Brisse S. The speciation and hybridization history of the genus Salmonella. Microb Genom 2019; 5. [PMID: 31347998 PMCID: PMC6755497 DOI: 10.1099/mgen.0.000284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria and archaea make up most of natural diversity, but the mechanisms that underlie the origin and maintenance of prokaryotic species are poorly understood. We investigated the speciation history of the genus Salmonella, an ecologically diverse bacterial lineage, within which S. enterica subsp. enterica is responsible for important human food-borne infections. We performed a survey of diversity across a large reference collection using multilocus sequence typing, followed by genome sequencing of distinct lineages. We identified 11 distinct phylogroups, 3 of which were previously undescribed. Strains assigned to S. enterica subsp. salamae are polyphyletic, with two distinct lineages that we designate Salamae A and B. Strains of the subspecies houtenae are subdivided into two groups, Houtenae A and B, and are both related to Selander’s group VII. A phylogroup we designate VIII was previously unknown. A simple binary fission model of speciation cannot explain observed patterns of sequence diversity. In the recent past, there have been large-scale hybridization events involving an unsampled ancestral lineage and three distantly related lineages of the genus that have given rise to Houtenae A, Houtenae B and VII. We found no evidence for ongoing hybridization in the other eight lineages, but detected subtler signals of ancient recombination events. We are unable to fully resolve the speciation history of the genus, which might have involved additional speciation-by-hybridization or multi-way speciation events. Our results imply that traditional models of speciation by binary fission and divergence are not sufficient to account for Salmonella evolution.
Collapse
Affiliation(s)
- Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Sylvie Issenhuth-Jeanjean
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, World Health Organization Collaborating Centre for Reference and Research on Salmonella, Paris, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Kaisa Thorell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - James Hale
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, World Health Organization Collaborating Centre for Reference and Research on Salmonella, Paris, France
| | - Daniel Falush
- The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| |
Collapse
|
40
|
Ocejo M, Oporto B, Hurtado A. Occurrence of Campylobacter jejuni and Campylobacter coli in Cattle and Sheep in Northern Spain and Changes in Antimicrobial Resistance in Two Studies 10-years Apart. Pathogens 2019; 8:E98. [PMID: 31288484 PMCID: PMC6789816 DOI: 10.3390/pathogens8030098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022] Open
Abstract
A cross-sectional survey was conducted in 2014-2016 in 301 ruminant herds to estimate C. jejuni and C. coli prevalence, and investigate their susceptibility to antimicrobials. Risk of shedding C. jejuni was higher in cattle than sheep (81.2% vs. 45.2%; ORadj = 5.22, p < 0.001), whereas risk of shedding C. coli was higher in sheep than in cattle (19.1% vs. 11.3%; ORadj = 1.71, p = 0.128). Susceptibility to six antimicrobials was determined by broth microdilution using European Committee for Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off values. C. coli exhibited higher resistance (94.1%, 32/34) than C. jejuni (65.1%, 71/109), and resistance was more widespread in isolates from dairy cattle than beef cattle or sheep. Compared to results obtained 10-years earlier (2003-2005) in a similar survey, an increase in fluoroquinolone-resistance was observed in C. jejuni from beef cattle (32.0% to 61.9%; OR = 3.45, p = 0.020), and a decrease in tetracycline-resistance in C. jejuni from dairy cattle (75.0% to 43.2%; OR = 0.25, p = 0.026). Resistance to macrolides remained stable at low rates and restricted to C. coli from dairy cattle, with all macrolide-resistant C. coli showing a pattern of pan-resistance. Presence of the single nucleotide polymorphisms (SNPs) associated to quinolone and macrolide resistance was confirmed in all phenotypically resistant isolates. The increase in fluoroquinolone resistance is worrisome but susceptibility to macrolides is reassuring.
Collapse
Affiliation(s)
- Medelin Ocejo
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain
| | - Beatriz Oporto
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain
| | - Ana Hurtado
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
41
|
Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biol Evol 2019; 11:1780-1796. [PMID: 31173069 PMCID: PMC6690169 DOI: 10.1093/gbe/evz119] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
The diversification of microbial populations may be driven by many factors including adaptation to distinct ecological niches and barriers to recombination. We examined the population structure of the bacterial pathogen Pseudomonas aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse sources. We confirmed that the population structure of P. aeruginosa consists of two major groups (referred to as Groups A and B) and at least two minor groups (Groups C1 and C2). Evidence for frequent intragroup but limited intergroup recombination in the core genome was observed, consistent with sexual isolation of the groups. Likewise, accessory genome analysis demonstrated more gene flow within Groups A and B than between these groups, and a few accessory genomic elements were nearly specific to one or the other group. In particular, the exoS gene was highly overrepresented in Group A compared with Group B isolates (99.4% vs. 1.1%) and the exoU gene was highly overrepresented in Group B compared with Group A isolates (95.2% vs. 1.8%). The exoS and exoU genes encode effector proteins secreted by the P. aeruginosa type III secretion system. Together these results suggest that the major P. aeruginosa groups defined in part by the exoS and exoU genes are divergent from each other, and that these groups are genetically isolated and may be ecologically distinct. Although both groups were globally distributed and caused human infections, certain groups predominated in some clinical contexts.
Collapse
Affiliation(s)
- Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
| | - Ekpeno Nnah
- Lurie Children’s Hospital, Chicago, Illinois
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Rachel J Whitaker
- Department of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign
| | - Alan R Hauser
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
42
|
Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, Ryder J, Shaw S, Lopes BS, Chintoan-Uta C, Allan E, Vidal A, Fearnley C, Everest P, Pachebat JA, Cogan TA, Stevens MP, Humphrey TJ, Wilkinson TS, Cody AJ, Colles FM, Jolley KA, Maiden MCJ, Strachan N, Pearson BM, Linton D, Wren BW, Parkhill J, Kelly DJ, van Vliet AHM, Forbes KJ, Sheppard SK. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom 2019; 5:e000279. [PMID: 31310201 PMCID: PMC6700657 DOI: 10.1099/mgen.0.000279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C. jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- MRC CLIMB Consortium, Bath, UK
| | - Lisa K. Williams
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Meric
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne 3004, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Myles Dyer
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Joseph Ryder
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | | | | | | | - Elaine Allan
- UCL Eastman Dental Institute, University College of London, London, UK
| | - Ana Vidal
- Animal and Plant Health Agency, Weybridge, Surrey, UK
- Present address: Antimicrobial Resistance Policy and Surveillance Team, Veterinary Medicines Directorate, Department for Environment, Food and Rural Affairs (Defra), Surrey, UK
| | | | | | | | | | | | - Thomas J. Humphrey
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Thomas S. Wilkinson
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | | | | | | | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, UK
- NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | | | | | | | - Brendan W. Wren
- Quadram Institute Bioscience, Norwich, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
- MRC CLIMB Consortium, Bath, UK
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Clark C, Berry C, Demczuk W. Diversity of transducer-like proteins (Tlps) in Campylobacter. PLoS One 2019; 14:e0214228. [PMID: 30908544 PMCID: PMC6433261 DOI: 10.1371/journal.pone.0214228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/09/2019] [Indexed: 12/12/2022] Open
Abstract
Campylobacter transducer-like proteins (Tlps), also known as methyl-accepting chemotaxis proteins (MCPs), are associated with virulence as well as niche and host adaptation. While functional attributes of these proteins are being elucidated, little has been published regarding their sequence diversity or chromosomal locations and context, although they appear to define invertible regions within Campylobacter jejuni genomes. Genome assemblies for several species of Campylobacter were obtained from the publicly available NCBI repositories. Genomes from all isolates were obtained from GenBank and assessed for Tlp content, while data from isolates with complete, finished genomes were used to determine the identity of Tlps as well as the gene content of putative invertible elements (IEs) in C. jejuni (Cj) and C. coli (Cc). Tlps from several Campylobacter species were organized into a nomenclature system and novel Tlps were defined and named for Cj and Cc. The content of Tlps appears to be species-specific, though diverse within species. Cj and Cc carried overlapping, related Tlp content, as did the three C. fetus subspecies. Tlp1 was detected in 88% of Cj isolates and approximately 43% of Cc, and was found in a different conserved chromosomal location and genetic context in each species. Tlp1 and Tlp 3 predominated in genomes from Cj whereas other Tlps were detected less frequently. Tlp13 and Tlp20 predominated in genomes from Cc while some Cj/Cc Tlps were not detected at all. Tlps 2–4 and 11–20 were less frequently detected and many showed sequence heterogeneity that could affect substrate binding, signal transduction, or both. Tlps other than Tlp1, 7, and 10 had substantial sequence identity in the C-terminal half of the protein, creating chromosomal repeats potentially capable of mediating the inversion of large chromosomal DNA. Cj and Cc Tlps were both found in association with only 14 different genes, indicating a limited genomic context. In Cj these Tlps defined IEs that were for the most part found at a single chromosomal location and comprised of a conserved set of genes. Cc IEs were situated at very different chromosomal locations, had different structures than Cj IEs, and were occasionally incomplete, therefore not capable of inversion. Tlps may have a role in Campylobacter genome structure and dynamics as well as acting as chemoreceptors mediating chemotactic responses.
Collapse
Affiliation(s)
- Clifford Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Walter Demczuk
- Streptococci and STI Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Emele MF, Možina SS, Lugert R, Bohne W, Masanta WO, Riedel T, Groß U, Bader O, Zautner AE. Proteotyping as alternate typing method to differentiate Campylobacter coli clades. Sci Rep 2019; 9:4244. [PMID: 30862911 PMCID: PMC6414644 DOI: 10.1038/s41598-019-40842-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/25/2019] [Indexed: 11/26/2022] Open
Abstract
Besides Campylobacter jejuni, Campylobacter coli is the most common bacterial cause of gastroenteritis worldwide. C. coli is subdivided into three clades, which are associated with sample source. Clade 1 isolates are associated with acute diarrhea in humans whereas clade 2 and 3 isolates are more commonly obtained from environmental waters. The phylogenetic classification of an isolate is commonly done using laborious multilocus sequence typing (MLST). The aim of this study was to establish a proteotyping scheme using MALDI-TOF MS to offer an alternative to sequence-based methods. A total of 97 clade-representative C. coli isolates were analyzed by MALDI-TOF-based intact cell mass spectrometry (ICMS) and evaluated to establish a C. coli proteotyping scheme. MLST was used as reference method. Different isoforms of the detectable biomarkers, resulting in biomarker mass shifts, were associated with their amino acid sequences and included into the C. coli proteotyping scheme. In total, we identified 16 biomarkers to differentiate C. coli into the three clades and three additional sub-clades of clade 1. In this study, proteotyping has been successfully adapted to C. coli. The established C. coli clades and sub-clades can be discriminated using this method. Especially the clinically relevant clade 1 isolates can be differentiated clearly.
Collapse
Affiliation(s)
- Matthias Frederik Emele
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Raimond Lugert
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Wolfgang Bohne
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Wycliffe Omurwa Masanta
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.,Department of Medical Microbiology, Maseno University Medical School, Private Bag, Maseno, Kenya
| | - Thomas Riedel
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Oliver Bader
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Andreas Erich Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| |
Collapse
|
45
|
Johansson C, Nilsson A, Kaden R, Rautelin H. Campylobacter coli Clade 3 Isolates Induce Rapid Cell Death In Vitro. Appl Environ Microbiol 2019; 85:e02993-18. [PMID: 30578266 PMCID: PMC6384112 DOI: 10.1128/aem.02993-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Campylobacter bacteria are major human enteropathogens. Campylobacter coli shows less genetic diversity than C. jejuni and clusters into three clades, of which clade 1 includes most human and farm animal isolates, while environmental C. coli isolates mainly belong to clades 2 and 3. Recently, we sequenced the whole genomes of eight C. coli clade 2 and 3 isolates cultivated from water, and here we studied their interaction with human HT-29 colon cancer cells compared to that of clinical clade 1 isolates. All C. coli clade 3 isolates already caused cell necrosis 1 to 2 h after inoculation, whereas none of the clade 1 and 2 isolates analyzed induced cell death. Isolates from clades 2 and 3 adhered to epithelial cells better than clade 1 isolates, but all isolates induced similar levels of interleukin-8 (IL-8). Alignment and phylogenetic analysis of the translated putative virulence genes cadF, flpA, iamA, ciaB, and ceuE revealed clade-specific protein sequence variations, with clade 1 and 2 sequences being more closely related and clade 3 sequences being further apart, in general. Moreover, when RNA levels were measured, clade 3 isolates showed significantly lower levels of expression of cadF, iamA, and ceuE than clade 2 isolates, while flpA expression levels were higher in clade 3 isolates. The cytolethal distending toxin genes were also expressed in clades 2 and 3, although there was no difference between clades. Our findings demonstrate differences between the effects of C. coli clade 1, 2, and 3 isolates on human cells and suggest that C. coli clade 3 might be more virulent than clade 2 due to the observed cytotoxicity.IMPORTANCECampylobacter coli is a common zoonotic cause of gastroenteritis in humans worldwide. The majority of infections are caused by C. coli clade 1 isolates, whereas infections due to clade 2 and 3 isolates are rare. Whether this depends on a low prevalence of clade 2 and 3 isolates in reservoirs important for human infections or their lower ability to cause human disease is unknown. Here, we studied the effects of C. coli clade 2 and 3 isolates on a human cell line. These isolates adhered to human cells to a higher degree than clinical clade 1 isolates. Furthermore, we could show that C. coli clade 3 isolates rapidly induced cell death, suggesting differences in the virulence of C. coli The exact mechanism of cell death remains to be revealed, but selected genes showed interesting clade-specific expression patterns.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Lassalle F, Planel R, Penel S, Chapulliot D, Barbe V, Dubost A, Calteau A, Vallenet D, Mornico D, Bigot T, Guéguen L, Vial L, Muller D, Daubin V, Nesme X. Ancestral Genome Estimation Reveals the History of Ecological Diversification in Agrobacterium. Genome Biol Evol 2018; 9:3413-3431. [PMID: 29220487 PMCID: PMC5739047 DOI: 10.1093/gbe/evx255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is considered as a major source of innovation in bacteria, and as such is expected to drive adaptation to new ecological niches. However, among the many genes acquired through HGT along the diversification history of genomes, only a fraction may have actively contributed to sustained ecological adaptation. We used a phylogenetic approach accounting for the transfer of genes (or groups of genes) to estimate the history of genomes in Agrobacterium biovar 1, a diverse group of soil and plant-dwelling bacterial species. We identified clade-specific blocks of cotransferred genes encoding coherent biochemical pathways that may have contributed to the evolutionary success of key Agrobacterium clades. This pattern of gene coevolution rejects a neutral model of transfer, in which neighboring genes would be transferred independently of their function and rather suggests purifying selection on collectively coded acquired pathways. The acquisition of these synapomorphic blocks of cofunctioning genes probably drove the ecological diversification of Agrobacterium and defined features of ancestral ecological niches, which consistently hint at a strong selective role of host plant rhizospheres.
Collapse
Affiliation(s)
- Florent Lassalle
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France.,Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Rémi Planel
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Simon Penel
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - David Chapulliot
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France
| | - Audrey Dubost
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Alexandra Calteau
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - David Vallenet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - Damien Mornico
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - Thomas Bigot
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Laurent Guéguen
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Ludovic Vial
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Daniel Muller
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Vincent Daubin
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Xavier Nesme
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| |
Collapse
|
47
|
Elhadidy M, Miller WG, Arguello H, Álvarez‐Ordóñez A, Dierick K, Botteldoorn N. Molecular epidemiology and antimicrobial resistance mechanisms ofCampylobacter colifrom diarrhoeal patients and broiler carcasses in Belgium. Transbound Emerg Dis 2018; 66:463-475. [DOI: 10.1111/tbed.13046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed Elhadidy
- Zewail City of Science and Technology University of Science and Technology Giza Egypt
- Department of Bacteriology, Mycology and Immunology Faculty of Veterinary Medicine Mansoura University Mansoura Egypt
| | - William G. Miller
- Produce Safety and Microbiology Research Unit Agricultural Research Service U.S. Department of Agriculture Albany California
| | - Hector Arguello
- Genomic and Animal Biotechnology Department of Genetics, Veterinary Faculty Universidad de Córdoba Córdoba Spain
| | - Avelino Álvarez‐Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology University of León León Spain
| | - Katelijne Dierick
- National Reference Laboratory for Campylobacter Scientific Institute of Public Health (WIV‐ISP), Scientific service: Foodborne pathogens Brussels Belgium
| | - Nadine Botteldoorn
- National Reference Laboratory for Campylobacter Scientific Institute of Public Health (WIV‐ISP), Scientific service: Foodborne pathogens Brussels Belgium
| |
Collapse
|
48
|
Marcelletti S, Scortichini M. Some strains that have converged to infect Prunus spp. trees are members of distinct Pseudomonas syringae genomospecies and ecotypes as revealed by in silico genomic comparison. Arch Microbiol 2018; 201:67-80. [PMID: 30229267 DOI: 10.1007/s00203-018-1573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
A complementary taxonomic and population genetic study was performed to delineate genetically and ecologically distinct species within the Pseudomonas syringae complex by assessing 16 strains including pathovar strains that have converged to infect Prunus spp. trees, and two outgroups. Both average nucleotide identity and genome-to-genome distance comparison methods revealed the occurrence of distinct genomospecies, namely 1, 2, 3 and 8 (sensu Gardan et al.), with the latter two being closely related. Strains classified as P. s. pv. morsprunorum clustered into two distinct genomospecies, namely 2 and 8. Both the AdaptML and hierarchical Bayesian analysis of population structure methods highlighted the presence of three ecotypes, and the taxonomically related genomospecies 3 and 8 strains were members of the same ecotype. The distribution of pathogenic and virulence-associated genetic traits among Pseudomonas strains did not reveal any distinct type III secretion system effector or phytotoxin distribution pattern that characterized single genomospecies and strains that infect Prunus spp. The complete WHOP (Woody HOst and Pseudomonas spp.) genomic region and the entire β-ketoadipate gene cluster, including the catBCA operon, were found only in the members of genomospecies 2 and in the two P. s. pv. morsprunorum strains of genomospecies 8. A reduced gene flow between the three ecotypes suggested that point mutations played a larger role during the evolution of the strains than recombination. Our data support the idea that Prunus trees can be infected by different strains of distinct Pseudomonas genomospecies/ecotypes through diverse mechanisms of host colonization and infection. Such strains may represent particular lineages that emerged from environments other than that of the infected plant upon acquiring genetic traits that gave them the ability to cause plant diseases. The complementary assessment of bacterial strains using both taxonomic approaches and methods that reveal ecologically homogeneous populations has proven useful in confirming the cohesion of bacterial clusters.
Collapse
Affiliation(s)
- Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, 00134, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, 00134, Rome, Italy.
| |
Collapse
|
49
|
Abstract
Some bacteria can transfer to new host species, and this poses a risk to human health. Indeed, an estimated 60% of all human pathogens have originated from other animal species. Similarly, human-to-animal transitions are recognized as a major threat to sustainable livestock production, and emerging pathogens impose an increasing burden on crop yield and global food security. Recent advances in high-throughput sequencing technologies have enabled comparative genomic analyses of bacterial populations from multiple hosts. Such studies are providing new insights into the evolutionary processes that underpin the establishment of bacteria in new host niches. A better understanding of the genetic and mechanistic basis for bacterial host adaptation may reveal novel targets for controlling infection or inform the design of approaches to limit the emergence of new pathogens.
Collapse
Affiliation(s)
- Samuel K Sheppard
- Milner Centre for Evolution, Department of Biology & Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
50
|
Nilsson A, Johansson C, Skarp A, Kaden R, Bertilsson S, Rautelin H. Survival ofCampylobacter jejuniandCampylobacter coliwater isolates in lake and well water. APMIS 2018; 126:762-770. [DOI: 10.1111/apm.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Cecilia Johansson
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Astrid Skarp
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - René Kaden
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory; Uppsala University; Uppsala Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| |
Collapse
|