1
|
Sá GCDS, Bezerra PVV, Ramos EO, Orsato A, Leite K, Feio AM, Pimentel LMS, Alves JDA, Gomes GS, Rodrigues PD, Quintella CM, Fragoso SP, da Silva EC, Uchôa AF, dos Santos SC. Pseudomonas aeruginosa Rhamnolipids Produced by Andiroba ( Carapa guianensis Aubl.) (Sapindales: Meliaceae) Biomass Waste from Amazon: A Potential Weapon Against Aedes aegypti L. (Diptera: Culicidae). Molecules 2025; 30:618. [PMID: 39942722 PMCID: PMC11821126 DOI: 10.3390/molecules30030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Rhamnolipids, biosurfactants synthesized from natural resources, demonstrate significant applications, including notable insecticidal efficacy against Aedes aegypti L., the primary vector for numerous arboviruses. The global spread of A. aegypti poses substantial public health challenges, requiring innovative and sustainable control strategies. This research investigates the use of andiroba (Carapa guianensis Aubl.) biomass waste as a substrate for synthesizing a rhamnolipid biosurfactant (BSAW) produced by Pseudomonas aeruginosa and evaluates its insecticidal activity against A. aegypti. The findings indicate a biosurfactant yield of 4.42 mg mL-1, alongside an emulsification index approaching 60%. BSAW successfully reduced both surface and interfacial tensions to below 30 mN/m and 4 mN/m, respectively. Characterization revealed that BSAW is a di-rhamnolipid, consisting of two rhamnose units covalently linked to a saturated C10 fatty acid chain. At a concentration of 1.0 mg mL-1, BSAW exhibited notable larvicidal activity, leading to structural impairments and cellular dysfunctions in A. aegypti larvae while also disrupting their associated bacterial microbiota. Moreover, BSAW effectively deterred oviposition in adult mosquitoes. These findings underscore BSAW's potential to compromise various developmental stages of A. aegypti, supporting integrated arbovirus management approaches. Furthermore, this research emphasizes the feasibility of utilizing agro-industrial waste as substrates for microbial rhamnolipid production.
Collapse
Affiliation(s)
- Giulian César da Silva Sá
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Pedro Vitor Vale Bezerra
- Laboratório de Proteomas, Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (P.V.V.B.); (A.F.U.)
| | - Evelly Oliveira Ramos
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Alexandre Orsato
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil; (A.O.); (K.L.)
| | - Karoline Leite
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil; (A.O.); (K.L.)
| | - Alan Moura Feio
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Lucas Mariano Siqueira Pimentel
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Joane de Almeida Alves
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Glenda Soares Gomes
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| | - Pamela Dias Rodrigues
- Laboratório de Cinética e Dinâmica Molecular, Departamento de Química Inorgânica e Geral, Universidade Federal da Bahia (UFBA), Salvador 40170-115, BA, Brazil; (P.D.R.); (C.M.Q.)
| | - Cristina M. Quintella
- Laboratório de Cinética e Dinâmica Molecular, Departamento de Química Inorgânica e Geral, Universidade Federal da Bahia (UFBA), Salvador 40170-115, BA, Brazil; (P.D.R.); (C.M.Q.)
| | - Sinara Pereira Fragoso
- Laboratório de Tecnologia de Alimentos, Universidade Federal da Paraíba (UFPB), Centro de Tecnologia, João Pessoa 58051-900, PB, Brazil;
| | - Emilly Cruz da Silva
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil;
| | - Adriana Ferreira Uchôa
- Laboratório de Proteomas, Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (P.V.V.B.); (A.F.U.)
| | - Sidnei Cerqueira dos Santos
- Laboratório de Bioensaios e Bioprocessos, Instituto de Estudos em Biológicas e Saúde, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá 68500-000, PA, Brazil; (E.O.R.); (A.M.F.); (L.M.S.P.); (J.d.A.A.); (G.S.G.)
| |
Collapse
|
2
|
Vaselek S, Alten B. Microbial ecology of sandflies-the correlation between nutrition, Phlebotomus papatasi sandfly development and microbiome. Front Vet Sci 2025; 11:1522917. [PMID: 39911488 PMCID: PMC11794182 DOI: 10.3389/fvets.2024.1522917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
The role and the impact of the microbial component on the biology, ecology, and development of sandflies is largely unknown. We evaluated the impact of larval nutrition on laboratory-reared sandflies in correlation to the abundance of food, light starvation, and food with/without live microbiome, by monitoring the survival and development of immature stages, and the longevity of adult sandflies. Within this study we examined 360 larvae, 116 pupae, and 120 adult flies of Phlebotomus papatasi for the microbial gut content. The data showed that the presence of a live and diverse microbiome plays a role in the development and survival of larvae. The mortality rate of the larvae was higher, and larval development was longer for sandflies maintained on microbiome-depleted medium, in comparison to the larvae fed with medium containing alive and complex microbiome. Actively feeding larvae reduce microbial abundance and diversity of the medium. The microbial content of the larval gut depends on the composition of the rearing medium, indicating a potential attraction to certain bacteria. The microbial content of the pupa gut was severely diminished, with overall survival of two bacterial species in adult insects - Ochrobactrum intermedium (found in 95% of dissected adults) and Bacillus subtilis (16%). Further microbial studies may aid in developing biological control methods for sandfly larval or adult stages.
Collapse
Affiliation(s)
- Slavica Vaselek
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | | |
Collapse
|
3
|
Gómez M, Martínez D, Luna N, Vega L, Yepez-Pérez Y, Cantillo-Barraza O, Camargo M, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of bacterial microbiota in Aedes aegypti (Diptera: Culicidae): insights from field and laboratory populations in Colombia. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf002. [PMID: 39833021 DOI: 10.1093/jme/tjaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Comparative studies of the microbiota in whole-body mosquitoes from natural populations and laboratory-reared specimens are scarce, particularly in tropical countries like Colombia, where understanding microbial patterns is critical for effective disease control and vector management. This study examines the bacterial microbiota of Aedes aegypti by comparing field-collected mosquitoes from 3 Colombian regions (Southern Amazon, Central Andean region, and Northern Caribbean coast) with laboratory strains (Rockefeller, Otanche, and Tolima). These regions are highly endemic for dengue and are associated with lineage 1 of Ae. aegypti, known for its elevated vector competence. Using next-generation sequencing of the 16S rRNA gene with Illumina technology, we found that field-collected mosquitoes exhibited significantly higher alpha and beta diversity compared to laboratory-reared specimens. Field mosquitoes were enriched with bacterial families such as Acetobacteraceae, Lactobacillaceae, and Bacillaceae, while laboratory mosquitoes showed a greater abundance of Enterobacteriaceae. Differential abundance analysis revealed that Acetobacter and Bacillus predominated in field mosquitoes, whereas Asaia, Cedacea, and Chryseobacterium were more common in laboratory specimens. Notably, Pseudomonas and Acinetobacter were consistently abundant across all samples. Our findings suggest that environmental factors, such as habitat and diet, significantly influence the bacterial composition and diversity of Ae. aegypti in Colombia. Future research should further explore how these factors, alongside genetic components, shape mosquito-microbiota interactions and their implications for disease transmission and vector competence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
- Programa de Doctorado en Ciencias Biomédicas y Biológicas, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá D.C., Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepez-Pérez
- Programa de Doctorado en Ciencias Biomédicas y Biológicas, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá D.C., Colombia
- Facultad de Ciencias Agrícolas y Pecuarias Agropecuarias, Programa de Medicina Veterinaria, Universidad de La Salle, Bogotá D.C., Colombia
| | | | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Rajendran D, Vinayagam S, Sekar K, Bhowmick IP, Sattu K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. MICROBIAL ECOLOGY 2024; 87:154. [PMID: 39681734 PMCID: PMC11649735 DOI: 10.1007/s00248-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/18/2024]
Abstract
Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.
Collapse
Affiliation(s)
- Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Ipsita Pal Bhowmick
- Department of Malariology, ICMR-RMRCNE Region, Dibrugarh, Assam, 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.
| |
Collapse
|
5
|
Foo A, Brettell LE, Nichols HL, Medina Muñoz M, Lysne JA, Dhokiya V, Hoque AF, Brackney DE, Caragata EP, Hutchinson ML, Jacobs-Lorena M, Lampe DJ, Martin E, Valiente Moro C, Povelones M, Short SM, Steven B, Xu J, Paustian TD, Rondon MR, Hughes GL, Coon KL, Heinz E. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLoS Biol 2024; 22:e3002897. [PMID: 39546548 PMCID: PMC11633956 DOI: 10.1371/journal.pbio.3002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.
Collapse
Affiliation(s)
- Aidan Foo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura E. Brettell
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Holly L. Nichols
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Miguel Medina Muñoz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica A. Lysne
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishaal Dhokiya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ananya F. Hoque
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Doug E. Brackney
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Eric P. Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Michael L. Hutchinson
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, United States of America
- Division of Plant Health, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Rondon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
6
|
Duval P, Martin E, Vallon L, Antonelli P, Girard M, Signoret A, Luis P, Abrouk D, Wiest L, Fildier A, Bonnefoy C, Jame P, Bonjour E, Cantarel A, Gervaix J, Vulliet E, Cazabet R, Minard G, Valiente Moro C. Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens. FEMS Microbiol Ecol 2024; 100:fiae129. [PMID: 39327012 PMCID: PMC11523617 DOI: 10.1093/femsec/fiae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.
Collapse
Affiliation(s)
- Penelope Duval
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laurent Vallon
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Pierre Antonelli
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Maxime Girard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Aymeric Signoret
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Patricia Luis
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Danis Abrouk
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christelle Bonnefoy
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Patrick Jame
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Erik Bonjour
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Amelie Cantarel
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Jonathan Gervaix
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Rémy Cazabet
- UMR 5205, Laboratoire d'Informatique en image et systèmes d'information, Université de Lyon, Villeurbanne, France
| | - Guillaume Minard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| |
Collapse
|
7
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
8
|
Sun Y, Li T, Zhou G, Zhou Y, Wu Y, Xu J, Chen J, Zhong S, Zhong D, Liu R, Lu G, Li Y. Relationship between deltamethrin resistance and gut symbiotic bacteria of Aedes albopictus by 16S rDNA sequencing. Parasit Vectors 2024; 17:330. [PMID: 39103931 DOI: 10.1186/s13071-024-06421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.
Collapse
Affiliation(s)
- Yingbo Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yunfei Zhou
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yuhong Wu
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Jiabao Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiarong Chen
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Saifeng Zhong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
| | - Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
9
|
de Oliveira JC, de Melo Katak R, Muniz VA, de Oliveira MR, Rocha EM, da Silva WR, do Carmo EJ, Roque RA, Marinotti O, Terenius O, Astolfi-Filho S. Bacteria isolated from Aedes aegypti with potential vector control applications. J Invertebr Pathol 2024; 204:108094. [PMID: 38479456 DOI: 10.1016/j.jip.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Highly anthropophilic and adapted to urban environments, Aedes aegypti mosquitoes are the main vectors of arboviruses that cause human diseases such as dengue, zika, and chikungunya fever, especially in countries with tropical and subtropical climates. Microorganisms with mosquitocidal and larvicidal activities have been suggested as environmentally safe alternatives to chemical or mechanical mosquito control methods. Here, we analyzed cultivable bacteria isolated from all stages of the mosquito life cycle for their larvicidal activity against Ae. aegypti. A total of 424 bacterial strains isolated from eggs, larvae, pupae, or adult Ae. aegypti were analyzed for the pathogenic potential of their crude cultures against larvae of this same mosquito species. Nine strains displayed larvicidal activity comparable to the strain AM65-52, reisolated from commercial BTi-based product VectoBac® WG. 16S rRNA gene sequencing revealed that the set of larvicidal strains contains two representatives of the genus Bacillus, five Enterobacter, and two Stenotrophomonas. This study demonstrates that some bacteria isolated from Ae. aegypti are pathogenic for the mosquito from which they were isolated. The data are promising for developing novel bioinsecticides for the control of these medically important mosquitoes.
Collapse
Affiliation(s)
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo - ESALQ - USP, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | - Edson Júnior do Carmo
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden.
| | - Spartaco Astolfi-Filho
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| |
Collapse
|
10
|
Siriyasatien P, Intayot P, Chitcharoen S, Sutthanont N, Boonserm R, Ampol R, Schmidt-Chanasit J, Phumee A. Comparative analysis of midgut bacterial communities in Chikungunya virus-infected and non-infected Aedes aegypti Thai laboratory strain mosquitoes. Sci Rep 2024; 14:10814. [PMID: 38734695 PMCID: PMC11088667 DOI: 10.1038/s41598-024-61027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.
Collapse
Affiliation(s)
- Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Proawpilart Intayot
- Pharmaceutical Ingredient and Medical Device Research Division, Research Development and Innovation Department, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Suwalak Chitcharoen
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nataya Sutthanont
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungfar Boonserm
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rinnara Ampol
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Atchara Phumee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand.
- Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
11
|
Hixson B, Chen R, Buchon N. Innate immunity in Aedes mosquitoes: from pathogen resistance to shaping the microbiota. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230063. [PMID: 38497256 PMCID: PMC10945403 DOI: 10.1098/rstb.2023.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Discussions of host-microbe interactions in mosquito vectors are frequently dominated by a focus on the human pathogens they transmit (e.g. Plasmodium parasites and arboviruses). Underlying the interactions between a vector and its transmissible pathogens, however, is the physiology of an insect living and interacting with a world of bacteria and fungi including commensals, mutualists and primary and opportunistic pathogens. Here we review what is known about the bacteria and fungi associated with mosquitoes, with an emphasis on the members of the Aedes genus. We explore the reciprocal effects of microbe on mosquito, and mosquito on microbe. We analyse the roles of bacterial and fungal symbionts in mosquito development, their effects on vector competence, and their potential uses as biocontrol agents and vectors for paratransgenesis. We explore the compartments of the mosquito gut, uncovering the regionalization of immune effectors and modulators, which create the zones of resistance and immune tolerance with which the mosquito host controls and corrals its microbial symbionts. We examine the anatomical patterning of basally expressed antimicrobial peptides. Finally, we review the relationships between inducible antimicrobial peptides and canonical immune signalling pathways, comparing and contrasting current knowledge on each pathway in mosquitoes to the model insect Drosophila melanogaster. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Bretta Hixson
- Department of Entomology, Cornell University College of Agriculture and Life Sciences, Ithaca, 14853, NY, USA
| | - Robin Chen
- Department of Entomology, Cornell University College of Agriculture and Life Sciences, Ithaca, 14853, NY, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University College of Agriculture and Life Sciences, Ithaca, 14853, NY, USA
| |
Collapse
|
12
|
Hernández AM, Alcaraz LD, Hernández-Álvarez C, Romero MF, Jara-Servín A, Barajas H, . Ramírez CM, Peimbert M. Revealing the microbiome diversity and biocontrol potential of field Aedes ssp.: Implications for disease vector management. PLoS One 2024; 19:e0302328. [PMID: 38683843 PMCID: PMC11057774 DOI: 10.1371/journal.pone.0302328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
The mosquito Aedes spp. holds important relevance for human and animal health, as it serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The microbiome's impact on its host's health and fitness is well known. However, most studies on mosquito microbiomes have been conducted in laboratory settings. We explored the mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity analysis and shotgun metagenomics for functional genomics. Our samples, which included Ae. aegypti and Ae. albopictus, spanned various developmental stages-eggs, larvae, and adults-gathered from five semiurban areas in Mexico. Our findings revealed a substantial diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera and 126,366 annotated proteins. The host developmental stage was identified as the primary factor associated with variations in the microbiome composition. Subsequently, we searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for 9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in abundance during the adult stages. Notably, we detected the presence of the cifA and cifB genes, which are associated with Wolbachia's cytoplasmic incompatibility, a biocontrol mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins, such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mosquito microbiome biodiversity and metabolic capabilities, which are essential for developing effective biocontrol strategies against this disease vector.
Collapse
Affiliation(s)
- Apolinar M. Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristóbal Hernández-Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel F. Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Jara-Servín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hugo Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| |
Collapse
|
13
|
Kriefall NG, Seabourn PS, Yoneishi NM, Davis K, Nakayama KK, Weber DE, Hynson NA, Medeiros MCI. Abiotic factors shape mosquito microbiomes that enhance host development. THE ISME JOURNAL 2024; 18:wrae181. [PMID: 39315733 PMCID: PMC11481732 DOI: 10.1093/ismejo/wrae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Metazoans rely on interactions with microorganisms through multiple life stages. For example, developmental trajectories of mosquitoes can vary depending on the microorganisms available during their aquatic larval phase. However, the role that the local environment plays in shaping such host-microbe dynamics and the consequences for the host organism remain inadequately understood. Here, we examine the influence of abiotic factors, locally available bacteria, and their interactions on the development and associated microbiota of the mosquito Aedes albopictus. Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree 'ōhi'a lehua Metrosideros polymorpha, invasive strawberry guava Psidium cattleianum, or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes. However, specific bacteria exhibited divergent patterns within mosquitoes across detrital infusions that did not align with their abundance in the larval habitat. Specifically, we observed a higher relative abundance of a Chryseobacterium sp. strain in mosquitoes from the strawberry guava infusion than the pure water control, whereas the opposite trend was observed for a Pseudomonas sp. strain. In a follow-up experiment, we manipulated the presence of these two bacterial strains and found larval developmental success was enhanced by including the Chryseobacterium sp. strain in the strawberry guava infusion and the Pseudomonas sp. strain in the pure water control. Collectively, these data suggest that interactions between abiotic factors and microbes of the larval environment can help shape mosquito populations' success.
Collapse
Affiliation(s)
- Nicola G Kriefall
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Priscilla S Seabourn
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole M Yoneishi
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kahiwahiwa Davis
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
14
|
Griffin CD, Weber DE, Seabourn P, Waianuhea LK, Medeiros MCI. Filtration of environmentally sourced aquatic media impacts laboratory-colonised Aedes albopictus early development and adult bacteriome composition. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:693-704. [PMID: 37340616 PMCID: PMC10650568 DOI: 10.1111/mve.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/22/2023]
Abstract
Microorganisms form close associations with metazoan hosts forming symbiotic communities, known as microbiomes, that modulate host physiological processes. Mosquitoes are of special interest in exploring microbe-modulated host processes due to their oversized impact on human health. However, most mosquito work is done under controlled laboratory conditions where natural microbiomes are not present and inferences from these studies may not extend to natural populations. Here we attempt to assemble a wild-resembling bacteriome under laboratory conditions in an established laboratory colony of Aedes albopictus using aquatic media from environmentally-exposed and differentially filtered larval habitats. While we did not successfully replicate a wild bacteriome using these filtrations, we show that these manipulations alter the bacteriomes of mosquitoes, generating a unique composition not seen in wild populations collected from and near our source water or in our laboratory colony. We also demonstrate that our filtration regimens impact larval development times, as well as impact adult survival on different carbohydrate diets.
Collapse
Affiliation(s)
- Chasen D Griffin
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Priscilla Seabourn
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Lorraine K Waianuhea
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
15
|
Oliveira TMP, Rojas MVR, Amorim JA, Alonso DP, de Carvalho DP, Ribeiro KAN, Sallum MAM. Bacterial diversity on larval and female Mansonia spp. from different localities of Porto Velho, Rondonia, Brazil. PLoS One 2023; 18:e0293946. [PMID: 38011160 PMCID: PMC10681206 DOI: 10.1371/journal.pone.0293946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
Studies based on the bacterial diversity present in Mansonia spp. are limited; therefore, the aim of this study was to investigate the bacterial diversity in females and larvae of Mansonia spp., describe the differences between the groups identified, and compare the microbiota of larvae from different collection sites. Sequences of the 16S rRNA region from the larvae and females of Mansonia spp. were analyzed. Diversity analyzes were performed to verify the possible bacterial differences between the groups and the collection sites. The results showed Pseudomonas was the most abundant genus in both females and larvae, followed by Wolbachia in females and Rikenellaceae and Desulfovibrio in larvae. Desulfovibrio and Sulfurospirillum, sulfate- and sulfur-reducing bacteria, respectively, were abundant on the larvae. Aminomonas, an amino acid-degrading bacterium, was found only in larvae, whereas Rickettsia was identified in females. Bacterial diversity was observed between females and larvae of Mansonia and between larvae from different collection sites. In addition, the results suggest that the environment influenced bacterial diversity.
Collapse
Affiliation(s)
- Tatiane M. P. Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Martha V. R. Rojas
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jandui A. Amorim
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Diego P. Alonso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Biotecnologia da UNESP (IBTEC-Campus Botucatu), Botucatu, SP, Brazil
| | | | | | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Zadra N, Tatti A, Silverj A, Piccinno R, Devilliers J, Lewis C, Arnoldi D, Montarsi F, Escuer P, Fusco G, De Sanctis V, Feuda R, Sánchez-Gracia A, Rizzoli A, Rota-Stabelli O. Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. INSECTS 2023; 14:904. [PMID: 38132578 PMCID: PMC10743467 DOI: 10.3390/insects14120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.
Collapse
Affiliation(s)
- Nicola Zadra
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Andrea Silverj
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Julien Devilliers
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Clifton Lewis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy;
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Giuseppe Fusco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| |
Collapse
|
17
|
Guo X, Luo L, Long Y, Teng P, Wei Y, Xie T, Li L, Yin Q, Li Z, Wang Y, He J, Ji X, Zhou H, Zhang X, Chen S, Zhou Y, Xu K, Liang G, Kuang H, Gao Y, Liu X, Luo L, Ding L, Li Y, Liu Z, Zhou T, Lai Z, Su X, Guo Y, Li C, Xie L, Li M, Wu X, Huang J, Su W, Pan Y, Hu W, Zhou D, Li C, Gui J, Ma J, Feng X, Zhu M, Zhong S, Chen F, Zeng H, Wu Y, Wang C, Li S, Wang Q, Wang X, Zhou Y, Ling J, Liu Y, Wu S, Li Z, Zhong M, Wei W, Xie L, Xu X, Huang H, Yang G, Liu Y, Liang S, Wu Y, Zhang D, Xu C, Wang J, Wang C, Wu R, Yang Z, Chen XG, Zhou X. Field investigation combined with modeling uncovers the ecological heterogeneity of Aedes albopictus habitats for strategically improving systematic management during urbanization. Parasit Vectors 2023; 16:382. [PMID: 37880803 PMCID: PMC10599048 DOI: 10.1186/s13071-023-05926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Aedes albopictus is an invasive vector of serious Aedes-borne diseases of global concern. Habitat management remains a critical factor for establishing a cost-effective systematic strategy for sustainable vector control. However, the community-based characteristics of Ae. albopictus habitats in complex urbanization ecosystems are still not well understood. METHODS A large-scale investigation of aquatic habitats, involving 12 sites selected as representative of four land use categories at three urbanization levels, was performed in Guangzhou, China during 2015-2017. The characteristics and dynamics of these Ae. albopictus habitats were assessed using habitat-type composition, habitat preference, diversity indexes and the Route index (RI), and the temporal patterns of these indexes were evaluated by locally weighted scatterplot smoothing models. The associations of RI with urbanization levels, land use categories and climatic variables were inferred using generalized additive mixed models. RESULTS A total of 1994 potential habitats and 474 Ae. albopictus-positive habitats were inspected. The majority of these habitats were container-type habitats, with Ae. albopictus showing a particularly higher habitat preference for plastic containers, metal containers and ceramic vessels. Unexpectedly, some non-container-type habitats, especially ornamental ponds and surface water, were found to have fairly high Ae. albopictus positivity rates. Regarding habitats, the land use category residential and rural in Jiangpu (Conghua District, Guangzhou) had the highest number of Ae. albopictus habitats with the highest positive rates. The type diversity of total habitats (H-total) showed a quick increase from February to April and peaked in April, while the H-total of positive habitats (H-positive) and RIs peaked in May. RIs mainly increased with the monthly average daily mean temperature and monthly cumulative rainfall. We also observed the accumulation of diapause eggs in the winter and diapause termination in the following March. CONCLUSIONS Ecological heterogeneity of habitat preferences of Ae. albopictus was demonstrated in four land use categories at three urbanization levels. The results reveal diversified habitat-type compositions and significant seasonal variations, indicating an ongoing adaptation of Ae. albopictus to the urbanization ecosystem. H-positivity and RIs were inferred as affected by climatic variables and diapause behavior of Ae. albopictus, suggesting that an effective control of overwintering diapause eggs is crucial. Our findings lay a foundation for establishing a stratified systematic management strategy of Ae. albopictus habitats in cities that is expected to complement and improve community-based interventions and sustainable vector management.
Collapse
Affiliation(s)
- Xiang Guo
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yuxiang Long
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Pingying Teng
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuehong Wei
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Tian Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Yin
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ziyao Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiejun He
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiatian Ji
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huasheng Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaofan Zhang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shigang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yezhen Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Kaihui Xu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guancong Liang
- Conghua District Center for Disease Control and Prevention, Guangzhou, 510900, China
| | - Haocheng Kuang
- Conghua District Center for Disease Control and Prevention, Guangzhou, 510900, China
| | - Yuting Gao
- Department of Landscape Architecture and Regional & Community Planning, College of Architecture, Planning and Design, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaohua Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Luting Luo
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lin Ding
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yiji Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanzhuan Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Tengfei Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zetian Lai
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinghua Su
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuyan Guo
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chenying Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lihua Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Minqing Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinglong Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianhao Huang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Weicong Su
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Pan
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wei Hu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dongrui Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chunv Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Juan Gui
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiazhi Ma
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoli Feng
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Minyi Zhu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shangbin Zhong
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Fan Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huanchao Zeng
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yingxian Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chen Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shukai Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qi Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xueyi Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yekai Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianxun Ling
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yingjie Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shang Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Li
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Minghui Zhong
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenxia Wei
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lixian Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xianli Xu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hehai Huang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guilan Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yan Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Siting Liang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yingxia Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Deyu Zhang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Changqing Xu
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chunmei Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rangke Wu
- The School of Foreign Studies, Southern Medical University, Guangzhou, 510515, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Hyde J, Brackney DE, Steven B. Three species of axenic mosquito larvae recruit a shared core of bacteria in a common garden experiment. Appl Environ Microbiol 2023; 89:e0077823. [PMID: 37681948 PMCID: PMC10537770 DOI: 10.1128/aem.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023] Open
Abstract
In this study, we describe the generation of two new species of axenic mosquito, Aedes albopictus and Aedes triseriatus. Along with Aedes aegypti, axenic larvae of these three species were exposed to an environmental water source to document the assembly of the microbiome in a common garden experiment. Additionally, the larvae were reared either individually or combinatorially with the other species to characterize the effects of co-rearing on the composition of the microbiome. We found that the microbiome of the larvae was composed of a relatively low-diversity collection of bacteria from the colonizing water. The abundance of bacteria in the water was a poor predictor of their abundance in the larvae, suggesting the larval microbiome is made up of a subset of relatively rare aquatic bacteria. We found 11 bacterial 16S rRNA gene amplicon sequence variants (ASVs) that were conserved among ≥90% of the mosquitoes sampled, including 2 found in 100% of the larvae, pointing to a conserved core of bacteria capable of colonizing all three species of mosquito. Yet, the abundance of these ASVs varied widely between larvae, suggesting individuals harbored largely unique microbiome structures, even if they overlapped in membership. Finally, larvae reared in a tripartite mix of the host-species consistently showed a convergence in the structure of their microbiome, indicating that multi-species interactions between hosts potentially lead to shifts in the composition of their respective microbiomes. IMPORTANCE This study is the first report of the axenic (free of external microbes) rearing of two species of mosquito, Aedes albopictus and Aedes triseriatus. Our previous report of axenic Aedes aegypti brings the number of axenic species to three. We designed a method to perform a common garden experiment to characterize the bacteria the three species of axenic larvae assemble from their surroundings. Furthermore, species could be reared in isolation or in multi-species combinations to assess how host-species interactions influence the composition of the microbiome. We found all three species recruited a common core of bacteria from their rearing water, with a large contingent of rare and sporadically detected bacteria. Finally, we also show that co-rearing of mosquito larvae leads to a coalescence in the composition of their microbiome, indicating that host-species interactions potentially influence the composition of the microbiome.
Collapse
Affiliation(s)
- Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Lixiang C, Zhenya T, Weihua M, Jingjing W, Qiaofen H, Yongping Z, Xuyuan G, Hongsong C, Zhongshi Z. Comparison of bacterial diversity in Bactrocera cucurbitae (Coquillett) ovaries and eggs based on 16S rRNA sequencing. Sci Rep 2023; 13:11793. [PMID: 37479777 PMCID: PMC10362026 DOI: 10.1038/s41598-023-38992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Next-generation sequencing allows for fine-scale studies of microbial communities. Herein, 16S ribosomal RNA high-throughput sequencing was used to identify, classify, and predict the functions of the bacterial communities in the eggs and ovaries of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), which is a pest that infests a variety of cucurbit fruits at different developmental stages. Taxonomic analyses indicate that bacteria associated with B. cucurbitae represent 19 phyla, which were spread across different developmental stages. Specifically, the egg microbiota had a higher alpha diversity than those of microbiota in the primary and mature ovaries. Significant differences were not observed between the primary and mature ovaries in terms of their microbiota's alpha diversities. Pseudomonadota, Deinococcota, Bacteroidota, Bacillota, and Actinomycetota were the dominant phyla in all three developmental stages of B. cucurbitae, and Pseudomonadaceae and Enterobacteriaceae were the most abundant families. Owing to the unique physiological environment of the ovaries, the diversity of their bacterial community was significantly lower than that in the eggs. This study provides new insights into the structure and abundance of the microbiota in B. cucurbitae at different developmental stages and contributes to forming management strategies for this pest.
Collapse
Affiliation(s)
- Chen Lixiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tian Zhenya
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ma Weihua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wang Jingjing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Huang Qiaofen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhou Yongping
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Gao Xuyuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chen Hongsong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhou Zhongshi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China.
| |
Collapse
|
21
|
Baltar JMC, Pavan MG, Corrêa-Antônio J, Couto-Lima D, Maciel-de-Freitas R, David MR. Gut Bacterial Diversity of Field and Laboratory-Reared Aedes albopictus Populations of Rio de Janeiro, Brazil. Viruses 2023; 15:1309. [PMID: 37376609 DOI: 10.3390/v15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The mosquito microbiota impacts different parameters in host biology, such as development, metabolism, immune response and vector competence to pathogens. As the environment is an important source of acquisition of host associate microbes, we described the microbiota and the vector competence to Zika virus (ZIKV) of Aedes albopictus from three areas with distinct landscapes. METHODS Adult females were collected during two different seasons, while eggs were used to rear F1 colonies. Midgut bacterial communities were described in field and F1 mosquitoes as well as in insects from a laboratory colony (>30 generations, LAB) using 16S rRNA gene sequencing. F1 mosquitoes were infected with ZIKV to determine virus infection rates (IRs) and dissemination rates (DRs). Collection season significantly affected the bacterial microbiota diversity and composition, e.g., diversity levels decreased from the wet to the dry season. Field-collected and LAB mosquitoes' microbiota had similar diversity levels, which were higher compared to F1 mosquitoes. However, the gut microbiota composition of field mosquitoes was distinct from that of laboratory-reared mosquitoes (LAB and F1), regardless of the collection season and location. A possible negative correlation was detected between Acetobacteraceae and Wolbachia, with the former dominating the gut microbiota of F1 Ae. albopictus, while the latter was absent/undetectable. Furthermore, we detected significant differences in infection and dissemination rates (but not in the viral load) between the mosquito populations, but it does not seem to be related to gut microbiota composition, as it was similar between F1 mosquitoes regardless of their population. CONCLUSIONS Our results indicate that the environment and the collection season play a significant role in shaping mosquitoes' bacterial microbiota.
Collapse
Affiliation(s)
- João M C Baltar
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Márcio G Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Mariana R David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
22
|
Mosquera KD, Nilsson LKJ, de Oliveira MR, Rocha EM, Marinotti O, Håkansson S, Tadei WP, de Souza AQL, Terenius O. Comparative assessment of the bacterial communities associated with Anopheles darlingi immature stages and their breeding sites in the Brazilian Amazon. Parasit Vectors 2023; 16:156. [PMID: 37127597 PMCID: PMC10150499 DOI: 10.1186/s13071-023-05749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/19/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The neotropical anopheline mosquito Anopheles darlingi is a major malaria vector in the Americas. Studies on mosquito-associated microbiota have shown that symbiotic bacteria play a major role in host biology. Mosquitoes acquire and transmit microorganisms over their life cycle. Specifically, the microbiota of immature forms is largely acquired from their aquatic environment. Therefore, our study aimed to describe the microbial communities associated with An. darlingi immature forms and their breeding sites in the Coari municipality, Brazilian Amazon. METHODS Larvae, pupae, and breeding water were collected in two different geographical locations. Samples were submitted for DNA extraction and high-throughput 16S rRNA gene sequencing was conducted. Microbial ecology analyses were performed to explore and compare the bacterial profiles of An. darlingi and their aquatic habitats. RESULTS We found lower richness and diversity in An. darlingi microbiota than in water samples, which suggests that larvae are colonized by a subset of the bacterial community present in their breeding sites. Moreover, the bacterial community composition of the immature mosquitoes and their breeding water differed according to their collection sites, i.e., the microbiota associated with An. darlingi reflected that in the aquatic habitats where they developed. The three most abundant bacterial classes across the An. darlingi samples were Betaproteobacteria, Clostridia, and Gammaproteobacteria, while across the water samples they were Gammaproteobacteria, Bacilli, and Alphaproteobacteria. CONCLUSIONS Our findings reinforce the current evidence that the environment strongly shapes the composition and diversity of mosquito microbiota. A better understanding of mosquito-microbe interactions will contribute to identifying microbial candidates impacting host fitness and disease transmission.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Louise K J Nilsson
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multi User Laboratory, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Sebastian Håkansson
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Wanderli P Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Antonia Queiroz Lima de Souza
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Brazil
| | - Olle Terenius
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
23
|
dos Santos NAC, de Carvalho VR, Souza-Neto JA, Alonso DP, Ribolla PEM, Medeiros JF, Araujo MDS. Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland. Microorganisms 2023; 11:1145. [PMID: 37317119 PMCID: PMC10224351 DOI: 10.3390/microorganisms11051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Anopheles darlingi is a major malaria vector in the Amazon region and, like other vectors, harbors a community of microorganisms with which it shares a network of interactions. Here, we describe the diversity and bacterial composition from the midguts and salivary glands of lab-reared and field-captured An. darlingi using metagenome sequencing of the 16S rRNA gene. The libraries were built using the amplification of the region V3-V4 16S rRNA gene. The bacterial community from the salivary glands was more diverse and richer than the community from the midguts. However, the salivary glands and midguts only showed dissimilarities in beta diversity between lab-reared mosquitoes. Despite that, intra-variability was observed in the samples. Acinetobacter and Pseudomonas were dominant in the tissues of lab-reared mosquitoes. Sequences of Wolbachia and Asaia were both found in the tissue of lab-reared mosquitoes; however, only Asaia was found in field-captured An. darlingi, but in low abundance. This is the first report on the characterization of microbiota composition from the salivary glands of An. darlingi from lab-reared and field-captured individuals. This study can provide invaluable insights for future investigations regarding mosquito development and interaction between mosquito microbiota and Plasmodium sp.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Vanessa Rafaela de Carvalho
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Diego Peres Alonso
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Paulo Eduardo Martins Ribolla
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Jansen Fernandes Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais–PPGReN, Departament of Biology, Fundação Universidade Federal de Rondônia, Campus José Ribeiro Filho, Porto Velho 76801-059, RO, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho 76812-329, RO, Brazil
| |
Collapse
|
24
|
Ferreira QR, Lemos FFB, Moura MN, Nascimento JODS, Novaes AF, Barcelos IS, Fernandes LA, Amaral LSDB, Barreto FK, de Melo FF. Role of the Microbiome in Aedes spp. Vector Competence: What Do We Know? Viruses 2023; 15:779. [PMID: 36992487 PMCID: PMC10051417 DOI: 10.3390/v15030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the vectors of important arboviruses: dengue fever, chikungunya, Zika, and yellow fever. Female mosquitoes acquire arboviruses by feeding on the infected host blood, thus being able to transmit it to their offspring. The intrinsic ability of a vector to infect itself and transmit a pathogen is known as vector competence. Several factors influence the susceptibility of these females to be infected by these arboviruses, such as the activation of the innate immune system through the Toll, immunodeficiency (Imd), JAK-STAT pathways, and the interference of specific antiviral response pathways of RNAi. It is also believed that the presence of non-pathogenic microorganisms in the microbiota of these arthropods could influence this immune response, as it provides a baseline activation of the innate immune system, which may generate resistance against arboviruses. In addition, this microbiome has direct action against arboviruses, mainly due to the ability of Wolbachia spp. to block viral genome replication, added to the competition for resources within the mosquito organism. Despite major advances in the area, studies are still needed to evaluate the microbiota profiles of Aedes spp. and their vector competence, as well as further exploration of the individual roles of microbiome components in activating the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
25
|
Rodpai R, Boonroumkaew P, Sadaow L, Sanpool O, Janwan P, Thanchomnang T, Intapan PM, Maleewong W. Microbiome Composition and Microbial Community Structure in Mosquito Vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a Dengue-Endemic Area. INSECTS 2023; 14:184. [PMID: 36835753 PMCID: PMC9961164 DOI: 10.3390/insects14020184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Bacterial content in mosquito larvae and adults is altered by dynamic interactions during life and varies substantially in variety and composition depending on mosquito biology and ecology. This study aimed to identify the microbiota in Aedes aegypti and Aedes albopictus and in water from their breeding sites in northeastern Thailand, a dengue-endemic area. Bacterial diversity in field-collected aquatic larvae and subsequently emerged adults of both species from several locations were examined. The microbiota was characterized based on analysis of DNA sequences from the V3-V4 region of the 16S rRNA gene and exhibited changes during development, from the mosquito larval stage to the adult stage. Aedes aegypti contained a significantly higher number of bacterial genera than did Ae. albopictus, except for the genus Wolbachia, which was present at significantly higher frequencies in male Ae. albopictus (p < 0.05). Our findings also indicate likely transstadial transmission from larva to adult and give better understanding of the microbial diversity in these mosquitoes, informing future control programs against mosquito-borne diseases.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Penchom Janwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | | | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
26
|
Lv WX, Cheng P, Lei JJ, Peng H, Zang CH, Lou ZW, Liu HM, Guo XX, Wang HY, Wang HF, Zhang CX, Liu LJ, Gong MQ. Interactions between the gut micro-community and transcriptome of Culex pipiens pallens under low-temperature stress. Parasit Vectors 2023; 16:12. [PMID: 36635706 PMCID: PMC9837946 DOI: 10.1186/s13071-022-05643-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Culex pipiens pallens (Diptera: Culicidae) can survive at low temperature for long periods. Understanding the effects of low-temperature stress on the gut microflora and gene expression levels in Cx. pipiens pallens, as well as their correlation, will contribute to the study of the overwintering mechanism of Cx. pipiens pallens. METHODS The gut bacteria were removed by antibiotic treatment, and the survival of Cx. pipiens pallens under low-temperature stress was observed and compared with the control group. Then, full-length 16S rRNA sequencing and the Illumina HiSeq X Ten sequencing platform were used to evaluate the gut microflora and gene expression levels in Cx. pipiens pallens under low-temperature stress. RESULTS Under the low-temperature stress of 7 °C, the median survival time of Cx. pipiens pallens in the antibiotic treatment group was significantly shortened by approximately 70% compared to that in the control group. The species diversity index (Shannon, Simpson, Ace, Chao1) of Cx. pipiens pallens decreased under low-temperature stress (7 °C). Non-metric multidimensional scaling (NMDS) analysis divided all the gut samples into two groups: control group and treatment group. Pseudomonas was the dominant taxon identified in the control group, followed by Elizabethkingia and Dyadobacter; in the treatment group, Pseudomonas was the dominant taxon, followed by Aeromonas and Comamonas. Of the 2417 differentially expressed genes (DEGs), 1316 were upregulated, and 1101 were downregulated. Functional GO terms were enriched in 23 biological processes, 20 cellular components and 21 molecular functions. KEGG annotation results showed that most of these genes were related to energy metabolism-related pathways. The results of Pearson's correlation analysis showed a significant correlation between the gut microcommunity at the genus level and several DEGs. CONCLUSIONS These results suggest that the mechanism of adaptation of Cx. pipiens pallens to low-temperature stress may be the result of interactions between the gut bacterial community and transcriptome.
Collapse
Affiliation(s)
- Wen-Xiang Lv
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Peng Cheng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Jing-Jing Lei
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hui Peng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chuan-Hui Zang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Zi-Wei Lou
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hong-Mei Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Xiu-Xia Guo
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Yang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Fang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chong-Xing Zhang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Li-Juan Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Mao-Qing Gong
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| |
Collapse
|
27
|
Trzebny A, Slodkowicz-Kowalska A, Björkroth J, Dabert M. Microsporidian Infection in Mosquitoes (Culicidae) Is Associated with Gut Microbiome Composition and Predicted Gut Microbiome Functional Content. MICROBIAL ECOLOGY 2023; 85:247-263. [PMID: 34939130 PMCID: PMC9849180 DOI: 10.1007/s00248-021-01944-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Anna Slodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
28
|
Abstract
The mosquito microbiota has a profound impact on multiple biological processes ranging from reproduction to disease transmission. Interestingly, the adult mosquito microbiota is largely derived from the larval microbiota, which in turn is dependent on the microbiota of their water habitat. The larval microbiota not only plays a crucial role in larval development but also has a significant impact on the adult stage of the mosquito. By precisely engineering the larval microbiota, it is feasible to alter larval development and other life history traits of the mosquitoes. Bacteriophages, given their host specificity, can serve as a tool for modulating the microbiota. For this proof-of-principle study, we selected representative strains of five common Anopheles mosquito-associated bacterial genera, namely, Enterobacter, Serratia, Pseudomonas, Elizabethkingia, and Asaia. Our results with monoaxenic cultures showed that Anopheles larvae with Enterobacter and Pseudomonas displayed normal larval development with no significant mortality. However, monoaxenic Anopheles larvae with Elizabethkingia showed delayed larval development and higher mortality. Serratia and Asaia gnotobiotic larvae failed to develop past the first instar. We isolated and characterized three novel bacteriophages (EP1, SP1, and EKP1) targeting Enterobacter, Serratia, and Elizabethkingia, respectively, and utilized a previously characterized bacteriophage (GH1) targeting Pseudomonas to modulate larval water microbiota. Gnotobiotic Anopheles larvae with all five bacterial genera showed reduced survival and larval development with the addition of bacteriophages EP1 and GH1, targeting Enterobacter and Pseudomonas, respectively. The effect was synergistic when both EP1 and GH1 were added together. Our results demonstrate a novel application of bacteriophages for mosquito control. IMPORTANCE Mosquitoes are efficient vectors of multiple human and animal pathogens. The biology of mosquitoes is strongly affected by their associated microbiota. Because of the important role of the larval microbiota in mosquito biology, the microbiota can potentially serve as a target for altering mosquito life-history traits. Our study provides proof of principle that bacteriophages can be used as tools to modulate the mosquito larval habitat microbiota and can, in turn, affect larval development and survival. These results highlight the utility of bacteriophages in mosquito microbiota research and also provide a new potential mosquito control tool.
Collapse
|
29
|
Mosquera KD, Khan Z, Wondwosen B, Alsanius B, Hill SR, Ignell R, Lorenzo MG. Odor-mediated response of gravid Aedes aegypti to mosquito-associated symbiotic bacteria. Acta Trop 2022; 237:106730. [PMID: 36280207 DOI: 10.1016/j.actatropica.2022.106730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Complex oviposition decisions allow gravid Aedes aegypti mosquitoes to select suitable sites for egg-laying to increase the probability that their progeny will thrive. The bacterial communities present in larval niches influence mosquito oviposition behavior, and gravid mosquitoes transmit key microbial associates to breeding sites during oviposition. Our study evaluated whether symbiotic Klebsiella sp., which are strongly associated with mosquitoes, emit volatiles that affect mosquito oviposition decisions. Dual-choice behavioral assays demonstrated that volatile organic compounds emitted by Klebsiella sp. induce a preference in oviposition decisions by Ae. aegypti. Bacterial headspace volatiles were sampled by solid-phase microextraction, and subsequent combined gas chromatography and electroantennogram detection analysis, revealed that the antennae of gravid females detect two compounds present in the Klebsiella sp. headspace. These compounds were identified by gas chromatography and mass spectrometry as 2-ethyl hexanol and 2,4-di‑tert-butylphenol. The binary blend of these compounds elicited a dose-dependent egg-laying preference by gravid mosquitoes. We propose that bacterial symbionts, which are associated with gravid mosquitoes and may be transferred to aquatic habitats during egg-laying, together with their volatiles act as oviposition cues indicating the suitability of active breeding sites to conspecific females.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Zaid Khan
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Betelehem Wondwosen
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Beatrix Alsanius
- Microbial Horticulture Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon R Hill
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil.
| |
Collapse
|
30
|
Arellano AA, Sommer AJ, Coon KL. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evol Ecol 2022; 37:165-188. [PMID: 37153630 PMCID: PMC10162596 DOI: 10.1007/s10682-022-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vector-borne diseases constitute a major global public health threat. The most significant arthropod disease vectors are predominantly comprised of members of the insect order Diptera (true flies), which have long been the focus of research into host-pathogen dynamics. Recent studies have revealed the underappreciated diversity and function of dipteran-associated gut microbial communities, with important implications for dipteran physiology, ecology, and pathogen transmission. However, the effective parameterization of these aspects into epidemiological models will require a comprehensive study of microbe-dipteran interactions across vectors and related species. Here, we synthesize recent research into microbial communities associated with major families of dipteran vectors and highlight the importance of development and expansion of experimentally tractable models across Diptera towards understanding the functional roles of the gut microbiota in modulating disease transmission. We then posit why further study of these and other dipteran insects is not only essential to a comprehensive understanding of how to integrate vector-microbiota interactions into existing epidemiological frameworks, but our understanding of the ecology and evolution of animal-microbe symbiosis more broadly.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Sommer
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Rau J, Werner D, Beer M, Höper D, Kampen H. The microbial RNA metagenome of Aedes albopictus (Diptera: Culicidae) from Germany. Parasitol Res 2022; 121:2587-2599. [PMID: 35857094 PMCID: PMC9378336 DOI: 10.1007/s00436-022-07576-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022]
Abstract
Aedes albopictus is a highly invasive mosquito species that has become widespread across the globe. In addition, it is an efficient vector of numerous pathogens of medical and veterinary importance, including dengue, chikungunya and Zika viruses. Among others, the vector potential of mosquitoes is influenced by their microbiome. However, this influence is very dynamic and can vary between individuals and life stages. To obtain a rough overview on the microbiome of Ae. albopictus populations in Germany, pooled female and pooled male individuals from seven German locations were investigated by total RNA sequencing. The mosquito specimens had been collected as larvae in the field and processed immediately after adult emergence, i.e. without females having fed on blood. RNA fragments with high degrees of identity to a large number of viruses and microorganisms were identified, including, for example, Wolbachia pipientis and Acinetobacter baumannii, with differences between male and female mosquitoes. Knowledge about the natural occurrence of microorganisms in mosquitoes may be translated into new approaches to vector control, for example W. pipientis can be exploited to manipulate mosquito reproduction and vector competence. The study results show how diverse the microbiome of Ae. albopictus can be, and the more so needs to be adequately analysed and interpreted.
Collapse
Affiliation(s)
- Janine Rau
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany.
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
32
|
Tawidian P, Jumpponen A, Michel K. Patterns of Fungal Community Assembly Across Two Culex Mosquito Species. Front Ecol Evol 2022; 10. [DOI: 10.3389/fevo.2022.911085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the aquatic environment, mosquito larvae encounter bacteria and fungi that assemble into bacterial and fungal communities. The composition and impact of mosquito-associated bacterial community has been reported across larvae of various mosquito species. However, knowledge on the composition of mosquito-associated fungal communities and the drivers of their assembly remain largely unclear, particularly across mosquito species. In this study, we used high throughput sequencing of the fungal Internal transcribed spacer 2 (ITS2) metabarcode marker to identify fungal operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) associated with field-collected Culex restuans and Culex pipiens larvae and their breeding water. Our analyses identified diverse fungal communities across larval breeding sites collected on a fine geographic scale. Our data show that the larval breeding site is the major determinant of fungal community assembly in these mosquito species. We also identified distinct fungal communities in guts and carcasses within each species. However, these tissue-specific patterns were less evident in Cx. restuans than in Cx. pipiens larvae. The broad ecological patterns of fungal community assembly in mosquito larvae did not vary between OTU and ASV analyses. Together, this study provides the first insight into the fungal community composition and diversity in field collected Cx. restuans and Cx. pipiens larvae using OTUs and ASVs. While these findings largely recapitulate our previous analyses in Aedes albopictus larvae, we report minor differences in tissue-specific fungal community assembly in Cx. restuans larvae. Our results suggest that while the fungal community assembly in mosquito larvae may be generalized across mosquito species, variation in larval feeding behavior may impact fungal community assembly in the guts of mosquito larvae.
Collapse
|
33
|
Li S, Tang R, Yi H, Cao Z, Sun S, Liu TX, Zhang S, Jing X. Neutral Processes Provide an Insight Into the Structure and Function of Gut Microbiota in the Cotton Bollworm. Front Microbiol 2022; 13:849637. [PMID: 35591990 PMCID: PMC9113526 DOI: 10.3389/fmicb.2022.849637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Gut-associated microbes can influence insect health and fitness. Understanding the structure of bacterial communities provides valuable insights on how different species may be selected and their functional characteristics in their hosts. The neutral model is powerful in predicting the structure of microbial communities, but its application in insects remains rare. Here, we examined the contribution of neutral processes to the gut-associated bacterial communities in Helicoverpa armigera caterpillars collected from different maize varieties at four locations. The gut-associated bacteria can be assigned to 37 Phyla, 119 orders, and 515 genera, with each individual gut containing 17–75% of the OTUs and 19–79% of the genera in the pooled samples of each population. The distribution patterns of most (75.59–83.74%) bacterial taxa were in good agreement with the neutral expectations. Of the remaining OTUs, some were detected in more individual hosts than would be predicted by the neutral model (i.e., above-partition), and others were detected in fewer individual hosts than predicted by the neutral model (i.e., below-partition). The bacterial taxa in the above-partitions were potentially selected by the caterpillar hosts, while the bacteria in the below-partitions may be preferentially eliminated by the hosts. Moreover, the gut-associated microbiota seemed to vary between maize varieties and locations, so ecological parameters outside hosts can affect the bacterial communities. Therefore, the structure of gut microbiota in the H. armigera caterpillar was mainly determined by stochastic processes, and the bacteria in the above-partition warrant further investigation for their potential roles in the caterpillar host.
Collapse
Affiliation(s)
- Sali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Rui Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Hao Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Zhichao Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Shaolei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Sicong Zhang
- Shandong Academy of Pesticide Sciences, Jinan, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
34
|
Coon KL, Hegde S, Hughes GL. Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. MICROBIOME 2022; 10:58. [PMID: 35410630 PMCID: PMC8996512 DOI: 10.1186/s40168-022-01256-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Mosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes. RESULTS Here, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (Culex quinquefasciatus to Aedes aegypti) and within (Ae. aegypti to Ae. aegypti) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults. CONCLUSIONS This study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions. Video Abstract.
Collapse
Affiliation(s)
- Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
35
|
Yang Y, Liu X, Xu H, Liu Y, Lu Z. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Cnaphalocrocis medinalis. Front Microbiol 2022; 13:824224. [PMID: 35479615 PMCID: PMC9037797 DOI: 10.3389/fmicb.2022.824224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbes in insects may play an important role in the digestion, immunity and protection, detoxification of toxins, development, and reproduction. The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious insect pest that can damage rice, maize, and other gramineous plants. To determine the effects of host plants and generations on the gut microbiota of C. medinalis, we deciphered the bacterial configuration of this insect pest fed rice or maize for three generations by Illumina MiSeq technology. A total of 16 bacterial phyla, 34 classes, 50 orders, 101 families, 158 genera, and 44 species were identified in C. medinalis fed rice or maize for three generations. Host plants, insect generation, and their interaction did not influence the alpha diversity indices of the gut microbiota of C. medinalis. The dominant bacterial taxa were Proteobacteria and Firmicutes at the phylum level and Enterococcus and unclassified Enterobacteriaceae at the genus level. A number of twenty genera coexisted in the guts of C. medinalis fed rice or maize for three generations, and their relative abundances occupied more than 90% of the gut microbiota of C. medinalis. A number of two genera were stably found in the gut of rice-feeding C. medinalis but unstably found in the gut microbiota of maize-feeding C. medinalis, and seven genera were stably found in the gut of maize-feeding C. medinalis but unstably found in the gut of rice-feeding C. medinalis. In addition, many kinds of microbes were found in some but not all samples of the gut of C. medinalis fed on a particular host plant. PerMANOVA indicated that the gut bacteria of C. medinalis could be significantly affected by the host plant and host plant × generation. We identified 47 taxa as the biomarkers for the gut microbiota of C. medinalis fed different host plants by LEfSe. Functional prediction suggested that the most dominant role of the gut microbiota in C. medinalis is metabolism, followed by environmental information processing, cellular processes, and genetic information processing. Our findings will enrich the understanding of gut bacteria in C. medinalis and reveal the differences in gut microbiota in C. medinalis fed on different host plants for three generations.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhongxian Lu,
| |
Collapse
|
36
|
Didion EM, Doyle M, Benoit JB. Bacterial Communities of Lab and Field Northern House Mosquitoes (Diptera: Culicidae) Throughout Diapause. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:648-658. [PMID: 34747999 PMCID: PMC8924969 DOI: 10.1093/jme/tjab184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/03/2023]
Abstract
Diapause is a hormonally driven response which is triggered by environmental cues that signal impending adverse conditions and prompts metabolic, developmental, and behavioral changes to allow survival until the return of favorable conditions. Microbial symbionts have been shown to influence the metabolism, development, and behavior of their host organisms, all of which are common diapause-associated characteristics. Surveys of bacterial components in relation to diapause have been examined in few systems, of which the species are usually inactive during dormancy, such as eggs or pupae. This is specifically intriguing as adult female diapause in Culex pipiens (Diptera: Culicidae) can last between 4 and 7 mo and females remain mobile within their hibernacula. Furthermore, it is unknown how microbiota changes associated with prolonged dormancy are different between the lab and field for insect systems. This study aims to characterize how the microbiota of C. pipiens changes throughout diapause under both field and lab settings when provided identical food and water resources. Based on these studies, C. pipiens microbiota shifts as diapause progresses and there are considerable differences between field and lab individuals even when provided the same carbohydrate and water sources. Specific bacterial communities have more association with different periods of diapause, field and lab rearing conditions, and nutritional reserve levels. These studies highlight that diapausing mosquito microbiota studies ideally should occur in field mesocosms and at multiple locations, to increase applicability to wild C. pipiens as prolonged exposure to artificial rearing conditions could impact metrics related to diapause-microbiome interactions. Additionally, these findings suggest that it would be worthwhile to establish if the microbiota shift during diapause impacts host physiology and whether this shift is critical to diapause success.
Collapse
Affiliation(s)
- Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Corresponding authors, e-mail: ;
| | - Megan Doyle
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Corresponding authors, e-mail: ;
| |
Collapse
|
37
|
Arellano AA, Coon KL. Bacterial communities in carnivorous pitcher plants colonize and persist in inquiline mosquitoes. Anim Microbiome 2022; 4:13. [PMID: 35172907 PMCID: PMC8848819 DOI: 10.1186/s42523-022-00164-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker of W. smithii as a 'keystone predator', very little is known about microbiota acquisition and assembly in W. smithii mosquitoes or the impacts of W. smithii-microbiota interactions on mosquito and/or plant fitness. RESULTS In this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derived W. smithii larvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across the W. smithii life cycle. Methods were also developed to produce axenic (microbiota-free) W. smithii larvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity in W. smithii larvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adult W. smithii mosquitoes. We also demonstrate the successful generation of axenic W. smithii larvae and report variable fitness outcomes in gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field. CONCLUSIONS This study provides the first information on microbiota acquisition and assembly in W. smithii mosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand how W. smithii-microbiota interactions shape the structure and stability of this important model ecosystem.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
38
|
Tawidian P, Coon KL, Jumpponen A, Cohnstaedt LW, Michel K. Host-Environment Interplay Shapes Fungal Diversity in Mosquitoes. mSphere 2021; 6:e0064621. [PMID: 34585960 PMCID: PMC8550294 DOI: 10.1128/msphere.00646-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquito larvae encounter diverse assemblages of bacteria (i.e., "microbiota") and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus, is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control.
Collapse
Affiliation(s)
- Patil Tawidian
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
39
|
Mosquera KD, Martinez Villegas LE, Pidot SJ, Sharif C, Klimpel S, Stinear TP, Moreira LA, Tobias NJ, Lorenzo MG. Multi-Omic Analysis of Symbiotic Bacteria Associated With Aedes aegypti Breeding Sites. Front Microbiol 2021; 12:703711. [PMID: 34475861 PMCID: PMC8406634 DOI: 10.3389/fmicb.2021.703711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Mosquito breeding sites are complex aquatic environments with wide microbial diversity and physicochemical parameters that can change over time during the development of immature insect stages. Changes in biotic and abiotic conditions in water can alter life-history traits of adult mosquitos but this area remains understudied. Here, using microbial genomic and metabolomics analyses, we explored the metabolites associated with Aedes aegypti breeding sites as well as the potential contribution of Klebsiella sp., symbiotic bacteria highly associated with mosquitoes. We sought to address whether breeding sites have a signature metabolic profile and understand the metabolite contribution of the bacteria in the aquatic niches where Ae. aegypti larvae develop. An analysis of 32 mosquito-associated bacterial genomes, including Klebsiella, allowed us to identify gene clusters involved in primary metabolic pathways. From them, we inferred metabolites that could impact larval development (e.g., spermidine), as well as influence the quality assessment of a breeding site by a gravid female (e.g., putrescine), if produced by bacteria in the water. We also detected significant variance in metabolite presence profiles between water samples representing a decoupled oviposition event (oviposition by single females and manually deposited eggs) versus a control where no mosquito interactions occurred (PERMANOVA: p < 0.05; R2 = 24.64% and R2 = 30.07%). Five Klebsiella metabolites were exclusively linked to water samples where oviposition and development occurred. These data suggest metabolomics can be applied to identify compounds potentially used by female Ae. aegypti to evaluate the quality of a breeding site. Elucidating the physiological mechanisms by which the females could integrate these sensory cues while ovipositing constitutes a growing field of interest, which could benefit from a more depurated list of candidate molecules.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou (FIOCRUZ), Belo Horizonte, Brazil
| | - Luis E Martinez Villegas
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou (FIOCRUZ), Belo Horizonte, Brazil.,Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, Instituto Ren Rachou (FIOCRUZ), Belo Horizonte, Brazil
| | - Sacha J Pidot
- Department of Microbiology and Immunology, The Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Chinhda Sharif
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany.,Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Luciano A Moreira
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, Instituto Ren Rachou (FIOCRUZ), Belo Horizonte, Brazil
| | - Nicholas J Tobias
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany.,Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
40
|
Ranasinghe K, Gunathilaka N, Amarasinghe D, Rodrigo W, Udayanga L. Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka. Parasit Vectors 2021; 14:433. [PMID: 34454583 PMCID: PMC8400895 DOI: 10.1186/s13071-021-04900-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The midgut microbiota of mosquitoes maintain basal immune activity and immune priming. In recent years, scientists have focused on the use of microbial communities for vector control interventions. In the present study, the midgut bacteria of larvae and adults of Aedes aegypti and Ae. albopictus were assessed using both field-collected and laboratory-reared mosquitoes from Sri Lanka. METHODS Adults and larvae of Ae. aegypti and Ae. albopictus were collected from three selected areas in Gampaha Medical Officer of Health area, Gampaha District, Western Province, Sri Lanka. Bacterial colonies isolated from mosquito midgut dissections were identified by PCR amplification and sequencing of partial 16S rRNA gene fragments. RESULTS Adults and larvae of Ae. aegypti and Ae. albopictus harbored 25 bacterial species. Bacillus endophyticus and Pantoea dispersa were found more frequently in field-collected Ae. aegypti and Ae. albopictus adults, respectively. The midgut bacteria of Ae. aegypti and Ae. albopictus adults (X2 = 556.167, df = 72, P < 0.001) and larvae (X2 = 633.11, df = 66, P < 0.001) were significantly different. There was a significant difference among the bacterial communities between field-collected adults (X2 = 48.974, df = 10, P < 0.001) and larvae (X2 = 84.981, df = 10, P < 0.001). Lysinibacillus sphaericus was a common species in adults and larvae of laboratory-reared Ae. aegypti. Only P. dispersa occurred in the field-collected adults of Ae. aegypti and Ae. albopictus. Species belonging to genera Terribacillus, Lysinibacillus, Agromyces and Kocuria were recorded from Aedes mosquitoes, in accordance with previously reported results. CONCLUSIONS This study generated a comprehensive database on the culturable bacterial community found in the midgut of field-collected (Ae. aegypti and Ae. albopictus) and laboratory-reared (Ae. aegypti) mosquito larvae and adults from Sri Lanka. Data confirm that the midgut bacterial diversity in the studied mosquitoes varies according to species, developmental stage and strain (field vs laboratory).
Collapse
Affiliation(s)
- Koshila Ranasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Nayana Gunathilaka
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | - Deepika Amarasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Wasana Rodrigo
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Lahiru Udayanga
- Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makadura, Sri Lanka
| |
Collapse
|
41
|
Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti. Arch Microbiol 2021; 203:5225-5240. [PMID: 34351459 DOI: 10.1007/s00203-021-02506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
Bacterial species that inhabit mosquito microbiota play an essential role in determining vector competence. In addition to critical factors such as host genotype, feeding habit and geography, intracellular endosymbiont Wolbachia pipientis modulates microbial composition considerably. In the present study, we assessed the midgut bacterial diversity of Aedes aegypti mosquitoes that is either naturally carrying Wolbachia (wAegB+) or antibiotic cured (wAegB-) through a culture-independent approach. Towards this, 16S rRNA gene libraries were constructed from midgut bacterial DNA of laboratory-reared larvae and adult female mosquitoes fed with sugar or blood. Among them 33 genera comprising 65 distinct species were identified, where > 75% of bacterial taxa were commonly shared by both groups (wAegB+ and wAegB-), implying a subtle shift in the bacterial composition influenced by Wolbachia. Though the change was mostly restricted to minimally represented species, predominant taxa were observed unaltered except for certain genera. While Serratia sp. was abundant in Wolbachia carrying mosquitoes, Pseudomonas sp. and Acinetobacter sp. were predominant in Wolbachia free mosquitoes. This result demonstrates the influence of Wolbachia that could modulate the colonization of certain resident bacterial taxa through competitive interactions. Overall, this study shed more light on the impact of wAegB in altering the gut microbiota of Ae. aegypti mosquito, which might challenge host fitness and vector competence.
Collapse
|
42
|
The Possible Role of Microorganisms in Mosquito Mass Rearing. INSECTS 2021; 12:insects12070645. [PMID: 34357305 PMCID: PMC8305455 DOI: 10.3390/insects12070645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 01/12/2023]
Abstract
Simple Summary One of the most promising control methods against Aedes albopictus is the sterile insect technique, which consists of mass rearing the target species, separation of males from females, and male exposure to sterilizing ionizing radiation. Once released in the environment, the sterile males are expected to search for wild females to mate with. The quality of sterile males is a crucial aspect in SIT programs in order to optimize effectiveness and limit production costs. The integration of probiotic microorganisms in larval and adult mosquito diets could enhance the quality parameters of the released sterile males. Abstract In Europe, one of the most significant mosquitoes of public health importance is Aedes albopictus (Skuse), an allochthonous species of Asian origin. One of the most promising control methods against Aedes albopictus is the sterile insect technique (SIT), which consists of mass rearing the target species, separation of males from females, and male exposure to sterilizing ionizing radiation. Once released in the environment, the sterile males are expected to search for wild females to mate with. If mating occurs, no offspring is produced. The quality of sterile males is a crucial aspect in SIT programs in order to optimize effectiveness and limit production costs. The integration of probiotic microorganisms in larval and adult mosquito diets could enhance the quality parameters of the released sterile males. In this review, we attempt to give the most representative picture of the present knowledge on the relationships between gut microbiota of mosquitoes and the natural or artificial larval diet. Furthermore, the possible use of probiotic microorganisms for mosquito larvae rearing is explored. Based on the limited amount of data found in the literature, we hypothesize that a better understanding of the interaction between mosquitoes and their microbiota may bring significant improvements in mosquito mass rearing for SIT purposes.
Collapse
|
43
|
Steven B, Hyde J, LaReau JC, Brackney DE. The Axenic and Gnotobiotic Mosquito: Emerging Models for Microbiome Host Interactions. Front Microbiol 2021; 12:714222. [PMID: 34322111 PMCID: PMC8312643 DOI: 10.3389/fmicb.2021.714222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
The increasing availability of modern research tools has enabled a revolution in studies of non-model organisms. Yet, one aspect that remains difficult or impossible to control in many model and most non-model organisms is the presence and composition of the host-associated microbiota or the microbiome. In this review, we explore the development of axenic (microbe-free) mosquito models and what these systems reveal about the role of the microbiome in mosquito biology. Additionally, the axenic host is a blank template on which a microbiome of known composition can be introduced, also known as a gnotobiotic organism. Finally, we identify a "most wanted" list of common mosquito microbiome members that show the greatest potential to influence host phenotypes. We propose that these are high-value targets to be employed in future gnotobiotic studies. The use of axenic and gnotobiotic organisms will transition the microbiome into another experimental variable that can be manipulated and controlled. Through these efforts, the mosquito will be a true model for examining host microbiome interactions.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Josephine Hyde
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jacquelyn C. LaReau
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Doug E. Brackney
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
44
|
He WZ, Pan LL, Han WH, Abd-Rabou S, Liu SS, Wang XW. Effects of Kathon, a Chemical Used Widely as a Microbicide, on the Survival of Two Species of Mosquitoes. Molecules 2021; 26:molecules26144177. [PMID: 34299452 PMCID: PMC8306661 DOI: 10.3390/molecules26144177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
In recent decades, demands for novel insecticides against mosquitoes are soaring, yet candidate chemicals with desirable properties are limited. Kathon is a broad-spectrum isothiazolinone microbicide, but other applications remain uncharacterized. First, we treated larvae of Culex quinquefasciatus and Aedes albopictus, two major mosquito vectors of human viral diseases, with Kathon at 15 mg/L (a concentration considered safe in cosmetic and body care products), and at lower concentrations, and found that Kathon treatment resulted in high mortality of larvae. Second, sublethal concentration of Kathon can cause significantly prolonged larval development of C. quinquefasciatus. Third, we explored the effects of two constituents of Kathon, chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT), on the survival of larvae, and found that CMIT was the major toxic component. Further, we explored the mechanisms of action of Kathon against insect cells and found that Kathon reduces cell viability and adenosine triphosphate production but promotes the release of lactate dehydrogenase in Drosophila melanogaster S2 cells. Our results indicate that Kathon is highly toxic to mosquito larvae, and we highlight its potential in the development of new larvicides for mosquito control.
Collapse
Affiliation(s)
- Wen-Ze He
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (L.-L.P.); (W.-H.H.); (S.-S.L.)
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (L.-L.P.); (W.-H.H.); (S.-S.L.)
| | - Wen-Hao Han
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (L.-L.P.); (W.-H.H.); (S.-S.L.)
| | - Shaaban Abd-Rabou
- Egypt Agricultural Research Center, Plant Protection Research Institute, Giza 12311, Egypt;
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (L.-L.P.); (W.-H.H.); (S.-S.L.)
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (L.-L.P.); (W.-H.H.); (S.-S.L.)
- Correspondence:
| |
Collapse
|
45
|
Zhang D, Chen S, Abd-Alla AMM, Bourtzis K. The Effect of Radiation on the Gut Bacteriome of Aedes albopictus. Front Microbiol 2021; 12:671699. [PMID: 34305838 PMCID: PMC8299835 DOI: 10.3389/fmicb.2021.671699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The sterile insect technique (SIT) has been developed as a component of area-wide integrated pest management approaches to control the populations of Aedes albopictus, a mosquito vector capable of transmission of dengue, Zika and chikungunya viruses. One of the key factors for the success of SIT is the requirement of high biological quality sterile males, which upon their release would be able to compete with wild males for matings with wild females in the field. In insects, gut bacteriome have played a catalytic role during evolution significantly affecting several aspects of their biology and ecology. Given the importance of gut-associated bacterial species for the overall ecological fitness and biological quality of their hosts, it is of interest to understand the effects of radiation on the gut-associated bacteriome of Ae. albopictus. In this study, the effect of radiation on the composition and density levels of the gut-associated bacterial species at the pupal stage as well as at 1- and 4-day-old males and females was studied using 16S rRNA gene-based next generation sequencing (NGS) and quantitative PCR (qPCR) approaches. Age, diet, sex, and radiation were shown to affect the gut-associated bacterial communities, with age having the highest impact triggering significant changes on bacterial diversity and clustering among pupae, 1- and 4-day-old adult samples. qPCR analysis revealed that the relative density levels of Aeromonas are higher in male samples compared to all other samples and that the irradiation triggers an increase in the density levels of both Aeromonas and Elizabethkingia in the mosquito gut at specific stages. Our results suggest that Aeromonas could potentially be used as probiotics to enhance protandry and sex separation in support of SIT applications against Ae. albopictus, while the functional role of Elizabethkingia in respect to oxidative stress and damage in irradiated mosquitoes needs further investigation.
Collapse
Affiliation(s)
- Dongjing Zhang
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Shi Chen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institute of Biological Control, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
46
|
Martinson VG, Strand MR. Diet-Microbiota Interactions Alter Mosquito Development. Front Microbiol 2021; 12:650743. [PMID: 34168624 PMCID: PMC8217444 DOI: 10.3389/fmicb.2021.650743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Gut microbes and diet can both strongly affect the biology of multicellular animals, but it is often difficult to disentangle microbiota–diet interactions due to the complex microbial communities many animals harbor and the nutritionally variable diets they consume. While theoretical and empirical studies indicate that greater microbiota diversity is beneficial for many animal hosts, there have been few tests performed in aquatic invertebrates. Most mosquito species are aquatic detritivores during their juvenile stages that harbor variable microbiotas and consume diets that range from nutrient rich to nutrient poor. In this study, we produced a gnotobiotic model that allowed us to examine how interactions between specific gut microbes and diets affect the fitness of Aedes aegypti, the yellow fever mosquito. Using a simplified seven-member community of bacteria (ALL7) and various laboratory and natural mosquito diets, we allowed larval mosquitoes to develop under different microbial and dietary conditions and measured the resulting time to adulthood and adult size. Larvae inoculated with the ALL7 or a more complex community developed similarly when fed nutrient-rich rat chow or fish food laboratory diets, whereas larvae inoculated with individual bacterial members of the ALL7 community exhibited few differences in development when fed a rat chow diet but exhibited large differences in performance when fed a fish food diet. In contrast, the ALL7 community largely failed to support the growth of larvae fed field-collected detritus diets unless supplemented with additional protein or yeast. Collectively, our results indicate that mosquito development and fitness are strongly contingent on both diet and microbial community composition.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Entomology, University of Georgia, Athens, GA, United States.,Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
47
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
48
|
Juma EO, Allan BF, Kim CH, Stone C, Dunlap C, Muturi EJ. The larval environment strongly influences the bacterial communities of Aedes triseriatus and Aedes japonicus (Diptera: Culicidae). Sci Rep 2021; 11:7910. [PMID: 33846445 PMCID: PMC8042029 DOI: 10.1038/s41598-021-87017-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Mosquito bacterial communities are essential in mosquito biology, and knowing the factors shaping these bacterial communities is critical to their application in mosquito-borne disease control. This study investigated how the larval environment influences the bacterial communities of larval stages of two container-dwelling mosquito species, Aedes triseriatus, and Aedes japonicus. Larval and water samples were collected from tree holes and used tires at two study sites, and their bacteria characterized through MiSeq sequencing of the 16S rRNA gene. Bacterial richness was highest in Ae. japonicus, intermediate in Ae. triseriatus, and lowest in water samples. Dysgonomonas was the dominant bacterial taxa in Ae. triseriatus larvae; the unclassified Comamonadaceae was dominant in water samples from waste tires, while Mycobacterium and Carnobacterium, dominated Ae. japonicus. The two mosquito species harbored distinct bacterial communities that were different from those of the water samples. The bacterial communities also clustered by habitat type (used tires vs. tree holes) and study site. These findings demonstrate that host species, and the larval sampling environment are important determinants of a significant component of bacterial community composition and diversity in mosquito larvae and that the mosquito body may select for microbes that are generally rare in the larval environment.
Collapse
Affiliation(s)
- Elijah O Juma
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA.
| | - Brian F Allan
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| | - Christopher Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1815 N. University St., Peoria, IL, 61604, USA
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1815 N. University St., Peoria, IL, 61604, USA
| |
Collapse
|
49
|
Scolari F, Sandionigi A, Carlassara M, Bruno A, Casiraghi M, Bonizzoni M. Exploring Changes in the Microbiota of Aedes albopictus: Comparison Among Breeding Site Water, Larvae, and Adults. Front Microbiol 2021; 12:624170. [PMID: 33584626 PMCID: PMC7876458 DOI: 10.3389/fmicb.2021.624170] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The mosquito body hosts highly diverse microbes, which influence different physiological traits of both larvae and adults. The composition of adult mosquito microbiota is tightly linked to that of larvae, which are aquatic and feed on organic detritus, algae and prokaryotic microorganisms present in their breeding sites. Unraveling the ecological features of larval habitats that shape the structure of bacterial communities and their interactions with the mosquito host is still a poorly investigated topic in the Asian tiger mosquito Aedes albopictus, a highly invasive species that is vector of numerous arboviruses, including Dengue, Chikungunya, and Zika viruses. In this study, we investigated the composition of the bacterial community present in the water from a natural larval breeding site in which we separately reared wild-collected larvae and hatched eggs of the Foshan reference laboratory strain. Using sequence analysis of bacterial 16S rRNA gene amplicons, we comparatively analyzed the microbiota of the larvae and that of adult mosquitoes, deriving information about the relative impact of the breeding site water on shaping mosquito microbiota. We observed a higher bacterial diversity in breeding site water than in larvae or adults, irrespective of the origin of the sample. Moreover, larvae displayed a significantly different and most diversified microbial community than newly emerged adults, which appeared to be dominated by Proteobacteria. The microbiota of breeding site water significantly increased its diversity over time, suggesting the presence of a dynamic interaction among bacterial communities, breeding sites and mosquito hosts. The analysis of Wolbachia prevalence in adults from Foshan and five additional strains with different geographic origins confirmed the described pattern of dual wAlbA and wAlbB strain infection. However, differences in Wolbachia prevalence were detected, with one strain from La Reunion Island showing up to 18% uninfected individuals. These findings contribute in further understanding the dynamic interactions between the ecology of larval habitats and the structure of host microbiota, as well as providing additional information relative to the patterns of Wolbachia infection.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonia Bruno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
50
|
Hery L, Guidez A, Durand AA, Delannay C, Normandeau-Guimond J, Reynaud Y, Issaly J, Goindin D, Legrave G, Gustave J, Raffestin S, Breurec S, Constant P, Dusfour I, Guertin C, Vega-Rúa A. Natural Variation in Physicochemical Profiles and Bacterial Communities Associated with Aedes aegypti Breeding Sites and Larvae on Guadeloupe and French Guiana. MICROBIAL ECOLOGY 2021; 81:93-109. [PMID: 32621210 PMCID: PMC7794107 DOI: 10.1007/s00248-020-01544-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
Aedes aegypti develop in aquatic habitats in which mosquito larvae are exposed to physicochemical elements and microorganisms that may influence their life cycle and their ability to transmit arboviruses. Little is known about the natural bacterial communities associated with A. aegypti or their relation to the biotic and abiotic characteristics of their aquatic habitats. We characterized the physicochemical properties and bacterial microbiota of A. aegypti breeding sites and larvae on Guadeloupe and in French Guiana. In addition, we explored whether geographic location, the type of breeding site and physicochemical parameters influenced the microbiota associated with this mosquito species. We used large-scale 16S rRNA gene sequencing of 160 breeding sites and 147 pools of A. aegypti larvae and recorded 12 physicochemical parameters at the sampled breeding sites. Ordination plots and multiple linear regression were used to assess the influence of environmental factors on the bacterial microbiota of water and larvae. We found territory-specific differences in physicochemical properties (dissolved oxygen, conductivity) and the composition of bacterial communities in A. aegypti breeding sites that influenced the relative abundance of several bacteria genera (e.g., Methylobacterium, Roseoccocus) on the corresponding larvae. A significant fraction of the bacterial communities identified on larvae, dominated by Herbiconiux and Microvirga genera, were consistently enriched in mosquitoes regardless the location. In conclusion, territory-specific differences observed in the biotic and abiotic properties of A. aegypti breeding sites raise concern about the impact of these changes on pathogen transmission by different A. aegypti populations.
Collapse
Affiliation(s)
- Lyza Hery
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Amandine Guidez
- Vector Control and Adaptation Unit, Cayenne, Institut Pasteur of French Guiana, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana France
| | | | - Christelle Delannay
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | | | - Yann Reynaud
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Jean Issaly
- Vector Control and Adaptation Unit, Cayenne, Institut Pasteur of French Guiana, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana France
| | - Daniella Goindin
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Grégory Legrave
- Laboratory of Environment and Food Hygiene, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Joel Gustave
- Regional Health Agency of Guadeloupe, Gourbeyre, Guadeloupe France
| | - Stéphanie Raffestin
- Laboratory of Environment and Hygiene, Institut Pasteur of French Guiana, Cayenne, French Guiana France
| | - Sebastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Institut Pasteur of Guadeloupe, Pointe-à-Pitre, France
- Hyacinthe Bastaraud Faculty of Medicine, University of Antilles, Pointe-à-Pitre, France
- INSERM Centre for Clinical Investigation 1424, Pointe-à-Pitre, Les Abymes France
| | - Philippe Constant
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec Canada
| | - Isabelle Dusfour
- Vector Control and Adaptation Unit, Cayenne, Institut Pasteur of French Guiana, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana France
| | - Claude Guertin
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec Canada
| | - Anubis Vega-Rúa
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| |
Collapse
|