1
|
Wang C, Li P, Cong W, Zhang L, Zhou M, Hou Y. A Novel Point Mutation M460I in Histidine Kinase FgOs1 Confers High Resistance to Fludioxonil in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39496401 DOI: 10.1021/acs.jafc.4c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, severely impacts global wheat production, reducing both the yield and quality. In China, fludioxonil, a phenylpyrrole fungicide, is used for managing FHB. This study assessed fludioxonil activity against 120 F. graminearum strains collected from Hubei, Zhejiang, and Jiangsu in 2024, revealing an average EC50 value of 0.0273 ± 0.0062 μg/mL. We obtained two resistant mutants through chemical taming and discovered a novel point mutation of FgOs1-M460I. Site-directed mutagenesis confirmed that the FgOs1-M460I mutation greatly reduced fludioxonil sensitivity, with an EC50 value greater than 100 μg/mL. These mutants also displayed reduced sexual and asexual reproduction and lower virulence and accumulated less glycerol under fludioxonil and osmotic stress compared to sensitive strain. The resistant mutants showed no cross-resistance with carbendazim, tebuconazole, phenamacril, pyraclostrobin, or pydiflumetofen. Thus, we conclude that the FgOs1-M460I substitution regulates fludioxonil resistance and plays a role in asexual reproduction, sexual reproduction, and pathogenicity.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Cong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingrong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Zhu M, Huan T, Ma Y, Han Y, Liu N, Lian S, Li B, Ren W. The two-component histidine kinase BdHk1 regulates fungal development, virulence and fungicide sensitivity in Botryosphaeria dothidea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106134. [PMID: 39477586 DOI: 10.1016/j.pestbp.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 11/07/2024]
Abstract
Histidine kinases (HKs) allow fungal cells to sense and respond to environmental stimuli. However, the biological role of HKs in Botryosphaeria dothidea, the causal agent of Botryosphaeria canker and apple ring rot, remains unknown. In this study, we identified and characterized the two-component histidine kinase BdHk1 in B. dothidea. Targeted knockout of BdHK1 gene resulted in severe conidiation and pathogenicity defects. In addition, the ΔBdHk1 mutant showed hypersensitivity to osmotic stress, but resistance to phenylpyrrole and dicarboximide fungicides. Moreover, the ΔBdHk1 mutant exhibited significantly increased sensitivity to the cell membrane-damaging agent SDS and high temperature. Comparative transcriptome analysis revealed that inactivation of BdHk1 influenced multiple metabolic pathways in B. dothidea. Taken together, our results suggest that BdHk1 plays an important role in development, virulence and stress tolerance in B. dothidea.
Collapse
Affiliation(s)
- Meiqi Zhu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tinghua Huan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanru Ma
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Han
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Na Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sen Lian
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Baohua Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Weichao Ren
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Wang Y, Zhang C, Zhao X, Qiu Y, Wang X, Zhao C, Qi Y, Wan Q, Chen L. The nuclear pore protein Nup2 is essential for growth and development, stress response, pathogenicity and deoxynivalenol biosynthesis in Fusarium graminearum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39253892 DOI: 10.1002/ps.8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Wheat is an important grain crop that has been under serious threat from Fusarium graminearum. Nup2, a member of the nuclear pore complex, plays an important role in regulating eukaryotic nuclear protein transport and participates in gene regulation. Dissecting the function of nuclear pore proteins in pathogenic fungi may provide effective targets for novel fungicides. RESULTS Mutants exhibited nutritional growth defects, asexual/sexual developmental abnormalities. Deficiency of FgNup2 resulted in increased resistance of Fusarium graminearum to cell wall disruptors and increased sensitivity to metal ions. Pathogenicity analyses showed that the mutant was significantly less virulent on flowering wheat ears, consistent with the observed decrease in deoxynivalenol (DON) production. Furthermore, we showed that FgNup2 interacts synergistically with FgTri6, a transcription factor of the TRI family, to regulate the expression of toxin-producing genes, which, in turn, affects the biosynthesis of DON and related toxins. CONCLUSION This study revealed that FgNup2 plays important roles in the growth and development, cell wall integrity, stress response, pathogenicity, and DON synthesis of F. graminearum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxuan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chengqi Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaozhen Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuxin Qiu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaoyan Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chenzhong Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongxia Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiong Wan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Chen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Wei L, Chen B, Li X, Shi H, Xie S, Hu H, Chen W, Wei L, Wang X, Chen C. The HOG-pathway related AaOS1 leads to dicarboximide-resistance in field strains of Alternaria alternata and contributes, together with the Aafhk1, to mycotoxin production and virulence. PEST MANAGEMENT SCIENCE 2024; 80:2937-2949. [PMID: 38297826 DOI: 10.1002/ps.8002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Garlic leaf spot (GLS) caused by Alternaria alternata is one of the main diseases in the garlic production areas, and its management heavily relies on dicarboximide fungicides. However, the efficacy of dicarboximides against the GLS disease has decreased year on year. RESULTS In the present study, 10 of 148 A. alternata strains separated from Jiangsu Province were moderately resistant (MR) to a dicarboximide fungicide procymidone (ProMR). Positive cross-resistance was observed between Pro and iprodione (Ipro) or fludioxonil (Fld), but not between Pro and fluazinam or azoxystrobin. Mutations at AaOS1, but not Aafhk1, were confirmed to confer the Pro resistance by constructing replacement mutants, whereas mutations at both AaOS1 and Aafhk1 decreased the gene expression level of AapksI, as well as the ability to produce mycotoxin AOH (polyketide-derived alternariol) and virulence. Additionally, more genes (AaOS1 and Aafhk1) harboring the mutations experienced a larger biological fitness penalty. CONCLUSION To our knowledge, this is the first report on Pro resistance selected in garlic fields, and mutations at AaOS1 of A. alternata causing a decreased ability to produce the mycotoxin AOH. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingling Wei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bin Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiujuan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haiping Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuai Xie
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenchan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Yang C, Sun S, Li M, Dou M, Li S. Design and Discovery of α-Oximido-arylacetamides as Novel Antifungal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6702-6710. [PMID: 38484107 DOI: 10.1021/acs.jafc.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The discovery of novel and easily accessible antifungal compounds is an imperative issue in agrochemical innovation. Our continuing research with the o-aminophenyloxazoline (NHPhOx) scaffold demonstrated the viability of introducing phenylacetamides for identifying novel antifungal leads. An antifungal function-oriented molecular evaluation was conducted for the previously identified lead R-LE008. Fine-tuning of the α-position and scaffold hopping of acid segment and NHPhOx enables α-oximido-arylacetamide as a novel antifungal model. The concomitant function-oriented diversification produces a panel of antifungal leads CN19, CN21b, CN28, and CN31 against Sclerotinia sclerotiorum and Botrytis cinerea. The crucial and multidimensional effect of the configuration of the acquired amides on the antifungal performance is demonstrated specifically by the separable CN21 isomers. The Z-isomer (CN21b), with an EC50 value of 0.97 μM against B. cinerea, is significantly more potent than its E-isomer (CN21a) and the positive control boscalid. More importantly, compound CN21b can efficiently inhibit resistant B. cinerea strains. CN21b demonstrates a better in vivo preventative effect (82.1%) than those of CN21a (48.1%) and boscalid (55.1%) at 100 μM. CN21b showed a distinct binding model from those of the boscalid and CN21a in the molecular docking simulation. A further morphological investigation by scanning electron microscopy revealed the different mycelia shrinkage of B. cinerea treated by CN21 isomers. The easy accessibility and cost-effectiveness demonstrated the practical potential of α-oximido-phenylacetamide containing NHPhOx as a new model for agrochemical innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mengyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Menglan Dou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Ma J, Park SW, Kim G, Kim CS, Chang HX, Chilvers MI, Sang H. Characterization of SsHog1 and Shk1 Using Efficient Gene Knockout Systems through Repeated Protoplasting and CRISPR/Cas9 Ribonucleoprotein Approaches in Sclerotinia sclerotiorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4237-4245. [PMID: 38374637 DOI: 10.1021/acs.jafc.3c08093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sclerotinia sclerotiorum is the causal agent of sclerotinia stem rot in over 400 plant species. In a previous study, the group III histidine kinase gene of S. sclerotiorum (Shk1) revealed its involvement in iprodione and fludioxonil sensitivity and osmotic stress. To further investigate the fungicide sensitivity associated with the high-osmolarity glycerol (HOG) pathway, we functionally characterized SsHog1, which is the downstream kinase of Shk1. To generate knockout mutants, split marker transformation combined with a newly developed repeated protoplasting method and CRISPR/Cas9 ribonucleoprotein (RNP) delivery approach were used. The pure SsHog1 and Shk1 knockout mutants showed reduced sensitivity to fungicides and increased sensitivity to osmotic stress. In addition, the SsHog1 knockout mutants demonstrated reduced virulence compared to Shk1 knockout mutants and wild-type. Our results indicate that the repeated protoplasting method and RNP approach can generate genetically pure homokaryotic mutants and SsHog1 is involved in osmotic adaptation, fungicide sensitivity, and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Jihyeon Ma
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Geonwoo Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Yang C, Sun S, Li W, Mao Y, Wang Q, Duan Y, Csuk R, Li S. Bioactivity-Guided Subtraction of MIQOX for Easily Available Isoquinoline Hydrazides as Novel Antifungal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11341-11349. [PMID: 37462275 DOI: 10.1021/acs.jafc.3c02096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The discovery of novel and easily available leads provides a convincing solution to agrochemical innovation. A bioassay-guided scaffold subtraction of the previous "Chem-Bio Model" isoquinoline-3-oxazoline MIQOX was conducted for identifying the easily available isoquinoline-3-hydrazide as a novel antifungal scaffold. The special and practical potential of this model was demonstrated by a phenotypic antifungal bioassay, molecular docking, and cross-resistance evaluation. A panel of antifungal leads (LW2, LW3, and LW11) was acquired, showing much better antifungal performance than the positive controls. Specifically, compound LW3 exhibited a broad antifungal spectrum holding EC50 values as low as 0.54, 0.09, 1.52, and 2.65 mg/L against B. cinerea, R. solani, S. sclerotiorum , and F. graminearum, respectively. It demonstrated a curative efficacy better than that of boscalid in controlling the plant disease caused by B. cinerea. The candidate LW3 did not show cross-resistance to the extensively used succinate dehydrogenase inhibitor (SDHI) fungicides and can efficiently inhibit resistant B. cinerea strains. The molecular docking of compound LW3 is quite different from that of the positive controls boscalid and fluopyram. This progress highlights the practicality of isoquinoline hydrazide as a novel model in fungicide innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yushuai Mao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Qiao Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yabing Duan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle (Saale) D-06120, Germany
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Li T, Li N, Lei Z, Zhang C. Sensitivity and resistance risk of Botryosphaeria dothidea causing Chinese hickory trunk canker to fludioxonil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105500. [PMID: 37532358 DOI: 10.1016/j.pestbp.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
Hickory trunk canker (HTC), primarily caused by Botryosphaeria dothidea, is an aggravating disease that threatens an important regional economic tree species of Chinese hickory and few information is available in the control of this disease. Here, the sensitivity of 93 isolates to fludioxonil and the resistance risk were investigated. All the isolates tested were sensitive to fludioxonil and the EC50 ranged from 0.0028 to 0.0569 μg/mL. The tamed fludioxonil-resistant mutants remained highly resistant to fludioxonil even after 10 consecutive transfers to fludioxonil-free PDA plates. As for fitness penalty, the fludioxonil-resistant mutants demonstrated a reduction in conidia production and virulence as well as increased sensitivity to high osmotic stress. While, variations in mycelial growth and responses to SDS and H2O2 were not detected in all the resistant mutants. In addition, the resistant mutants demonstrated positive cross-resistance to iprodione but not to fungicides of other modes of action. Sequential analysis of BdNik1 showed that premature stop codon occurred in all the resistant mutants despite of point mutation (BD16-22R9 and BD16-22R20) or frameshift mutation (BD16-22R8, BD16-22R11 and BD16-22R18). Our study suggested that fludioxonil exhibited excellent inhibition activity on mycelial growth of B. dothidea in vitro, the resistance risk of B. dothidea to fludioxonil should be low to moderate and fludioxonil would be a nice candidate in controlling HTC caused by B. dothidea.
Collapse
Affiliation(s)
- Tao Li
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Na Li
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ziyang Lei
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chuanqing Zhang
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
9
|
Akosah YA, Kostennikova ZS, Lutfullin MT, Lutfullina GF, Afordoanyi DM, Vologin SG, Mardanova AM. Induced Expression of CYP51a and HK1 Genes Associated with Penconazole and Fludioxonil Resistance in the Potato Pathogen Fusarium oxysporum. Microorganisms 2023; 11:1257. [PMID: 37317231 DOI: 10.3390/microorganisms11051257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Preventing antifungal resistance development and identifying pathogens with high, medium, and low risk of resistance development to a particular fungicide or fungicide class is crucial in the fight against phytopathogens. We characterized the sensitivity of potato wilt-associated Fusarium oxysporum isolates to fludioxonil and penconazole and assessed the effect of these fungicides on the expression of fungal sterol-14-α-demethylase (CYP51a) and histidine kinase (HK1) genes. Penconazole stunted the growth of F. oxysporum strains at all concentrations used. While all isolates were susceptible to this fungicide, concentrations of up to 1.0 μg/mL were insufficient to cause a 50% inhibition. At low concentrations (0.63 and 1.25 μg/mL), fludioxonil stimulated growth in F. oxysporum. With an increase in the concentration of fludioxonil, only one strain (F. oxysporum S95) exhibited moderate sensitivity to the fungicide. Interaction of F. oxysporum with penconazole and fludioxonil leads to respective elevated expressions of the CYP51a and HK1 genes, which upsurge with increasing concentration of the fungicides. The data obtained indicate that fludioxonil may no longer be suitable for potato protection and its continuous use could only lead to an increased resistance with time.
Collapse
Affiliation(s)
- Yaw A Akosah
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zarina S Kostennikova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Marat T Lutfullin
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Guzel F Lutfullina
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Daniel M Afordoanyi
- Department of Agrobiological Research, Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420059, Russia
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420059, Russia
| | - Semyon G Vologin
- Department of Agrochemical and Biochemical Analysis, Tatar Research Institute of Agriculture, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420059, Russia
| | - Ayslu M Mardanova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
10
|
Hossain MM, Sultana F, Li W, Tran LSP, Mostofa MG. Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen. Cells 2023; 12:cells12071063. [PMID: 37048136 PMCID: PMC10093061 DOI: 10.3390/cells12071063] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a broad host-range fungus that infects an inclusive array of plant species and afflicts significant yield losses globally. Despite being a notorious pathogen, it has an uncomplicated life cycle consisting of either basal infection from myceliogenically germinated sclerotia or aerial infection from ascospores of carpogenically germinated sclerotia. This fungus is unique among necrotrophic pathogens in that it inevitably colonizes aging tissues to initiate an infection, where a saprophytic stage follows the pathogenic phase. The release of cell wall-degrading enzymes, oxalic acid, and effector proteins are considered critical virulence factors necessary for the effective pathogenesis of S. sclerotiorum. Nevertheless, the molecular basis of S. sclerotiorum pathogenesis is still imprecise and remains a topic of continuing research. Previous comprehensive sequencing of the S. sclerotiorum genome has revealed new insights into its genome organization and provided a deeper comprehension of the sophisticated processes involved in its growth, development, and virulence. This review focuses on the genetic and genomic aspects of fungal biology and molecular pathogenicity to summarize current knowledge of the processes utilized by S. sclerotiorum to parasitize its hosts. Understanding the molecular mechanisms regulating the infection process of S. sclerotiorum will contribute to devising strategies for preventing infections caused by this destructive pathogen.
Collapse
|
11
|
Yu L, Wen D, Yang Y, Qiu X, Xiong D, Tian C. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Pathogenicity, Stress Responses, and Development in Cytospora chrysosperma. PHYTOPATHOLOGY 2023; 113:239-251. [PMID: 36191174 DOI: 10.1094/phyto-04-22-0126-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction pathways that mediate cellular responses to various biotic and abiotic signals in plant-pathogenic fungi. Generally, there are three MAPKs in filamentous pathogenic fungi: Pmk1/Fus3/Kss1, Hog1, and Stl2. Our previous studies have shown that CcPmk1 is a core regulator of fungal pathogenicity in Cytospora chrysosperma, the causal agent of canker disease in a wide range of woody plants. Here, we identified and functionally characterized the other two MAPK genes (CcHog1 and CcSlt2) and then compared the transcriptional differences among these three MAPKs in C. chrysosperma. We found that the MAPKs shared convergent and distinct roles in fungal development, stress responses, and virulence. For example, CcHog1, CcSlt2, and CcPmk1 were all involved in conidiation and response to stresses, including hyperosmotic pressure, cell wall inhibition agents, and H2O2, but only CcPmk1 and CcSlt2 were required for hyphal growth and fungal pathogenicity. Transcriptomic analysis showed that numerous hyperosmosis- and cell wall-related genes significantly reduced their expression levels in ΔCcHog1 and ΔCcSlt2, respectively. Interestingly, RNA- and ribosome-related processes were significantly enriched in the upregulated genes of ΔCcSlt2, whereas they were significantly enriched in the downregulated genes of ΔCcPmk1. Moreover, two secondary metabolite gene clusters were significantly downregulated in ΔCcPmk1, ΔCcSlt2, and/or ΔCcHog1. Importantly, some virulence-associated genes were significantly downregulated in ΔCcPmk1 and/or ΔCcSlt2, such as candidate effector genes. Collectively, these results suggest that the similar and distinct phenotypes of each MAPK deletion mutant may result from the transcriptional regulation of a series of common or specific downstream genes, which provides a better understanding of the regulation network of MAPKs in C. chrysosperma.
Collapse
Affiliation(s)
- Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Sun J, Pang C, Cheng X, Yang B, Jin B, Jin L, Qi Y, Sun Y, Chen X, Liu W, Cao H, Chen Y. Investigation of the antifungal activity of the dicarboximide fungicide iprodione against Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105319. [PMID: 36740339 DOI: 10.1016/j.pestbp.2022.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Southern corn leaf blight (SCLB), mainly caused by Bipolaris maydis, is a destructive disease of maize worldwide. Iprodione is a widely used dicarboximide fungicide (DCF); however, its antifungal activity against B. maydis has not been well studied until now. In this study, the sensitivity of 103 B. maydis isolates to iprodione was determined, followed by biochemistry and physiology assays to ascertain the fungicide's effect on the morphology and other biological properties of B. maydis. The results indicated that iprodione exhibited strong inhibitory activity against B. maydis, and the EC50 values in inhibiting mycelial growth ranged from 0.088 to 1.712 μg/mL, with a mean value of 0.685 ± 0.687 μg/mL. After treatment with iprodione, conidial production of B. maydis was decreased significantly, and the mycelia branches increased with obvious shrinkage, distortion and fracture. Moreover, the expression levels of the osmotic pressure-related regulation genes histidine kinase (hk) and Ssk2-type mitogen-activated protein kinase (ssk2) were upregulated, the glycerin content of mycelia increased significantly, the relative conductivity of mycelia increased, and the cell wall membrane integrity was destroyed. The in vivo assay showed that iprodione at 200 μg/mL provided 79.16% protective efficacy and 90.92% curative efficacy, suggesting that the curative effect was better than the protective effect. All these results proved that iprodione exhibited strong inhibitory activity against B. maydis and provided excellent efficacy in controlling SCLB, indicating that iprodione could be an alternative candidate for the control of SCLB in China.
Collapse
Affiliation(s)
- Jiazhi Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin Cheng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingyun Yang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingbing Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxia Qi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Choi H, Park SW, Oh J, Kim CS, Sung GH, Sang H. Efficient disruption of CmHk1 using CRISPR/Cas9 ribonucleoprotein delivery in Cordyceps militaris. FEMS Microbiol Lett 2023; 370:fnad072. [PMID: 37475654 DOI: 10.1093/femsle/fnad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cordyceps militaris, an entomopathogenic ascomycete, produces edible medicinal mushrooms known to have medicinal and therapeutic functions. To develop the genetic transformation system in C. militaris, green fluorescent protein (GFP) mutants of C. militaris were generated by PEG-mediated protoplast transformation. The CRISPR/Cas9 ribonucleoprotein (RNP) targeting the class III histidine kinase of C. militaris (CmHk1) was then delivered into protoplasts of C. militaris through the transformation system. Mutations induced by the RNP in selected mutants were detected: 1 nt deletion (6 mutants), 3 nt deletion with substitution of 1 nt (1 mutant), insertion of 85 nts (1 mutant), 41 nts (2 mutants), and 35 nts (5 mutants). An in vitro sensitivity assay of the mutants indicated that knockout of CmHk1 reduced sensitivity to two fungicides, iprodione and fludioxonil, but increased sensitivity to osmotic stresses compared to the wild type. Summing up, the CRISPR/Cas9 RNP delivery system was successfully developed, and our results revealed that CmHk1 was involved in the fungicide resistance and osmotic stress in C. militaris.
Collapse
Affiliation(s)
- Hyeongju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Junsang Oh
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
| | - Gi-Ho Sung
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
14
|
Mao Y, Li H, Song W, Zhao B, Cai Y, Wang J, Zhou M, Duan Y. Evolution of Benzimidazole Resistance Caused by Multiple Double Mutations of β -Tubulin in Corynespora cassiicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15046-15056. [PMID: 36443900 DOI: 10.1021/acs.jafc.2c05912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cucumber target leaf spot caused by Corynespora cassiicola has devastated greenhouse cucumber production. In our previous study, the resistance monitoring of C. cassiicola to carbendazim was carried out, and a large number of resistant populations carrying various mutations (M163I&E198A, F167Y&E198A, F200S&E198A, or E198A) in β-tubulin were detected. However, the single-point mutations M163I, F167Y, and F200S have remained undetected. To investigate the evolutionary mechanism of double mutations in β-tubulin of C. cassiicola resistance to benzimidazoles, site-directed mutagenesis was used to construct alleles with corresponding mutation genotypes in β-tubulin. Through PEG-mediated protoplast transformation, all the mutants except for the M163I mutation were obtained and conferred resistance to benzimidazoles. It was found that the mutants conferring the E198A or double-point mutations showed high resistance to carbendazim and benomyl, but the mutants conferring the F167Y or F200S mutations showed moderate resistance. Except, the F200S mutants showed low resistance, the resistance level of the other mutants to thiabendazole seemed no difference. In addition, compared to the other mutants, the F167Y and F200S mutants suffered a more severe fitness penalty in mycelial growth, sporulation, and virulence. Thus, combined with the resistance level, fitness, and molecular docking results, we concluded that the field double mutations (F167Y&E198A and F200S&E198A) evolved from the single mutations F167Y and F200S, respectively.
Collapse
Affiliation(s)
- Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Haoran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wen Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Baoquan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
15
|
Mao Y, Zhao B, Cao Z, Shen J, Xu S, Wu J, Li T, Wang J, Statsyuk N, Shcherbakova L, Zhou M, Duan Y. Risk assessment and molecular mechanism of Fusarium incarnatum resistance to phenamacril. PEST MANAGEMENT SCIENCE 2022; 78:3394-3403. [PMID: 35514230 DOI: 10.1002/ps.6967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/03/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cucumber fruit rot (CFR) caused by Fusarium incarnatum is a devastating fungal disease in cucumber. In recent years, CFR has occurred frequently, resulting in serious yield and quality losses in China. Phenamacril exhibits a specific antifungal activity against Fusarium species. However, no data for phenamacril against F. incarnatum is available. RESULTS The sensitivity of 80 F. incarnatum strains to phenamacril was determined. The half maximal effective concentration (EC50 ) values ranged from 0.1134 to 0.3261 μg mL-1 with a mean EC50 value of 0.2170 ± 0.0496 μg mL-1 . A total of seven resistant mutants were obtained from 450 mycelial plugs by phenamacril-taming on potato dextrose agar (PDA) plates with 10 μg mL-1 of phenamacril, and the resistant frequency was 1.56%. Phenamacril-resistant mutants showed decreased mycelial growth, conidiation and virulence as compared with the corresponding wild-type strains, indicating that phenamacril resistance suffered a fitness penalty in F. incarnatum. In addition, using sequence analysis, the point mutations of S217P or I424S were discovered in Fimyosin-5 (the target of phenamacril). The site-directed mutagenesis of the S217P, P217S, I424S and S424I substitutions were constructed to reveal the relationship between the point mutations and phenamacril resistance. The results strongly demonstrated that the mutations of S217P and I424S in Fimyosin-5 conferred phenamacril-resistance in F. incarnatum. CONCLUSION Phenamacril-resistant mutants were easily induced and their resistance level was high. The S217P or I424S substitutions in Fimyosin-5 conferring phenamacril resistance were detected and futherly verified by transformation assay with site-directed mutagenesis. Thus, we proposed that the resistance development of F. incarnatum to phenamacril is high risk. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoquan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Cao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jinghan Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shaohua Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian Wu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Moscow, Russia
| | | | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Wang Q, Mao Y, Li S, Li T, Wang J, Zhou M, Duan Y. Molecular Mechanism of Sclerotinia sclerotiorum Resistance to Succinate Dehydrogenase Inhibitor Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7039-7048. [PMID: 35666187 DOI: 10.1021/acs.jafc.2c02056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have a wide spectrum of fungicidal effects on a variety of fungi causing plant diseases, including Sclerotinia stem rot caused by Sclerotinia sclerotiorum. However, the consistent use of site-specific SDHI fungicides can result in the development of resistant isolates with mutations in the SDHB, SDHC, or SDHD subunit thereby leading to a rapid decline of fungicide performance. In this study, we found that SDHC was genetically evolved into two isotypes SDHC1 and SDHC2 in S. sclerotiorum but not involved in the sensitivity to SDHI fungicides. In addition, we demonstrated that the A11V substitution in SDHB was not involved in the resistance of S. sclerotiorum to boscalid, and this substitution widely emerged in the field populations. Meanwhile, the P226L substitution in SDHB was demonstrated to confer boscalid resistance in S. sclerotiorum. The result of cross-resistance showed that the SDHB-P226L substitution exhibited a positive cross-resistance between boscalid and carboxin, fluopyram, pydiflumetofen, flubeneteram, pyraziflumid, fluindapyr, or penthiopyrad. Taken together, our results indicated that the P226L substitution in SDHB resulted in the resistance of S. sclerotiorum to SDHI fungicides but suffered from fitness penalty, especially the homozygous mutants conferring the P226L substitution in SDHB.
Collapse
Affiliation(s)
- Qiao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengxue Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Zhang M, Jiang W, Gao S, Zhu Q, Ke Z, Jiang M, Qiu J, Hong Q. Degradation of dimethachlon by a newly isolated bacterium Paenarthrobacter sp. strain JH-1 relieves its toxicity against Chlorella ellipsoidea. ENVIRONMENTAL RESEARCH 2022; 208:112706. [PMID: 35031339 DOI: 10.1016/j.envres.2022.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Dimethachlon, a broad-spectrum dicarboximide fungicide, poses a hazard to the safety of human and ecosystem due to its residue in the environment. A high-efficient dimethachlon degrading bacteria JH-1 belonging to Paenarthrobacter sp. was isolated and characterized. Strain JH-1 can utilize high concentration of dimethachlon as sole carbon source for growth and degrade 98.53% of 300 mg·L-1 dimethachlon within 72 h. Crude enzyme of strain JH-1 could degrade 99.76% of 100 mg·L-1 dimethachlon within 2 h. The optimum degradation condition of dimethachlon by strain JH-1 was at 35 °C and pH 7.0. Dimethachlon was degraded in Paenarthrobacter sp. JH-1 as following: it was firstly converted to 4-(3,5-dichloroanilino)-4-oxobutanoic acid and then subjected to the hydrolysis to 3,5-dichloroaniline and succinic acid, the latter was further degraded. Dimethachlon inhibited the growth of Chlorella ellipsoidea, while Paenarthrobacter sp. JH-1 could degrade dimethachlon to relieve its toxicity. This work facilitates our knowledge of the degradation mechanism of dimethachlon and offers potential resource of microbial strains for the bioremediation of dimethachlon-contaminated environments in the future.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, PR China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
18
|
Zhao H, Tao X, Song W, Xu H, Li M, Cai Y, Wang J, Duan Y, Zhou M. Mechanism of Fusarium graminearum Resistance to Ergosterol Biosynthesis Inhibitors: G443S Substitution of the Drug Target FgCYP51A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1788-1798. [PMID: 35129347 DOI: 10.1021/acs.jafc.1c07543] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium head blight (FHB), caused by the Fusarium graminearum species complex, is a devastating fungal disease resulting in substantial yield and quality losses. Ergosterol biosynthesis inhibitors (EBIs) are the most popular chemicals for controlling FHB. Recently, the resistance of F. graminearum to EBIs has emerged in the field, and an amino acid substitution (G443S) of the sterol 14α-demethylase FgCYP51A was detected in the field resistant strains. To further illustrate the resistance mechanism of F. graminearum to EBIs, site-directed mutants conferring the G443S substitution of FgCYP51A were generated from the progenitor strain PH-1 via genetic transformation with site-directed mutagenesis. We found that the FgCYP51A-G443S substitution significantly decreased the sensitivity of F. graminearum to EBIs with EC50 values ranging from 0.1190 to 0.2302 μg mL-1 and EC90 values ranging from 1.3420 to 9.1119 μg mL-1 for tebuconazole. Furthermore, the FgCYP51A-G443S substitution decreased sexual reproduction and virulence, which will reduce the initial infection source of pathogen populations in the field, while the increase of sporulation capability may enhance the frequencies of the disease cycle, thereby contributing to epidemics of FHB disease. Surprisingly, the FgCYP51A-G443S substitution accelerated DON biosynthesis by upregulating TRI5 expression and enhancing the fluorescence intensity of TRI1-GFP, the marker protein of Fusarium toxisomes. Thus, we concluded that the FgCYP51A-G443S substitution regulates EBI-fungicide resistance and DON biosynthesis, increasing the risk of fungicide resistance development in the field, thereby threatening the control efficacy of EBIs against FHB.
Collapse
Affiliation(s)
- Huahua Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Tao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Haorong Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Meixia Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Oiki S, Yaguchi T, Urayama SI, Hagiwara D. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. PLoS One 2022; 17:e0262521. [PMID: 35100282 PMCID: PMC8803201 DOI: 10.1371/journal.pone.0262521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Fludioxonil and iprodione are effective fungicides widely used for crop protection and are essential for controlling plant pathogenic fungi. The emergence of fungicide-resistant strains of targeted pathogens is regularly monitored, and several cases have been reported. Non-targeted fungi may also be exposed to the fungicide residues in agricultural fields. However, there are no comprehensive reports on fungicide-resistant strains of non-targeted fungi. Here, we surveyed 99 strains, representing 12 Penicillium species, that were isolated from a variety of environments, including foods, dead bodies, and clinical samples. Among the Penicillium strains, including non-pathogenic P. chrysogenum and P. camembertii, as well as postharvest pathogens P. expansum and P. digitatum, 14 and 20 showed resistance to fludioxonil and iprodione, respectively, and 6 showed multi-drug resistance to the fungicides. Sequence analyses revealed that some strains of P. chrysogenum and Penicillium oxalicum had mutations in NikA, a group III histidine kinase of the high-osmolarity glycerol pathway, which is the mode of action for fludioxonil and iprodione. The single nucleotide polymorphisms of G693D and T1318P in P. chrysogenum and T960S in P. oxalicum were only present in the fludioxonil- or iprodione-resistant strains. These strains also exhibited resistance to pyrrolnitrin, which is the lead compound in fludioxonil and is naturally produced by some Pseudomonas species. This study demonstrated that non-targeted Penicillium strains distributed throughout the environment possess fungicide resistance.
Collapse
Affiliation(s)
- Sayoko Oiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
20
|
Preliminary Study of Resistance Mechanism of Botrytis cinerea to SYAUP-CN-26. Molecules 2022; 27:molecules27030936. [PMID: 35164201 PMCID: PMC8839620 DOI: 10.3390/molecules27030936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
SYAUP-CN-26 (1S, 2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide) is a novel sulfonamide compound with excellent activity against Botrytis cinerea. The present study sought to explore the mutant of B.cinerea resistant to SYAUP-CN-26 using SYAUP-CN-26 plates. Moreover, the cell membrane functions of B.cinerea, histidine kinase activity, relative conductivity, triglyceride, and cell membrane structure were determined, and the target gene histidine kinase Bos1 (AF396827.2) of procymidone was amplified and sequenced. The results showed that compared to the sensitive strain, the cell membrane permeability, triglyceride, and histidine kinase activity of the resistant strain showed significant changes. The relative conductivity of the sensitive strain increased by 6.95% and 9.61%, while the relative conductivity of the resistant strain increased by 0.23% and 1.76% with 26.785 µg/mL (EC95) and 79.754 µg/mL (MIC) of SYAUP-CN-26 treatment. The triglyceride inhibition rate of the resistant strain was 23.49% and 37.80%, which was 0.23% and 1.76% higher than the sensitive strain. Compared to the sensitive strain, the histidine kinase activity of the resistant strain was increased by 23.07% and 35.61%, respectively. SYAUP-CN-26 significantly damaged the cell membrane structure of the sensitive strain. The sequencing of the Bos1 gene of the sensitive and resistant strains indicated that SYAUP-CN-26 resistance was associated with a single point mutation (P348L) in the Bos1 gene. Therefore, it was inferred that the mutant of B.cinerea resistant to SYAUP-CN-26 might be regulated by the Bos1 gene. This study will provide a theoretical basis for further research and development of sulfonamide compounds for B. cinerea and new agents for the prevention and control of resistant B. cinerea.
Collapse
|
21
|
Host-Induced Gene Silencing of a G Protein α Subunit Gene CsGpa1 Involved in Pathogen Appressoria Formation and Virulence Improves Tobacco Resistance to Ciboria shiraiana. J Fungi (Basel) 2021; 7:jof7121053. [PMID: 34947035 PMCID: PMC8709418 DOI: 10.3390/jof7121053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hypertrophy sorosis scleroteniosis caused by Ciboria shiraiana is the most devastating disease of mulberry fruit. However, few mulberry lines show any resistance to C. shiraiana. An increasing amount of research has shown that host-induced gene silencing (HIGS) is an effective strategy for enhancing plant tolerance to pathogens by silencing genes required for their pathogenicity. In this study, two G protein α subunit genes, CsGPA1 and CsGPA2, were identified from C. shiraiana. Silencing CsGPA1 and CsGPA2 had no effect on hyphal growth but reduced the number of sclerotia and increased the single sclerotium weight. Moreover, silencing CsGpa1 resulted in increased fungal resistance to osmotic and oxidative stresses. Compared with wild-type and empty vector strains, the number of appressoria was clearly lower in CsGPA1-silenced strains. Importantly, infection assays revealed that the virulence of CsGPA1-silenced strains was significantly reduced, which was accompanied by formation of fewer appressoria and decreased expression of several cAMP/PKA- or mitogen-activated protein-kinase-related genes. Additionally, transgenic Nicotiana benthamiana expressing double-stranded RNA targeted to CsGpa1 through the HIGS method significantly improved resistance to C. shiraiana. Our results indicate that CsGpa1 is an important regulator in appressoria formation and the pathogenicity of C. shiraiana. CsGpa1 is an efficient target to improve tolerance to C. shiraiana using HIGS technology.
Collapse
|
22
|
Li T, Xiu Q, Wang Q, Wang J, Duan Y, Zhou M. Functional dissection of individual domains in group III histidine kinase Sshk1p from the phytopathogenic fungus Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104914. [PMID: 34446190 DOI: 10.1016/j.pestbp.2021.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A conserved kinase domain and phosphoryl group receiver domain at the C-terminus and poly-HAMP domains at the N-terminus comprise the structural components of the group III HK which was considered as a potential antifungal target. However, the roles of individual domains in the function of group III HKs have rarely been dissected in fungi. In this study, we dissected the roles of individual domains to better understand the function of Sshk1p, a group III HK from Sclerotinia sclerotiorum. The results suggest that individual domains play different roles in the functionality of Sshk1p and are implicated in the regulation of mycelial growth, sclerotia formation, pathogenicity. And the mutants of each domain in Sshk1 showed significantly increased sensitivity to hyperosmotic stress. However, the mutants of each domain in Sshk1 showed high resistance to fludioxonil and dimethachlon which suggested that all nine domains of Sshk1p were indispensable for susceptibility to fludioxonil and dimethachlon. Moreover, deletion of each individual domain in Sshk1 cancelled intracellular glycerol accumulation and increased SsHog1p phosphorylation level triggered by NaCl and fludioxonil, suggesting that all the domains of Sshk1 were essential for Sshk1-mediated SsHog1p phosphorylation and subsequent polyol accumulation in response to fludioxonil and hyperosmotic stress.
Collapse
Affiliation(s)
- Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Tao X, Zhao H, Xu H, Li Z, Wang J, Song X, Zhou M, Duan Y. Antifungal Activity and Biological Characteristics of the Novel Fungicide Quinofumelin Against Sclerotinia sclerotiorum. PLANT DISEASE 2021; 105:2567-2574. [PMID: 33404275 DOI: 10.1094/pdis-08-20-1821-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sclerotinia sclerotiorum is a devastating plant pathogen with a broad host range and worldwide distribution. The application of chemical fungicides is a primary strategy for controlling this pathogen. However, under the high selective pressure of chemical fungicides, fungicide resistance has emerged and gradually increased, resulting in the failure to control S. sclerotiorum in the field. Quinofumelin is a novel quinoline fungicide, but its antifungal activities against plant pathogens have been rarely reported. Here, we determined the antifungal activity of quinofumelin against S. sclerotiorum in vitro and in planta. The median effect concentration (EC50) values ranged from 0.0004 to 0.0059 µg ml-1 with a mean EC50 of 0.0017 ± 0.0009 µg ml-1 and were normally distributed (P = 0.402). In addition, no cross resistance was observed between quinofumelin and other fungicides, dimethachlone, boscalid, or carbendazim, which are commonly used to manage S. sclerotiorum. Quinofumelin did not affect glycerol and oxalic acid production of either carbendazim-sensitive or -resistant isolates. Moreover, quinofumelin exhibited excellent protective, curative, and translaminar activity against S. sclerotiorum on oilseed rape leaves. Protective activity was higher than curative activity. Interestingly, quinofumelin inhibited the formation of the infection cushion in S. sclerotiorum, which may contribute to the control efficacy of quinofumelin against S. sclerotiorum in the field. Our findings indicate that quinofumelin has excellent control efficacy against S. sclerotiorum in vitro and in planta as compared with extensively used fungicides and could be used to manage carbendazim- and dimethachlone-resistance in S. sclerotiorum in the field.
Collapse
Affiliation(s)
- Xian Tao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huahua Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Haorong Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongke Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiushi Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Wang Z, Li R, Zhang J, Liu S, He Z, Wang M. Evaluation of exploitive potential for higher bioactivity and lower residue risk enantiomer of chiral fungicide pydiflumetofen. PEST MANAGEMENT SCIENCE 2021; 77:3419-3426. [PMID: 33797181 DOI: 10.1002/ps.6389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pydiflumetofen, as a new succinate dehydrogenase inhibitor (SDHI) chiral fungicide, has been used in crop production because of its broad-spectrum and high-efficiency antifungal activity. However, little is known about pydiflumetofen at the chiral level. The stereoselective bioactivity and degradation of pydiflumetofen enantiomers were therefore investigated. RESULTS Pydiflumetofen presented effective bioactivity against the eight tested phytopathogens, and its enantiomers showed significant differences in activity. The bioactivity of R-pydiflumetofen was 9.0-958.8 times higher than that of the S enantiomer. Treatment with R-pydiflumetofen increased the cell membrane permeability of Sclerotinia sclerotiorum and decreased exopolysaccharide and oxalic acid production more than treatment with S-pydiflumetofen. Furthermore, R-pydflumetofen exhibited better inhibitory activity against the succinate dehydrogenase enzyme of S. sclerotiorum than S-pydiflumetofen by 584-fold. According to homology modeling and molecular docking studies, the binding affinities of the R and S enantiomers were -7.0 and -5.3 kcal mol-1 , respectively. Additionally, the degradation half-lives of S- and R-pydiflumetofen in three vegetables (cucumber, eggplant, and cowpea) under field conditions were 2.56-3.12 days and 2.48-2.76 days, respectively, which reveals that R-pydiflumetofen degrades faster than S-pydiflumetofen. CONCLUSION Based on the results obtained, R-pydiflumetofen not only exhibited a higher bactericidal activity, but also posed fewer residual risks in the environment. The mechanism of the stereoselective bioactivity was correlated with the stereoselective inhibition activity of the target enzyme and affected the cell membrane permeability and the production of exopolysaccharide and oxalic acid. This research could provide a foundation for the systematic evaluation of pydiflumetofen from an enantiomeric view. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Shiling Liu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Chen WC, Wei LL, Zheng HH, Zhang PC, Wang BR, Zhao WC, Lou TC, Wang J, Liu XL, Deng S, Wang XY, Chen CJ, Wei LH, Liu Y. Biological Characteristics and Molecular Mechanism of Procymidone Resistance in Stemphylium eturmiunum From Garlic. PLANT DISEASE 2021; 105:1951-1959. [PMID: 33044142 DOI: 10.1094/pdis-08-20-1764-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Garlic leaf blight caused by Stemphylium eturmiunum was first reported in Jiangsu Province in China. The dicarboximide fungicide (DCF) procymidone is reported to possess broad-spectrum action in inhibiting filamentous fungi and is widely used to control leaf disease of various plants. Of 41 Stemphylium eturmiunum isolates collected in this study from commercial garlic farms in Pizhou and Dafeng counties of Jiangsu Province, eight isolates were resistant to procymidone. The following three phenotypes were categorized according to in vitro responses to DCFs: sensitive, low resistance to iprodione and procymidone, and high resistance to all iprodione and procymidone. The fitness of all resistant isolates was decreased in accordance with data on mycelial growth, conidiation, and virulence. After treatment with 10 µg/ml of procymidone for 4 h, mycelial intracellular glycerol concentrations of resistant isolates were significantly lower than those of sensitive isolates. Positive cross-resistance was observed between dicarboximides and phenylpyrroles, but there was no cross-resistance between dicarboximides and fluazinam or difenoconazole in the two resistant phenotypes. Nucleotide sequence alignment of two-component histidine kinase genes from sensitive and resistant isolates indicated that amino acid mutations were located at the histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein and at the phosphatase domain of the N-terminal region and the response regulator domain of the C-terminal region. To our knowledge, this is the first report of DCF resistance in Stemphylium eturmiunum, and these findings will help establish a rational strategy to manage DCF-resistant populations of Stemphylium eturmiunum in the field.
Collapse
Affiliation(s)
- Wen-Chan Chen
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Ling-Ling Wei
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Huan-Huan Zheng
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Peng-Cheng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Bing-Ran Wang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Wei-Cheng Zhao
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Tian-Cheng Lou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Jin Wang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Xia-Li Liu
- Food Inspection and Testing Institute of Henan Province, Zhengzhou 450000, Henan, China
| | - Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Jiangsu Province, Nanjing 210014, China
| | - Xiao-Yu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Jiangsu Province, Nanjing 210014, China
| | - Chang-Jun Chen
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Li-Hui Wei
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Jiangsu Province, Nanjing 210014, China
| | - Yang Liu
- Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, Heilongjiang, China
| |
Collapse
|
27
|
Mwape VW, Mobegi FM, Regmi R, Newman TE, Kamphuis LG, Derbyshire MC. Analysis of differentially expressed Sclerotinia sclerotiorum genes during the interaction with moderately resistant and highly susceptible chickpea lines. BMC Genomics 2021; 22:333. [PMID: 33964897 PMCID: PMC8106195 DOI: 10.1186/s12864-021-07655-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR), is a host generalist necrotrophic fungus that can cause major yield losses in chickpea (Cicer arietinum) production. This study used RNA sequencing to conduct a time course transcriptional analysis of S. sclerotiorum gene expression during chickpea infection. It explores pathogenicity and developmental factors employed by S. sclerotiorum during interaction with chickpea. RESULTS During infection of moderately resistant (PBA HatTrick) and highly susceptible chickpea (Kyabra) lines, 9491 and 10,487 S. sclerotiorum genes, respectively, were significantly differentially expressed relative to in vitro. Analysis of the upregulated genes revealed enrichment of Gene Ontology biological processes, such as oxidation-reduction process, metabolic process, carbohydrate metabolic process, response to stimulus, and signal transduction. Several gene functional categories were upregulated in planta, including carbohydrate-active enzymes, secondary metabolite biosynthesis clusters, transcription factors and candidate secreted effectors. Differences in expression of four S. sclerotiorum genes on varieties with different levels of susceptibility were also observed. CONCLUSION These findings provide a framework for a better understanding of S. sclerotiorum interactions with hosts of varying susceptibility levels. Here, we report for the first time on the S. sclerotiorum transcriptome during chickpea infection, which could be important for further studies on this pathogen's molecular biology.
Collapse
Affiliation(s)
- Virginia W Mwape
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia. .,Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA, Australia.
| | - Fredrick M Mobegi
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Roshan Regmi
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia.,Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia. .,Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA, Australia.
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
28
|
Peng J, Sang H, Proffer TJ, Gleason J, Outwater CA, Jung G, Sundin GW. A Method for the Examination of SDHI Fungicide Resistance Mechanisms in Phytopathogenic Fungi Using a Heterologous Expression System in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2021; 111:819-830. [PMID: 33141650 DOI: 10.1094/phyto-09-20-0421-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are a class of broad-spectrum fungicides used for management of diseases caused by phytopathogenic fungi. In many cases, reduced sensitivity to SDHI fungicides has been correlated with point mutations in the SdhB and SdhC target genes that encode components of the succinate dehydrogenase complex. However, the genetic basis of SDHI fungicide resistance mechanisms has been functionally characterized in very few fungi. Sclerotinia sclerotiorum is a fast-growing and SDHI fungicide-sensitive phytopathogenic fungus that can be conveniently transformed. Given the high amino acid sequence similarity and putative structural similarity of SDHI protein target sites between S. sclerotiorum and other common phytopathogenic ascomycete fungi, we developed an in vitro heterologous expression system that used S. sclerotiorum as a reporter strain. With this system, we were able to demonstrate the function of mutant SdhB or SdhC alleles from several ascomycete fungi in conferring resistance to multiple SDHI fungicides. In total, we successfully validated the function of Sdh alleles that had been previously identified in field isolates of Botrytis cinerea, Blumeriella jaapii, and Clarireedia jacksonii (formerly S. homoeocarpa) in conferring resistance to boscalid, fluopyram, or fluxapyroxad and used site-directed mutagenesis to construct and phenotype a mutant allele that is not yet known to exist in Monilinia fructicola populations. We also examined the functions of these alleles in conferring cross-resistance to more recently introduced SDHIs including inpyrfluxam, pydiflumetofen, and pyraziflumid. The approach developed in this study can be widely applied to interrogate SDHI fungicide resistance mechanisms in other phytopathogenic ascomycetes.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Tyre J Proffer
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Jacqueline Gleason
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Cory A Outwater
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Geunhwa Jung
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
29
|
Li T, Xiu Q, Wang J, Duan Y, Zhou M. A Putative MAPK Kinase Kinase Gene Ssos4 is Involved in Mycelial Growth, Virulence, Osmotic Adaptation, and Sensitivity to Fludioxonil and is Essential for SsHog1 Phosphorylation in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2021; 111:521-530. [PMID: 33044134 DOI: 10.1094/phyto-07-20-0292-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high osmolarity glycerol (HOG) pathway, comprising a two-component system and the Hog1 mitogen-activated protein kinase (MAPK) cascade, plays a pivotal role in eukaryotic organisms. Previous studies suggested that the biological functions of some key genes in the HOG pathway varied in filamentous fungi. In this study, we characterized a putative MAPK kinase kinase gene, Ssos4, in Sclerotinia sclerotiorum, which encoded a phosphotransferase in the MAPK cascade. Compared with the wild-type progenitor HA61, the deletion mutant ∆Ssos4-63 exhibited impaired mycelial growth, sclerotia formation, increased hyphal branches, and decreased virulence. The deficiencies of the deletion mutant ∆Ssos4-63 were recovered when the full-length Ssos4 gene was complemented. Deletion of Ssos4 increased the sensitivity to osmotic stresses and cell wall agents and the resistance to fludioxonil and dimethachlon. Intracellular glycerol accumulation was not induced in the deletion mutant ∆Ssos4-63 when treated with fludioxonil and NaCl and the phosphorylation of SsHog1 was also cancelled by the deletion of Ssos4. Consistent with the glycerol accumulation and increased expression levels of SsglpA and Ssfps1, controlling glycerol synthesis and close of glycerol channel under hyperosmotic stress, respectively, were detected in the wild-type strain HA61 but not in the deletion mutant ∆Ssos4-63. Moreover, the relative expression level of Sshog1 significantly decreased, whereas the expression level of Ssos5 increased in the deletion mutant ∆Ssos4-63. These results indicated that Ssos4 played important roles in mycelial growth and differentiation, sclerotia formation, virulence, hyperosmotic adaptation, fungicide sensitivity, and the phosphorylation of SsHog1 in S. sclerotiorum.
Collapse
Affiliation(s)
- Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Shao W, Sun J, Zhang X, Chen C. Amino Acid Polymorphism in Succinate Dehydrogenase Subunit C Involved in Biological Fitness of Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:580-589. [PMID: 31922928 DOI: 10.1094/mpmi-07-19-0187-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Succinate dehydrogenase (SDH) is an important respiratory enzyme which participates in the tricarboxylic acid cycle and oxidative phosphorylation. A previous study of the baseline sensitivity of Botrytis cinerea against SDH inhibitors (SDHIs) showed that intrinsic sensitivity of the small population against the SDHIs exhibited significant differences. In the sequencing assay, we found five kinds of amino acid polymorphism in SDH subunit C (SdhC) of B. cinerea isolates which were never exposed to the SDHIs. To validate that amino acid polymorphism in the SdhC of B. cinerea confers intrinsic sensitivity against the SDHIs, the replacement mutants containing each kind of amino acid polymorphism of SdhC exhibited phenotype differences in intrinsic sensitivity to SDHIs, mycelial growth, sporulation, virulence, oxidative stress response, and carbon source utilization. These results indicated that SdhC of B. cinerea experienced positive selection during evolution and resulted in amino acid polymorphism which is involved in intrinsic sensitivity to SDHIs and biological fitness.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingtao Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoke Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
31
|
Xin W, Mao Y, Lu F, Li T, Wang J, Duan Y, Zhou M. In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:78-85. [PMID: 31836058 DOI: 10.1016/j.pestbp.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a destructive fungal disease in rice, causing serious losses in yield and quality. Coumoxystrobin is a novel methoxyacrylate strobilurin fungicide. In the current study, we determined the sensitivity of 100 M. oryzae strains to coumoxystrobin based on the mycelial growth inhibition method. The EC50 values ranged from 0.0089 to 0.0290 μg mL-1, with a mean EC50 value of 0.0163 ± 0.0036 μg mL-1, indicating that coumoxystrobin exhibits an excellent inhibitory activity in the mycelial growth of M. oryzae. In addition, the EC50 values had no significant difference among four populations from the different geographical regions. After treating with coumoxystrobin, cell membrane permeability increased, respiration decreased, and the hyphal tips were contorted, with offshoot of top increasing. Protective and curative activity tests showed that coumoxystrobin exhibited better protective and curative activities against M. oryzae in detached barley leaves in comparison to the currently used fungicides tricyclazole and azoxystrobin. Also, it was found that the protective activity was better than its curative activity. Furthermore, compared with the currently used fungicides, coumoxystrobin not only exhibited excellent control efficacy on rice blast, but also markedly reduced the dosages of chemical fungicides in the field trials. Overall, these findings provide important references for revealing the pharmacological effect of coumoxystrobin against M. oryzae and managing rice blast caused by M. oryzae.
Collapse
Affiliation(s)
- Wenjing Xin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Lu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
32
|
Xia S, Xu Y, Hoy R, Zhang J, Qin L, Li X. The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum: An Update on Genes Studied with Mutant Analysis. Pathogens 2019; 9:pathogens9010027. [PMID: 31892134 PMCID: PMC7168625 DOI: 10.3390/pathogens9010027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/06/2023] Open
Abstract
Ascomycete Sclerotinia sclerotiorum (Lib.) de Bary is one of the most damaging soilborne fungal pathogens affecting hundreds of plant hosts, including many economically important crops. Its genomic sequence has been available for less than a decade, and it was recently updated with higher completion and better gene annotation. Here, we review key molecular findings on the unique biology and pathogenesis process of S. sclerotiorum, focusing on genes that have been studied in depth using mutant analysis. Analyses of these genes have revealed critical players in the basic biological processes of this unique pathogen, including mycelial growth, appressorium establishment, sclerotial formation, apothecial and ascospore development, and virulence. Additionally, the synthesis has uncovered gaps in the current knowledge regarding this fungus. We hope that this review will serve to build a better current understanding of the biology of this under-studied notorious soilborne pathogenic fungus.
Collapse
Affiliation(s)
- Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: (S.X.); (X.L.)
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.X.); (R.H.)
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ryan Hoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.X.); (R.H.)
| | - Julia Zhang
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China;
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.X.); (R.H.)
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence: (S.X.); (X.L.)
| |
Collapse
|
33
|
Huang XP, Luo J, Li BX, Song YF, Mu W, Liu F. Bioactivity, physiological characteristics and efficacy of the SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:70-78. [PMID: 31519259 DOI: 10.1016/j.pestbp.2019.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Sclerotinia sclerotiorum, which can cause Sclerotinia stem rot, is a devastating plant pathogen. This study aimed to assess the potential of pydiflumetofen, a new-generation succinate dehydrogenase inhibitor (SDHI) fungicide, to control Sclerotinia stem rot. Pydiflumetofen exhibited favorable bioactivity in suppressing mycelial growth, sclerotial production and morphological changes, and the myceliogenic and carpogenic germination of sclerotia. Treatment with pydiflumetofen increased the cell membrane permeability of S. sclerotiorum and decreased oxalic acid production. In addition, inoculation tests demonstrated that the protective activity of 40 μg/mL pydiflumetofen against the fungus was better than its curative activity. Under natural infection conditions, the spraying of pydiflumetofen at 200 g a.i. ha-1 significantly reduced the incidence and severity of Sclerotinia stem rot. In addition, the sensitivity baseline to pydiflumetofen was established using 171 isolates collected from various crops in China. The results showed that the frequency distribution of the EC50 values of pydiflumetofen was a unimodal curve with a mean EC50 value of 0.0095 ± 0.0005 μg/mL. This study confirmed the favorable bioactivity of pydiflumetofen against S. sclerotiorum at various developmental stages and its high effectiveness under natural infection conditions, which indicates that pydiflumetofen is a promising tool for the management of Sclerotinia stem rot.
Collapse
Affiliation(s)
- Xue-Ping Huang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bei-Xing Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yu-Fei Song
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
34
|
Lin Z, Wu J, Jamieson PA, Zhang C. Alternative Oxidase Is Involved in the Pathogenicity, Development, and Oxygen Stress Response of Botrytis cinerea. PHYTOPATHOLOGY 2019; 109:1679-1688. [PMID: 31479404 DOI: 10.1094/phyto-01-19-0012-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alternative oxidase (AOX) is a ubiquinol terminal oxidase that is involved in fungal mitochondrial oxidative phosphorylation. In this study, we analyzed the roles of AOX in Botrytis cinerea by generating BcAOX deletion mutants. The mutants exhibited defects in mycelial growth, sporulation, spore germination, and virulence. Furthermore, the sensitivity of the mutants to quinone outside inhibitor fungicides and oxidative stress were increased. All phenotypic variations could be restored in the complemented strain. In summary, these results showed that BcAOX is involved in the regulation for vegetative development, adaptation to environmental stress, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Zesong Lin
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Jianyan Wu
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Pierce A Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Chuanqing Zhang
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
35
|
Sousa Melo B, Voltan AR, Arruda W, Cardoso Lopes FA, Georg RC, Ulhoa CJ. Morphological and molecular aspects of sclerotial development in the phytopathogenic fungus Sclerotinia sclerotiorum. Microbiol Res 2019; 229:126326. [PMID: 31493702 DOI: 10.1016/j.micres.2019.126326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/26/2019] [Accepted: 08/25/2019] [Indexed: 11/16/2022]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary produces a resistance structure called sclerotium, which guarantees its survival in soil for long periods. Morphological and melanization aspects during sclerotial development were evaluated by microscopy and qRT-PCR techniques. S. sclerotiorum produces sclerotia with different phases of maturation and melanization during growth in PDA medium. Using scanning electron microscopy we observed that there are no structural differences in the three stages of formation of melanized and non-melanized sclerotium. Through histochemical analysis we observed that the melanized sclerotium accumulates more glycogen and produces less protein than non-melanized sclerotia. Melanin was most commonly found in the rind of melanized sclerotia, and the highest concentration of lipofucsins was found in non-melanized sclerotia. These molecules are products of the lipid peroxidation pathway and are associated with oxidative stress during differentiation in fungi. The expression of histidine kinase (shk) and adenylate cyclase (sac) genes in melanized and non-melanized sclerotiawere also evaluated. The higher gene expression of shk and lesser expression of sac in non-melanized sclerotiais an indication of the participation of cell signaling in the development of these structures. The higher expression of polyketide synthase (pks), tyrosinase (tyr) and laccase (lac) in non-melanized sclerotia suggested that S. sclerotiorum can use the DHN and L-dopa pathways to produce melanin. Expression studies of the enzymes chitin synthase and glucan synthase suggest that this process occurs along with the formation of melanin. This is interesting since polysaccharides, such as chitin and β-1,3-glucan, serve as a scaffold to which the melanin granules are cross-linked.
Collapse
Affiliation(s)
- Bruna Sousa Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | - Aline Raquel Voltan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | - Walquiria Arruda
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | | | - Raphaela Castro Georg
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | - Cirano José Ulhoa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil.
| |
Collapse
|
36
|
Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:123-128. [PMID: 31027571 DOI: 10.1016/j.pestbp.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Sclerotinia homoeocarpa causes dollar spot disease on turfgrass and is a serious problem on many species worldwide. Fludioxonil, a phenylpyrrole fungicide, is not currently registered for dollar spot control in China. In this study, the baseline sensitivity to fludioxonil was established using an in vitro assay for 105 isolates of S. homoeocarpa collected from 10 locations in different regions of China. Results indicate that the frequency distribution of effective concentration for 50% inhibition of mycelial growth (EC50) values of the S. homoeocarpa isolates was unimodal (W = 0.9847, P = .2730). The mean EC50 value was 0.0020 ± 0.0006 μg/ml with a range from 0.0003 to 0.0035 μg/ml. A total of 7 fludioxonil-resistant mutants were obtained in laboratory, the mutants were stable in fludioxonil sensitivity after the 10th transfer, with resistance factor (RF) ranging from 4.320 to >13,901.4. The mutants showed a positive cross-resistance between fludioxonil and the dicarboximide fungicide iprodione, but not propiconazole, fluazinam, and thiophanate-methyl. When mycelial growth rate, pathogenicity and osmotic sensitivity were assessed, the mutants decreased in the fitness compared with their parental isolates. Sequence alignment of the histidine kinase gene Shos1 revealed a 13-bp fragment deletion only in one mutant, no mutations were observed on Shos1 in the rest resistant mutants.
Collapse
Affiliation(s)
- Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yuxin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Gao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiamei Geng
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Dai
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haiyan Ren
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996, USA
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
37
|
Li J, Zhu F, Li J. Expression of the Histidine Kinase Gene Sshk Correlates with Dimethachlone Resistance in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2019; 109:395-401. [PMID: 30070619 DOI: 10.1094/phyto-05-18-0156-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Histidine kinases (HK) are implicated in virulence, vegetative mycelial growth, and osmotic and oxidative responses in pathogenic fungi. Our previous work showed that transcriptional levels of the group III HK gene Sshk are higher in field dimethachlone-resistant isolates of Sclerotinia sclerotiorum compared with sensitive isolates. However, it is not clear whether the overexpression of Sshk is the major mechanism for resistance to dimethachlone. In this study, we constructed Sshk silencing and overexpression vectors and assessed dimethachlone resistance levels, virulence, mycelial growth, and sensitivity to osmotic stress for the Sshk-silenced and -overexpression transformants. Overexpression of Sshk resulted in resistance to dimethachlone and increased sensitivity to various stresses and to the cell-wall-perturbing agents sodium dodecyl sulfate (SDS) and Congo red (CR). Compared with the parent isolate, Sshk-silenced transformants had reduced resistance to dimethachlone, significantly higher (P < 0.05) mycelial growth and virulence, and lower sclerotium production, and were less sensitive to various exogenous stresses such as sodium chloride. Compared with the parent sensitive isolate HLJMG1, dimethachlone resistance ratios of the three overexpression transformants ∆C101, ∆C21, and ∆C10 increased 168.1-, 189.5-, and 221.2-fold, respectively. The three overexpression transformants were more sensitive to CR and SDS than their parent isolate. These findings suggest that overexpression of Sshk is a major mechanism for dimethachlone resistance in some isolates of S. sclerotiorum, and that Sshk plays an important role in maintaining the integrity of the cell wall. Our findings reveal a novel molecular mechanism for dimethachlone resistance in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Jinli Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
Duan Y, Xiu Q, Li H, Li T, Wang J, Zhou M. Pharmacological Characteristics and Control Efficacy of a Novel SDHI Fungicide Pydiflumetofen Against Sclerotinia sclerotiorum. PLANT DISEASE 2019; 103:77-82. [PMID: 30358507 DOI: 10.1094/pdis-05-18-0763-re] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pydiflumetofen is a novel succinate dehydrogenase inhibitor fungicide. In the current research, we determined the sensitivity of 166 Sclerotinia sclerotiorum strains to pydiflumetofen using mycelial growth inhibition method. The results suggest that pydiflumetofen exhibited a strong inhibitory activity against S. sclerotiorum and the EC50 values ranged from 0.0058 to 0.0953 μg ml-1, with a mean EC50 value of 0.0250 μg ml-1. However, the baseline sensitivity was not normally distributed because of a high variation factor. After treatment with pydiflumetofen, cell membrane permeability increases, but exopolysaccharide and oxalic acid production decreases, which contributes to reduced virulence of S. sclerotiorum and leads to failure of disease infection. In addition, protective and curative activity was performed on detached oilseed rape leaves by artificial inoculation. Pydiflumetofen exhibited excellent protective and curative effects against S. sclerotiorum on oilseed rape, and the protective effect was better than the curative effect. Further, field trials were conducted to evaluate the potential of pydiflumetofen in controlling Sclerotinia stem rot (SSR) caused by S. sclerotiorum on oilseed rape. Compared with the currently used fungicides, pydiflumetofen not only exhibited excellent control efficacy against SSR, but also dramatically reduced the dosage of fungicides in the field. Thus, this study provides important references for revealing pharmacological mechanism of pydiflumetofen against S. sclerotiorum and managing SSR on oilseed rape caused by benzimidazole- and dicarboximide-resistant populations.
Collapse
Affiliation(s)
- Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| |
Collapse
|
39
|
Li J, Duan Y, Bian C, Pan X, Yao C, Wang J, Zhou M. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:152-160. [PMID: 30744889 DOI: 10.1016/j.pestbp.2018.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Validamycin, known to interfere with fungal energy metabolism by inhibiting trehalase, has been extensively used to control plant diseases caused by Rhizoctonia spp. However, the effect of validamycin on controlling Fusarium graminearum has not been previously reported. In this study, when applied to F. graminearum in vitro, validamycin inhibited the synthesis of deoxynivalenol (DON), which is a mycotoxin and virulence factor, by decreasing trehalase activity and the production of glucose and pyruvate, which are precursors of DON biosynthesis. Because FgNTH encodes the main trehalase in F. graminearum, these effects were nullified in the FgNTH deletion mutant ΔFgNTH but restored in the complemented strain ΔFgNTHC. In addition, validamycin also increased the expression of pathogenesis-related genes (PRs) PR1, PR2, and PR5 in wheat, inducing resistance responses of wheat against F. graminearum. Therefore, validamycin exhibits dual efficacies on controlling Fusarium head blight (FHB) caused by F. graminearum: inhibition of DON biosynthesis and induction of host resistance. In addition, field trials further confirmed that validamycin increased FHB control and reduced DON contamination in grain. Control of FHB and DON contamination by validamycin increased when the antibiotic was applied with the triazole fungicide metconazole. Overall, this study is a successful case from foundational research to applied research, providing useful information for wheat protection programs against toxigenic fungi responsible for FHB and the consequent mycotoxin accumulation in grains.
Collapse
Affiliation(s)
- Jing Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chuanhong Bian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengjie Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
40
|
Randhawa A, Kundu D, Sharma A, Prasad R, Mondal AK. Overexpression of the CORVET complex alleviates the fungicidal effects of fludioxonil on the yeast Saccharomyces cerevisiae expressing hybrid histidine kinase 3. J Biol Chem 2018; 294:461-475. [PMID: 30446623 DOI: 10.1074/jbc.ra118.004736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
The hybrid histidine kinase 3 (HHK3) is a highly conserved sensor kinase in fungi that regulates the downstream HOG/p38 mitogen-activated protein kinase (MAPK). In addition to its role in osmoadaptation, HHK3 is involved in hyphal morphogenesis, conidiation, virulence, and cellular adaptation to oxidative stress. However, the molecular mechanisms by which it controls these processes remain obscure. Moreover, HHK3 is a molecular target for antifungal agents such as fludioxonil, which thereby interferes with the HOG/p38 pathway, leading to the abnormal accumulation of glycerol and subsequent cell lysis. Here, we used a chemical genomics approach with the yeast Saccharomyces cerevisiae to better understand the fungicidal action of fludioxonil and the role of HHK3 in fungal growth and physiology. Our results indicated that the abnormal accumulation of glycerol is not the primary cause of fludioxonil toxicity. Fludioxonil appears to impair endosomal trafficking in the fungal cells. We found that the components of class C core vacuole/endosome tethering (CORVET) complex are essential for yeast viability in the presence of a subthreshold dose of fludioxonil and that their overexpression alleviates fludioxonil toxicity. We also noted that by impeding secretory vesicle trafficking, fludioxonil inhibits hyphal growth in the opportunistic fungal pathogen Candida albicans Our results suggest that HHK3 regulates fungal hyphal growth by affecting vesicle trafficking. Together, our results reveal an important role of CORVET complex in the fungicidal action of fludioxonil downstream of HHK3.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Debasree Kundu
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India, and
| | - Anupam Sharma
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India, and
| |
Collapse
|
41
|
Duan Y, Li T, Xiao X, Wu J, Li S, Wang J, Zhou M. Pharmacological characteristics of the novel fungicide pyrisoxazole against Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:61-66. [PMID: 30033017 DOI: 10.1016/j.pestbp.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Pyrisoxazole is a pyridine compound of demethylation inhibitor fungicides. In this study, baseline sensitivity of Sclerotinia sclerotiorum to pyrisoxazole was determined using 166 strains from the oilseed rape fields in 2014, 2015 and 2016. The EC50 values for mycelial growth inhibition ranged from 0.0214 to 0.5443 μg mL-1, with a mean EC50 value of 0.2329 ± 0.1048 μg mL-1 and were normally distributed. The EC50 values had no significant difference among three populations from 2014, 2015, and 2016. There was no correlation with sensitivity between pyrisoxazole and carbendazim or iprodione. After treated with pyrisoxazole, we observed increased cell membrane permeability, and decreased exopolysaccharide and oxalic acid production, which can contribute to reduced virulence of S. sclerotiorum and lead to failure of disease infection. Protective and curative activity tests showed that pyrisoxazole exhibited excellent protective and curative activity against S. sclerotiorum in oilseed rape, and protective activity was better than curative activity. Compared with the currently used fungicides, pyrisoxazole not only exhibited excellent control efficacy on Sclerotinia stem rot, but also dramatically reduced the doses of fungicides in the field trials. Overall, these data provide more references for revealing pharmacological effect of pyrisoxazole against S. sclerotiorum and managing Sclerotinia stem rot on oilseed rape caused by benzimidazole- and dicarboximide-resistant populations.
Collapse
Affiliation(s)
- Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuemei Xiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengkun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
42
|
The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea. Appl Environ Microbiol 2018; 84:AEM.02455-17. [PMID: 29572212 DOI: 10.1128/aem.02455-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8, a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (ΔBcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the ΔBcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinereaIMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea.
Collapse
|
43
|
Sun C, Zeng L, Xu J, Zhong L, Han X, Chen L, Zhang Y, Hu D. Residual level of dimethachlon in rice-paddy field system and cooked rice determined by gas chromatography with electron capture detector. Biomed Chromatogr 2018; 32:e4226. [DOI: 10.1002/bmc.4226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Caiyuan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Lingrong Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Jin Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Lei Zhong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Xinwen Han
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Lingzhu Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang People's Republic of China
| |
Collapse
|
44
|
Yang Y, Li MX, Duan YB, Li T, Shi YY, Zhao DL, Zhou ZH, Xin WJ, Wu J, Pan XY, Li YJ, Zhu YY, Zhou MG. A new point mutation in β 2-tubulin confers resistance to carbendazim in Fusarium asiaticum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:15-21. [PMID: 29482727 DOI: 10.1016/j.pestbp.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Resistance to benzimidazole fungicides in many phytopathogenic fungi is caused by specific point mutations in the β-tubulin gene (β-tubulin). However, the mutated locus and genotype of β-tubulin differ among phytopathogenic fungi. To validate the point mutation in Fusarium asiaticum β2-tubulin that confers resistance to carbendazim and to analyze the molecular interaction between carbendazim and F. asiaticum β2-tubulin. In this study, a new point mutation (GAG→GCG, E198A) at codon 198 of β2-tubulin in a wild-type F. asiaticum strain was constructed by site-directed mutagenesis followed by a split marker strategy. The site-directed mutants were verified and exhibited a high level of resistance to carbendazim. In the absence of fungicide treatment, the biological characteristics did not differ between the site-directed mutants and the wild-type strain. Molecular docking between carbendazim and β2-tubulin was carried out using the Surflex-Dock program in Sybyl X-2.0 version and the results indicated that the E198A mutation altered the configuration of β2-tubulin, resulting in the change of the bonding sites and docking scores. We concluded that the point mutation of F. asiaticum β2-tubulin conferring carbendazim resistance may not always be the bonding site for carbendazim.
Collapse
Affiliation(s)
- Ying Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei-Xia Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Bing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tao Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Yuan Shi
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong-Lei Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze-Hua Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Jing Xin
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xia-Yan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan-Jun Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Ye Zhu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
45
|
Idnurm A, Urquhart AS, Vummadi DR, Chang S, Van de Wouw AP, López-Ruiz FJ. Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Biol Biotechnol 2017; 4:12. [PMID: 29270298 PMCID: PMC5732519 DOI: 10.1186/s40694-017-0043-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background The dicarboximide fungicide iprodione has been used to combat blackleg disease of canola (Brassica napus), caused by the fungus Leptosphaeria maculans. For example, in Australia the fungicide was used in the late 1990s but is no longer registered for use against blackleg disease, and therefore the impact of iprodione on L. maculans has not been investigated. Results Resistance to iprodione emerged spontaneously under in vitro conditions at high frequency. A basis for this resistance was mutations in the hos1 gene that encodes a predicted osmosensing histidine kinase. While loss of the homologous histidine kinase in some fungi has deleterious effects on growth and pathogenicity, the L. maculans strains with the hos1 gene mutated had reduced growth under high salt conditions, but were still capable of causing lesions on B. napus. The relative ease to isolate mutants with resistance to iprodione provided a method to develop and then optimize a CRISPR/Cas9 system for gene disruptions in L. maculans, a species that until now has been particularly difficult to manipulate by targeted gene disruptions. Conclusions While iprodione is initially effective against L. maculans in vitro, resistance emerges easily and these strains are able to cause lesions on canola. This may explain the limited efficacy of iprodione in field conditions. Iprodione resistance, such as through mutations of genes like hos1, provides an effective direction for the optimization of gene disruption techniques.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Andrew S Urquhart
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Dinesh R Vummadi
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Steven Chang
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102 Australia
| | - Angela P Van de Wouw
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Francisco J López-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102 Australia
| |
Collapse
|
46
|
Zhang Y, Gao T, Shao W, Zheng Z, Zhou M, Chen C. The septins FaCdc3 and FaCdc12 are required for cytokinesis and affect asexual and sexual development, lipid metabolism and virulence in Fusarium asiaticum. MOLECULAR PLANT PATHOLOGY 2017; 18:1282-1294. [PMID: 27666337 PMCID: PMC6638246 DOI: 10.1111/mpp.12492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Septins are a highly conserved family of GTP-binding proteins that contribute to many cellular and metabolic functions, including cell polarity, cytokinesis, cell morphogenesis and pathogenesis. In this study, we characterized the septins FaCdc3 and FaCdc12 in the filamentous fungus Fusarium asiaticum. The functions of FaCdc3 and FaCdc12 were evaluated by constructing deletion mutants of FaCdc3 and FaCdc12, designated ΔFaCdc3-5 and ΔFaCdc12-71, respectively. The deletion mutants exhibited a reduced rate of mycelial growth, increased aerial hyphae formation, irregularly shaped hyphae, reduced conidiation and a lack of sexual reproduction in wheat kernels. Histochemical analysis revealed that the conidia and hyphae of ΔFaCdc3-5 and ΔFaCdc12-71 formed large lipid droplets (LDs). ΔFaCdc3-5 and ΔFaCdc12-71 also exhibited increased resistance to agents that induce osmotic stress and damage the cell membrane and cell wall. In addition, the hyphae and conidia of the two mutants formed fewer septa than those of the wild-type and exhibited aberrant nuclear distribution. Pathogenicity assays showed that ΔFaCdc3-5 and ΔFaCdc12-71 exhibited reduced virulence on wheat spikelets, which was indirectly correlated with a reduced level of deoxynivalenol accumulation. All of these defects were restored by genetic complementation of the two mutants with the parental FaCdc3 and FaCdc12. These results indicate that FaCdc3 and FaCdc12 play a critical role in various cellular processes in F. asiaticum.
Collapse
Affiliation(s)
- Yu Zhang
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Tao Gao
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling StreetNanjing210014China
| | - Wenyong Shao
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Zhitian Zheng
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Changjun Chen
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| |
Collapse
|
47
|
Multistep phosphorelay in fungi: the enigma of multiple signals and a limited number of signaling pathways. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1342-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:963-975. [PMID: 27353472 PMCID: PMC6638265 DOI: 10.1111/mpp.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/15/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)-box-containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)-based gene silencing was employed to alter the expression of SsFkh1. RNA-silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis-related laccase genes and a polyketide synthase-encoding gene were significantly down-regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi-silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.
Collapse
Affiliation(s)
- Huidong Fan
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Gang Yu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanzhi Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Xianghui Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | | | - Fengjie Sun
- School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleGA30024USA
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchun130062China
| |
Collapse
|
49
|
Shao W, Lv C, Zhang Y, Wang J, Chen C. Involvement of BcElp4 in vegetative development, various environmental stress response and virulence of Botrytis cinerea. Microb Biotechnol 2017; 10:886-895. [PMID: 28474462 PMCID: PMC5481526 DOI: 10.1111/1751-7915.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis and formation of modified wobble uridines in tRNA. In this study, we investigated the function of BcElp4 in Botrytis cinerea, which is homologous to S. cerevisiae Elp4. A bcelp4 deletion mutant was significantly impaired in vegetative growth, sclerotia formation and melanin biosynthesis. This mutant exhibited decreased sensitivity to osmotic and oxidative stresses as well as cell way-damaging agent. Pathogenicity assays revealed that BcElp4 is involved in the virulence of B. cinerea. In addition, the deletion of bcelp4 led to increased aerial mycelia development. All these defects were restored by genetic complementation of the bcelp4 deletion mutant with the wild-type bcelp4 gene. The results of this study indicated that BcElp4 is involved in regulation of vegetative development, various environmental stress response and virulence in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chiyuan Lv
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
50
|
Li J, Kang T, Talab KMA, Zhu F, Li J. Molecular and biochemical characterization of dimethachlone resistant isolates of Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:15-21. [PMID: 28456299 DOI: 10.1016/j.pestbp.2017.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 06/07/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic fungal plant pathogen with a broad host range. The dicarboximide fungicide dimethachlone has been used to control this pathogen for more than a decade and resistance to dimethachlone has recently been reported in China. Compared with sensitive isolates, the three dimethachlone resistant isolates with resistance ratios of 78.3, 85.5, and 94.8 exhibited significantly (P<0.05) higher cell membrane permeability and peroxidase and polyphenol oxidase activities. Dimethachlone at 0.25μg/mL significantly increased cell membrane permeability and enhanced activity of the two enzymes in both resistant and sensitive isolates. There were no significant differences in glycerol or oxalate content between the resistant and sensitive isolates. Dimethachlone treatment increased glycerol content in the resistant isolates and reduced in the sensitive isolates (P<0.01). Sequencing of three genes involved in two-component signal pathway and of three genes in mitogen-activated protein (MAP) kinase cascade demonstrated that the dimethachlone resistant isolates HLJ4 and HLJ6 harbored point mutations of I232T and G1087D, respectively, in the deduce amino acid sequence of the histidine kinase (HK) gene Sshk. HLJ4 had a point mutation of P96L in the deduced amino acid sequence of the MAP kinase-kinase gene SsPbs. The expression levels of the Sshk gene were higher in HLJ4 and HLJ6 than in HLJ3 and the sensitive isolate HLJMG2, and transcription of the Sshk gene was up-regulated by dimethachlone for the three resistant isolates.
Collapse
Affiliation(s)
- Jinli Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tinghao Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|