1
|
Amorim-Rodrigues M, Brandão RL, Cássio F, Lucas C. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. gloeosporioides. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1463860. [PMID: 39355316 PMCID: PMC11443700 DOI: 10.3389/ffunb.2024.1463860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024]
Abstract
Olive tree anthracnose is caused by infection with Colletotrichum fungi, which in Portugal are mostly C. nymphaeae, C. godetiae, and C. gloeosporioides s.s. Severe economic losses are caused by this disease that would benefit from a greener and more efficient alternative to the present agrochemical methods. Yeasts are serious candidates for pre-harvest/in field biocontrol of fungal infections. This work identified the yeast Wickerhamomyces anomalus as a strong antagonizer of the three fungi and studied in vitro this ability and its associated mechanisms. Antagonism was shown to not depend on the secretion of volatile compounds (VOCs), or siderophores or any other agar-diffusible compound, including hydrolytic enzymes. Rather, it occurred mostly in a cell-to-cell contact dependent manner. This was devised through detailed microscopic assessment of yeast-fungus cocultures. This showed that W. anomalus antagonism of the three Colletotrichum proceeded through (i) the adhesion of yeast cells to the phytopathogen hyphae, (ii) the secretion of a viscous extracellular matrix, and (iii) the emptying of the hyphae. Yeasts ultimately putatively feed on hyphal contents, which is supported by light microscopy observation of MB and PI co-culture-stained samples. Accordingly, numerous W. anomalus cells were observed packing inside C. godetiae emptied hyphae. This behaviour can be considered microbial predation and classified as necrotrophic mycoparasitism, more explicitly in the case of C. godetiae. The results support the prospect of future application of W. anomalus as a living biofungicide/BCA in the preharvest control of olive anthracnose.
Collapse
Affiliation(s)
- Mariana Amorim-Rodrigues
- Molecular and Environmental Biology Centre (CBMA), University of Minho, Braga, Portugal
- Aquatic Research Network (ARNET), CBMA, University of Minho, Braga, Portugal
| | - Rogélio Lopes Brandão
- Cellular and Molecular Biology Laboratory, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Fernanda Cássio
- Molecular and Environmental Biology Centre (CBMA), University of Minho, Braga, Portugal
- Aquatic Research Network (ARNET), CBMA, University of Minho, Braga, Portugal
- Institute for Science and Innovation on Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Cândida Lucas
- Molecular and Environmental Biology Centre (CBMA), University of Minho, Braga, Portugal
- Aquatic Research Network (ARNET), CBMA, University of Minho, Braga, Portugal
- Institute for Science and Innovation on Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
2
|
Wang T, Cao H, Du T, Meng D, Yang Q, Li J, Zhang J, Zeng Y. Integrated Transcriptome and Metabolome Analysis Revealed the Key Role of the Flavonoid Biosynthesis in Olive Defense Against Alternaria alternata. PHYSIOLOGIA PLANTARUM 2024; 176:e14529. [PMID: 39319936 DOI: 10.1111/ppl.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 09/26/2024]
Abstract
The olive tree is an important oil woody plant with high economic value, yet it is vulnerable to the attack of numerous fungi. The successful control of olive fungal diseases requires a comprehensive understanding of the disease resistance mechanisms in plants. Here, we isolated Alternaria alternata from the diseased leaves of olive plants, and screened a resistant ("Leccino") and susceptible ("Manzanilla de Sevilla") cultivar from eight olive cultivars to explore their resistance mechanisms. Transcriptomic and metabolomic analyses identified the flavonoid biosynthesis as a key defense pathway against A. alternata. Five important transcription factors associated with flavonoid biosynthesis were also determined. The overexpression of OeWRKY40 significantly enhanced the disease resistance of the susceptible cultivar and upregulated the expression of genes involved in flavonoid biosynthesis and the accumulation of related metabolites. LUC assays further proved that OeWRKY40 can activate the expression of OeC4H. These results help to better clarify the molecular mechanisms of flavonoid biosynthesis against A. alternata. Our study provides key information for further exploration of the molecular pathways of olive plants and their resistance to fungi, an important factor for molecular breeding and utilization of resistant cultivars.
Collapse
Affiliation(s)
- Tianyi Wang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Hongyan Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tingting Du
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jinhua Li
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
3
|
Miho H, Expósito-Díaz A, Marquez-Perez MI, Ledesma-Escobar C, Diez CM, Prusky D, Priego-Capote F, Moral J. The dynamic changes in olive fruit phenolic metabolism and its contribution to the activation of quiescent Colletotrichum infection. Food Chem 2024; 450:139299. [PMID: 38613962 DOI: 10.1016/j.foodchem.2024.139299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/14/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Anthracnose, the most critical disease affecting olive fruits, is caused by Colletotrichum species. While developing olive fruits are immune to the pathogen regardless of the cultivar, the resistance level varies once the fruit ripens. The defense mechanisms responsible for this difference in resistance are not well understood. To explore this, we analyzed the phenolic metabolic pathways occurring in olive fruits and their susceptibility to the pathogen during ripening in two resistant cultivars ('Empeltre' and 'Frantoio') and two susceptible cultivars ('Hojiblanca' and 'Picudo'). Overall, resistant cultivars induced the synthesis of aldehydic and demethylated forms of phenols, which highly inhibited fungal spore germination. In contrast, susceptible cultivars promoted the synthesis of hydroxytyrosol 4-O-glucoside during ripening, a compound with no antifungal effect. This study showed that the distinct phenolic profiles between resistant and susceptible cultivars play a key role in determining olive fruit resistance to Colletotrichum species.
Collapse
Affiliation(s)
- H Miho
- Department of Agronomy, Campus of Rabanales, University of Cordoba, Spain; Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain.
| | - A Expósito-Díaz
- Department of Agronomy, Campus of Rabanales, University of Cordoba, Spain; Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain
| | - M I Marquez-Perez
- Department of Agronomy, Campus of Rabanales, University of Cordoba, Spain; Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain
| | - C Ledesma-Escobar
- Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain; Department of Analytical Chemistry, Campus of Rabanales, University of Cordoba, Spain
| | - C M Diez
- Department of Agronomy, Campus of Rabanales, University of Cordoba, Spain; Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain
| | - D Prusky
- Department of Postharvest Science, Agricultural Research Organization, Rishon LeTzion, Israel
| | - F Priego-Capote
- Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain; Department of Analytical Chemistry, Campus of Rabanales, University of Cordoba, Spain; Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofia University Hospital, Spain.
| | - J Moral
- Department of Agronomy, Campus of Rabanales, University of Cordoba, Spain; Agroalimentary Excellence Campus (ceiA3), University of Cordoba, Campus of Rabanales, Spain.
| |
Collapse
|
4
|
Sanna F, Mori N, Santoiemma G, Pozzebon A, Scaccini D, Marangoni F, Sella L. Halyomorpha halys (Hemiptera: Pentatomidae) as the major contributor to early olive drop in northern Italy. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1336-1346. [PMID: 38870416 PMCID: PMC11318618 DOI: 10.1093/jee/toae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
In recent years, a new phenomenon of early olive drop is causing production losses in olive groves throughout northern Italy. To analyze the possible causes, field and laboratory trials were performed to assess the involvement of fungal pathogens and insect pests in this disease. External and internal symptoms of fungal infections or insect-feeding activities were researched. Fungi present in healthy and dislodged olives were investigated. The relationship between olives that fell and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) infestation was assessed in a controlled infestation trial, and the effectiveness of an insecticidal strategy in reducing early olive drop was tested in open field conditions. A comparable number of fungi, mostly endophytes, were isolated and identified from both healthy and dislodged olives. The damage observed on dislodged olives was primarily ascribed to pentatomids feeding activity. Six stink bugs species were found in olive canopies, that is, the invasive H. halys, which was by far the most abundant, and Acrosternum heegeri Fieber, Nezara viridula (Linnaeus), Palomena prasina (Linnaeus), Piezodorus lituratus (Fabricious), and Rhaphigaster nebulosa (Poda). Halyomorpha halys caused intense fruit drop in the controlled infestation trial, and its infestation level significantly correlated with the number of olives that fell. Native stink bugs, present in much lower population compared to H. halys, could also partially contribute to early drop of olives. Insect proof net significantly reduced the early olive drop disease, while insecticide applications only partially reduced the stink bugs population density and, proportionally, early olive drop.
Collapse
Affiliation(s)
- Francesco Sanna
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Padova, Italy
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Davide Scaccini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | | | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
5
|
Peres F, Gouveia C, Vitorino C, Oliveira H, Ferreira-Dias S. How the "Olive Oil Polyphenols" Health Claim Depends on Anthracnose and Olive Fly on Fruits. Foods 2024; 13:1734. [PMID: 38890962 PMCID: PMC11172240 DOI: 10.3390/foods13111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Olive anthracnose, caused by Colletotrichum fungi, and the olive fruit fly Bactrocera olea are, respectively, the most important fungal disease and pest affecting olive fruits worldwide, leading to detrimental effects on the yield and quality of fruits and olive oil. This study focuses on the content of hydroxytyrosol (HYT) and its derivatives (the "olive oil polyphenols" health claim) in olive oils extracted from fruits of 'Galega Vulgar' and 'Cobrançosa' cultivars, naturally affected by olive anthracnose and olive fly. The olives, with different damage levels, were harvested from organic rainfed orchards, located in the center of Portugal, at four harvest times over three years. Galega oils extracted from olives with a higher anthracnose and olive fly incidence showed no conformity for the extra virgin olive oil (EVOO) and virgin olive oil (VOO) categories, presenting high acidity and negative sensory notes accompanied by the disappearance of oleacein. Conversely, no sensory defects were observed in Cobrançosa oils, regardless of disease and pest incidence levels, and quality criteria were still in accordance with the EVOO category. The total HYT and tyrosol (TYR) content (>5 mg/20 g) allows for the use of the "olive oil polyphenols" health claim on the label of all the analyzed Cobrançosa olive oils.
Collapse
Affiliation(s)
- Fátima Peres
- Instituto Politécnico de Castelo Branco, Escola Superior Agrária, 6000-909 Castelo Branco, Portugal; (F.P.); (C.G.); (C.V.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Cecília Gouveia
- Instituto Politécnico de Castelo Branco, Escola Superior Agrária, 6000-909 Castelo Branco, Portugal; (F.P.); (C.G.); (C.V.)
| | - Conceição Vitorino
- Instituto Politécnico de Castelo Branco, Escola Superior Agrária, 6000-909 Castelo Branco, Portugal; (F.P.); (C.G.); (C.V.)
| | - Helena Oliveira
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Suzana Ferreira-Dias
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- Laboratório de Estudos Técnicos, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
6
|
Vergine M, Vita F, Casati P, Passera A, Ricciardi L, Pavan S, Aprile A, Sabella E, De Bellis L, Luvisi A. Characterization of the olive endophytic community in genotypes displaying a contrasting response to Xylella fastidiosa. BMC PLANT BIOLOGY 2024; 24:337. [PMID: 38664617 PMCID: PMC11044560 DOI: 10.1186/s12870-024-04980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Collapse
Affiliation(s)
- Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
7
|
de Oliveira Aparecido LE, Torsoni GB, de Lima RF, Mesquita DZ, Peche PM. Agroclimatic mapping for olive cultivation in Brazil: pinpointing optimal growing regions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3361-3370. [PMID: 38092559 DOI: 10.1002/jsfa.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND This research aimed to identify the agroclimatic zones in Brazil, excluding Rio Grande do Sul, that are suitable for olive (Olea europaea L.) cultivation, considering both climatic and topographical factors. Olives require specific conditions: moderate winter temperatures (7-15 °C), warmer summers (25-35 °C) and sufficient water during growth and fruit maturation. They can endure some drought, making them a viable option for agricultural diversification. Using daily meteorological data from 1989 to 2023 from NASA-POWER, this study analyzed variables like air temperature (minimum and maximum) and rainfall. Key climate variables were the mean air temperature in winter (T_w), spring (T_s), summer (T_su) and autumn (T_a) and total annual precipitation (Prec). Criteria for suitability included: T_w between 5 and 20 °C, T_s between 15 and 23 °C, T_su between 15 and 30 °C, T_a between 15 and 22 °C, annual precipitation over 900 mm and altitude below 900 m. Geographic information system software and Python 3.8 were employed for data analysis and zoning. RESULTS Results indicated that only 1.92% of the analyzed area, mainly in Minas Gerais, was suitable for olive cultivation. High temperatures and low rainfall in Brazil, particularly in the North and Midwest, make 59.56% of the country unsuitable for olive farming. Additionally, 18.58% of the land, mainly in the Northeast, faces challenges due to extreme heat (T_w) and insufficient water supply. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Rafael Fausto de Lima
- Faculdade de Ciências Agrárias e Veterinárias - Câmpus de Jaboticabal - Unesp, Jaboticabal, Brazil
| | | | | |
Collapse
|
8
|
Varveri M, Papageorgiou AG, Tsitsigiannis DI. Evaluation of Biological Plant Protection Products for Their Ability to Induce Olive Innate Immune Mechanisms and Control Colletotrichum acutatum, the Causal Agent of Olive Anthracnose. PLANTS (BASEL, SWITZERLAND) 2024; 13:878. [PMID: 38592906 PMCID: PMC10974188 DOI: 10.3390/plants13060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Olive anthracnose is the most important fungal disease of the olive fruit worldwide, with the fungus Colletotrichum acutatum as the main cause of the disease in Greece. A total of 11 commercial biological plant protection products (bioPPPs) (Amylo-X®, Botector®, FytoSave®, LBG 01F34®, Mevalone®, Polyversum®, Remedier®, Serenade® ASO, Sonata®, Trianum-P®, Vacciplant®), with various modes of action against the fungus C. acutatum, were evaluated by bioassays using detached fruits of two important olive Greek varieties, cv. Koroneiki and cv. Kalamon. Subsequently, the most effective bioPPPs were evaluated for their ability to induce plant defense mechanisms, by determining the expression levels of ten Olea europaea defense genes (Pal, CuaO, Aldh1, Bglu, Mpol, Lox, Phely, CHI-2, PR-10, PR-5). Remedier®, Trianum-P®, Serenade® ASO, Sonata®, and Mevalone® were the most effective in reducing disease severity, and/or inhibiting the conidia production by the fungus at high rates. Post bioPPPs application, high expression levels of several olive plant defense genes were observed. This study provides insights into commercial bioPPPs' effectiveness in controlling olive anthracnose, as well as biocontrol-agents-mediated modulation of olive defense mechanisms.
Collapse
Affiliation(s)
| | | | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.V.); (A.G.P.)
| |
Collapse
|
9
|
Dvorianinova EM, Sigova EA, Mollaev TD, Rozhmina TA, Kudryavtseva LP, Novakovskiy RO, Turba AA, Zhernova DA, Borkhert EV, Pushkova EN, Melnikova NV, Dmitriev AA. Comparative Genomic Analysis of Colletotrichum lini Strains with Different Virulence on Flax. J Fungi (Basel) 2023; 10:32. [PMID: 38248942 PMCID: PMC10817032 DOI: 10.3390/jof10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains, leading to significant yield losses. However, there were no attempts to investigate the molecular mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low (#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp). Several assembly strategies were tested. The final assemblies were obtained using the Canu-Racon ×2-Medaka-Polca scheme. The assembled genomes had a size of 54.0-55.3 Mb, 26-32 contigs, N50 values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins were selected using SignalP, and candidate effectors were predicted among them using EffectorP. The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in each strain. The assembled genomes and the conducted comparative analysis extend the knowledge of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of its pathogenicity.
Collapse
Affiliation(s)
- Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Timur D. Mollaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia; (T.A.R.); (L.P.K.)
| | | | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| |
Collapse
|
10
|
Passão C, Almeida-Aguiar C, Cunha A. Modelling the In Vitro Growth of Phytopathogenic Filamentous Fungi and Oomycetes: The Gompertz Parameters as Robust Indicators of Propolis Antifungal Action. J Fungi (Basel) 2023; 9:1161. [PMID: 38132762 PMCID: PMC10744596 DOI: 10.3390/jof9121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Propolis is a resinous mixture produced by honeybees, mainly from plant exudates. With a rich chemical composition including many phenolic compounds, mostly responsible for its biological properties, namely antimicrobial ones, propolis may be a promising alternative to synthetic pesticides. The study of propolis from the south of Portugal and of its potential against phytopathogenic agents are still very recent and different methodological approaches hinder a comparison of efficacies. In this context, we aimed to test the value of a mathematical model for the multiparametric characterization of propolis' antifungal action on solid medium assays. An ethanol extract (EE) of a propolis sample harvested in 2016 from Alves (A16) was characterized in terms of phenolic composition and antimicrobial potential against five phytopathogenic species. A16.EE (500-2000 µg/mL) inhibited the mycelial growth of all the species, with Phytophthora cinnamomi and Biscogniauxia mediterranea being the most susceptible and Colletotrichum acutatum being the least affected. The Gompertz mathematical model proved to be a suitable tool for quantitatively describing the growth profiles of fungi and oomycetes, and its parameters exhibit a high level of discrimination. Our results reveal that propolis extracts may have potential applications beyond traditional uses, particularly within the agri-food sector, allowing beekeepers to make their businesses more profitable and diversified.
Collapse
Affiliation(s)
- Catarina Passão
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Cristina Almeida-Aguiar
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Theologidis I, Karamitros T, Vichou AE, Kizis D. Nanopore-Sequencing Metabarcoding for Identification of Phytopathogenic and Endophytic Fungi in Olive ( Olea europaea) Twigs. J Fungi (Basel) 2023; 9:1119. [PMID: 37998924 PMCID: PMC10672464 DOI: 10.3390/jof9111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Metabarcoding approaches for the identification of plant disease pathogens and characterization of plant microbial populations constitute a rapidly evolving research field. Fungal plant diseases are of major phytopathological concern; thus, the development of metabarcoding approaches for the detection of phytopathogenic fungi is becoming increasingly imperative in the context of plant disease prognosis. We developed a multiplex metabarcoding method for the identification of fungal phytopathogens and endophytes in olive young shoots, using the MinION sequencing platform (Oxford Nanopore Technologies). Selected fungal-specific primers were used to amplify three different genomic DNA loci (ITS, beta-tubulin, and 28S LSU) originating from olive twigs. A multiplex metabarcoding approach was initially evaluated using healthy olive twigs, and further assessed with naturally infected olive twig samples. Bioinformatic analysis of basecalled reads was carried out using MinKNOW, BLAST+ and R programming, and results were also evaluated using the BugSeq cloud platform. Data analysis highlighted the approaches based on ITS and their combination with beta-tubulin as the most informative ones according to diversity estimations. Subsequent implementation of the method on symptomatic samples identified major olive pathogens and endophytes including genera such as Cladosporium, Didymosphaeria, Paraconiothyrium, Penicillium, Phoma, Verticillium, and others.
Collapse
Affiliation(s)
- Ioannis Theologidis
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control & Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Attica, Greece
| | - Aikaterini-Eleni Vichou
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Dimosthenis Kizis
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| |
Collapse
|
12
|
Dofuor AK, Quartey NKA, Osabutey AF, Antwi-Agyakwa AK, Asante K, Boateng BO, Ablormeti FK, Lutuf H, Osei-Owusu J, Osei JHN, Ekloh W, Loh SK, Honger JO, Aidoo OF, Ninsin KD. Mango anthracnose disease: the current situation and direction for future research. Front Microbiol 2023; 14:1168203. [PMID: 37692388 PMCID: PMC10484599 DOI: 10.3389/fmicb.2023.1168203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Mango anthracnose disease (MAD) is a destructive disease of mangoes, with estimated yield losses of up to 100% in unmanaged plantations. Several strains that constitute Colletotrichum complexes are implicated in MAD worldwide. All mangoes grown for commercial purposes are susceptible, and a resistant cultivar for all strains is not presently available on the market. The infection can widely spread before being detected since the disease is invincible until after a protracted latent period. The detection of multiple strains of the pathogen in Mexico, Brazil, and China has prompted a significant increase in research on the disease. Synthetic pesticide application is the primary management technique used to manage the disease. However, newly observed declines in anthracnose susceptibility to many fungicides highlight the need for more environmentally friendly approaches. Recent progress in understanding the host range, molecular and phenotypic characterization, and susceptibility of the disease in several mango cultivars is discussed in this review. It provides updates on the mode of transmission, infection biology and contemporary management strategies. We suggest an integrated and ecologically sound approach to managing MAD.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Kwasi Asante
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Fred Kormla Ablormeti
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Joseph Okani Honger
- Soil and Irrigation Research Centre, College of Basic and Applied Sciences, School of Agriculture, University of Ghana, Accra, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
13
|
Riolo M, Luz C, Santilli E, Meca G, Cacciola SO. Secondary metabolites produced by four Colletotrichum species in vitro and on fruits of diverse olive cultivars. Fungal Biol 2023; 127:1118-1128. [PMID: 37495302 DOI: 10.1016/j.funbio.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
This study was aimed to characterize the secondary metabolites produced by four Colletotrichum species, C. acutatum, C. gloeosporioides, C. godetiae and C. karsti, both in vitro, on potato dextrose agar (PDA) and oatmeal agar (OA), and during the infection process of fruits of four olive cultivars differing in susceptibility to anthracnose, 'Coratina' and 'Ottobratica', both susceptible, 'Frantoio' and 'Leccino', both resistant. The metabolites were extracted from axenic cultures after seven days incubation and from olives inoculated singularly with each Colletotrichum species, at three different times, 1, 3 and 7 days post inoculation (dpi). They were identified using the UHPLC-QTOF-MS analysis method. In total, as many as 45 diverse metabolites were identified. Only 10 metabolites were present in both fruits and axenic cultures while 19 were found exclusively on olives and 16 exclusively in axenic cultures. The identified metabolites comprised fatty acid, phenolics, pyrones, sterols, terpenes and miscellaneous compounds. Each Colletotrichum species produced a different spectrum of metabolites depending on the type of matrices. On artificially inoculated olives the severity of symptoms, the amount of fungal secondary metabolites and their number peaked 7 dpi irrespective of the cultivar susceptibility and the virulence of the Colletotrichum species.
Collapse
Affiliation(s)
- Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy; Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89122, Reggio Calabria, Italy; Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus crops (CREA- OFA), 87036, Rende, Cosenza, Italy.
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Elena Santilli
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus crops (CREA- OFA), 87036, Rende, Cosenza, Italy.
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
14
|
Nawaz HH, Manzoor A, Iqbal MZ, Ansar MR, Ali M, Muhammad Kakar K, Ali Awan A, Weiguo M. Colletotrichum acutatum: Causal Agent of Olive Anthracnose Isolation, Characterization, and Fungicide Susceptibility Screening in Punjab, Pakistan. PLANT DISEASE 2023:PDIS09222260RE. [PMID: 36222728 DOI: 10.1094/pdis-09-22-2260-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Anthracnose of olive fruit caused by Colletotrichum acutatum was a severe epidemic disease in Pakistan that occurred in September 2020. The estimated disease incident was recorded as 59%. Anthracnose causes a significant reduction in yield and quality traits. Anthracnose has been found in several orchards. Agricultural practices, environmental factors, and disease aggressiveness vary between orchards. Therefore, we looked at spore size, cultural traits, morphological variation, growth pattern, and pathogenicity of different strains of C. acutatum from various orchards. Molecular and phylogenetic analysis confirmed the isolated strains as C. acutatum. In all, 15 C. acutatum isolates from olive orchards were tested for susceptibility to four commercial fungicides (P < 0.001). The examined isolates' in vitro fungicide sensitivity varied with fungicide concentration. The concentration at which conidial germination was hindered by 50% compared with the control values was observed for difenoconazole, tebuconazole, carbendazim, and cyprodinil, ranging from 0.12 to 2.69 g ml-1. Based on the findings of the fungal growth inhibition studies, carbendazim has been found to be the only fungicide that effectively reduces (P < 0.001) anthracnose caused by C. acutatum strains. Additionally, results revealed that preharvest site treatments of different fungicides greatly decreased anthracnose infections on olive fruit (70 to 90%), and postharvest site applications significantly reduced disease prevalence and severity (75 to 95%). The fungicide carbendazim significantly decreased pre- and postharvest anthracnose infection on olive cultivars. This study suggests that the latter compound might be used to control olive anthracnose in Pakistan while lowering environmental impact and fungicide resistance.
Collapse
Affiliation(s)
- Hafiz Husnain Nawaz
- Center of Excellence for Olive Research and Training, Barani Agricultural Research Institute, Chakwal, Punjab Province 48800, Pakistan
| | - Ayesha Manzoor
- Center of Excellence for Olive Research and Training, Barani Agricultural Research Institute, Chakwal, Punjab Province 48800, Pakistan
| | - Muhamad Zaffar Iqbal
- Center of Excellence for Olive Research and Training, Barani Agricultural Research Institute, Chakwal, Punjab Province 48800, Pakistan
| | - Muhammad Ramzan Ansar
- Center of Excellence for Olive Research and Training, Barani Agricultural Research Institute, Chakwal, Punjab Province 48800, Pakistan
| | - Muhammad Ali
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | | | - Azmat Ali Awan
- Pakistan Oil Seed Department, Government of Pakistan, Chakwal, Pakistan
| | - Miao Weiguo
- School of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| |
Collapse
|
15
|
Garcia-Lopez MT, Serrano MS, Camiletti BX, Gordon A, Estudillo C, Trapero A, Diez CM, Moral J. Study of the competition between Colletotrichum godetiae and C. nymphaeae, two pathogenic species in olive. Sci Rep 2023; 13:5344. [PMID: 37005485 PMCID: PMC10067957 DOI: 10.1038/s41598-023-32585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Olive anthracnose, a critical olive fruit disease that adversely impacts oil quality, is caused by Colletotrichum species. A dominant Colletotrichum species and several secondary species have been identified in each olive-growing region. This study surveys the interspecific competition between C. godetiae, dominant in Spain, and C. nymphaeae, prevalent in Portugal, to shed light on the cause of this disparity. When Petri-dishes of Potato Dextrose Agar (PDA) and diluted PDA were co-inoculated with spore mixes produced by both species, C. godetiae displaced C. nymphaeae, even if the percentage of spores in the initial spore mix inoculation was just 5 and 95%, respectively. The C. godetiae and C. nymphaeae species showed similar fruit virulence in separate inoculations in both cultivars, the Portuguese cv. Galega Vulgar and the Spanish cv. Hojiblanca, and no cultivar specialization was observed. However, when olive fruits were co-inoculated, the C. godetiae species showed a higher competitive ability and partially displaced the C. nymphaeae species. Furthermore, both Colletotrichum species showed a similar leaf survival rate. Lastly, C. godetiae was more resistant to metallic copper than C. nymphaeae. The work developed here allows a deeper understanding of the competition between C. godetiae and C. nymphaeae, which could lead to developing strategies for more efficient disease risk assessment.
Collapse
Affiliation(s)
- M Teresa Garcia-Lopez
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain
- Department of Plant Pathology, University of California-Davis, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - M Socorro Serrano
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain
| | - Boris X Camiletti
- Department of Plant Pathology, University of California-Davis, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Ana Gordon
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain
| | - Cristina Estudillo
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain
| | - Antonio Trapero
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain
| | - Concepcion M Diez
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain
| | - Juan Moral
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Cordoba, Edif. C4, Campus de Rabanales, 14071, Cordoba, Spain.
| |
Collapse
|
16
|
Abacıgil TÖ, Kıralan M, Ramadan MF. Quality parameters of olive oils at different ripening periods as affected by olive fruit fly infestation and olive anthracnose. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-023-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
La Spada F, Cock PJA, Randall E, Pane A, Cooke DEL, Cacciola SO. DNA Metabarcoding and Isolation by Baiting Complement Each Other in Revealing Phytophthora Diversity in Anthropized and Natural Ecosystems. J Fungi (Basel) 2022; 8:jof8040330. [PMID: 35448560 PMCID: PMC9028584 DOI: 10.3390/jof8040330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023] Open
Abstract
Isolation techniques supplemented by sequencing of DNA from axenic cultures have provided a robust methodology for the study of Phytophthora communities in agricultural and natural ecosystems. Recently, metabarcoding approaches have emerged as new paradigms for the detection of Phytophthora species in environmental samples. In this study, Illumina DNA metabarcoding and a conventional leaf baiting isolation technique were compared to unravel the variability of Phytophthora communities in different environments. Overall, 39 rhizosphere soil samples from a natural, a semi-natural and a horticultural small-scale ecosystem, respectively, were processed by both baiting and metabarcoding. Using both detection techniques, 28 out of 39 samples tested positive for Phytophthora. Overall, 1,406,613 Phytophthora internal transcribed spacer 1 (ITS1) sequences and 155 Phytophthora isolates were obtained, which grouped into 21 taxa, five retrieved exclusively by baiting (P. bilorbang; P. cryptogea; P. gonapodyides; P. parvispora and P. pseudocryptogea), 12 exclusively by metabarcoding (P. asparagi; P. occultans; P. psycrophila; P. syringae; P. aleatoria/P. cactorum; P. castanetorum/P. quercina; P. iranica-like; P. unknown sp. 1; P. unknown sp. 2; P. unknown sp. 3; P. unknown sp. 4; P. unknown sp. 5) and four with both techniques (P. citrophthora, P. multivora, P. nicotianae and P. plurivora). Both techniques complemented each other in describing the variability of Phytophthora communities from natural and managed ecosystems and revealing the presence of rare or undescribed Phytophthora taxa.
Collapse
Affiliation(s)
- Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (A.P.)
| | - Peter J. A. Cock
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (P.J.A.C.); (E.R.)
| | - Eva Randall
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (P.J.A.C.); (E.R.)
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (A.P.)
| | - David E. L. Cooke
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (P.J.A.C.); (E.R.)
- Correspondence: (D.E.L.C.); (S.O.C.); Tel.: +39-095-7147371 (S.O.C.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (A.P.)
- Correspondence: (D.E.L.C.); (S.O.C.); Tel.: +39-095-7147371 (S.O.C.)
| |
Collapse
|
18
|
Markakis EA, Roditakis EN, Kalantzakis GS, Chatzaki A, Soultatos SK, Stavrakaki M, Tavlaki GI, Koubouris GC, Bagkis N, Goumas DE. Characterization of Fungi Associated with Olive Fruit Rot and Olive Oil Degradation in Crete, Southern Greece. PLANT DISEASE 2021; 105:3623-3635. [PMID: 34003032 DOI: 10.1094/pdis-10-20-2227-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In November 2019, a severe outbreak of fruit rot was observed in olive orchards in Crete, southern Greece. Symptoms appeared primarily on fruits and stalks, resembling those caused by anthracnose. Typical symptoms were fruit rot, shrinkage, and mummification, associated commonly with stalk discoloration and fruit drop. Disease incidence was estimated at up to 100% in some cases, and an unprecedented increase in olive oil acidity reaching up to 8% (percentage of oleic acid) in severely affected olive groves was recorded. Thirty-two olive groves were then surveyed, and samples of fruit, stalk, leaf, and shoot were collected. Visual, stereoscopic, and microscopic observations revealed several fungi belonging to the genera Alternaria, Botryosphaeria, Capnodium, Colletotrichum, Fusarium, and Pseudocercospora. Fungal infection in fruits was commonly associated with concomitant infestation by the olive fruit fly Bactrocera oleae along with increased air temperature and relative humidity conditions that prevailed in October and November 2019. Twenty representative fungal strains isolated from symptomatic fruits and stalks were characterized by morphological, physiological, and molecular analyses. By internal transcribed spacer regions of ribosomal DNA region and translation elongation factor 1-α gene sequencing analysis, these isolates were identified as Alternaria spp., A. infectoria, Botryosphaeria dothidea, Colletotrichum boninense sensu lato, Fusarium lateritium, F. solani species complex and Stemphylium amaranthi. Pathogenicity tests on punctured fruits revealed that all isolates were pathogenic; however, F. solani isolates along with B. dothidea were the most virulent, and wounds were necessary for efficient fungal infection. Moreover, as few as 10 spores of F. solani were sufficient to cause significant infection in punctured fruits. F. solani was also capable of infecting olive fruits in the presence of B. oleae, with no additional wounding, in artificial inoculation experiments. Moreover, it was capable of colonizing and affecting olive blossoms. Further analyses of olive oil extracted from fruits artificially inoculated with F. solani indicated a significant increase in oil acidity, K232, K270, and peroxide value, whereas total phenol content was significantly decreased. To the best of our knowledge, this is the first report of F. solani associated with olive fruit rot and olive oil degradation worldwide.
Collapse
Affiliation(s)
- Emmanouil A Markakis
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Emmanouil N Roditakis
- Laboratory of Entomology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Georgios S Kalantzakis
- Laboratory of Food Technology, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Agrokipio 73100, Chania, Crete, Greece
| | - Anastasia Chatzaki
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Stefanos K Soultatos
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Marianna Stavrakaki
- Laboratory of Entomology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Georgia I Tavlaki
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Georgios C Koubouris
- Laboratory of Olive Cultivation, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Agrokipio 73100, Chania, Crete, Greece
| | - Nikolaos Bagkis
- Regional Center for Plant Protection and Quality Control of Heraklion, Ministry of Rural Development and Food, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Dimitrios E Goumas
- Laboratory of Plant Pathology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos 71004, Heraklion, Crete, Greece
| |
Collapse
|
19
|
Colletotrichum species and complexes: geographic distribution, host range and conservation status. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00491-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Moral J, Agustí-Brisach C, Raya MC, Jurado-Bello J, López-Moral A, Roca LF, Chattaoui M, Rhouma A, Nigro F, Sergeeva V, Trapero A. Diversity of Colletotrichum Species Associated with Olive Anthracnose Worldwide. J Fungi (Basel) 2021; 7:741. [PMID: 34575779 PMCID: PMC8466006 DOI: 10.3390/jof7090741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Olive anthracnose caused by Colletotrichum species causes dramatic losses of fruit yield and oil quality worldwide. A total of 185 Colletotrichum isolates obtained from olives and other hosts showing anthracnose symptoms in Spain and other olive-growing countries over the world were characterized. Colony and conidial morphology, benomyl-sensitive, and casein-hydrolysis activity were recorded. Multilocus alignments of ITS, TUB2, ACT, CHS-1, HIS3, and/or GAPDH were conducted for their molecular identification. The pathogenicity of the most representative Colletotrichum species was tested to olive fruits and to other hosts, such as almonds, apples, oleander, sweet oranges, and strawberries. In general, the phenotypic characters recorded were not useful to identify all species, although they allowed the separation of some species or species complexes. ITS and TUB2 were enough to infer Colletotrichum species within C. acutatum and C. boninense complexes, whereas ITS, TUB2, ACT, CHS-1, HIS-3, and GADPH regions were necessary to discriminate within the C. gloesporioides complex. Twelve Colletotrichum species belonging to C. acutatum, C. boninense, and C. gloeosporioides complexes were identified, with C. godetiae being dominant in Spain, Italy, Greece, and Tunisia, C. nymphaeae in Portugal, and C. fioriniae in California. The highest diversity with eight Colletotrichum spp. was found in Australia. Significant differences in virulence to olives were observed between isolates depending on the Colletotrichum species and host origin. When other hosts were inoculated, most of the Colletotrichum isolates tested were pathogenic in all the hosts evaluated, except for C. siamense to apple and sweet orange fruits, and C. godetiae to oleander leaves.
Collapse
Affiliation(s)
- Juan Moral
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| | - Maria Carmen Raya
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| | - José Jurado-Bello
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| | - Ana López-Moral
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| | - Luis F. Roca
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| | - Mayssa Chattaoui
- Laboratory of Improvement and Protection of Olive Genetic Resources, Olive Tree Institute, BP 208 Cité Mahrajene, Tunis 1082, Tunisia; (M.C.); (A.R.)
| | - Ali Rhouma
- Laboratory of Improvement and Protection of Olive Genetic Resources, Olive Tree Institute, BP 208 Cité Mahrajene, Tunis 1082, Tunisia; (M.C.); (A.R.)
| | - Franco Nigro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Vera Sergeeva
- School of Science and Health, Western Sydney University, Penrith 2747, Australia;
| | - Antonio Trapero
- Departamento de Agronomía (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (C.A.-B.); (M.C.R.); (J.J.-B.); (A.L.-M.); (L.F.R.)
| |
Collapse
|
21
|
Ntasiou P, Kaldeli Kerou A, Karamanidou T, Vlachou A, Tziros GT, Tsouknidas A, Karaoglanidis GS. Synthesis and Characterization of Novel Copper Nanoparticles for the Control of Leaf Spot and Anthracnose Diseases of Olive. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1667. [PMID: 34202883 PMCID: PMC8307062 DOI: 10.3390/nano11071667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/31/2023]
Abstract
Olive crop is frequently treated with copper fungicides to combat foliar and fruit diseases such as olive leaf spot caused by Fusicladium oleagineum and anthracnose caused by Colletotrichum spp. The replacement of copper-based products with more eco-friendly alternatives is a priority. Metal nanoparticles synthesized in several ways have recently revolutionized crop protection with applications against important crop pathogens. In this study, we present the development of four copper-based nanoparticles (CuNP Type 1 to 4) synthesized with a wet chemistry approach. The CuNPs were characterized using Transmission Electron Microscopy, Dynamic Light Scattering, Laser Doppler Electrophoresis, and Attenuated Total Reflection measurements. In addition, the activity of the four CuNP types was tested in vitro and in planta against F. oleagineum and Colletotrichum spp. In vitro sensitivity measurements showed that for both pathogens, mycelial growth was the most susceptible developmental stage to the tested compounds. Against both pathogens, CuNP Type 1 and Type 2 were found to be more active in reducing mycelial growth compared to the reference commercial compounds of copper oxide and copper hydroxide. In planta experiments showed that CuNP Type 3 and CuNP Type 4 exhibited a strong protectant activity against both F. oleagineum and Colletotrichum acutatum with control efficacy values significantly higher than those achieved by the applications of either reference product.
Collapse
Affiliation(s)
- Panagiota Ntasiou
- Laboratory of Plant Pathology, Faculty of Agriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece; (P.N.); (G.T.T.)
| | - Alexandra Kaldeli Kerou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
| | - Theodora Karamanidou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
| | - Afrodite Vlachou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
| | - George T. Tziros
- Laboratory of Plant Pathology, Faculty of Agriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece; (P.N.); (G.T.T.)
| | - Alexander Tsouknidas
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, 50132 Kozani, Greece
| | - George S. Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece; (P.N.); (G.T.T.)
| |
Collapse
|
22
|
Endophytic fungal community structure in olive orchards with high and low incidence of olive anthracnose. Sci Rep 2021; 11:689. [PMID: 33436767 PMCID: PMC7804420 DOI: 10.1038/s41598-020-79962-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Fungal endophytes have been increasingly recognized to promote host plant protection to pathogens, but knowledge of the multiple effects that they could have in crop diseases is still scarce. This work attempts to understand the role of fungal endophytes in crop diseases, specifically in reducing disease development and interfering on lifestyle transition of the pathogen. To accomplish this, the endophytic fungal community of reproductive organs of olive tree from two orchards showing different levels of anthracnose incidence, a major disease of olive fruits, was characterized and compared between them. The two orchards showed distinct endophytic communities, differing in species richness, abundance and composition, with highest isolation rates and richness of endophytes in the orchard with low anthracnose incidence. These differences among orchards were greater on fruits than on flowers, suggesting that these changes in endophytic fungal composition may influence the lifestyle shifts in pathogen (from latent to pathogen). A number of fungal taxa were found to be positively associated to one of the two orchards. The fungal endophytes best correlated with high incidence of anthracnose are pathogens, while endophytes-associated to low anthracnose incidence are described to protect plants. Altogether, the results suggest varying pathogen-endophyte interactions among the two orchards.
Collapse
|
23
|
Chitinase Gene Positively Regulates Hypersensitive and Defense Responses of Pepper to Colletotrichum acutatum Infection. Int J Mol Sci 2020; 21:ijms21186624. [PMID: 32927746 PMCID: PMC7555800 DOI: 10.3390/ijms21186624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Anthracnose caused by Colletotrichum acutatum is one of the most devastating fungal diseases of pepper (Capsicum annuum L.). The utilization of chitin-binding proteins or chitinase genes is the best option to control this disease. A chitin-binding domain (CBD) has been shown to be crucial for the innate immunity of plants and activates the hypersensitive response (HR). The CaChiIII7 chitinase gene has been identified and isolated from pepper plants. CaChiIII7 has repeated CBDs that encode a chitinase enzyme that is transcriptionally stimulated by C. acutatum infection. The knockdown of CaChiIII7 in pepper plants confers increased hypersensitivity to C. acutatum, resulting in its proliferation in infected leaves and an attenuation of the defense response genes CaPR1, CaPR5, and SAR8.2 in the CaChiIII7-silenced pepper plants. Additionally, H2O2 accumulation, conductivity, proline biosynthesis, and root activity were distinctly reduced in CaChiIII7-silenced plants. Subcellular localization analyses indicated that the CaChiIII7 protein is located in the plasma membrane and cytoplasm of plant cells. The transient expression of CaChiIII7 increases the basal resistance to C. acutatum by significantly expressing several defense response genes and the HR in pepper leaves, accompanied by an induction of H2O2 biosynthesis. These findings demonstrate that CaChiIII7 plays a prominent role in plant defense in response to pathogen infection.
Collapse
|
24
|
López-Moral A, Agustí-Brisach C, Lovera M, Arquero O, Trapero A. Almond Anthracnose: Current Knowledge and Future Perspectives. PLANTS 2020; 9:plants9080945. [PMID: 32726936 PMCID: PMC7463757 DOI: 10.3390/plants9080945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
Almond anthracnose caused by Colletotrichum spp. has been described as one of the most important diseases of this nut crop in the main almond-growing regions worldwide, including California, Australia and Spain. Currently, almond anthracnose is considered a re-emerging disease in the countries across the Mediterranean Basin due to the shift of plantations from the original crop areas to others with climatic, edaphic and orographic conditions favoring crop growing and yield. The pathogen mainly affects fruit at the youngest maturity stages, causing depressed, round and orange or brown lesions with abundant gum. The affected fruits can fall prematurely and lead to the drying of branches, causing significant economic losses in years of epidemics. This review aims to compile the current knowledge on the etiology, epidemiology and management of this disease.
Collapse
Affiliation(s)
- Ana López-Moral
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (A.L.-M.); (C.A.-B.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (A.L.-M.); (C.A.-B.)
| | - María Lovera
- Departamento de Fruticultura Mediterránea, IFAPA, Alameda del obispo, 14004 Córdoba, Spain; (M.L.); (O.A.)
| | - Octavio Arquero
- Departamento de Fruticultura Mediterránea, IFAPA, Alameda del obispo, 14004 Córdoba, Spain; (M.L.); (O.A.)
| | - Antonio Trapero
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (A.L.-M.); (C.A.-B.)
- Correspondence: ; Tel.: +34-957-218-529
| |
Collapse
|
25
|
Santilli E, Riolo M, La Spada F, Pane A, Cacciola SO. First Report of Root Rot Caused by Phytophthora bilorbang on Olea europaea in Italy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E826. [PMID: 32630077 PMCID: PMC7411771 DOI: 10.3390/plants9070826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
Leaf chlorosis, severe defoliation and wilt associated with root rot were observed on mature olive trees cv. Nera di Gonnos in an experimental orchard at Mirto Crosia (Calabria, southern Italy). An oomycete was consistently isolated from rotten roots of symptomatic olive trees. It was identified as Phytophthora bilorbang by morphological characters and sequencing of Internal Transcribed Spacer (ITS) regions of ribosomal DNA (rDNA). Pathogenicity was verified by inoculating potted two-month-old rooted cuttings of Olea europaea var. Nera di Gonnos in a soil infestation trial. P. bilorbang was re-isolated from roots of symptomatic, artificially inoculated olive cuttings to fulfill Koch's postulates. This is the first report of P. bilorbang on O. europaea L. and on a species of the Oleaceae family worldwide.
Collapse
Affiliation(s)
- Elena Santilli
- Council for Agricultural Research and Agricultural Economy Analysis, Research Centre for Olive, Citrus and Tree Fruit-Rende CS (CREA-OFA), 87036 Rende, Italy
| | - Mario Riolo
- Council for Agricultural Research and Agricultural Economy Analysis, Research Centre for Olive, Citrus and Tree Fruit-Rende CS (CREA-OFA), 87036 Rende, Italy
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|
26
|
Kolainis S, Koletti A, Lykogianni M, Karamanou D, Gkizi D, Tjamos SE, Paraskeuopoulos A, Aliferis KA. An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLoS One 2020; 15:e0233916. [PMID: 32470037 PMCID: PMC7259717 DOI: 10.1371/journal.pone.0233916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The olive tree (Olea europaea L.) is the most important oil-producing crop of the Mediterranean basin. However, although plant protection measures are regularly applied, disease outbreaks represent an obstacle towards the further development of the sector. Therefore, there is an urge for the improvement of plant protection strategies based on information acquired by the implementation of advanced methodologies. Recently, heavy fungal infections of olive fruits have been recorded in major olive-producing areas of Greece causing devastating yield losses. Thus, initially, we have undertaken the task to identify their causal agent(s) and assess their pathogenicity and sensitivity to fungicides. The disease was identified as the olive anthracnose, and although Colletotrichum gloeosporioides and Colletotrichum acutatum species complexes are the two major causes, the obtained results confirmed that in Southern Greece the latter is the main causal agent. The obtained isolates were grouped into eight morphotypes based on their phenotypes, which differ in their sensitivities to fungicides and pathogenicity. The triazoles difenoconazole and tebuconazole were more toxic than the strobilurins being tested. Furthermore, a GC/EI/MS metabolomics model was developed for the robust chemotaxonomy of the isolates and the dissection of differences between their endo-metabolomes, which could explain the obtained phenotypes. The corresponding metabolites-biomarkers for the discrimination between morphotypes were discovered, with the most important ones being the amino acids L-tyrosine, L-phenylalanine, and L-proline, the disaccharide α,α-trehalose, and the phytotoxic pathogenesis-related metabolite hydroxyphenylacetate. These metabolites play important roles in fungal metabolism, pathogenesis, and stress responses. The study adds critical information that could be further exploited to combat olive anthracnose through its monitoring and the design of improved, customized plant protection strategies. Also, results suggest the necessity for the comprehensive mapping of the C. acutatum species complex morphotypes in order to avoid issues such as the development of fungicide-resistant genotypes.
Collapse
Affiliation(s)
- Stefanos Kolainis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Anastasia Koletti
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Maira Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Kifissia, Greece
| | - Dimitra Karamanou
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Danai Gkizi
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | - Antonios Paraskeuopoulos
- Directorate of Rural Economy and Veterinary of Trifilia, Prefecture of Peloponnese, Kyparissia, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Department of Plant Science, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
27
|
Cacciola SO, Gilardi G, Faedda R, Schena L, Pane A, Garibaldi A, Gullino ML. Characterization of Colletotrichum ocimi Population Associated with Black Spot of Sweet Basil ( Ocimum basilicum) in Northern Italy. PLANTS 2020; 9:plants9050654. [PMID: 32455920 PMCID: PMC7285085 DOI: 10.3390/plants9050654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
Black spot is a major foliar disease of sweet basil (Ocimum basilicum) present in a typical cultivation area of northern Italy, including the Liguria and southern Piedmont regions, where this aromatic herb is an economically important crop. In this study, 15 Colletotrichum isolates obtained from sweet basil plants with symptoms of black spot sampled in this area were characterized morphologically and by nuclear DNA analysis using internal transcribed spacers (ITS) and intervening 5.8S nrDNA as well as part of the β-tubulin gene (TUB2) regions as barcode markers. Analysis revealed all but one isolate belonged to the recently described species C. ocimi of the C. destructivum species complex. Only one isolate was identified as C. destructivum sensu stricto (s.s.). In pathogenicity tests on sweet basil, both C. ocimi and C. destructivum s.s. isolates incited typical symptoms of black spot, showing that although C. ocimi prevails in this basil production area, it is not the sole causal agent of black spot in northern Italy. While no other hosts of C. ocimi are known worldwide, the close related species C. destructivum has a broad host range, suggesting a speciation process of C. ocimi within this species complex driven by adaptation to the host.
Collapse
Affiliation(s)
- Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (R.F.); (A.P.)
- Correspondence:
| | - Giovanna Gilardi
- Agroinnova—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, 10095 Turin, Italy; (G.G.); (A.G.); (M.L.G.)
| | - Roberto Faedda
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (R.F.); (A.P.)
| | - Leonardo Schena
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (R.F.); (A.P.)
| | - Angelo Garibaldi
- Agroinnova—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, 10095 Turin, Italy; (G.G.); (A.G.); (M.L.G.)
| | - Maria Lodovica Gullino
- Agroinnova—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, 10095 Turin, Italy; (G.G.); (A.G.); (M.L.G.)
| |
Collapse
|
28
|
Azevedo-Nogueira F, Gomes S, Carvalho T, Martins-Lopes P. Development of high-throughput real-time PCR assays for the Colletotrichum acutatum detection on infected olive fruits and olive oils. Food Chem 2020; 317:126417. [PMID: 32088403 DOI: 10.1016/j.foodchem.2020.126417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/21/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
The detection of latent Colletotrichum spp infection in olive drupes is crucial, to avoid contamination in the olive oil production chain. In order to detect the presence of C. acutatum in complex olive matrices a real-time PCR assay was developed, using olive drupe and oil samples from C. acutatum susceptible and tolerant olive cultivars (Galega Vulgar, Cobrançosa and Picual) with different infection levels. A C. acutatum specific sequence, belonging to the Internal Transcribed Spacers region, was used to design the real-time PCR detection assay, resulting in an 490 bp amplicon with a consistent melting temperature (Tm = 87.8 °C). The assay allowed a rapid and high-sensitive C. acutatum detection mean, being able to detect the infection in a latent phase, for the first time, in olive drupes, 16 hai, and in olive oils containing 20% of infected olives. This novel method can be used to monitor C. acutatum presence in olive orchards.
Collapse
Affiliation(s)
- Filipe Azevedo-Nogueira
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal; University of Trás-os-Montes and Alto Douro, School of Life Science and Environment, Department of Genetics and Biotechnology, Vila Real, Portugal
| | - Sónia Gomes
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal; University of Trás-os-Montes and Alto Douro, School of Life Science and Environment, Department of Genetics and Biotechnology, Vila Real, Portugal.
| | - Teresa Carvalho
- National Institute for Agricultural and Veterinary Research (INIAV), P.O. Box 6, 7350-951 Elvas, Portugal.
| | - Paula Martins-Lopes
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal; University of Trás-os-Montes and Alto Douro, School of Life Science and Environment, Department of Genetics and Biotechnology, Vila Real, Portugal.
| |
Collapse
|
29
|
López-Moral A, Agustí-Brisach C, Lovera M, Luque F, Roca LF, Arquero O, Trapero A. Effects of Cultivar Susceptibility, Fruit Maturity, Leaf Age, Fungal Isolate, and Temperature on Infection of Almond by Colletotrichum spp. PLANT DISEASE 2019; 103:2425-2432. [PMID: 31306088 DOI: 10.1094/pdis-12-18-2281-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Almond anthracnose, caused by Colletotrichum spp., is a reemerging disease in Spain. To date, little research has been conducted on the factors affecting this disease development. In this study, the effects of cultivar, fruit wounding and maturity, leaf age, fungal isolate, and temperature on almond infection by Colletrotrichum spp. were evaluated under laboratory-controlled conditions. Inoculations were performed using conidial suspensions of Colletrotrichum acutatum or C. godetiae. Disease severity was higher in wounded than in unwounded fruit. Based on observations of inoculated fruit, Ferraduel and Nonpareil were the most tolerant cultivars, while Tarraco and Penta were the most susceptible cultivars. Four categories of susceptibility (highly susceptible, susceptible, moderately susceptible, and resistant) were distinguished by using the cluster analysis statistical approach. Differences in susceptibility between young and old leaves were observed, but Nonpareil was consistently the most tolerant cultivar. Significant differences in virulence between C. acutatum and C. godetiae were observed in inoculated fruit, with C. acutatum being the most virulent. Disease development was more severe when inoculations were performed at the fruitlet stage or when the fruit were incubated at approximately 25°C, with respect to other maturity stages and temperatures evaluated. Natural fruit infections were also assessed. Cultivar susceptibility data were compared between laboratory tests and field observations. A significant positive linear correlation was obtained between the susceptibility of the common cultivars evaluated under the two conditions.
Collapse
Affiliation(s)
- Ana López-Moral
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - María Lovera
- Departamento de Fruticultura Mediterránea, IFAPA, Alameda del obispo, 14004 Córdoba, Spain
| | - Francisca Luque
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Luis F Roca
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| | - Octavio Arquero
- Departamento de Fruticultura Mediterránea, IFAPA, Alameda del obispo, 14004 Córdoba, Spain
| | - Antonio Trapero
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain
| |
Collapse
|
30
|
Materatski P, Varanda C, Carvalho T, Dias AB, Campos MD, Gomes L, Nobre T, Rei F, Félix MDR. Effect of Long-Term Fungicide Applications on Virulence and Diversity of Colletotrichum spp. Associated to Olive Anthracnose. PLANTS 2019; 8:plants8090311. [PMID: 31470646 PMCID: PMC6784085 DOI: 10.3390/plants8090311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
In this study, the presence and variability of Colletotrichum spp. was evaluated by comparing fungal isolates obtained from olive trees under long-time phytosanitary treatments with trees without any phytosanitary treatments (treated and untreated, respectively). Olive fruits of trees of the highly susceptible ‘Galega vulgar’ cultivar growing in the Alentejo region were used as samples. From the 210 olive trees sampled (half from treated and half from untreated orchards), 125 (59.5%) presented Colletotrichum spp., with a significant lower number of infected trees in treated (39) when compared to untreated orchards (86). The alignment and analysis of beta-tubulin (tub2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), chitin synthase (CHS-1) and histone H3 (HIS-3) gene sequences allowed the identification of all 125 isolates as belonging to the C. acutatum complex. The vast majority of the isolates (124) were identified as C. nymphaeae and one isolate, from an untreated tree, was identified as C. godetiae. Isolates were divided into five different groups: Group A: 39 isolates from treated trees matched in 100% with C. nymphaeae sequences from the database; Group B: 76 isolates from untreated trees matched in 100% with C. nymphaeae sequences from the database; Group C: one isolate from untreated trees presenting a single nucleotidic difference in the HIS-3 sequence; Group D: eight isolates from untreated trees presenting differences in two nucleotides in the tub2 sequences that changed the protein structure, together with differences in two specific nucleotides of the GAPDH sequences; Group E: one isolate, from untreated olive trees, matched 100% with C. godetiae sequences from the database in all genes. Considering the similarities of the sampled areas, our results show that the long-time application of fungicides may have caused a reduction in the number of olive trees infected with Colletotrichum spp. but an increase in the number of fruits positive to Colletotrichum spp. within each tree, which may suggest different degrees of virulence of Colletotrichum isolates from trees growing different management regimes. It is imperative that the fungicides described as causing resistance are applied at appropriate times and intervals, since their efficiency decreases when applied incorrectly and new and more virulent species may arise.
Collapse
Affiliation(s)
- Patrick Materatski
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Carla Varanda
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Teresa Carvalho
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I. P. Estrada de Gil Vaz, Apartado 6, 7351-901 Elvas, Portugal
| | - António Bento Dias
- Departamento de Engenharia Rural, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria Doroteia Campos
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Luis Gomes
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Tânia Nobre
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Fernando Rei
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|