1
|
Kang M, Nasrollahi A, Cheng F, Yao Y. Screening and Identification of Brain Pericyte-Selective Markers. CNS Neurosci Ther 2025; 31:e70247. [PMID: 39912338 PMCID: PMC11799917 DOI: 10.1111/cns.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Pericytes, a type of mural cells, exert important functions in the CNS. One major challenge in pericyte research is the lack of pericyte-specific and subpopulation-specific markers. METHODS To address this knowledge gap, we first generated a novel transgenic mouse line in which vascular smooth muscle cells (vSMCs) are permanently labeled with tdTomato. Next, we isolated PDGFRβ+tdTomato- pericytes and PDGFRβ+tdTomato+ vSMCs from the brains of these mice and subsequently performed RNAseq analysis to identify pericyte-enriched genes. RESULTS Using this approach, we successfully identified 40 pericyte-enriched genes and 158 vSMC-enriched genes, which are involved in different biological processes and molecular functions. Using ISH/IHC analysis, we found that Pla1a and Cox4i2 were predominantly enriched in subpopulations of brain pericytes, although they also marked some non-vascular parenchymal cells. CONCLUSIONS These findings suggest that Pla1a and Cox4i2 preferably label subpopulations of pericytes in the brain compared to vSMCs, and thus, they may be useful in distinguishing these populations.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Ava Nasrollahi
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Feng Cheng
- Department of Pharmaceutical Science, College of PharmacyUniversity of South FloridaTampaFloridaUSA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
2
|
Wang J, Zhang L, Wu G, Wu J, Zhou X, Chen X, Niu Y, Jiao Y, Liu Q, Liang P, Shi G, Wu X, Huang J. Correction of a CADASIL point mutation using adenine base editors in hiPSCs and blood vessel organoids. J Genet Genomics 2024; 51:197-207. [PMID: 37164272 DOI: 10.1016/j.jgg.2023.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic small vessel disease caused by mutations in the NOTCH3 gene. However, the pathogenesis of CADASIL remains unclear, and patients have limited treatment options. Here, we use human induced pluripotent stem cells (hiPSCs) generated from the peripheral blood mononuclear cells of a patient with CADASIL carrying a heterozygous NOTCH3 mutation (c.1261C>T, p.R421C) to develop a disease model. The correction efficiency of different adenine base editors (ABEs) is tested using the HEK293T-NOTCH3 reporter cell line. ABEmax is selected based on its higher efficiency and minimization of predicted off-target effects. Vascular smooth muscle cells (VSMCs) differentiated from CADASIL hiPSCs show NOTCH3 deposition and abnormal actin cytoskeleton structure, and the abnormalities are recovered in corrected hiPSC-derived VSMCs. Furthermore, CADASIL blood vessel organoids generated for in vivo modeling show altered expression of genes related to disease phenotypes, including the downregulation of cell adhesion, extracellular matrix organization, and vessel development. The dual adeno-associated virus (AAV) split-ABEmax system is applied to the genome editing of vascular organoids with an average editing efficiency of 8.82%. Collectively, we present potential genetic therapeutic strategies for patients with CADASIL using blood vessel organoids and the dual AAV split-ABEmax system.
Collapse
Affiliation(s)
- Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Zhang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China
| | - Guanglan Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jinni Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xinyao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qianyi Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
3
|
Mizuta I, Nakao-Azuma Y, Yoshida H, Yamaguchi M, Mizuno T. Progress to Clarify How NOTCH3 Mutations Lead to CADASIL, a Hereditary Cerebral Small Vessel Disease. Biomolecules 2024; 14:127. [PMID: 38254727 PMCID: PMC10813265 DOI: 10.3390/biom14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.
Collapse
Affiliation(s)
- Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| | - Yumiko Nakao-Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| |
Collapse
|
4
|
Sziraki A, Zhong Y, Neltner AM, Niedowicz D, Rogers CB, Wilcock DM, Nehra G, Neltner JH, Smith RR, Hartz AM, Cao J, Nelson PT. A high-throughput single-cell RNA expression profiling method identifies human pericyte markers. Neuropathol Appl Neurobiol 2023; 49:e12942. [PMID: 37812061 PMCID: PMC10842535 DOI: 10.1111/nan.12942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
AIMS We sought to identify and optimise a universally available histological marker for pericytes in the human brain. Such a marker could be a useful tool for researchers. Further, identifying a gene expressed relatively specifically in human pericytes could provide new insights into the biological functions of this fascinating cell type. METHODS We analysed single-cell RNA expression profiles derived from different human and mouse brain regions using a high-throughput and low-cost single-cell transcriptome sequencing method called EasySci. Through this analysis, we were able to identify specific gene markers for pericytes, some of which had not been previously characterised. We then used commercially (and therefore universally) available antibodies to immunolabel the pericyte-specific gene products in formalin-fixed paraffin-embedded (FFPE) human brains and also performed immunoblots to determine whether appropriately sized proteins were recognised. RESULTS In the EasySci data sets, highly pericyte-enriched expression was notable for SLC6A12 and SLC19A1. Antibodies against these proteins recognised bands of approximately the correct size in immunoblots of human brain extracts. Following optimisation of the immunohistochemical technique, staining for both antibodies was strongly positive in small blood vessels and was far more effective than a PDGFRB antibody at staining pericyte-like cells in FFPE human brain sections. In an exploratory sample of other human organs (kidney, lung, liver, muscle), immunohistochemistry did not show the same pericyte-like pattern of staining. CONCLUSIONS The SLC6A12 antibody was well suited for labelling pericytes in human FFPE brain sections, based on the combined results of single-cell RNA-seq analyses, immunoblots and immunohistochemical studies.
Collapse
Affiliation(s)
- Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Allison M. Neltner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Dana Niedowicz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Geetika Nehra
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Janna H. Neltner
- Department of Pathology and Laboratory Science, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca R. Smith
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anika M. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Panahi M, Hase Y, Gallart-Palau X, Mitra S, Watanabe A, Low RC, Yamamoto Y, Sepulveda-Falla D, Hainsworth AH, Ihara M, Sze SK, Viitanen M, Behbahani H, Kalaria RN. ER stress induced immunopathology involving complement in CADASIL: implications for therapeutics. Acta Neuropathol Commun 2023; 11:76. [PMID: 37158955 PMCID: PMC10169505 DOI: 10.1186/s40478-023-01558-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023] Open
Abstract
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1-6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area, University Hospital Arnau de Vilanova (HUAV) - Department of Psychology, University of Lleida (UdL), Lleida, Spain
| | - Sumonto Mitra
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430, Morioka-cho, Obu-shi, 474-8511, Aichi, Japan
| | - Roger C Low
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Masafumi Ihara
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
- Department of Geriatrics, University of Turku, Turku City Hospital, Kunnallissairaalantie 20, Turku, 20700, Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
6
|
Magaki S, Chen Z, Severance A, Williams CK, Diaz R, Fang C, Khanlou N, Yong WH, Paganini-Hill A, Kalaria RN, Vinters HV, Fisher M. Neuropathology of microbleeds in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). J Neuropathol Exp Neurol 2023; 82:333-344. [PMID: 36715085 PMCID: PMC10025882 DOI: 10.1093/jnen/nlad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cerebral microbleeds (CMBs) detected on magnetic resonance imaging are common in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The neuropathologic correlates of CMBs are unclear. In this study, we characterized findings relevant to CMBs in autopsy brain tissue of 8 patients with genetically confirmed CADASIL and 10 controls within the age range of the CADASIL patients by assessing the distribution and extent of hemosiderin/iron deposits including perivascular hemosiderin leakage (PVH), capillary hemosiderin deposits, and parenchymal iron deposits (PID) in the frontal cortex and white matter, basal ganglia and cerebellum. We also characterized infarcts, vessel wall thickening, and severity of vascular smooth muscle cell degeneration. CADASIL subjects had a significant increase in hemosiderin/iron deposits compared with controls. This increase was principally seen with PID. Hemosiderin/iron deposits were seen in the majority of CADASIL subjects in all brain areas. PVH was most pronounced in the frontal white matter and basal ganglia around small to medium sized arterioles, with no predilection for the vicinity of vessels with severe vascular changes or infarcts. CADASIL subjects have increased brain hemosiderin/iron deposits but these do not occur in a periarteriolar distribution. Pathogenesis of these lesions remains uncertain.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Zesheng Chen
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Alyscia Severance
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Ramiro Diaz
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Chuo Fang
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Annlia Paganini-Hill
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Brain Research Institute, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, California, USA
| |
Collapse
|
7
|
Littau JL, Velilla L, Hase Y, Villalba‐Moreno ND, Hagel C, Drexler D, Osorio Restrepo S, Villegas A, Lopera F, Vargas S, Glatzel M, Krasemann S, Quiroz YT, Arboleda‐Velasquez JF, Kalaria R, Sepulveda‐Falla D. Evidence of beta amyloid independent small vessel disease in familial Alzheimer's disease. Brain Pathol 2022; 32:e13097. [PMID: 35695802 PMCID: PMC9616091 DOI: 10.1111/bpa.13097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
We studied small vessel disease (SVD) pathology in Familial Alzheimer's disease (FAD) subjects carrying the presenilin 1 (PSEN1) p.Glu280Ala mutation in comparison to those with sporadic Alzheimer's disease (SAD) as a positive control for Alzheimer's pathology and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) bearing different NOTCH3 mutations, as positive controls for SVD pathology. Upon magnetic resonance imaging (MRI) in life, some FAD showed mild white matter hyperintensities and no further radiologic evidence of SVD. In post-mortem studies, total SVD pathology in cortical areas and basal ganglia was similar in PSEN1 FAD and CADASIL subjects, except for the feature of arteriosclerosis which was higher in CADASIL subjects than in PSEN1 FAD subjects. Further only a few SAD subjects showed a similar degree of SVD pathology as observed in CADASIL. Furthermore, we found significantly enlarged perivascular spaces in vessels devoid of cerebral amyloid angiopathy in FAD compared with SAD and CADASIL subjects. As expected, there was greater fibrinogen-positive perivascular reactivity in CADASIL but similar reactivity in PSEN1 FAD and SAD groups. Fibrinogen immunoreactivity correlated with onset age in the PSEN1 FAD cases, suggesting increased vascular permeability may contribute to cognitive decline. Additionally, we found reduced perivascular expression of PDGFRβ AQP4 in microvessels with enlarged PVS in PSEN1 FAD cases. We demonstrate that there is Aβ-independent SVD pathology in PSEN1 FAD, that was marginally lower than that in CADASIL subjects although not evident by MRI. These observations suggest presence of covert SVD even in PSEN1, contributing to disease progression. As is the case in SAD, these consequences may be preventable by early recognition and actively controlling vascular disease risk, even in familial forms of dementia.
Collapse
Affiliation(s)
- Jessica Lisa Littau
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lina Velilla
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | - Yoshiki Hase
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | | | - Christian Hagel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Drexler
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Andres Villegas
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | | | - Sergio Vargas
- Department of Radiology, Neuroradiology SectionUniversidad de AntioquiaMedellínColombia
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yakeel T. Quiroz
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical SchoolBostonMassachusetts
| | - Rajesh Kalaria
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | - Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| |
Collapse
|
8
|
De Kort AM, Kuiperij HB, Kersten I, Versleijen AA, Schreuder FH, Van Nostrand WE, Greenberg SM, Klijn CJ, Claassen JA, Verbeek MM. Normal cerebrospinal fluid concentrations of PDGFRβ in patients with cerebral amyloid angiopathy and Alzheimer's disease. Alzheimers Dement 2022; 18:1788-1796. [PMID: 34874603 PMCID: PMC9787758 DOI: 10.1002/alz.12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-β (PDGFRβ) has been proposed as a biomarker of blood-brain barrier (BBB) breakdown. We studied PDGFRβ levels as a biomarker for cerebral amyloid angiopathy (CAA), amnestic mild cognitive impairment (aMCI), or Alzheimer's disease (AD). METHODS CSF PDGFRβ levels were quantified by enzyme-linked immunosorbent assay in patients with CAA, patients with aMCI/AD, and in matched controls. In aMCI/AD we evaluated CSF PDGFRβ both by clinical phenotype and by using the AT(N) biomarker classification system defined by CSF amyloid (A), tau (T), and neurodegeneration (N) biomarkers. RESULTS PDGFRβ levels were similar in CAA patients and controls (P = .78) and in aMCI/AD clinical phenotype and controls (P = .91). aMCI/AD patients with an AD+ biomarker profile (A+T+[N+]) had increased PDGFRβ levels compared to (A-T-[N-]) controls (P = .006). CONCLUSION Our findings indicate that PDGFRβ levels are associated with an AD+ biomarker profile but are not a suitable biomarker for CAA or aMCI/AD clinical syndrome.
Collapse
Affiliation(s)
- Anna M. De Kort
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands
| | - H. Bea Kuiperij
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands,Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | - Iris Kersten
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands,Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Floris H.B.M. Schreuder
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands
| | - William E. Van Nostrand
- George & Anne Ryan Institute for NeuroscienceDepartment of Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Steven M. Greenberg
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Catharina J.M. Klijn
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Marcel M. Verbeek
- Department of NeurologyDonders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreRadboud University Medical CenterNijmegenthe Netherlands,Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
9
|
Barinov E, Statinova E, Faber T, Gillyer D. Extracellular matrix remodeling as a risk factor for the progression of cerebrovascular pathology. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:27-31. [DOI: 10.17116/jnevro202212203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Ruchoux MM, Kalaria RN, Román GC. The pericyte: A critical cell in the pathogenesis of CADASIL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100031. [PMID: 34950895 PMCID: PMC8661128 DOI: 10.1016/j.cccb.2021.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
CADASIL is the most common hereditary small vessel disease presenting with strokes and subcortical vascular dementia caused by mutations in the NOTCH3 gene. CADASIL is a vasculopathy primarily involving vascular smooth-muscle cells. Arteriolar and capillary pericyte damage or deficiency is a key feature in disease pathogenesis. Pericyte-mediated cerebral venous insufficiency may explain white matter lesions and increased perivascular spaces. Central role of the pericyte offers novel approaches to the treatment of CADASIL.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small vessel disease presenting with migraine, mood and cognitive disorders, focal neurological deficits, recurrent ischemic attacks, lacunar infarcts and brain white matter changes. As they age, CADASIL patients invariably develop cognitive impairment and subcortical dementia. CADASIL is caused by missense mutations in the NOTCH3 gene resulting in a profound cerebral vasculopathy affecting primarily arterial vascular smooth muscle cells, which target the microcirculation and perfusion. Based on a thorough review of morphological lesions in arteries, veins, and capillaries in CADASIL, we surmise that arteriolar and capillary pericyte damage or deficiency appears a key feature in the pathogenesis of the disease. This may affect critical pericyte-endothelial interactions causing stroke injury and vasomotor disturbances. Changes in microvascular permeability due to perhaps localized blood-brain barrier alterations and pericyte secretory dysfunction likely contribute to delayed neuronal as well as glial cell death. Moreover, pericyte-mediated cerebral venous insufficiency may explain white matter lesions and the dilatation of Virchow-Robin perivascular spaces typical of CADASIL. The postulated central role of the pericyte offers some novel approaches to the study and treatment of CADASIL and enable elucidation of other forms of cerebral small vessel diseases and subcortical vascular dementia.
Collapse
Affiliation(s)
- Marie-Magdeleine Ruchoux
- Former researcher, Université d'Artois, Blood-Brain-Barrier Laboratory Lens France, Former advisor, Alzheimer's Clinic Methodist Neurological Institute, Houston TX, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gustavo C Román
- Methodist Neurological Institute, Department of Neurology, Houston Methodist Hospital Houston TX 77030, USA, Weill Cornell Medical College, New York NY, USA and Texas A&M Medical School, Bryan TX, USA
| |
Collapse
|
11
|
Schoemaker D, Arboleda-Velasquez JF. Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1856-1870. [PMID: 33895122 PMCID: PMC8647433 DOI: 10.1016/j.ajpath.2021.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Ding R, Hase Y, Burke M, Foster V, Stevenson W, Polvikoski T, Kalaria RN. Loss with ageing but preservation of frontal cortical capillary pericytes in post-stroke dementia, vascular dementia and Alzheimer's disease. Acta Neuropathol Commun 2021; 9:130. [PMID: 34340718 PMCID: PMC8330023 DOI: 10.1186/s40478-021-01230-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023] Open
Abstract
Cerebral pericytes are an integral component of the neurovascular unit, which governs the blood–brain barrier. There is paucity of knowledge on cortical pericytes across different dementias. We quantified cortical pericytes in capillaries in 124 post-mortem brains from subjects with post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD) and AD-VaD (Mixed) and, post-stroke non-demented (PSND) stroke survivors as well as normal ageing controls. Collagen 4 (COL4)-positive nucleated pericyte soma were identified as protrusions on capillaries of the frontal cortex. The COL4-positive somata or nodule-like cell bodies were also verified by platelet derived growth factor receptor-β (PDGFR-β) immunohistochemistry. The mean (± SEM) pericyte somata in frontal cortical capillaries in normal young controls (46–65 years of age) was estimated as 5.2 ± 0.2 per mm capillary length. This number was reduced by 45% in older controls (> 78 years) to 2.9 ± 0.1 per mm capillary length (P < 0.001). We further found that the numbers of pericyte cell bodies per COL4 mm2 area or per mm capillary length were not decreased but rather preserved or increased in PSD, AD and Mixed dementia groups compared to similar age older controls (P < 0.01). Consistent with this, we noted that capillary length densities identified by the endothelial marker glucose transporter 1 or COL4 were not different across the dementias compared to older controls. There was a negative correlation with age (P < 0.001) suggesting fewer pericyte somata in older age, although the % COL4 immunoreactive capillary area was increased in older controls compared to young controls. Using a proven reliable method to quantify COL4-positive nucleated pericytes, our observations demonstrate ageing related loss but mostly preserved pericytes in the frontal cortex of vascular and AD dementias. We suggest there is differential regulation of capillary pericytes in the frontal lobe between the cortex and white matter in ageing-related dementias.
Collapse
|
13
|
Martins-Filho RK, Zotin MC, Rodrigues G, Pontes-Neto O. Biomarkers Related to Endothelial Dysfunction and Vascular Cognitive Impairment: A Systematic Review. Dement Geriatr Cogn Disord 2021; 49:365-374. [PMID: 33045717 DOI: 10.1159/000510053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The damage in the endothelium and the neurovascular unit appears to play a key role in the pathogenesis of vascular cognitive impairment (VCI). Although there have been many advances in understanding the physiopathology of this disease, several questions remain unanswered. The association with other degenerative diseases and the heterogeneity of its clinical spectrum establish a diagnostic problem, compromising a better comprehension of the pathology and halting the development of effective treatments. The investigation of biomarkers is an important movement to the development of novel explicative models and treatment targets involved in VCI. METHODS We searched MEDLINE considering the original research based on VCI biomarkers in the past 20 years, following prespecified selection criteria, data extraction, and qualitative synthesis. RESULTS We reviewed 42 articles: 16 investigated plasma markers, 17 analyzed neuropathological markers, 4 studied CSF markers, 4 evaluated neuroimaging markers (ultrasound and MRI), and 1 used peripheral Doppler perfusion imaging. CONCLUSIONS The biomarkers in these studies suggest an intrinsic relationship between endothelial dysfunction and VCI. Nonetheless, there is still a need for identification of a distinctive set of markers that can integrate the clinical approach of VCI, improve diagnostic accuracy, and support the discovery of alternative therapies.
Collapse
Affiliation(s)
- Rui Kleber Martins-Filho
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,
| | - Maria Clara Zotin
- Department of Internal Medicine, Radiology Division, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Rodrigues
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Octavio Pontes-Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
The expression of B7-H3 isoforms in newly diagnosed glioblastoma and recurrence and their functional role. Acta Neuropathol Commun 2021; 9:59. [PMID: 33795013 PMCID: PMC8017683 DOI: 10.1186/s40478-021-01167-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Short survival of glioblastoma (GBM) patients is due to systematic tumor recurrence. Our laboratory identified a GBM cell subpopulation able to leave the tumor mass (TM) and invade the subventricular zone (SVZ-GBM cells). SVZ-GBM cells escape treatment and appear to contribute to GBM recurrence. This study aims to identify proteins specifically expressed by SVZ-GBM cells and to define their role(s) in GBM aggressiveness and recurrence. The proteome was compared between GBM cells located in the initial TM and SVZ-GBM cells using mass spectrometry. Among differentially expressed proteins, we confirmed B7-H3 by western blot (WB) and quantitative RT-PCR. B7-H3 expression was compared by immunohistochemistry and WB (including expression of its isoforms) between human GBM (N = 14) and non-cancerous brain tissue (N = 8), as well as newly diagnosed GBM and patient-matched recurrences (N = 11). Finally, the expression of B7-H3 was modulated with short hairpin RNA and/or over-expression vectors to determine its functional role in GBM using in vitro assays and a xenograft mouse model of GBM. B7-H3 was a marker for SVZ-GBM cells. It was also increased in human GBM pericytes, myeloid cells and neoplastic cells. B7-H3 inhibition in GBM cells reduced their tumorigenicity. Out of the two B7-H3 isoforms, only 2IgB7-H3 was detected in non-cancerous brain tissue, whereas 4IgB7-H3 was specific for GBM. 2IgB7-H3 expression was higher in GBM recurrences and increased resistance to temozolomide-mediated apoptosis. To conclude, 4IgB7-H3 is an interesting candidate for GBM targeted therapies, while 2IgB7-H3 could be involved in recurrence through resistance to chemotherapy.
Collapse
|
15
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
16
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
17
|
Charcot-Bouchard aneurysms revisited: clinicopathologic correlations. Mod Pathol 2021; 34:2109-2121. [PMID: 34326486 PMCID: PMC8592842 DOI: 10.1038/s41379-021-00847-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022]
Abstract
Intracerebral hemorrhage (ICH) is a significant cause of morbidity and mortality worldwide. Hypertension and cerebral amyloid angiopathy (CAA) are the most common causes of primary ICH, but the mechanism of hemorrhage in both conditions is unclear. Although fibrinoid necrosis and Charcot-Bouchard aneurysms (CBAs) have been postulated to underlie vessel rupture in ICH, the role and significance of CBAs in ICH has been controversial. First described as the source of bleeding in hypertensive hemorrhage, they are also one of the CAA-associated microangiopathies along with fibrinoid necrosis, fibrosis and "lumen within a lumen appearance." We describe clinicopathologic findings of CBAs found in 12 patients out of over 2700 routine autopsies at a tertiary academic medical center. CBAs were rare and predominantly seen in elderly individuals, many of whom had multiple systemic and cerebrovascular comorbidities including hypertension, myocardial and cerebral infarcts, and CAA. Only one of the 12 subjects with CBAs had a large ICH, and the etiology underlying the hemorrhage was likely multifactorial. Two CBAs in the basal ganglia demonstrated associated microhemorrhages, while three demonstrated infarcts in the vicinity. CBAs may not be a significant cause of ICH but are a manifestation of severe cerebral small vessel disease including both hypertensive arteriopathy and CAA.
Collapse
|
18
|
Panahi M, Rodriguez PR, Fereshtehnejad SM, Arafa D, Bogdanovic N, Winblad B, Cedazo-Minguez A, Rinne J, Darreh-Shori T, Hase Y, Kalaria RN, Viitanen M, Behbahani H. Insulin-Independent and Dependent Glucose Transporters in Brain Mural Cells in CADASIL. Front Genet 2020; 11:1022. [PMID: 33101365 PMCID: PMC7522350 DOI: 10.3389/fgene.2020.01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Typical cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the human NOTCH3 gene. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy is characterized by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small vessels. Blood regulating vascular smooth muscle cells (VSMCs) appear as the key target in CADASIL but the pathogenic mechanisms remain unclear. With the hypothesis that brain glucose metabolism is disrupted in VSMCs in CADASIL, we investigated post-mortem tissues and VSMCs derived from CADASIL patients to explore gene expression and protein immunoreactivity of glucose transporters (GLUTs), particularly GLUT4 and GLUT2 using quantitative RT-PCR and immunohistochemical techniques. In vitro cell model analysis indicated that both GLUT4 and -2 gene expression levels were down-regulated in VSMCs derived from CADASIL patients, compared to controls. In vitro studies further indicated that the down regulation of GLUT4 coincided with impaired glucose uptake in VSMCs, which could be partially rescued by insulin treatment. Our observations on reduction in GLUTs in VSMCs are consistent with previous findings of decreased cerebral blood flow and glucose uptake in CADASIL patients. That impaired ability of glucose uptake is rescued by insulin is also consistent with previously reported lower proliferation rates of VSMCs derived from CADASIL subjects. Overall, these observations are consistent with the development of severe cerebral arteriopathy in CADASIL, in which VSMCs are replaced by widespread fibrosis.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez Rodriguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed-Mohammad Fereshtehnejad
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Donia Arafa
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Neurogeriatric Clinic, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Juha Rinne
- University of Turku, Turku University Hospital Kiinanmyllynkatu, Turku, Finland
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatrics, Turun Kaupunginsairaala, University Hospital of Turku, University of Turku, Turku,Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Ding R, Hase Y, Ameen-Ali KE, Ndung'u M, Stevenson W, Barsby J, Gourlay R, Akinyemi T, Akinyemi R, Uemura MT, Polvikoski T, Mukaetova-Ladinska E, Ihara M, Kalaria RN. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer's disease. Brain Pathol 2020; 30:1087-1101. [PMID: 32705757 PMCID: PMC8018063 DOI: 10.1111/bpa.12888] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
White matter (WM) disease is associated with disruption of the gliovascular unit, which involves breach of the blood–brain barrier (BBB). We quantified pericytes as components of the gliovascular unit and assessed their status in vascular and other common dementias. Immunohistochemical and immunofluorescent methods were developed to assess the distribution and quantification of pericytes connected to the frontal lobe WM capillaries. Pericytes with a nucleus were identified by collagen 4 (COL4) and platelet‐derived growth factor receptor‐β (PDGFR‐β) antibodies with further verification using PDGFR‐β‐specific ELISA. We evaluated a total of 124 post‐mortem brains from subjects with post‐stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD), AD‐VaD (Mixed) and post‐stroke non‐demented (PSND) stroke survivors as well as normal aging controls. COL4 and PDGFR‐β reactive pericytes adopted the characteristic “crescent” or nodule‐like shapes around capillary walls. We estimated densities of pericyte somata to be 225 ±38 and 200 ±13 (SEM) per COL4 mm2 area or 2.0 ± 0.1 and 1.7 ± 0.1 per mm capillary length in young and older aging controls. Remarkably, WM pericytes were reduced by ~35%–45% in the frontal lobe of PSD, VaD, Mixed and AD subjects compared to PSND and controls subjects (P < 0.001). We also found pericyte numbers were correlated with PDGFR‐β reactivity in the WM. Our results first demonstrate a reliable method to quantify COL4‐positive pericytes and then, indicate that deep WM pericytes are decreased across different dementias including PSD, VaD, Mixed and AD. Our findings suggest that downregulation of pericytes is associated with the disruption of the BBB in the deep WM in several aging‐related dementias.
Collapse
Affiliation(s)
- Ren Ding
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Yoshiki Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Kamar E Ameen-Ali
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Michael Ndung'u
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - William Stevenson
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Joseph Barsby
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Ryan Gourlay
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | - Tolulope Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Rufus Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tuomo Polvikoski
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Raj N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK
| |
Collapse
|
20
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Yamamoto Y, Kojima K, Taura D, Sone M, Washida K, Egawa N, Kondo T, Minakawa EN, Tsukita K, Enami T, Tomimoto H, Mizuno T, Kalaria RN, Inagaki N, Takahashi R, Harada-Shiba M, Ihara M, Inoue H. Human iPS cell-derived mural cells as an in vitro model of hereditary cerebral small vessel disease. Mol Brain 2020; 13:38. [PMID: 32188464 PMCID: PMC7081541 DOI: 10.1186/s13041-020-00573-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common forms of hereditary cerebral small vessel diseases and is caused by mutations in NOTCH3. Our group has previously reported incorporation of NOTCH3 extracellular domain (N3ECD) in the CADASIL-specific granular osmiophilic materials and increase of PDGFRβ immunoreactivity in CADASIL postmortem brains. Here, we aimed to establish an in vitro model of CADASIL, which can recapitulate those CADASIL phenotypes, using induced pluripotent stem cells (iPSCs). We have refined a differentiation protocol of endothelial cells to obtain mature mural cells (MCs) with their characteristic properties. iPSCs from three CADASIL patients with p.Arg182Cys, p.Arg141Cys and p.Cys106Arg mutations were differentiated into MCs and their functional and molecular profiles were compared. The differentiated CADASIL MCs recapitulated pathogenic changes reported previously: increased PDGFRβ and abnormal structure/distribution of filamentous actin network, as well as N3ECD/LTBP-1/HtrA1-immunopositive deposits. Migration rate of CADASIL MCs was enhanced but suppressed by knockdown of NOTCH3 or PDGFRB. CADASIL MCs showed altered reactivity to PDGF-BB. Patient-derived MCs can recapitulate CADASIL pathology and are therefore useful in understanding the pathogenesis and developing potential treatment strategies.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Molecular Innovation in Lipidemiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibeshinmachi, Suita-shi, Osaka, 564-0018, Japan
| | - Katsutoshi Kojima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazuo Washida
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita-shi, Osaka, 564-0018, Japan
| | - Naohiro Egawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Hidekazu Tomimoto
- Department of Dementia Prevention and Therapeutics, Graduate School of Medicine, Mie University, 2-174 Edobashi Tsu, Mie, 514-8507, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidemiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibeshinmachi, Suita-shi, Osaka, 564-0018, Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita-shi, Osaka, 564-0018, Japan.
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan. .,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
22
|
Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in Cerebrovascular Diseases: An Emerging Therapeutic Target. Front Cell Neurosci 2019; 13:519. [PMID: 31824267 PMCID: PMC6882740 DOI: 10.3389/fncel.2019.00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Pericytes are functional components of the neurovascular unit (NVU) that are located around the blood vessels, and their roles in the regulation of cerebral health and diseases has been reported. Currently, the potential properties of pericytes as emerging therapeutic targets for cerebrovascular diseases have attracted considerable attention. Nonetheless, few reviews have comprehensively discussed pericytes and their roles in cerebrovascular diseases. Therefore, in this review, we not only summarized and described the basic characteristics of pericytes but also focused on clarifying the new understanding about the roles of pericytes in the pathogenesis of cerebrovascular diseases, including white matter injury (WMI), hypoxic-ischemic brain damage, depression, neovascular insufficiency disease, and Alzheimer's disease (AD). Furthermore, we summarized the current therapeutic strategies targeting pericytes for cerebrovascular diseases. Collectively, this review is aimed at providing a comprehensive understanding of pericytes and new insights about the use of pericytes as novel therapeutic targets for cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
23
|
Rajani RM, Ratelade J, Domenga-Denier V, Hase Y, Kalimo H, Kalaria RN, Joutel A. Blood brain barrier leakage is not a consistent feature of white matter lesions in CADASIL. Acta Neuropathol Commun 2019; 7:187. [PMID: 31753008 PMCID: PMC6873485 DOI: 10.1186/s40478-019-0844-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic paradigm of small vessel disease (SVD) caused by NOTCH3 mutations that stereotypically lead to the vascular accumulation of NOTCH3 around smooth muscle cells and pericytes. White matter (WM) lesions (WMLs) are the earliest and most frequent abnormalities, and can be associated with lacunar infarcts and enlarged perivascular spaces (ePVS). The prevailing view is that blood brain barrier (BBB) leakage, possibly mediated by pericyte deficiency, plays a pivotal role in the formation of WMLs. Herein, we investigated the involvement of BBB leakage and pericyte loss in CADASIL WMLs. Using post-mortem brain tissue from 12 CADASIL patients and 10 age-matched controls, we found that WMLs are heterogeneous, and that BBB leakage reflects the heterogeneity. Specifically, while fibrinogen extravasation was significantly increased in WMLs surrounding ePVS and lacunes, levels of fibrinogen leakage were comparable in WMLs without other pathology ("pure" WMLs) to those seen in the normal appearing WM of patients and controls. In a mouse model of CADASIL, which develops WMLs but no lacunes or ePVS, we detected no extravasation of endogenous fibrinogen, nor of injected small or large tracers in WMLs. Moreover, there was no evidence of pericyte coverage modification in any type of WML in either CADASIL patients or mice. These data together indicate that WMLs in CADASIL encompass distinct classes of WM changes and argue against the prevailing hypothesis that pericyte coverage loss and BBB leakage are the primary drivers of WMLs. Our results also have important implications for the interpretation of studies on the BBB in living patients, which may misinterpret evidence of BBB leakage within WM hyperintensities as suggesting a BBB related mechanism for all WMLs, when in fact this may only apply to a subset of these lesions.
Collapse
Affiliation(s)
- Rikesh M Rajani
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France
| | - Julien Ratelade
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France
| | - Valérie Domenga-Denier
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France
| | - Yoshiki Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Hannu Kalimo
- Department of Pathology, Haartman Institute, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Anne Joutel
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France.
| |
Collapse
|
24
|
Whitesell TR, Chrystal PW, Ryu JR, Munsie N, Grosse A, French CR, Workentine ML, Li R, Zhu LJ, Waskiewicz A, Lehmann OJ, Lawson ND, Childs SJ. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev Biol 2019; 453:34-47. [PMID: 31199900 DOI: 10.1016/j.ydbio.2019.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/15/2022]
Abstract
Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrβ positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.
Collapse
Affiliation(s)
- Thomas R Whitesell
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Paul W Chrystal
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Nicole Munsie
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Curtis R French
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605; Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA, 01605
| | - Andrew Waskiewicz
- Department of Biological Sciences, CW405, Biological Sciences Bldg., 11455, Saskatchewan Dr., University of Alberta, Edmonton, AB, T6G 2E9, Canada; Women & Children's Health Research Institute, ECHA 4-081, 11405 87, Ave NW, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Neurosciences and Mental Health Institute, 4-120 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ordan J Lehmann
- Departments of Ophthalmology, and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA, 01605
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
25
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Kolinko Y, Kralickova M, Tonar Z. The impact of pericytes on the brain and approaches for their morphological analysis. J Chem Neuroanat 2018; 91:35-45. [DOI: 10.1016/j.jchemneu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
27
|
Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018; 114:1462-1473. [PMID: 29726891 PMCID: PMC6455920 DOI: 10.1093/cvr/cvy113] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Small vessel diseases (SVDs) are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood. Magnetic resonance imaging has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that form part of a vicious cycle involving impaired cerebrovascular reactivity, blood-brain barrier dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid space, leading to accumulation of toxins, hypoxia, and tissue damage. Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.
Collapse
Affiliation(s)
- Rosalind Brown
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, USA
| | - Sandra E Black
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Maiken Nedergaard
- Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, USA
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh, UK
- Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Chancellor's Building, Edinburgh, UK
| |
Collapse
|
28
|
Nelis P, Kleffner I, Burg MC, Clemens CR, Alnawaiseh M, Motte J, Marziniak M, Eter N, Alten F. OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 2018; 8:8148. [PMID: 29802397 PMCID: PMC5970147 DOI: 10.1038/s41598-018-26475-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Optical coherence tomography angiography (OCT-A) represents the most recent tool in ophthalmic imaging. It allows for a non-invasive, depth-selective and quantitative visualization of blood flow in central retinal vessels and it has an enormous diagnostic potential not only in ophthalmology but also with regards to neurologic and systemic diseases. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary vascular small-vessel disease caused by Notch3 mutations and represents the most common form of hereditary stroke disorder. In this study, CADASIL patients prospectively underwent OCT-A imaging to evaluate retinal and choriocapillaris blood flow as well as blood flow at the optic nerve head. The vessel density of the macular region and the size of the foveal avascular zone in the superficial and deep retinal plexus were determined as well as the vessel density at the optic nerve head and in the choriocapillaris. Additionally, cerebral magnetic resonance images were evaluated. The main finding was that vessel density of the deep retinal plexus was significantly decreased in CADASIL patients compared to healthy controls which may reflect pericyte dysfunction in retinal capillaries.
Collapse
Affiliation(s)
- Pieter Nelis
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Ilka Kleffner
- Department of Neurology, University of Muenster Medical Center, Muenster, Germany
| | - Matthias C Burg
- Department of Clinical Radiology, University of Muenster Medical Center, Muenster, Germany
| | - Christoph R Clemens
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Maged Alnawaiseh
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Jeremias Motte
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Martin Marziniak
- Department of Neurology, kbo-Isar-Amper-Klinikum München-Ost, Muenchen, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Florian Alten
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany.
| |
Collapse
|
29
|
Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab 2018; 38:103-115. [PMID: 28151041 PMCID: PMC5757436 DOI: 10.1177/0271678x17690761] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies implicate loss of pericytes in hypoperfusion and blood-brain barrier (BBB) leakage in Alzheimer's disease (AD). In this study, we have measured levels of the pericyte marker, platelet-derived growth factor receptor-β (PDGFRB), and fibrinogen (to assess blood-brain barrier leakage), and analyzed their relationship to indicators of microvessel density (von Willebrand factor level), ante-mortem oxygenation (myelin-associated glycoprotein:proteolipid protein-1 ratio and vascular endothelial growth factor level), Aβ level and plaque load, in precuneus and underlying white matter from 49 AD to 37 control brains. There was reduction in PDGFRB and increased fibrinogen in the precuneus in AD. These changes correlated with reduction in oxygenation and with plaque load. In the underlying white matter, increased fibrinogen correlated with reduced oxygenation, but PDGFRB level was unchanged. The level of platelet-derived growth factor-ββ (PDGF-BB), important for pericyte maintenance, was increased in AD but mainly in the insoluble tissue fraction, correlating with insoluble Aβ level. Loss of the PDGFRB within the precuneus in AD is associated with fibrinogen leakage and reduced oxygenation, and related to fibrillar Aβ accumulation. In contrast, fibrinogen leakage and reduced oxygenation of underlying white matter occur independently of loss of PDGFRB, perhaps secondary to reduced transcortical perfusion.
Collapse
Affiliation(s)
| | | | - Seth Love
- Seth Love, School of Clinical Sciences,
University of Bristol, Learning & Research level 2, Southmead Hospital,
Bristol BS10 5NB, UK.
| |
Collapse
|
30
|
Uemura MT, Ihara M, Maki T, Nakagomi T, Kaji S, Uemura K, Matsuyama T, Kalaria RN, Kinoshita A, Takahashi R. Pericyte-derived bone morphogenetic protein 4 underlies white matter damage after chronic hypoperfusion. Brain Pathol 2017; 28:521-535. [PMID: 28470822 PMCID: PMC6099372 DOI: 10.1111/bpa.12523] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Subcortical small vessel disease (SVD) is characterized by white matter damage resulting from arteriolosclerosis and chronic hypoperfusion. Transforming growth factor beta 1 (TGFB1) is dysregulated in the hereditary SVD, CARASIL (cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy). However, very little is known about the role of the largest group in the TGFB superfamily - the bone morphogenetic proteins (BMPs) - in SVD pathogenesis. The aim of this study was to characterize signaling abnormalities of BMPs in sporadic SVD. We examined immunostaining of TGFB1 and BMPs (BMP2/BMP4/BMP6/BMP7/BMP9) in a total of 19 post-mortem human brain samples as follows: 7 SVD patients (4 males, 76-90 years old); 6 Alzheimer's disease (AD) patients (2 males, 67-93 years old) and 6 age-matched disease controls (3 males, 68-78 years old). We subsequently investigated the effects of oxygen-glucose deprivation and BMP4 addition on cultured cells. Furthermore, adult mice were subjected to chronic cerebral hypoperfusion using bilateral common carotid artery stenosis, followed by continuous intracerebroventricular infusion of the BMP antagonist, noggin. In the SVD cases, BMP4 was highly expressed in white matter pericytes. Oxygen-glucose deprivation induced BMP4 expression in cultured pericytes in vitro. Recombinant BMP4 increased the number of cultured endothelial cells and pericytes and converted oligodendrocyte precursor cells into astrocytes. Chronic cerebral hypoperfusion in vivo also upregulated BMP4 with concomitant white matter astrogliogenesis and reduced oligodendrocyte lineage cells, both of which were suppressed by intracerebroventricular noggin infusion. Our findings suggest ischemic white matter damage evolves in parallel with BMP4 upregulation in pericytes. BMP4 promotes angiogenesis, but induces astrogliogenesis at the expense of oligodendrocyte precursor cell proliferation and maturation, thereby aggravating white matter damage. This may explain white matter vulnerability to chronic hypoperfusion. The regulation of BMP4 signaling is a potential therapeutic strategy for treating SVD.
Collapse
Affiliation(s)
- Maiko T Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan
| | - Seiji Kaji
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kengo Uemura
- Department of Neurology, Ishiki Hospital, Kagoshima, Japan
| | - Tomohiro Matsuyama
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Hyogo, Japan
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, UK
| | - Ayae Kinoshita
- School of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA. Brain and Retinal Pericytes: Origin, Function and Role. Front Cell Neurosci 2016; 10:20. [PMID: 26869887 PMCID: PMC4740376 DOI: 10.3389/fncel.2016.00020] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.
Collapse
Affiliation(s)
- Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Simona Lange
- Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Falk Schroedl
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Daniela Bruckner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Karolina A Motloch
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Barbara Bogner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Clemens Strohmaier
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Christian Runge
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Francisco J Rivera
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Herbert A Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
32
|
Ihara M, Yamamoto Y. Emerging Evidence for Pathogenesis of Sporadic Cerebral Small Vessel Disease. Stroke 2016; 47:554-60. [DOI: 10.1161/strokeaha.115.009627] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Masafumi Ihara
- From the Departments of Stroke and Cerebrovascular Diseases (M.I.) and Regenerative Medicine and Tissue Engineering (M.I., Y.Y.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yumi Yamamoto
- From the Departments of Stroke and Cerebrovascular Diseases (M.I.) and Regenerative Medicine and Tissue Engineering (M.I., Y.Y.), National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
33
|
Shindo A, Liang AC, Maki T, Miyamoto N, Tomimoto H, Lo EH, Arai K. Subcortical ischemic vascular disease: Roles of oligodendrocyte function in experimental models of subcortical white-matter injury. J Cereb Blood Flow Metab 2016; 36:187-98. [PMID: 25920960 PMCID: PMC4758561 DOI: 10.1038/jcbfm.2015.80] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022]
Abstract
Oligodendrocytes are one of the major cell types in cerebral white matter. Under normal conditions, they form myelin sheaths that encircle axons to support fast nerve conduction. Under conditions of cerebral ischemia, oligodendrocytes tend to die, resulting in white-matter dysfunction. Repair of white matter involves the ability of oligodendrocyte precursors to proliferate and mature. However, replacement of lost oligodendrocytes may not be the only mechanism for white-matter recovery. Emerging data now suggest that coordinated signaling between neural, glial, and vascular cells in the entire neurovascular unit may be required. In this mini-review, we discuss how oligodendrocyte lineage cells participate in signaling and crosstalk with other cell types to underlie function and recovery in various experimental models of subcortical white-matter injury.
Collapse
Affiliation(s)
- Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|