1
|
Wang X, Li L, Fan R, Yan Y, Zhou R. Genome‑wide identification of circular RNAs and MAPKs reveals the regulatory networks in response to green peach aphid infestation in peach (Prunus persica). Gene 2025; 933:148994. [PMID: 39395730 DOI: 10.1016/j.gene.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The green peach aphid (GPA), Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution and a vector of over 100 plant viruses. Various pathways, such as the mitogen-activated protein kinase (MAPK) cascades, play pivotal roles in signaling plant defense against pest attack, and circular RNAs (circRNAs) regulate the expression of mRNAs in response to pest attack. However, the mechanism underlying peach (Prunus persica) response to GPA attack remains unclear. The present study initially identified and characterized 316 circRNAs and 18 PpMAPKs from healthy and GPA-infested peach leaves by whole-transcriptome sequencing and predicted the differentially expressed circRNAs (DECs) after GPA infestation. PCR and Sanger sequencing confirmed the presence of six DECs in peach samples. Besides, RNA sequencing analysis detected 13 DECs, including 5 upregulated and 8 downregulated ones, in peach in response to the GPA attack. Gene ontology (GO) enrichment analysis indicated that specific DECs play crucial roles in the MAPK signaling pathway, and qRT-PCR revealed that GPA infestation altered the expression patterns of PpMAPKs. Finally, five circRNAs, three microRNA (miRNAs), and two MAPK target genes were identified to interact as a network and perform critical roles in modulating the MAPK pathway in the peach during GPA infestation.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China.
| | - Li Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Rongyao Fan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Yujun Yan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| |
Collapse
|
2
|
Li S, Ma C, Li S, Zhang M, Zhang C, Qi J, Wang L, Wu X, Li J, Wu J. Mitogen-activated protein kinase 4 phosphorylates MYC2 transcription factors to regulate jasmonic acid signaling and herbivory responses in maize. PLANT PHYSIOLOGY 2024; 197:kiae575. [PMID: 39471326 DOI: 10.1093/plphys/kiae575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 11/01/2024]
Abstract
Regulation of responses induced by herbivory and jasmonic acid (JA) remains poorly understood in the important staple crop maize (Zea mays). MYC2 is the key transcription factor regulating many aspects of JA signaling, while mitogen-activated protein kinases (MAPKs or MPKs) play important roles in various plant physiological processes. Using a combination of reverse genetics, transcriptome analysis, and biochemical assays, we elucidated the important role of mitogen-activated protein kinase 4 (MPK4) in maize resistance to insects and in JA signaling. Silencing MPK4 increased the JA and jasmonoyl-isoleucine levels elicited by wounding or simulated herbivory but decreased maize resistance to armyworm (Mythimna separata) larvae. We showed that MPK4 is required for transcriptional regulation of many genes responsive to methyl jasmonate, indicating the important role of maize MPK4 in JA signaling. Biochemical analyses indicated that MPK4 directly phosphorylates MYC2s at Thr115 of MYC2a and Thr112 of MYC2b. Compared with nonphosphorylated MYC2s, phosphorylated MYC2s were more prone to degradation and exhibited enhanced transactivation activity against the promoters of several benzoxazinoid biosynthesis genes, which are important for maize defense against insects. This study reveals the essential role of maize MPK4 in JA signaling and provides insights into the functions of MAPKs in maize.
Collapse
Affiliation(s)
- Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Science, Yunnan University, Kunming 650500, China
| | - Mou Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| | - Xuna Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Science, Yunnan University, Kunming 650500, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| |
Collapse
|
3
|
Xu J, Zhou T, Wang Y, Yang Y, Pu Y, Chen Q, Zheng K, Sun G. Functional Analysis of the GhIQD1 Gene in Cotton Resistance to Verticillium Wilt. PLANTS (BASEL, SWITZERLAND) 2024; 13:1005. [PMID: 38611533 PMCID: PMC11013105 DOI: 10.3390/plants13071005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Cotton is a critical crop with massive economic implications worldwide. Verticillium wilt is a soil-borne ailment caused by Verticillium dahliae, which harms the growth and development of cotton. Therefore, investigating the genes associated with resistance to verticillium wilt is of particular significance. In this study, we identified the GhIQD1 gene through transcriptome analysis and experimentally characterized the role of the GhIQD1 gene in cotton against V. dahliae. The findings indicated that GhIQD1 acts as a calmodulin-binding protein. The expression of GhIQD1 was the highest in stems, and the expression level increased significantly following infection with V. dahliae. The expression in resistant cotton varieties was higher than in susceptible cotton varieties. Through overexpression of the GhIQD1 gene in tobacco, these transgenic plants exhibited improved resistance to V. dahliae. In contrast, by silencing the GhIQD1 gene in cotton through VIGS, the resistance to V. dahliae was reduced. Following inoculation, the leaves yellowed, and the disease index was higher. Transcriptome analysis of transgenic tobacco 72 h after inoculation indicated that overexpression of GhIQD1 increased the enrichment of the calmodulin pathway and stimulated the production of plant hormones alongside secondary metabolites. Consequently, we investigated the relationship between the GhIQD1 gene and plant disease-resistant hormones SA, JA, and ABA. In summary, this study uncovered the mechanism by which GhIQD1 conferred resistance to V. dahliae in cotton through positive regulation of JA and ABA, providing crucial information for further research on the adaptation of plants to pathogen invasion.
Collapse
Affiliation(s)
- Jianglin Xu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (J.X.); (Y.W.); (Q.C.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.Z.); (Y.Y.)
| | - Ting Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.Z.); (Y.Y.)
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yongqiang Wang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (J.X.); (Y.W.); (Q.C.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.Z.); (Y.Y.)
| | - Yejun Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.Z.); (Y.Y.)
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yuanchun Pu
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China;
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (J.X.); (Y.W.); (Q.C.)
| | - Kai Zheng
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (J.X.); (Y.W.); (Q.C.)
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.Z.); (Y.Y.)
| |
Collapse
|
4
|
Zhang L, Wu Y, Yu Y, Zhang Y, Wei F, Zhu QH, Zhou J, Zhao L, Zhang Y, Feng Z, Feng H, Sun J. Acetylation of GhCaM7 enhances cotton resistance to Verticillium dahliae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1405-1424. [PMID: 36948889 DOI: 10.1111/tpj.16200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.
Collapse
Affiliation(s)
- Lei Zhang
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
5
|
Romero-Hernandez G, Martinez M. Opposite roles of MAPKKK17 and MAPKKK21 against Tetranychus urticae in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1038866. [PMID: 36570948 PMCID: PMC9768502 DOI: 10.3389/fpls.2022.1038866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
After recognizing a biotic stress, plants activate signalling pathways to fight against the attack. Typically, these signalling pathways involve the activation of phosphorylation cascades mediated by Mitogen-Activated Protein Kinases (MAPKs). In the Arabidopsis thaliana-Tetranychus urticae plant-herbivore model, several Arabidopsis MAP kinases are induced by the mite attack. In this study, we demonstrate the participation of the MEKK-like kinases MAPKKK17 and MAPKKK21. Leaf damage caused by the mite was assessed using T-DNA insertion lines. Differential levels of damage were found when the expression of MAPKKK17 was increased or reduced. In contrast, reduced expression of MAPKKK21 resulted in less damage caused by the mite. Whereas the expression of several genes associated with hormonal responses did not suffer significant variations in the T-DNA insertion lines, the expression of one of these kinases depends on the expression of the other one. In addition, MAPKKK17 and MAPKKK21 are coexpressed with different sets of genes and encode proteins with low similarity in the C-terminal region. Overall, our results demonstrate that MAPKKK17 and MAPKKK21 have opposite roles. MAPKKK17 and MAPKKK21 act as positive and negative regulators, respectively, on the plant response. The induction of MAPKKK17 and MAPKKK21 after mite infestation would be integrated into the bulk of signalling pathways activated to balance the response of the plant to a biotic stress.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
6
|
Romero-Hernandez G, Martinez M. Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:824422. [PMID: 35599859 PMCID: PMC9116192 DOI: 10.3389/fpls.2022.824422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The success in the response of plants to environmental stressors depends on the regulatory networks that connect plant perception and plant response. In these networks, phosphorylation is a key mechanism to activate or deactivate the proteins involved. Protein kinases are responsible for phosphorylations and play a very relevant role in transmitting the signals. Here, we review the present knowledge on the contribution of protein kinases to herbivore-triggered responses in plants, with a focus on the information related to the regulated kinases accompanying herbivory in Arabidopsis. A meta-analysis of transcriptomic responses revealed the importance of several kinase groups directly involved in the perception of the attacker or typically associated with the transmission of stress-related signals. To highlight the importance of these protein kinase families in the response to arthropod herbivores, a compilation of previous knowledge on their members is offered. When available, this information is compared with previous findings on their role against pathogens. Besides, knowledge of their homologous counterparts in other plant-herbivore interactions is provided. Altogether, these observations resemble the complexity of the kinase-related mechanisms involved in the plant response. Understanding how kinase-based pathways coordinate in response to a specific threat remains a major challenge for future research.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Nascimento PT, Fadini MAM, Rocha MS, Souza CSF, Barros BA, Melo JOF, Von Pinho RG, Valicente FH. Olfactory response of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) to volatiles induced by transgenic maize. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:674-687. [PMID: 34130764 DOI: 10.1017/s0007485321000341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants not only respond to herbivorous damage but adjust their defense system after egg deposition by pest insects. Thereby, parasitoids use oviposition-induced plant volatiles to locate their hosts. We investigated the olfactory behavioral responses of Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) to volatile blends emitted by maize (Zea mays L.) with singular and stacked events after oviposition by Spodoptera frugiperda Smith, 1797 (Hymenoptera: Trichogrammatidae) moths. Additionally, we examined possible variations in gene expression and on oviposition-induced volatiles. We used a Y-tube olfactometer to test for the wasp responses to volatiles released by maize plants oviposited by S. frugiperda and not-oviposited plants. Using the real-time PCR technique (qRT-PCR), we analyzed the expression of lipoxygenase and three terpene synthases genes, which are enzymes involved in the synthesis of volatile compounds that attract parasitoids of S. frugiperda. Olfactometer tests showed that T. pretiosum is strongly attracted by volatiles from transgenic maize emitted by S. frugiperda oviposition (VTPRO 3, more than 75% individuals were attracted). The relative expression of genes TPS10, LOX e STC was higher in transgenic hybrids than in the conventional (isogenic line) hybrids. The GC-MS analysis revealed that some volatile compounds are released exclusively by transgenic maize. This study provides evidence that transgenic hybrids enhanced chemical cues under oviposition-induction and helped to increase T. pretiosum efficiency in S. frugiperda control. This finding shows that among the evaluated hybrids, genetically modified hybrids can improve the biological control programs, since they potentialize the egg parasitoid foraging, integrating pest management.
Collapse
Affiliation(s)
| | - M A M Fadini
- Universidade Federal de São João del-Rei - UFSJ, São João del-Rei, Brasil
| | - M S Rocha
- Universidade Federal de São João del-Rei - UFSJ, São João del-Rei, Brasil
| | - C S F Souza
- Universidade Federal de Lavras - UFLA, Lavras, Brasil
| | - B A Barros
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Milho e Sorgo, Sete Lagoas, Brasil
| | - J O F Melo
- Universidade Federal de São João del-Rei - UFSJ, São João del-Rei, Brasil
| | - R G Von Pinho
- Universidade Federal de Lavras - UFLA, Lavras, Brasil
| | - F H Valicente
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Milho e Sorgo, Sete Lagoas, Brasil
| |
Collapse
|
8
|
Liao X, Shi M, Zhang W, Ye Q, Li Y, Feng X, Bhat JA, Kan G, Yu D. Association analysis of GmMAPKs and functional characterization of GmMMK1 to salt stress response in soybean. PHYSIOLOGIA PLANTARUM 2021; 173:2026-2040. [PMID: 34487378 DOI: 10.1111/ppl.13549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the major abiotic constraints affecting the growth and yield of plants including soybean. In this context, the previous studies have documented the role of the mitogen-activated protein kinase (MAPK) cascade in the regulation of salt signaling in model plants. However, there is not a systematic analysis of salt-related MAPKs in soybean. Hence, in this study, we identified a total of 32 GmMAPKs via., genome-wide reanalysis of the MAPK family using the soybean genome v4.0. Based on the transcriptome datasets in the public database, we observed that GmMAPKs are induced by different abiotic stresses, especially salt stress. Furthermore, based on the candidate gene association mapping and haplotype analysis of the GmMAPKs, we identified a salt-related MAPK member, GmMMK1. GmMMK1 possesses significant sequence variations, which affect salt tolerance in soybean at the germination stage. Besides, the overexpression of the GmMMK1 in soybean hairy roots has a significant negative effect on the root growth, leading to increased sensitivity of the GmMMK1-OE plants to salt stress. Moreover, the heterologous expression of the GmMMK1 in Arabidopsis has been also observed to have a negative effect on the germination and root growth under salt stress. The transcriptome analysis and yeast two-hybrid screening showed that hormone signaling and the homeostasis of reactive oxygen species are involved in the GmMMK1 regulation network. In conclusion, the results of this work demonstrated that GmMMK1 is an important negative regulator of the salt stress response, and provides better insights for understanding the role of the MAPKs in soybean salt signaling.
Collapse
Affiliation(s)
- Xiliang Liao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Meiqi Shi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Ye
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Javaid Akhter Bhat
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
9
|
Zhang H, Li F, Li Z, Cheng J, Chen X, Wang Q, Joosten MH, Shan W, Du Y. Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:644-657. [PMID: 33764635 PMCID: PMC8126187 DOI: 10.1111/mpp.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 05/05/2023]
Abstract
A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.
Collapse
Affiliation(s)
- Houxiao Zhang
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Fangfang Li
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Zhenzhen Li
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Jing Cheng
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Xiaokang Chen
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | | | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yu Du
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| |
Collapse
|
10
|
Jin S, Ren Q, Lian L, Cai X, Bian L, Luo Z, Li Z, Ye N, Wei R, He W, Liu W, Chen Z. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. PLANTA 2020; 252:10. [PMID: 32601995 DOI: 10.1007/s00425-020-03407-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Transcriptomic studies in resistant and susceptible tea cultivars have been performed to reveal the different defense molecular mechanisms of tea after E. onukii feeding. The molecular mechanism by which tea plants respond to small green leafhopper Empoasca onukii (Matsuda) damage is unclear. Using the resistant tea plant cultivar Juyan (JY) and the susceptible tea plant cultivar Enbiao (EB) as materials, this study performed RNA-seq on tea leaf samples collected at three time points (6 h, 12 h, 24 h) during exposure of the plants to leafhopper to reveal the molecular mechanisms that are activated in susceptible and resistant tea plant cultivars in response to leafhopper damage. The numbers of DEGs in the susceptible tea cultivar during early (6 h) and late (24 h) stages of leafhopper induction were higher than those in the resistant cultivar at the same time points. The stress responses to leafhopper were most intense at 12 h in both tea cultivars. Pathway enrichment analysis showed that most up-regulated DEGs and their related metabolic pathways were similar in the two tea cultivars. However, during the early stage of leafhopper induction (6 h), jasmonic acid (JA)-related genes were significantly up-regulated in the resistant cultivar. The terpenoid biosynthetic pathway and the α-linolenic acid metabolic pathway were activated earlier in the resistant cultivar and remained activated until the late stage of leafhopper damage. Our results confirmed that after leafhopper damage, the resistant tea cultivar activated its defense responses earlier than the susceptible cultivar, and these defense responses were mainly related to terpenoid metabolism and JA biosynthetic pathway. The results provide important clues for further studies on resistance strategy of tea plants to pest.
Collapse
Affiliation(s)
- Shan Jin
- Key Laboratory of Tea Science of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qianqian Ren
- Key Laboratory of Tea Science of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingli Lian
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Naixing Ye
- Key Laboratory of Tea Science of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rifeng Wei
- Key Laboratory of Tea Science of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Liu
- College of Life Sciences, Ningde Normal University, Ningde, 352100, Fujian, China.
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
11
|
Li D, Halitschke R, Baldwin IT, Gaquerel E. Information theory tests critical predictions of plant defense theory for specialized metabolism. SCIENCE ADVANCES 2020; 6:eaaz0381. [PMID: 32577508 PMCID: PMC7286674 DOI: 10.1126/sciadv.aaz0381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/14/2020] [Indexed: 05/15/2023]
Abstract
Different plant defense theories have provided important theoretical guidance in explaining patterns in plant specialized metabolism, but their critical predictions remain to be tested. Here, we systematically explored the metabolomes of Nicotiana attenuata, from single plants to populations, as well as of closely related species, using unbiased tandem mass spectrometry (MS/MS) analyses and processed the abundances of compound spectrum-based MS features within an information theory framework to test critical predictions of optimal defense (OD) and moving target (MT) theories. Information components of plant metabolomes were consistent with the OD theory but contradicted the main prediction of the MT theory for herbivory-induced dynamics of metabolome compositions. From micro- to macroevolutionary scales, jasmonate signaling was confirmed as the master determinant of OD, while ethylene signaling provided fine-tuning for herbivore-specific responses annotated via MS/MS molecular networks.
Collapse
Affiliation(s)
- Dapeng Li
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Rayko Halitschke
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
- Corresponding author. (E.G.); (I.T.B)
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Corresponding author. (E.G.); (I.T.B)
| |
Collapse
|
12
|
McGale E, Valim H, Mittal D, Morales Jimenez J, Halitschke R, Schuman MC, Baldwin IT. Determining the scale at which variation in a single gene changes population yields. eLife 2020; 9:e53517. [PMID: 32057293 PMCID: PMC7136025 DOI: 10.7554/elife.53517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Plant trait diversity is known to influence population yield, but the scale at which this happens remains unknown: divergent individuals might change yields of immediate neighbors (neighbor scale) or of plants across a population (population scale). We use Nicotiana attenuata plants silenced in mitogen-activated protein kinase 4 (irMPK4) - with low water-use efficiency (WUE) - to study the scale at which water-use traits alter intraspecific population yields. In the field and glasshouse, we observed overyielding in populations with low percentages of irMPK4 plants, unrelated to water-use phenotypes. Paired-plant experiments excluded the occurrence of overyielding effects at the neighbor scale. Experimentally altering field arbuscular mycorrhizal fungal associations by silencing the Sym-pathway gene NaCCaMK did not affect reproductive overyielding, implicating an effect independent of belowground AMF interactions. Additionally, micro-grafting experiments revealed dependence on shoot-expressed MPK4 for N. attenuata to vary its yield per neighbor presence. We find that variation in a single gene, MPK4, is responsible for population overyielding through a mechanism, independent of irMPK4's WUE phenotype, at the aboveground, population scale.
Collapse
Affiliation(s)
- Erica McGale
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Henrique Valim
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Deepika Mittal
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | | | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| |
Collapse
|
13
|
Gely C, Laurance SGW, Stork NE. How do herbivorous insects respond to drought stress in trees? Biol Rev Camb Philos Soc 2019; 95:434-448. [PMID: 31750622 DOI: 10.1111/brv.12571] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023]
Abstract
Increased frequency and severity of drought, as a result of climate change, is expected to drive critical changes in plant-insect interactions that may elevate rates of tree mortality. The mechanisms that link water stress in plants to insect performance are not well understood. Here, we build on previous reviews and develop a framework that incorporates the severity and longevity of drought and captures the plant physiological adjustments that follow moderate and severe drought. Using this framework, we investigate in greater depth how insect performance responds to increasing drought severity for: (i) different feeding guilds; (ii) flush feeders and senescence feeders; (iii) specialist and generalist insect herbivores; and (iv) temperate versus tropical forest communities. We outline how intermittent and moderate drought can result in increases of carbon-based and nitrogen-based chemical defences, whereas long and severe drought events can result in decreases in plant secondary defence compounds. We predict that different herbivore feeding guilds will show different but predictable responses to drought events, with most feeding guilds being negatively affected by water stress, with the exception of wood borers and bark beetles during severe drought and sap-sucking insects and leaf miners during moderate and intermittent drought. Time of feeding and host specificity are important considerations. Some insects, regardless of feeding guild, prefer to feed on younger tissues from leaf flush, whereas others are adapted to feed on senescing tissues of severely stressed trees. We argue that moderate water stress could benefit specialist insect herbivores, while generalists might prefer severe drought conditions. Current evidence suggests that insect outbreaks are shorter and more spatially restricted in tropical than in temperate forests. We suggest that future research on the impact of drought on insect communities should include (i) assessing how drought-induced changes in various plant traits, such as secondary compound concentrations and leaf water potential, affect herbivores; (ii) food web implications for other insects and those that feed on them; and (iii) interactions between the effects on insects of increasing drought and other forms of environmental change including rising temperatures and CO2 levels. There is a need for larger, temperate and tropical forest-scale drought experiments to look at herbivorous insect responses and their role in tree death.
Collapse
Affiliation(s)
- Claire Gely
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University, Nathan, 4111, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science (TESS) and College of Science and Engineering, James Cook University, Cairns, 4878, Australia
| | - Nigel E Stork
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University, Nathan, 4111, Australia
| |
Collapse
|
14
|
Song Y, Wang M, Zeng R, Groten K, Baldwin IT. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. PLANT, CELL & ENVIRONMENT 2019; 42:2945-2961. [PMID: 31348534 DOI: 10.1111/pce.13626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory-elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory-elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory-elicited metabolic and hormone responses in CMNs-connected "receiver" plants after the elicitation of "donor" plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA-Ile) levels in N. attenuata roots but did not affect well-characterized JAs-regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS-elicited "receivers" with CMN connections with "donors" that had been W + OS-elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.
Collapse
Affiliation(s)
- Yuanyuan Song
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
15
|
Zhou S, Chen M, Zhang Y, Gao Q, Noman A, Wang Q, Li H, Chen L, Zhou P, Lu J, Lou Y. OsMKK3, a Stress-Responsive Protein Kinase, Positively Regulates Rice Resistance to Nilaparvata lugens via Phytohormone Dynamics. Int J Mol Sci 2019; 20:E3023. [PMID: 31226870 PMCID: PMC6628034 DOI: 10.3390/ijms20123023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Plants undergo several but very precise molecular, physiological, and biochemical modulations in response to biotic stresses. Mitogen-activated protein kinase (MAPK) cascades orchestrate multiple cellular processes including plant growth and development as well as plant responses against abiotic and biotic stresses. However, the role of MAPK kinases (MAPKKs/MKKs/MEKs) in the regulation of plant resistance to herbivores has not been extensively investigated. Here, we cloned a rice MKK gene, OsMKK3, and investigated its function. It was observed that mechanical wounding, infestation of brown planthopper (BPH) Nilaparvata lugens, and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) could induce the expression of OsMKK3. The over-expression of OsMKK3 (oe-MKK3) increased levels of jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), and abscisic acid (ABA), and decreased SA levels in rice after BPH attack. Additionally, the preference for feeding and oviposition, the hatching rate of BPH eggs, and BPH nymph survival rate were significantly compromised due to over-expression of OsMKK3. Besides, oe-MKK3 also augmented chlorophyll content but impaired plant growth. We confirm that MKK3 plays a pivotal role in the signaling pathway. It is proposed that OsMKK3 mediated positive regulation of rice resistance to BPH by means of herbivory-induced phytohormone dynamics.
Collapse
Affiliation(s)
- Shuxing Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Mengting Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuebai Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ali Noman
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Botany, Government college university, Faisalabad 38040, Pakistan.
| | - Qi Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Heng Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Pengyong Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Murata M, Nakai Y, Kawazu K, Ishizaka M, Kajiwara H, Abe H, Takeuchi K, Ichinose Y, Mitsuhara I, Mochizuki A, Seo S. Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance. PLANT PHYSIOLOGY 2019; 179:1822-1833. [PMID: 30700538 PMCID: PMC6446782 DOI: 10.1104/pp.18.00837] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/18/2019] [Indexed: 05/12/2023]
Abstract
Jasmonic acid (JA) plays an important role in the induction of herbivore resistance in many plants. However, JA-independent herbivore resistance has been suggested. An herbivore-resistance-inducing substance was isolated from Tobacco mosaic virus-infected tobacco (Nicotiana tabacum) leaves in which a hypersensitive response (HR) was induced and identified as loliolide, which has been identified as a β-carotene metabolite. When applied to tomato (Solanum lycopersicum) leaves, loliolide decreased the survival rate of the two-spotted spider mite, Tetranychus urticae, egg deposition by the same pest, and the survival rate of larvae of the common cutworm Spodoptera litura without exhibiting toxicity against these herbivores. Endogenous loliolide levels increased not only with an infestation by S litura larvae, but also with the exogenous application of their oral secretions in tomato. A microarray analysis identified cell-wall-associated defense genes as loliolide-responsive tomato genes, and exogenous JA application did not induce the expression of these genes. Suppressor of zeaxanthin-less (szl), an Arabidopsis (Arabidopsis thaliana) mutant with a point mutation in a key gene of the β-carotene metabolic pathway, exhibited the decreased accumulation of endogenous loliolide and increased susceptibility to infestation by the western flower thrip (Frankliniella occidentalis). A pretreatment with loliolide decreased susceptibility to thrips in the JA-insensitive Arabidopsis mutant coronatine-insensitive1 Exogenous loliolide did not restore reduced electrolyte leakage in szl in response to a HR-inducing bacterial strain. These results suggest that loliolide functions as an endogenous signal that mediates defense responses to herbivores, possibly independently of JA, at least in tomato and Arabidopsis plants.
Collapse
Affiliation(s)
- Mika Murata
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsu, Mie, 514-2392, Japan
| | - Yusuke Nakai
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kurume, Fukuoka 839-8503, Japan
| | - Kei Kawazu
- National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan
| | - Masumi Ishizaka
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8604, Japan
| | - Hideyuki Kajiwara
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8604, Japan
| | - Hiroshi Abe
- Experimantal Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kasumi Takeuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Ichiro Mitsuhara
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Atsushi Mochizuki
- National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan
| | - Shigemi Seo
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
17
|
Zhang W, Song J, Yue S, Duan K, Yang H. MhMAPK4 from Malus hupehensis Rehd. decreases cell death in tobacco roots by controlling Cd 2+ uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:230-240. [PMID: 30388541 DOI: 10.1016/j.ecoenv.2018.09.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) induces cell death in plant roots. Mitogen-activated protein kinase (MAPK) plays a role in the regulation of cell death induced by Cd in plant roots. In this study, MhMAPK4 was isolated from the roots of Malus hupehensis. Subcellular localization showed that the MhMAPK4 protein was located in the cell membrane and cytoplasm and is a transmembrane protein that is characterized by hydrophily. The expression of MhMAPK4 in the roots of M. hupehensis was up-regulated by Cd sulfate and Cd chloride. Phenotypic comparison under Cd stress showed that the growth of wild-type (WT) tobacco was lower than the transgenic lines overexpressing MhMAPK4. The fresh weight and the root length of WT also was lower than that of the transgenic tobacco. The net Cd2+ influx in the tobacco roots was decreased by the overexpression of MhMAPK4, as was root Cd accumulation. The recovery time of the Cd2+ influx to stable state in the transgenic tobacco was also shorter than the WT. The expression of iron-regulated transporter 1 (NtIRT1) and natural resistance associated macrophage protein 5 (NtNRAMP5) was relatively low in the transgenic lines under Cd stress. Cell death and apoptosis in the tobacco roots was reduced following the overexpression of MhMAPK4. The activity of vacuolar processing enzyme (VPE) and the transcript level of VPE in the transgenic tobacco was lower than that of WT under Cd stress. In addition, the electrolyte leakage and malondialdehyde and hydrogen peroxide contents in the transgenic tobacco were lower than those of WT, whereas the antioxidant enzyme activity and expression were higher. These results suggest that MhMAPK4 regulates Cd accumulation by mediating Cd2+ uptake by the roots, and controls Cd-caused cell death by adjusting VPE activity.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Songqing Yue
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Kaixuan Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
18
|
Hu Q, Zhu L, Zhang X, Guan Q, Xiao S, Min L, Zhang X. GhCPK33 Negatively Regulates Defense against Verticillium dahliae by Phosphorylating GhOPR3. PLANT PHYSIOLOGY 2018; 178:876-889. [PMID: 30150302 PMCID: PMC6181045 DOI: 10.1104/pp.18.00737] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 05/20/2023]
Abstract
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is a destructive vascular disease in plants. Approximately 200 dicotyledonous plant species in temperate and subtropical regions are susceptible to this notorious pathogen. Previous studies showed that jasmonic acid (JA) plays a crucial role in plant-V. dahliae interactions. V. dahliae infection generally induces significant JA accumulation in local and distal tissues of the plant. Although JA biosynthesis and the associated enzymes have been studied intensively, the precise mechanism regulating JA biosynthesis upon V. dahliae infection remains unknown. Here, we identified the calcium-dependent protein kinase GhCPK33 from upland cotton (Gossypium hirsutum) as a negative regulator of resistance to V. dahliae that directly manipulates JA biosynthesis. Knockdown of GhCPK33 by Agrobacterium tumefaciens-mediated virus-induced gene silencing constitutively activated JA biosynthesis and JA-mediated defense responses and enhanced resistance to V dahliae Further analysis revealed that GhCPK33 interacts with 12-oxophytodienoate reductase3 (GhOPR3) in peroxisomes. GhCPK33 phosphorylates GhOPR3 at threonine-246, leading to decreased stability of GhOPR3, which consequently limits JA biosynthesis. We propose that GhCPK33 is a potential molecular target for improving resistance to Verticillium wilt disease in cotton.
Collapse
Affiliation(s)
- Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xiangnan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Qianqian Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Ling Min
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
19
|
Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Sci Rep 2018; 8:9432. [PMID: 29930298 PMCID: PMC6013483 DOI: 10.1038/s41598-018-27904-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) are molecules that play a prominent role in plant response to numerous stresses, including plant interactions with herbivores. Previous findings indicate that Arabidopsis plants showed an increase in H2O2 accumulation after Tetranychus urticae infestation. Despite its importance, no information has been reported on the relationships between ROS-metabolizing systems and the spider mite-triggered plant-induced responses. In this work, four ROS-related genes that were differentially expressed between the resistant Bla-2 and the susceptible Kon Arabidopsis accessions were selected for the analysis. These genes encode proteins putatively involved in the generation (BBE22) and degradation (GPX7 and GSTU4) of H2O2, and in the degradation of ascorbate (AO). Overexpressing BBE22 and silencing GPX7, GSTU4 and AO resulted in higher leaf damage and better mite performance relative to the wild-type plants. Minor effects on H2O2 accumulation obscure major effects on the expression of genes related to ROS-metabolism and JA and SA signaling pathways, and on ROS-related enzymatic activities. In conclusion, the integration of ROS and ROS-related compounds and enzymes in the response of Arabidopsis to the spider mite T. urticae was confirmed. However, the complex network involved in ROS signaling makes difficult to predict the impact of a specific genetic manipulation.
Collapse
|
20
|
Castano-Duque L, Helms A, Ali JG, Luthe DS. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. J Chem Ecol 2018; 44:727-745. [PMID: 29926336 DOI: 10.1007/s10886-018-0972-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore. We used advanced proteomic and network analyses to identify metabolic pathways that contribute to global defenses deployed by the insect resistant maize genotype, Mp708, infested with WCR. Using proteomic analysis, 4878 proteins in roots and leaves were detected and of these 863 showed significant changes of abundance during WCR infestation. Protein abundance patterns were analyzed using hierarchical clustering, protein correlation and protein-protein interaction networks. All three data analysis pipelines showed that proteins such as jasmonic acid biosynthetic enzymes, serine proteases, protease inhibitors, proteins involved in biosynthesis and signaling of ethylene, and enzymes producing reactive oxygen species and isopentenyl pyrophosphate, a precursor for volatile production, were upregulated in roots during WCR infestation. In leaves, highly abundant proteins were involved in signal perception suggesting activation of systemic signaling. We conclude that these protein networks contribute to the overall herbivore defense mechanisms in Mp708. Because the plants were grown in potting mix and not sterilized sand, we found that both microbial and insect defense-related proteins were present in the roots. The presence of the high constitutive levels of reduced ascorbate in roots and benzothiazole in the root volatile profiles suggest a tight tri-trophic interaction among the plant, soil microbiomes and WCR-infested roots suggesting that defenses against insects coexist with defenses against bacteria and fungi due to the interaction between roots and soil microbiota. In this study, which is one of the most complete descriptions of plant responses to root-feeding herbivore, we established an analysis pipeline for proteomics data that includes network biology that can be used with different types of "omics" data from a variety of organisms.
Collapse
Affiliation(s)
- Lina Castano-Duque
- Department of Biology, Duke University, 124 Science Drive, French Science Building, Durham, NC, 27708, USA.
| | - Anjel Helms
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jared Gregory Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dawn S Luthe
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
Santamaria ME, Arnaiz A, Gonzalez-Melendi P, Martinez M, Diaz I. Plant Perception and Short-Term Responses to Phytophagous Insects and Mites. Int J Mol Sci 2018; 19:E1356. [PMID: 29751577 PMCID: PMC5983831 DOI: 10.3390/ijms19051356] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| |
Collapse
|
22
|
Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. Int J Mol Sci 2018; 19:ijms19041182. [PMID: 29652796 PMCID: PMC5979284 DOI: 10.3390/ijms19041182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinases (MPKs) play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB) Chilo suppressalis, and treatment with jasmonic acid (JA), but not by treatment with salicylic acid (SA). The overexpression of OsMPK4 (oe-MPK4) enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile), ethylene (ET), and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs), and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth.
Collapse
|
23
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
24
|
Basu S, Varsani S, Louis J. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:13-21. [PMID: 28840787 DOI: 10.1094/mpmi-07-17-0183-fi] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chewing herbivores, such as caterpillars and beetles, while feeding on the host plant, cause extensive tissue damage and release a wide array of cues to alter plant defenses. Consequently, the cues can have both beneficial and detrimental impacts on the chewing herbivores. Herbivore-associated molecular patterns (HAMPs) are molecules produced by herbivorous insects that aid them to elicit plant defenses leading to impairment of insect growth, while effectors suppress plant defenses and contribute to increased susceptibility to subsequent feeding by chewing herbivores. Besides secretions that originate from glands (e.g., saliva) and fore- and midgut regions (e.g., oral secretions) of chewing herbivores, recent studies have shown that insect frass and herbivore-associated endosymbionts also play a critical role in modulating plant defenses. In this review, we provide an update on a growing body of literature that discusses the chewing insect HAMPs and effectors and the mechanisms by which they modulate host defenses. Novel "omic" approaches and availability of new tools will help researchers to move forward this discipline by identifying and characterizing novel insect HAMPs and effectors and how these herbivore-associated cues are perceived by host plant receptors.
Collapse
Affiliation(s)
| | | | - Joe Louis
- 1 Department of Entomology; and
- 2 Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
25
|
Guo H, Peng X, Gu L, Wu J, Ge F, Sun Y. Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5923-5935. [PMID: 29140446 DOI: 10.1093/jxb/erx394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous research has shown that elevated CO2 reduces plant resistance against insects and enhances the water use efficiency of C3 plants, which improves the feeding efficiency of aphids. Although plant mitogen-activated protein kinases (MAPKs) are known to regulate water relations and phytohormone-mediated resistance, little is known about the effect of elevated CO2 on MAPKs and the cascading effects on aphids. By using stably transformed Nicotiana attenuata plants silenced in MPK4, wound-induced protein kinase (WIPK), or salicylic acid-induced protein kinase (SIPK), we determined the functions of MAPKs in plant-aphid interactions and their responses to elevated CO2. The results showed that among all plant genotypes, inverted repeat MPK4 plants had the largest stomatal apertures, the lowest water content, the strongest jasmonic acid (JA)-dependent resistance, and the lowest aphid numbers, suggesting that MPK4 affects plant responses to aphids by regulating stomatal aperture and JA-dependent resistance. Regardless of aphid infestation, elevated CO2 up-regulated MPK4, but not WIPK or SIPK, in wild-type plants. Elevated CO2 increased the number, mean relative growth rate, and feeding efficiency of aphids on all plant genotypes except inverted repeat MPK4. We conclude that MPK4 is a CO2-responsive plant determinant that regulates the molecular interaction between plants and aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhong Peng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyuan Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Pradhan M, Pandey P, Gase K, Sharaff M, Singh RK, Sethi A, Baldwin IT, Pandey SP. Argonaute 8 (AGO8) Mediates the Elicitation of Direct Defenses against Herbivory. PLANT PHYSIOLOGY 2017; 175:927-946. [PMID: 28811334 PMCID: PMC5619897 DOI: 10.1104/pp.17.00702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/11/2017] [Indexed: 05/04/2023]
Abstract
In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Murali Sharaff
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Ravi K Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Avinash Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
27
|
Meza-Canales ID, Meldau S, Zavala JA, Baldwin IT. Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception. PLANT, CELL & ENVIRONMENT 2017; 40:1039-1056. [PMID: 27925291 DOI: 10.1111/pce.12874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 05/24/2023]
Abstract
Herbivory-induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (AC ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1-5 ribulose-1,5-bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12-oxo-phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen-activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen-activated protein kinase 4 in CO2 -mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid-mediated defence responses, also elicit 12-oxo-phytodienoic acid-mediated changes in stomatal conductance and AC , an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack.
Collapse
Affiliation(s)
- Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- KWS SAAT AG, Molecular Physiology, Einbeck, Niedersachsen, Germany
| | - Jorge A Zavala
- Facultad de Agronomía, Cátedra de Bioquímica - INBA/CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
28
|
Santamaría ME, Martinez M, Arnaiz A, Ortego F, Grbic V, Diaz I. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:975. [PMID: 28649257 PMCID: PMC5466143 DOI: 10.3389/fpls.2017.00975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control.
Collapse
Affiliation(s)
- M. Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Félix Ortego
- Departamento de Biología Medioambiental, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|
29
|
Zhou W, Brockmöller T, Ling Z, Omdahl A, Baldwin IT, Xu S. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana. eLife 2016; 5:e19531. [PMID: 27813478 PMCID: PMC5115867 DOI: 10.7554/elife.19531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants.
Collapse
Affiliation(s)
- Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Brockmöller
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zhihao Ling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ashton Omdahl
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Brigham Young University, Provo, United States
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
30
|
Audusseau H, de la Paz Celorio-Mancera M, Janz N, Nylin S. Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host. BMC Evol Biol 2016; 16:144. [PMID: 27356867 PMCID: PMC4928354 DOI: 10.1186/s12862-016-0709-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plant-feeding insects, the evolutionary retention of polyphagy remains puzzling. A better understanding of the relationship between these organisms and changes in the metabolome of their host plants is likely to suggest functional links between them, and may provide insights into how polyphagy is maintained. RESULTS We investigated the phenological change of Cynoglossum officinale, and how a generalist butterfly species, Vanessa cardui, responded to this change. We used untargeted metabolite profiling to map plant seasonal changes in both primary and secondary metabolites. We compared these data to differences in larval performance on vegetative plants early and late in the season. We also performed two oviposition preference experiments to test females' ability to choose between plant developmental stages (vegetative and reproductive) early and late in the season. We found clear seasonal changes in plant primary and secondary metabolites that correlated with larval performance. The seasonal change in plant metabolome reflected changes in both nutrition and toxicity and resulted in zero survival in the late period. However, large differences among families in larval ability to feed on C. officinale suggest that there is genetic variation for performance on this host. Moreover, females accepted all plants for oviposition, and were not able to discriminate between plant developmental stages, in spite of the observed overall differences in metabolite profile potentially associated with differences in suitability as larval food. CONCLUSIONS In V. cardui, migratory behavior, and thus larval feeding times, are not synchronized with plant phenology at the reproductive site. This lack of synchronization, coupled with the observed lack of discriminatory oviposition, obviously has potential fitness costs. However, this "opportunistic" behavior may as well function as a source of potential host plant evolution, promoting for example the acceptance of new plants.
Collapse
Affiliation(s)
- Hélène Audusseau
- UMR Institute of Ecology and Environmental Sciences-Paris, Paris-Est Créteil University, Créteil, France. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Liang J, Wang Y, Ding G, Li W, Yang G, He N. Biotic stress-induced expression of mulberry cystatins and identification of cystatin exhibiting stability to silkworm gut proteinases. PLANTA 2015; 242:1139-1151. [PMID: 26070440 DOI: 10.1007/s00425-015-2345-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Biotic stresses induce the expression of mulberry cystatins. MaCPI-4 protein is stable in silkworm digestive fluid and accumulates in gut food debris and frass. Plant cystatins are considered to be involved in defense responses to insect herbivores though little is known about how cystatins from the natural host respond to a specialist herbivory and the following postingestive interaction is also poorly understood. Here, we studied the biotic stress-mediated inductions of cystatins from mulberry tree, and examined the stability of mulberry cystatin proteins in the gut of silkworm, Bombyx mori, a specialist insect feeding on mulberry leaf. First, we cloned and characterized six cystatin genes from a mulberry cultivar, Morus atropurpurea Roxb., named as MaCPI-1 to MaCPI-6. The recombinant MaCPI-1, MaCPI-3 and MaCPI-4 proteins, which showed inhibitory effects against papain in vitro, were produced. Silkworm herbivory as well as methyl jasmonate (MeJA) treatment induced the expression of five mulberry cystatin genes, and the highest inductions were observed from MaCPI-1 and MaCPI-6. Mechanical wounding led to the inductions of four cystatin genes. The differential induction occurred in MaCPI-2. The induced protein changes were detected from three mulberry cystatins comprising MaCPI-1, MaCPI-3 and MaCPI-4. In vivo and in vitro assays showed that MaCPI-1 and MaCPI-3 proteins were susceptible to silkworm digestive fluid and MaCPI-4 had an antidigestive stability, and was detected in silkworm gut and frass. Collectively, our data indicated that biotic stresses resulted in the transcriptional inductions and protein changes of mulberry cystatins (MaCPIs), and identified MaCPI-4 with stability in the gut of its specialist herbivore.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Yupeng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangyu Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Wensheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangwei Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Schmelz EA. Impacts of insect oral secretions on defoliation-induced plant defense. CURRENT OPINION IN INSECT SCIENCE 2015; 9:7-15. [PMID: 32846712 DOI: 10.1016/j.cois.2015.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 05/24/2023]
Abstract
Plant responses to biotic stress involve non-self perception, signaling, and altered defense phenotypes. During attack, defoliating insects deposit gland secretions (GS) and complex foregut derived oral secretions (OS) that include GS and combined products of plant, insect, and microbial interactions. GS-derived and OS-derived biochemicals that trigger defense are termed Herbivore Associated Molecular Patterns (HAMPs) while those that promote susceptibility are termed effectors. These functions are highly context and species specific. The magnitude and direction of plant responses are orchestrated by the interaction of damage, OS/GS components, predicted receptor-ligand interactions, ion fluxes, protein kinase signaling cascades, phytohormone interactions, transcription factor activation, altered translation, and defense biosynthesis. Unlike plant-pathogen recognition, a remaining challenge is the discovery of plant receptors for defoliator-derived HAMPs.
Collapse
Affiliation(s)
- Eric A Schmelz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, United States.
| |
Collapse
|
33
|
Hettenhausen C, Schuman MC, Wu J. MAPK signaling: a key element in plant defense response to insects. INSECT SCIENCE 2015; 22:157-64. [PMID: 24753304 PMCID: PMC5295641 DOI: 10.1111/1744-7917.12128] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Insects have long been the most abundant herbivores, and plants have evolved sophisticated mechanisms to defend against their attack. In particular, plants can perceive specific patterns of tissue damage associated with insect herbivory. Some plant species can perceive certain elicitors in insect oral secretions (OS) that enter wounds during feeding, and rapidly activate a series of intertwined signaling pathways to orchestrate the biosynthesis of various defensive metabolites. Mitogen-activated protein kinases (MAPKs), common to all eukaryotes, are involved in the orchestration of many cellular processes, including development and stress responses. In plants, at least two MAPKs, salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), are rapidly activated by wounding or insect OS; importantly, genetic studies using transgenic or mutant plants impaired in MAPK signaling indicated that MAPKs play critical roles in regulating the herbivory-induced dynamics of phytohormones, such as jasmonic acid, ethylene and salicylic acid, and MAPKs are also required for transcriptional activation of herbivore defense-related genes and accumulation of defensive metabolites. In this review, we summarize recent developments in understanding the functions of MAPKs in plant resistance to insect herbivores.
Collapse
|
34
|
Meldau S, Woldemariam MG, Fatangare A, Svatos A, Galis I. Using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to study carbon allocation in plants after herbivore attack. BMC Res Notes 2015; 8:45. [PMID: 25888779 PMCID: PMC4341241 DOI: 10.1186/s13104-015-0989-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although leaf herbivory-induced changes in allocation of recently assimilated carbon between the shoot and below-ground tissues have been described in several species, it is still unclear which part of the root system is affected by resource allocation changes and which signalling pathways are involved. We investigated carbon partitioning in root tissues following wounding and simulated leaf herbivory in young Nicotiana attenuata plants. RESULTS Using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), which was incorporated into disaccharides in planta, we found that simulated herbivory reduced carbon partitioning specifically to the root tips in wild type plants. In jasmonate (JA) signalling-deficient COI1 plants, the wound-induced allocation of [(18)F]FDG to the roots was decreased, while more [(18)F]FDG was transported to young leaves, demonstrating an important role of the JA pathway in regulating the wound-induced carbon partitioning between shoots and roots. CONCLUSIONS Our data highlight the use of [(18)F]FDG to study stress-induced carbon allocation responses in plants and indicate an important role of the JA pathway in regulating wound-induced shoot to root signalling.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, 04107, Leipzig, Germany.
- Present address: KWS SAAT AG, Molecular Physiology, R&D, RD-ME-MP, Grimsehlstrasse 31, D-37555, Einbeck, Germany.
| | - Melkamu G Woldemariam
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- Present address: Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, 14853, NY, USA.
| | - Amol Fatangare
- Mass Spectrometry Research Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
| | - Ales Svatos
- Mass Spectrometry Research Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
| | - Ivan Galis
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- Present address: Okayama University, Institute of Plant Science and Resources, Chuo 2-20-1, 710-0046, Kurashiki, Japan.
| |
Collapse
|
35
|
Schäfer M, Meza-Canales ID, Navarro-Quezada A, Brütting C, Vanková R, Baldwin IT, Meldau S. Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:198-212. [PMID: 24924599 PMCID: PMC4286249 DOI: 10.1111/jipb.12227] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/11/2014] [Indexed: 05/21/2023]
Abstract
Nearly half a century ago insect herbivores were found to induce the formation of green islands by manipulating cytokinin (CK) levels. However, the response of the CK pathway to attack by chewing insect herbivores remains unclear. Here, we characterize the CK pathway of Nicotiana attenuata (Torr. ex S. Wats.) and its response to wounding and perception of herbivore-associated molecular patterns (HAMPs). We identified 44 genes involved in CK biosynthesis, inactivation, degradation, and signaling. Leaf wounding rapidly induced transcriptional changes in multiple genes throughout the pathway, as well as in the levels of CKs, including isopentenyladenosine and cis-zeatin riboside; perception of HAMPs present in the oral secretions (OS) of the specialist herbivore Manduca sexta amplified these responses. The jasmonate pathway, which triggers many herbivore-induced processes, was not required for these HAMP-triggered changes, but rather suppressed the CK responses. Interestingly CK pathway changes were observed also in systemic leaves in response to wounding and OS application indicating a role of CKs in mediating long distance systemic processes in response to herbivory. Since wounding and grasshopper OS elicited similar accumulations of CKs in Arabidopsis thaliana L., we propose that CKs are integral components of wounding and HAMP-triggered responses in many plant species.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Aura Navarro-Quezada
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR165 02 Prague 6-Lysolaje, Czech Republic
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology07745, Jena, Germany
- German Centre for integrative Biodiversity Research (iDiv)04107, Leipzig, Germany
| |
Collapse
|
36
|
Xu S, Zhou W, Pottinger S, Baldwin IT. Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC PLANT BIOLOGY 2015; 15:2. [PMID: 25592329 PMCID: PMC4304619 DOI: 10.1186/s12870-014-0406-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/22/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Herbivore-induced defence responses are often specific - different herbivores induce different defence responses in plants - and their specificity is largely mediated by chemical cues (herbivore-associated elicitors: HAEs) in insect oral or oviposition secretions. However, the specificity and the mechanisms of HAE-induced defence have not been investigated in the context of the evolutionary relationships among plant species. Here we compare the responses of six closely related Nicotiana species to a synthetic elicitor, N-linolenoyl-glutamic acid (C18:3-Glu) and HAE of two insect herbivores (the Solanaceae specialist Manduca sexta and generalist Spodoptera littoralis). RESULTS HAE-induced defences are highly specific among closely related Nicotiana species at three perspectives. 1) A single Nicotiana species can elicit distinct responses to different HAEs. N. pauciflora elicited increased levels of JA and trypsin proteinase inhibitors (TPI) in response to C18:3-Glu and the oral secretions of M. sexta (OS Ms ) but not to oral secretions of S. littoralis (OS Sl ). In contrast, N. miersii only responded to OS Sl but not to the other two HAEs. The specific responses to different HAEs in Nicotiana species are likely due to the perception by the plant of each specific component of the HAE. 2) One HAE can induce different defence responses among closely related Nicotiana species. OS Ms and C18:3-Glu induced JA and TPI accumulations in N. linearis, N. attenuata, N. acuminata and N. pauciflora, but not in N. miersii and N. obtusifolia. 3) The effect of HAE-induced defences differ for the Solanaceae specialist M. sexta and the generalist S. littoralis. Among the four tested Nicotiana species, while the growth rate of M. sexta was only reduced by the induced defences elicited by C18:3-Glu; the growth rate of S. littoralis can be reduced by the induced defences elicited by all three HAEs. This is likely due to differences in the susceptibility of the specialist M. sexta and generalist S. littoralis to induced defences of their host. CONCLUSIONS Closely related Nicotiana species elicit highly specific defence responses to herbivore associated elicitors and provide an ideal framework for investigating the molecular mechanisms and evolutionary divergence of induced resistance in plants.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Sarah Pottinger
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
37
|
Scholz SS, Reichelt M, Mekonnen DW, Ludewig F, Mithöfer A. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response. FRONTIERS IN PLANT SCIENCE 2015; 6:1128. [PMID: 26734035 PMCID: PMC4686679 DOI: 10.3389/fpls.2015.01128] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 05/19/2023]
Abstract
The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores.
Collapse
Affiliation(s)
- Sandra S. Scholz
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Dereje W. Mekonnen
- Department Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Frank Ludewig
- Department Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Division of Biochemistry, Department of Biology, University of Erlangen-NurembergErlangen, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical EcologyJena, Germany
- *Correspondence: Axel Mithöfer
| |
Collapse
|
38
|
Hettenhausen C, Heinrich M, Baldwin IT, Wu J. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC PLANT BIOLOGY 2014; 14:326. [PMID: 25430398 PMCID: PMC4263023 DOI: 10.1186/s12870-014-0326-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/06/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. RESULTS Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. CONCLUSIONS Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.
Collapse
Affiliation(s)
| | - Maria Heinrich
- />Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Ian T Baldwin
- />Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Jianqiang Wu
- />Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
| |
Collapse
|
39
|
Mitsunami T, Nishihara M, Galis I, Alamgir KM, Hojo Y, Fujita K, Sasaki N, Nemoto K, Sawasaki T, Arimura GI. Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura. PLoS One 2014; 9:e108849. [PMID: 25268129 PMCID: PMC4182574 DOI: 10.1371/journal.pone.0108849] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022] Open
Abstract
Anthocyanin pigments and associated flavonoids have demonstrated antioxidant properties and benefits for human health. Consequently, current plant bioengineers have focused on how to modify flavonoid metabolism in plants. Most of that research, however, does not consider the role of natural biotic stresses (e.g., herbivore attack). To understand the influence of herbivore attack on the metabolic engineering of flavonoids, we examined tobacco plants overexpressing the Arabidopsis PAP1 gene (encoding an MYB transcription factor), which accumulated anthocyanin pigments and other flavonoids/phenylpropanoids. In comparison to wild-type and control plants, transgenic plants exhibited greater resistance to Spodoptera litura. Moreover, herbivory suppressed the PAP1-induced increase of transcripts of flavonoid/phenylpropanoid biosynthetic genes (e.g., F3H) and the subsequent accumulation of these genes' metabolites, despite the unaltered PAP1 mRNA levels after herbivory. The instances of down-regulation were independent of the signaling pathways mediated by defense-related jasmonates but were relevant to the levels of PAP1-induced and herbivory-suppressed transcription factors, An1a and An1b. Although initially F3H transcripts were suppressed by herbivory, after the S. litura feeding was interrupted, F3H transcripts increased. We hypothesize that in transgenic plants responding to herbivory, there is a complex mechanism regulating enriched flavonoid/phenylpropanoid compounds, via biotic stress signals.
Collapse
Affiliation(s)
- Tomoko Mitsunami
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, Japan
| | | | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kabir Md Alamgir
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | | | | | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
40
|
Lawrence SD, Novak NG, Jones RW, Farrar RR, Blackburn MB. Herbivory responsive C2H2 zinc finger transcription factor protein StZFP2 from potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:226-233. [PMID: 24811678 DOI: 10.1016/j.plaphy.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 04/11/2014] [Indexed: 05/28/2023]
Abstract
While C2H2 zinc finger transcription factors (TF) are often regulated by abiotic stress, their role during insect infestation has been overlooked. This study demonstrates that the transcripts of the zinc finger transcription factors StZFP1 and StZFP2 are induced in potato (Solanum tuberosum L.) upon infestation by either the generalist tobacco hornworm (THW, Manduca sexta L.) or the specialist Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). StZFP1 has been previously characterized as conferring salt tolerance to transgenic tobacco and its transcript is induced by Phytophthora infestans and several abiotic stresses. StZFP2 has not been characterized previously, but contains the hallmarks of a C2H2 zinc finger TF, with two conserved zinc finger domains and DLN motif, which encodes a transcriptional repressor domain. Expression studies demonstrate that StZFP2 transcript is also induced by tobacco hornworm and Colorado potato beetle. These observations expand the role of the C2H2 transcription factor in potato to include the response to chewing insect pests.
Collapse
Affiliation(s)
- Susan D Lawrence
- USDA-ARS, Invasive Insect Biocontrol and Behavior Lab, BARC-West, 10300 Baltimore Ave. Bldg 011A, Rm 214, Beltsville, MD 20705, USA.
| | - Nicole G Novak
- USDA-ARS, Invasive Insect Biocontrol and Behavior Lab, BARC-West, 10300 Baltimore Ave. Bldg 011A, Rm 214, Beltsville, MD 20705, USA.
| | - Richard W Jones
- USDA-ARS, Genetic Improvement for Fruits and Vegetables Lab, BARC-West, 10300 Baltimore Ave., Bldg 010A, Rm 241, Beltsville, MD 20705, USA.
| | - Robert R Farrar
- USDA-ARS, Invasive Insect Biocontrol and Behavior Lab, BARC-West, 10300 Baltimore Ave. Bldg 011A, Rm 214, Beltsville, MD 20705, USA.
| | - Michael B Blackburn
- USDA-ARS, Invasive Insect Biocontrol and Behavior Lab, BARC-West, 10300 Baltimore Ave. Bldg 011A, Rm 214, Beltsville, MD 20705, USA.
| |
Collapse
|
41
|
Fragoso V, Rothe E, Baldwin IT, Kim SG. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance. THE NEW PHYTOLOGIST 2014; 202:1335-1345. [PMID: 24580101 PMCID: PMC5156298 DOI: 10.1111/nph.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/24/2014] [Indexed: 05/19/2023]
Abstract
While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses.
Collapse
Affiliation(s)
- Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Eva Rothe
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
42
|
Wang L, Wu J. The essential role of jasmonic acid in plant-herbivore interactions--using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 2013; 40:597-606. [PMID: 24377866 DOI: 10.1016/j.jgg.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022]
Abstract
The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate the accumulation of various secondary metabolites that confer resistance to herbivores. Nicotiana attenuata is a wild tobacco species that inhabits western North America. More than fifteen years of study and its unique interaction with the specialist herbivore insect Manduca sexta have made this plant one of the best models for studying plant-herbivore interactions. Here we review the recent progress in understanding the elicitation of JA accumulation by herbivore-specific elicitors, the regulation of JA biosynthesis, JA signaling, and the herbivore-defense traits in N. attenuata.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
43
|
Strauss SY. Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.01093.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|