1
|
De Rose S, Sillo F, Ghirardo A, Perotto S, Schnitzler JP, Balestrini R. Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds. IMA Fungus 2024; 15:31. [PMID: 39456087 PMCID: PMC11503967 DOI: 10.1186/s43008-024-00165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction. To address this gap, we employed transcriptomics and metabolomics to investigate the early responses occurring in the mycorrhizal fungus Tulasnella sp. isolate SV6 when co-cultivated with orchid seeds of Serapias vomeracea. The integration of data from gene expression and metabolite profiling revealed the activation of some fungal signalling pathways before the establishment of the symbiosis. Prior to seed contact, an indole-related metabolite was produced by the fungus, and significant changes in the fungal lipid profile occurred throughout the symbiotic process. Additionally, the expression of plant cell wall-degrading enzymes (PCWDEs) was observed during the pre-symbiotic stage, as the fungus approached the seeds, along with changes in amino acid metabolism. Thus, the dual-omics approach employed in this study yielded novel insights into the symbiotic relationship between orchids and ORM fungi and suggest that the ORM fungus responds to the presence of the orchid seeds prior to contact.
Collapse
Affiliation(s)
- Silvia De Rose
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Andrea Ghirardo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
2
|
Zhang W, Qin J, Feng JQ, Dong XM, Hu H, Zhang SB. A mycoheterotrophic orchid uses very limited soil inorganic nitrogen in its natural habitat. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154367. [PMID: 39369620 DOI: 10.1016/j.jplph.2024.154367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Mycoheterotrophic plants acquire nitrogen (N) directly from the soil and through their symbiotic fungi. The fungi-derived N has received considerable attention, but the contribution of soil-derived N has been largely overlooked. We investigated how the leafless, rootless, and almost mycoheterotrophic orchid Cymbidium macrorhizon obtains soil N by applying 15N-labeled ammonium nitrate in its natural habitat, and tracking metabolite accumulation and mycorrhizal fungal association after N application. The decline of N in the rhizome from flowering to fruiting indicated a transfer of N from the rhizome to fruits. At current dose of N application (0.6 g NH4NO3 each plant), only 1.5% of the plant's N was derived from fertilizer, resulting in a low nitrogen use efficiency of 0.27%. The majority of those newly absorbed N (88.89%) was found sank in the rhizome. Amino acids (or their derivatives) and alkaloids were predominant differentially accumulated nitrogenous metabolites after N application, with amino acids occurring in both fruits and the rhizome, and alkaloids primarily in the fruits. The addition of N did not alter the richness of mycorrhizal fungi, but did affect their relative abundance. Our findings suggest that Cymbidium macrorhizon uses very limited soil inorganic nitrogen in its natural habitat, and the root-like rhizome primarily stores N rather than absorbs its inorganic forms, offering new insights into how mycoheterotrophic plants utilize soil N, and the influence of nutrient availability on the orchid-fungi association.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Jiao Qin
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Jing-Qiu Feng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Pujasatria GC, Miura C, Yamaguchi K, Shigenobu S, Kaminaka H. Colonization by orchid mycorrhizal fungi primes induced systemic resistance against necrotrophic pathogen. FRONTIERS IN PLANT SCIENCE 2024; 15:1447050. [PMID: 39145195 PMCID: PMC11322130 DOI: 10.3389/fpls.2024.1447050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Orchids and arbuscular mycorrhiza (AM) plants evolved independently and have different structures and fungal partners, but they both facilitate nutrient uptake. Orchid mycorrhiza (OM) supports orchid seed germination, but unlike AM, its role in disease resistance of mature plants is largely unknown. Here, we examined whether OM induces systemic disease resistance against a necrotrophic pathogen in a similar fashion to AM. We investigated the priming effect of mycorrhizal fungi inoculation on resistance of a terrestrial orchid, Bletilla striata, to soft rot caused by Dickeya fangzhongdai. We found that root colonization by a compatible OM fungus primed B. striata seedlings and induced systemic resistance against the infection. Transcriptome analysis showed that priming was mediated by the downregulation of jasmonate and ethylene pathways and that these pathways are upregulated once infection occurs. Comparison with the reported transcriptome of AM fungus-colonized rice leaves revealed similar mechanisms in B. striata and in rice. These findings highlight a novel aspect of commonality between OM and AM plants in terms of induced systemic resistance.
Collapse
Affiliation(s)
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
4
|
Zhao DK, Mou ZM, Ruan YL. Orchids acquire fungal carbon for seed germination: pathways and players. TRENDS IN PLANT SCIENCE 2024; 29:733-741. [PMID: 38423891 DOI: 10.1016/j.tplants.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
To germinate in nature, orchid seeds strictly rely on seed germination-promoting orchid mycorrhizal fungi (sgOMFs) for provision of carbon nutrients. The underlying delivery pathway, however, remains elusive. We develop here a plausible model for sugar transport from sgOMFs to orchid embryonic cells to fuel germination. Orchids exploit sgOMFs to induce the formation of pelotons, elaborate intracellular hyphal coils in orchid embryos. The colonized orchid cells then obtain carbon nutrients by uptake from living hyphae and peloton lysis, primarily as glucose derived from fungal trehalose hydrolyzed by orchid-specific trehalases. The uptake of massive fungally derived glucose is likely to be mediated by two classes of membrane proteins, namely, sugars will eventually be exported transporters (SWEETs) and H+-hexose symporters. The proposed model serves as a launch pad for further research to better understand and improve orchid seed germination and conservation.
Collapse
Affiliation(s)
- Da-Ke Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Zong-Min Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Xianyang 712100, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Kusakabe R, Sasuga M, Yamato M. Ubiquitous arbuscular mycorrhizal fungi in the roots of herbaceous understory plants with hyphal degeneration in Colchicaceae and Gentianaceae. MYCORRHIZA 2024; 34:181-190. [PMID: 38630303 PMCID: PMC11166799 DOI: 10.1007/s00572-024-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024]
Abstract
Due to the loss of photosynthetic ability during evolution, some plant species rely on mycorrhizal fungi for their carbon source, and this nutritional strategy is known as mycoheterotrophy. Mycoheterotrophic plants forming Paris-type arbuscular mycorrhizas (AM) exhibit two distinctive mycorrhizal features: degeneration of fungal materials and specialization towards particular fungal lineages. To explore the possibility that some understory AM plants show partial mycoheterotrophy, i.e., both photosynthetic and mycoheterotrophic nutritional strategies, we investigated 13 green herbaceous plant species collected from five Japanese temperate forests. Following microscopic observation, degenerated hyphal coils were observed in four species: two Colchicaceae species, Disporum sessile and Disporum smilacinum, and two Gentianaceae species, Gentiana scabra and Swertia japonica. Through amplicon sequencing, however, we found that all examined plant species exhibited no specificity toward AM fungi. Several AM fungi were consistently found across most sites and all plant species studied. Because previous studies reported the detection of these AM fungi from various tree species in Japanese temperate forests, our findings suggest the presence of ubiquitous AM fungi in forest ecosystems. If the understory plants showing fungal degeneration exhibit partial mycoheterotrophy, they may obtain carbon compounds indirectly from a wide range of surrounding plants utilizing such ubiquitous AM fungi.
Collapse
Affiliation(s)
- Ryota Kusakabe
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Chiba, Matsudo, 271-8510, Japan
| | - Moe Sasuga
- Graduate School of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
6
|
Perotto S, Balestrini R. At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2024; 242:1408-1416. [PMID: 37884478 DOI: 10.1111/nph.19338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular (AM) and orchid (OrM) mycorrhiza are the most widespread mycorrhizal symbioses among flowering plants, formed by distinct fungal and plant species. They are both endosymbioses because the fungal hyphae can enter inside the plant cell to develop intracellular fungal structures that are surrounded by the plant membrane. The symbiotic plant-fungus interface is considered to be the major site of nutrient transfer to the host plant. We summarize recent data on nutrient transfer in OrM and compare the development and function of the arbuscules formed in AM and the pelotons formed in OrM in order to outline differences and conserved traits. We further describe the unexpected similarities in the form and function of the intracellular mycorrhizal fungal structures observed in orchids and in the roots of mycoheterotrophic plants forming AM. We speculate that these similarities may be the result of convergent evolution of mycorrhizal types in mycoheterotrophic plants and highlight knowledge gaps and new research directions to explore this scenario.
Collapse
Affiliation(s)
- Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche-Istituto per la Protezione Sostenibile delle Piante (IPSP), Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
7
|
Merckx VSFT, Gomes SIF, Wang D, Verbeek C, Jacquemyn H, Zahn FE, Gebauer G, Bidartondo MI. Mycoheterotrophy in the wood-wide web. NATURE PLANTS 2024; 10:710-718. [PMID: 38641664 DOI: 10.1038/s41477-024-01677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The prevalence and potential functions of common mycorrhizal networks, or the 'wood-wide web', resulting from the simultaneous interaction of mycorrhizal fungi and roots of different neighbouring plants have been increasingly capturing the interest of science and society, sometimes leading to hyperbole and misinterpretation. Several recent reviews conclude that popular claims regarding the widespread nature of these networks in forests and their role in the transfer of resources and information between plants lack evidence. Here we argue that mycoheterotrophic plants associated with ectomycorrhizal or arbuscular mycorrhizal fungi require resource transfer through common mycorrhizal networks and thus are natural evidence for the occurrence and function of these networks, offering a largely overlooked window into this methodologically challenging underground phenomenon. The wide evolutionary and geographic distribution of mycoheterotrophs and their interactions with a broad phylogenetic range of mycorrhizal fungi indicate that common mycorrhizal networks are prevalent, particularly in forests, and result in net carbon transfer among diverse plants through shared mycorrhizal fungi. On the basis of the available scientific evidence, we propose a continuum of carbon transfer options within common mycorrhizal networks, and we discuss how knowledge on the biology of mycoheterotrophic plants can be instrumental for the study of mycorrhizal-mediated transfers between plants.
Collapse
Affiliation(s)
- Vincent S F T Merckx
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands.
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sofia I F Gomes
- Above-belowground Interactions, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Deyi Wang
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Cas Verbeek
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Jacquemyn
- Plant Population Biology and Conservation, Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
8
|
Hartvig I, Kosawang C, Rasmussen H, Kjær ED, Nielsen LR. Co-occurring orchid species associated with different low-abundance mycorrhizal fungi from the soil in a high-diversity conservation area in Denmark. Ecol Evol 2024; 14:e10863. [PMID: 38304271 PMCID: PMC10828919 DOI: 10.1002/ece3.10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Plant-fungal interactions are ubiquitous across ecosystems and contribute significantly to plant ecology and evolution. All orchids form obligate symbiotic relationships with specific fungi for germination and early growth, and the distribution of terrestrial orchid species has been linked to occurrence and abundance of specific orchid mycorrhizal fungi (OMF) in the soil. The availability of OMF can therefore be a habitat requirement that is relevant to consider when establishing management and conservation strategies for threatened orchid species, but knowledge on the spatial distribution of OMF in soil is limited. We here studied the mycorrhizal associations of three terrestrial orchid species (Anacamptis pyramidalis, Orchis purpurea and Platanthera chlorantha) found in a local orchid diversity hotspot in eastern Denmark, and investigated the abundance of the identified mycorrhizal fungi in the surrounding soil. We applied ITS metabarcoding to samples of orchid roots, rhizosphere soil and bulk soil collected at three localities, supplemented with standard barcoding of root samples with OMF specific primers, and detected 22 Operational Taxonomic Units (OTUs) putatively identified as OMF. The three orchid species displayed different patterns of OMF associations, supporting the theory that association with specific fungi constitutes part of an orchid's ecological niche allowing co-occurrence of many species in orchid-rich habitats. The identified mycorrhizal partners in the basidiomycete families Tulasnellaceae and Ceratobasidiaceae (Cantharallales) were detected in low abundance in rhizosphere soil, and appeared almost absent from bulk soil at the localities. This finding highlights our limited knowledge of the ecology and trophic mode of OMF outside orchid tissues, as well as challenges in the detection of specific OMF with standard methods. Potential implications for management and conservation strategies are discussed.
Collapse
Affiliation(s)
- Ida Hartvig
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Smithsonian Environmental Research CenterSmithsonian InstituteEdgewaterMarylandUSA
| | - Chatchai Kosawang
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Rasmussen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Erik Dahl Kjær
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Lene Rostgaard Nielsen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
Miura C, Furui Y, Yamamoto T, Kanno Y, Honjo M, Yamaguchi K, Suetsugu K, Yagame T, Seo M, Shigenobu S, Yamato M, Kaminaka H. Autoactivation of mycorrhizal symbiosis signaling through gibberellin deactivation in orchid seed germination. PLANT PHYSIOLOGY 2023; 194:546-563. [PMID: 37776523 PMCID: PMC10756758 DOI: 10.1093/plphys/kiad517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Orchids parasitically depend on external nutrients from mycorrhizal fungi for seed germination. Previous findings suggest that orchids utilize a genetic system of mutualistic arbuscular mycorrhizal (AM) symbiosis, in which the plant hormone gibberellin (GA) negatively affects fungal colonization and development, to establish parasitic symbiosis. Although GA generally promotes seed germination in photosynthetic plants, previous studies have reported low sensitivity of GA in seed germination of mycoheterotrophic orchids where mycorrhizal symbiosis occurs concurrently. To elucidate the connecting mechanisms of orchid seed germination and mycorrhizal symbiosis at the molecular level, we investigated the effect of GA on a hyacinth orchid (Bletilla striata) seed germination and mycorrhizal symbiosis using asymbiotic and symbiotic germination methods. Additionally, we compared the transcriptome profiles between asymbiotically and symbiotically germinated seeds. Exogenous GA negatively affected seed germination and fungal colonization, and endogenous bioactive GA was actively converted to the inactive form during seed germination. Transcriptome analysis showed that B. striata shared many of the induced genes between asymbiotically and symbiotically germinated seeds, including GA metabolism- and signaling-related genes and AM-specific marker homologs. Our study suggests that orchids have evolved in a manner that they do not use bioactive GA as a positive regulator of seed germination and instead autoactivate the mycorrhizal symbiosis pathway through GA inactivation to accept the fungal partner immediately during seed germination.
Collapse
Affiliation(s)
- Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuki Furui
- Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tatsuki Yamamoto
- Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Masaya Honjo
- Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | | | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nakagami-gun 903-0213, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, Chiba 271-8510, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
10
|
Chen H, Li Y, Yin Y, Li J, Li L, Wu K, Fang L, Zeng S. Gibberellic Acid Inhibits Dendrobium nobile- Piriformospora Symbiosis by Regulating the Expression of Cell Wall Metabolism Genes. Biomolecules 2023; 13:1649. [PMID: 38002331 PMCID: PMC10669577 DOI: 10.3390/biom13111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Orchid seeds lack endosperms and depend on mycorrhizal fungi for germination and nutrition acquisition under natural conditions. Piriformospora indica is a mycorrhizal fungus that promotes seed germination and seedling development in epiphytic orchids, such as Dendrobium nobile. To understand the impact of P. indica on D. nobile seed germination, we examined endogenous hormone levels by using liquid chromatography-mass spectrometry. We performed transcriptomic analysis of D. nobile protocorm at two developmental stages under asymbiotic germination (AG) and symbiotic germination (SG) conditions. The result showed that the level of endogenous IAA in the SG protocorm treatments was significantly higher than that in the AG protocorm treatments. Meanwhile, GA3 was only detected in the SG protocorm stages. IAA and GA synthesis and signaling genes were upregulated in the SG protocorm stages. Exogenous GA3 application inhibited fungal colonization inside the protocorm, and a GA biosynthesis inhibitor (PAC) promoted fungal colonization. Furthermore, we found that PAC prevented fungal hyphae collapse and degeneration in the protocorm, and differentially expressed genes related to cell wall metabolism were identified between the SG and AG protocorm stages. Exogenous GA3 upregulated SRC2 and LRX4 expression, leading to decreased fungal colonization. Meanwhile, GA inhibitors upregulated EXP6, EXB16, and EXP10-2 expression, leading to increased fungal colonization. Our findings suggest that GA regulates the expression of cell wall metabolism genes in D. nobile, thereby inhibiting the establishment of mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Hong Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Huangzhuang South Road 6, Baiyun District, Guangzhou 510540, China
| | - Yefei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Yin
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Huangzhuang South Road 6, Baiyun District, Guangzhou 510540, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (Y.L.); (Y.Y.); (J.L.); (L.L.); (K.W.)
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
11
|
Reiter N, Dimon R, Arifin A, Linde C. Culture age of Tulasnella affects symbiotic germination of the critically endangered Wyong sun orchid Thelymitra adorata (Orchidaceae). MYCORRHIZA 2023; 33:409-424. [PMID: 37947881 DOI: 10.1007/s00572-023-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Orchids (Orchidaceae) are dependent on mycorrhizal fungi for germination and to a varying extent as adult plants. We isolated fungi from wild plants of the critically endangered terrestrial orchid Thelymitra adorata and identified them using a multi-region barcoding approach as two undescribed Tulasnella species, one in each of phylogenetic group II and III (OTU1) of the Tulasnellaceae. Using symbiotic propagation methods, we investigated the role of Tulasnella identity (species and isolate) and age post isolation, on the fungus's ability and efficacy in germinating T. adorata. The group II isolate did not support germination. Seed germination experiments were conducted using either (i) three different isolates of OTU1, (ii) 4- and 12-week-old fungal cultures (post isolation) of a single isolate of OTU1, and (iii) T. subasymmetrica which is widespread and known to associate with other species of Thelymitra. Culture age and fungal species significantly (P < 0.05) affected the time to germination and percentage of seed germination, with greater and faster germination with 4-week-old cultures. Tulasnella subasymmetrica was able to germinate T. adorata to leaf stage, although at slightly lower germination percentages than OTU1. The ability of T. adorata to germinate with T. subasymmetrica may allow for translocation sites to be considered outside of its native range. Our findings on the age of Tulasnella culture affecting germination may have applications for improving the symbiotic germination success of other orchids. Furthermore, storage of Tulasnella may need to take account of the culture age post-isolation, with storage at - 80 °C as soon as possible recommended, post isolation.
Collapse
Affiliation(s)
- Noushka Reiter
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, 3977, Australia.
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT 2600, Australia.
| | - Richard Dimon
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, 3977, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, 306 Cermody Rd, St Lucia, QLD, Australia
| | - Arild Arifin
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT 2600, Australia
- Department of Plant Pathology, Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA, 98801, USA
| | - Celeste Linde
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
12
|
De Rose S, Kuga Y, Sillo F, Fochi V, Sakamoto N, Calevo J, Perotto S, Balestrini R. Plant and fungal gene expression coupled with stable isotope labeling provide novel information on sulfur uptake and metabolism in orchid mycorrhizal protocorms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:416-431. [PMID: 37421313 DOI: 10.1111/tpj.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Orchid mycorrhiza (OM) represents an unusual symbiosis between plants and fungi because in all orchid species carbon is provided to the host plant by the mycorrhizal fungus at least during the early stages of orchid development, named a protocorm. In addition to carbon, orchid mycorrhizal fungi provide the host plant with essential nutrients such as phosphorus and nitrogen. In mycorrhizal protocorms, nutrients transfer occurs in plant cells colonized by the intracellular fungal coils, or pelotons. Whereas the transfer of these vital nutrients to the orchid protocorm in the OM symbiosis has been already investigated, there is currently no information on the transfer of sulfur (S). Here, we used ultra-high spatial resolution secondary ion mass spectrometry (SIMS) as well as targeted gene expression studies and laser microdissection to decipher S metabolism and transfer in the model system formed by the Mediterranean orchid Serapias vomeracea and the mycorrhizal fungus Tulasnella calospora. We revealed that the fungal partner is actively involved in S supply to the host plant, and expression of plant and fungal genes involved in S uptake and metabolism, both in the symbiotic and asymbiotic partners, suggest that S transfer most likely occurs as reduced organic forms. Thus, this study provides original information about the regulation of S metabolism in OM protocorms, adding a piece of the puzzle on the nutritional framework in OM symbiosis.
Collapse
Affiliation(s)
- Silvia De Rose
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125, Torino, Italy
| | - Yukari Kuga
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, 739-8521, Japan
| | - Fabiano Sillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Strada delle Cacce 73, 10135, Torino, Italy
| | - Valeria Fochi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125, Torino, Italy
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Creative Research Institute, Hokkaido University, Sapporo, 001-0021, Japan
| | - Jacopo Calevo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125, Torino, Italy
| | - Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli, 25, 10125, Torino, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
13
|
Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J, Selosse MA. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC PLANT BIOLOGY 2023; 23:422. [PMID: 37700257 PMCID: PMC10496321 DOI: 10.1186/s12870-023-04436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
Collapse
Affiliation(s)
- Julita Minasiewicz
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
| | - Adrian Zwolicki
- Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| | - Alžběta Novotná
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institute of Microbiology ASCR, Vídeňská, Praha, 1083, 142 20, Czech Republic
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760, 37005, Czech Republic
| | - Marc-André Selosse
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| |
Collapse
|
14
|
Pujasatria GC, Nishiguchi I, Miura C, Yamato M, Kaminaka H. Orchid mycorrhizal fungi and ascomycetous fungi in epiphytic Vanda falcata roots occupy different niches during growth and development. MYCORRHIZA 2022; 32:481-495. [PMID: 35844010 DOI: 10.1007/s00572-022-01089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Epiphytic orchids are commonly found in exposed environments, which plausibly lead to different root fungal community structures from terrestrial orchids. Until recently, few studies have been conducted to show the fungal community structure during the growth of a photosynthetic and epiphytic orchid in its natural growing site. In this study, the Vanda falcata (commonly known as Neofinetia falcata), one of Japan's ornamental orchids, was used to characterize the fungal community structure at different developmental stages. Amplicon sequencing analysis showed that all development stages contain a similar fungal community: Ascomycota dominate half of the community while one-third of the community belongs to Basidiomycota. Rhizoctonia-like fungi, a polyphyletic basidiomycetous fungal group forming mycorrhizas in many orchids, exist even in a smaller portion (around one-quarter) compared to other Basidiomycota members. While ascomycetous fungi exhibit pathogenicity, two Ceratobasidium strains isolated from young and adult plants could initiate seed germination in vitro. It was also found that the colonization of mycorrhizal fungi was concentrated in a part of the root where it directly attaches to the phorophyte bark, while ascomycetous fungi were distributed in the velamen but never colonized cortical cells. Additionally, the root parts attached to the bark have denser exodermal passage cells, and these cells were only colonized by mycorrhizal fungi that further penetrated into the cortical area. Therefore, we confirmed a process that physical regulation of fungal entry to partition the ascomycetes and mycorrhizal fungi results in the balanced mycorrhizal symbiosis in this orchid.
Collapse
Affiliation(s)
- Galih Chersy Pujasatria
- The United Graduate School of Agricultural Science, Tottori University, Tottori, 680-8553, Japan
| | | | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, Chiba, 263-8522, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
15
|
Jolman D, Batalla MI, Hungerford A, Norwood P, Tait N, Wallace LE. The challenges of growing orchids from seeds for conservation: An assessment of asymbiotic techniques. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11496. [PMID: 36258786 PMCID: PMC9575117 DOI: 10.1002/aps3.11496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Lewis Knudson first successfully germinated orchid seeds asymbiotically on artificial medium in 1922. While many orchid species have since been grown asymbiotically, the tremendous variation in how species respond to artificial medium and growth conditions ex situ has also become apparent in the past century. In this study, we reviewed published journal articles on asymbiotic orchid seed germination to provide a summary of techniques used and to evaluate if these differ between terrestrial and epiphytic species, to identify areas where additional research is needed, and to evaluate whether asymbiotic germination could be used more often in ex situ conservation. We found articles reporting successful asymbiotic germination of 270 species and 20 cultivars across Orchidaceae. Researchers often used different techniques with epiphytic versus terrestrial species, but species-specific responses to growth media and conditions were common, indicating that individualized protocols will be necessary for most species. The widespread success in generating seedlings on artificial media suggests that asymbiotic techniques should be another tool for the conservation of rare orchid species. Further advances are needed in understanding how to introduce mycorrhizae to axenically grown orchids and to maximize the viability of seedlings reintroduced into natural habitats to fully utilize these methods for conservation.
Collapse
Affiliation(s)
- Devani Jolman
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia23529USA
| | - Martín I. Batalla
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia23529USA
| | - Alexis Hungerford
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia23529USA
| | - Pryce Norwood
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia23529USA
| | - Noah Tait
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia23529USA
| | - Lisa E. Wallace
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia23529USA
| |
Collapse
|
16
|
Herrera H, Sanhueza T, da Silva Valadares RB, Matus F, Pereira G, Atala C, Mora MDLL, Arriagada C. Diversity of Root-Associated Fungi of the Terrestrial Orchids Gavilea lutea and Chloraea collicensis in a Temperate Forest Soil of South-Central Chile. J Fungi (Basel) 2022; 8:jof8080794. [PMID: 36012784 PMCID: PMC9409917 DOI: 10.3390/jof8080794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity of orchid mycorrhizal fungi (OMF) and other beneficial root-associated fungi in temperate forests has scarcely been examined. This study aimed to analyze the diversity of mycorrhizal and rhizosphere-associated fungal communities in the terrestrial orchids Gavilea lutea and Chloraea collicensis growing in high-orchid-population-density areas in the piedmont of the Andes Cordillera with native forest (Nothofagus-Araucaria) and Coastal Cordillera with an exotic plantation (Pinus-Eucalyptus) in south-central Chile. We focused on rhizosphere-inhabiting and peloton-associated OMF in a native forest (Andes Cordillera) and a mixed forest (Coastal Cordillera). The native terrestrial orchids G. lutea and C. collicensis were localized, mycorrhizal root segments were taken to isolate peloton-associated OMF, and rhizosphere soil was taken to perform the metabarcoding approach. The results revealed that Basidiomycota and Ascomycota were the main rhizosphere-inhabiting fungal phyla, showing significant differences in the composition of fungal communities in both sites. Sebacina was the most-abundant OMF genera in the rhizosphere of G. lutea growing in the native forest soil. In contrast, Thanatephorus was the most abundant mycorrhizal taxa growing in the rhizosphere of orchids from the Coastal Cordillera. Besides, other OMF genera such as Inocybe, Tomentella, and Mycena were detected. The diversity of OMF in pelotons differed, being mainly related to Ceratobasidium sp. and Tulasnella sp. These results provide evidence of differences in OMF from pelotons and the rhizosphere soil in G. lutea growing in the Andes Cordillera and a selection of microbial communities in the rhizosphere of C. collicensis in the Coastal Cordillera. This raises questions about the efficiency of propagation strategies based only on mycorrhizal fungi obtained by culture-dependent methods, especially in orchids that depend on non-culturable taxa for seed germination and plantlet development.
Collapse
Affiliation(s)
- Héctor Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence: (H.H.); (C.A.)
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Programa de Magister en Manejo de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Francisco Salazar 01145, Temuco 4780000, Chile
| | | | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile;
- Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Guillermo Pereira
- Departamento de Ciencias y Tecnología Vegetal, Laboratorio Biotecnología de Hongos, Universidad de Concepción, Los Angeles 4440000, Chile;
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso 2340000, Chile;
| | - María de la Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence: (H.H.); (C.A.)
| |
Collapse
|
17
|
Romero-Salazar NC, Galvis-Gratz JM, Moreno-López JP. Hongos formadores de micorrizas aislados a partir de raíces de la orquídea Rodriguezia granadensis (LINDL.) RCHB. F. REVISTA U.D.C.A ACTUALIDAD & DIVULGACIÓN CIENTÍFICA 2022. [DOI: 10.31910/rudca.v25.n1.2022.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Davis B, Lim WH, Lambers H, Dixon KW, Read DJ. Inorganic phosphorus nutrition in green-leaved terrestrial orchid seedlings. ANNALS OF BOTANY 2022; 129:669-678. [PMID: 35247265 PMCID: PMC9113155 DOI: 10.1093/aob/mcac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Many terrestrial orchids have an obligate dependence on their mycorrhizal associations for nutrient acquisition, particularly during germination and early seedling growth. Though important in plant growth and development, phosphorus (P) nutrition studies in mixotrophic orchids have been limited to only a few orchid species and their fungal symbionts. For the first time, we demonstrate the role of a range of fungi in the acquisition and transport of inorganic P to four phylogenetically distinct green-leaved terrestrial orchid species (Diuris magnifica, Disa bracteata, Pterostylis sanguinea and Microtis media subsp. media) that naturally grow in P-impoverished soils. METHODS Mycorrhizal P uptake and transfer to orchids was determined and visualized using agar microcosms with a diffusion barrier between P source (33P orthophosphate) and orchid seedlings, allowing extramatrical hyphae to reach the source. KEY RESULTS Extramatrical hyphae of the studied orchid species were effective in capturing and transporting inorganic P into the plant. Following 7 d of exposure, between 0.5 % (D. bracteata) and 47 % (D. magnifica) of the P supplied was transported to the plants (at rates between 0.001 and 0.097 fmol h-1). This experimental approach was capable of distinguishing species based on their P-foraging efficiency, and highlighted the role that fungi play in P nutrition during early seedling development. CONCLUSIONS Our study shows that orchids occurring naturally on P-impoverished soils can obtain significant amounts of inorganic P from their mycorrhizal partners, and significantly more uptake of P supplied than previously shown in other green-leaved orchids. These results provide support for differences in mycorrhiza-mediated P acquisition between orchid species and fungal symbionts in green-leaved orchids at the seedling stage. The plant-fungus combinations of this study also provide evidence for plant-mediated niche differentiation occurring, with ecological implications in P-limited systems.
Collapse
Affiliation(s)
- Belinda Davis
- Kings Park Science, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Wei-Han Lim
- Kings Park Science, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
- Environment and Agriculture, Curtin University, Bentley, 6102, Western Australia
| | - Kingsley W Dixon
- School of Biological Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
- Environment and Agriculture, Curtin University, Bentley, 6102, Western Australia
| | - David J Read
- School of Biological Sciences, The University of Western Australia, Crawley, Perth, WA, Australia
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, UK
| |
Collapse
|
19
|
Chen J, Tang Y, Kohler A, Lebreton A, Xing Y, Zhou D, Li Y, Martin FM, Guo S. Comparative Transcriptomics Analysis of the Symbiotic Germination of D. officinale (Orchidaceae) With Emphasis on Plant Cell Wall Modification and Cell Wall-Degrading Enzymes. FRONTIERS IN PLANT SCIENCE 2022; 13:880600. [PMID: 35599894 PMCID: PMC9120867 DOI: 10.3389/fpls.2022.880600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Orchid seed germination in nature is an extremely complex physiological and ecological process involving seed development and mutualistic interactions with a restricted range of compatible mycorrhizal fungi. The impact of the fungal species' partner on the orchids' transcriptomic and metabolic response is still unknown. In this study, we performed a comparative transcriptomic analysis between symbiotic and asymbiotic germination at three developmental stages based on two distinct fungi (Tulasnella sp. and Serendipita sp.) inoculated to the same host plant, Dendrobium officinale. Differentially expressed genes (DEGs) encoding important structural proteins of the host plant cell wall were identified, such as epidermis-specific secreted glycoprotein, proline-rich receptor-like protein, and leucine-rich repeat (LRR) extensin-like protein. These DEGs were significantly upregulated in the symbiotic germination stages and especially in the protocorm stage (stage 3) and seedling stage (stage 4). Differentially expressed carbohydrate-active enzymes (CAZymes) in symbiotic fungal mycelium were observed, they represented 66 out of the 266 and 99 out of the 270 CAZymes annotated in Tulasnella sp. and Serendipita sp., respectively. These genes were speculated to be involved in the reduction of plant immune response, successful colonization by fungi, or recognition of mycorrhizal fungi during symbiotic germination of orchid seed. Our study provides important data to further explore the molecular mechanism of symbiotic germination and orchid mycorrhiza and contribute to a better understanding of orchid seed biology.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjing Tang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France
| | - Annie Lebreton
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France
| | - Yongmei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyu Zhou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France
| | - Shunxing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Howard N, Pressel S, Kaye RS, Daniell TJ, Field KJ. The potential role of Mucoromycotina 'fine root endophytes' in plant nitrogen nutrition. PHYSIOLOGIA PLANTARUM 2022; 174:e13715. [PMID: 35560043 PMCID: PMC9328347 DOI: 10.1111/ppl.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 05/29/2023]
Abstract
Mycorrhizal associations between fungi and plant roots have globally significant impacts on nutrient cycling. Mucoromycotina 'fine root endophytes' (MFRE) are a distinct and recently characterised group of mycorrhiza-forming fungi that associate with the roots of a range of host plant species. Given their previous misidentification and assignment as arbuscular mycorrhizal fungi (AMF) of the Glomeromycotina, it is now important to untangle the specific form and function of MFRE symbioses. In particular, relatively little is known about the nature of MFRE colonisation and its role in N uptake and transfer to host plants. Even less is known about the mechanisms by which MFRE access and assimilate N, and how this N is processed and subsequently exchanged with host plants for photosynthates. Here, we summarise and contrast the structures formed by MFRE and arbuscular mycorrhizal fungi in host plants as well as compare the N source preference of each mycorrhizal fungal group with what is currently known for MFRE N uptake. We compare the mechanisms of N assimilation and transfer to host plants utilised by the main groups of mycorrhizal fungi and hypothesise potential mechanisms for MFRE N assimilation and transfer, outlining directions for future research.
Collapse
Affiliation(s)
- Nathan Howard
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonUK
| | - Ryan S. Kaye
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Tim J. Daniell
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
21
|
Jiang Y, Hu X, Yuan Y, Guo X, Chase MW, Ge S, Li J, Fu J, Li K, Hao M, Wang Y, Jiao Y, Jiang W, Jin X. The Gastrodia menghaiensis (Orchidaceae) genome provides new insights of orchid mycorrhizal interactions. BMC PLANT BIOLOGY 2022; 22:179. [PMID: 35392808 PMCID: PMC8988336 DOI: 10.1186/s12870-022-03573-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND To illustrate the molecular mechanism of mycoheterotrophic interactions between orchids and fungi, we assembled chromosome-level reference genome of Gastrodia menghaiensis (Orchidaceae) and analyzed the genomes of two species of Gastrodia. RESULTS Our analyses indicated that the genomes of Gastrodia are globally diminished in comparison to autotrophic orchids, even compared to Cuscuta (a plant parasite). Genes involved in arbuscular mycorrhizae colonization were found in genomes of Gastrodia, and many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids. The highly expressed genes for fatty acid and ammonium root transporters suggest that fungi receive material from orchids, although most raw materials flow from the fungi. Many nuclear genes (e.g. biosynthesis of aromatic amino acid L-tryptophan) supporting plastid functions are expanded compared to photosynthetic orchids, an indication of the importance of plastids even in totally mycoheterotrophic species. CONCLUSION Gastrodia menghaiensis has the smallest proteome thus far among angiosperms. Many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids.
Collapse
Affiliation(s)
- Yan Jiang
- Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian, Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Yuan Yuan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, Chaoyang, Beijing, 100700, China
| | - Xuelian Guo
- Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian, Beijing, 100093, China
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, Surrey, UK
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Song Ge
- Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian, Beijing, 100093, China
| | - Jianwu Li
- Xishuanbanan Tropical Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Jinlong Fu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Meng Hao
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Yiming Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Yuannian Jiao
- Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian, Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Xiaohua Jin
- Institute of Botany, Chinese Academy of Sciences, Xiangshan, Haidian, Beijing, 100093, China.
| |
Collapse
|
22
|
Li MH, Liu KW, Li Z, Lu HC, Ye QL, Zhang D, Wang JY, Li YF, Zhong ZM, Liu X, Yu X, Liu DK, Tu XD, Liu B, Hao Y, Liao XY, Jiang YT, Sun WH, Chen J, Chen YQ, Ai Y, Zhai JW, Wu SS, Zhou Z, Hsiao YY, Wu WL, Chen YY, Lin YF, Hsu JL, Li CY, Wang ZW, Zhao X, Zhong WY, Ma XK, Ma L, Huang J, Chen GZ, Huang MZ, Huang L, Peng DH, Luo YB, Zou SQ, Chen SP, Lan S, Tsai WC, Van de Peer Y, Liu ZJ. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. NATURE PLANTS 2022; 8:373-388. [PMID: 35449401 PMCID: PMC9023349 DOI: 10.1038/s41477-022-01127-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/09/2022] [Indexed: 05/12/2023]
Abstract
To improve our understanding of the origin and evolution of mycoheterotrophic plants, we here present the chromosome-scale genome assemblies of two sibling orchid species: partially mycoheterotrophic Platanthera zijinensis and holomycoheterotrophic Platanthera guangdongensis. Comparative analysis shows that mycoheterotrophy is associated with increased substitution rates and gene loss, and the deletion of most photoreceptor genes and auxin transporter genes might be linked to the unique phenotypes of fully mycoheterotrophic orchids. Conversely, trehalase genes that catalyse the conversion of trehalose into glucose have expanded in most sequenced orchids, in line with the fact that the germination of orchid non-endosperm seeds needs carbohydrates from fungi during the protocorm stage. We further show that the mature plant of P. guangdongensis, different from photosynthetic orchids, keeps expressing trehalase genes to hijack trehalose from fungi. Therefore, we propose that mycoheterotrophy in mature orchids is a continuation of the protocorm stage by sustaining the expression of trehalase genes. Our results shed light on the molecular mechanism underlying initial, partial and full mycoheterotrophy.
Collapse
Affiliation(s)
- Ming-He Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hsiang-Chia Lu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Qin-Liang Ye
- Zijin Baixi Provincial Nature Reserve of Guangdong, Heyuan, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie-Yu Wang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yu-Feng Li
- Zijin Baixi Provincial Nature Reserve of Guangdong, Heyuan, China
| | - Zhi-Ming Zhong
- Zijin Baixi Provincial Nature Reserve of Guangdong, Heyuan, China
| | - Xuedie Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Yu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong-De Tu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing-Yu Liao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Ting Jiang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Hong Sun
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Qiong Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Ai
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun-Wen Zhai
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sha-Sha Wu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuang Zhou
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Lin Wu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - You-Yi Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fu Lin
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ling Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ying Li
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | | | | | | | - Xiao-Kai Ma
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liang Ma
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gui-Zhen Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Zhong Huang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Laiqiang Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dong-Hui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Quan Zou
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Pin Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan.
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China.
| |
Collapse
|
23
|
Tiankengomelania guangxiense, gen. et sp. nov., a dark septate endophytic fungus, promotes the growth of the medicinal orchid Dendrobium officinale. Fungal Biol 2022; 126:333-341. [DOI: 10.1016/j.funbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
|
24
|
Zhang M, Shi Z, Zhang S, Gao J. A Database on Mycorrhizal Traits of Chinese Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:840343. [PMID: 35300014 PMCID: PMC8921535 DOI: 10.3389/fpls.2022.840343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The mycorrhizal traits of plants have been widely reported based on different scales or plant functional groups. To better utilize mycorrhizae to improve the cultivation yield and active ingredient accumulation of medicinal plants, a database of medicinal plant mycorrhizal characteristics is needed. A database on mycorrhizal traits including mycorrhizal type or status of Chinese medicinal plant species was assembled. In this study, the mycorrhizal type or status of a total of 3,230 medicinal plants was presented. Among them, the mycorrhizal traits of 1,321 species were ascertained. These medicinal plants had three mycorrhizal statuses, both single mycorrhiza (SM) and multi-mycorrhiza (MM) contained four mycorrhizal types. The majority of medicinal plants were obligatorily symbiotic with mycorrhizal fungi with 926 (70.10%) species. The most widespread mycorrhizal type is AM, which is associated with 842 medicinal plant species (90.93% of mycorrhiza has an obligatorily symbiotic relationship with Chinese medicinal plants). Another broadly studied mycorrhizal type is ECM, which is associated with 15 medicinal plant species. This study is the first exclusive database on mycorrhizal traits of medicinal plants, which provides both mycorrhizal type and status. This database provides valuable resources for identifying the mycorrhizal information of medicinal plants and enriching the theory of mycorrhizal traits, which will greatly benefit the production or management of medicinal plants.
Collapse
Affiliation(s)
- Menghan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Shan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| |
Collapse
|
25
|
Gao Y, Ji J, Zhang Y, Yang N, Zhang M. Biochemical and transcriptomic analyses of the symbiotic interaction between Cremastra appendiculata and the mycorrhizal fungus Coprinellus disseminatus. BMC PLANT BIOLOGY 2022; 22:15. [PMID: 34983403 PMCID: PMC8725509 DOI: 10.1186/s12870-021-03388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cremastra appendiculata is a rare terrestrial orchid with a high market value as an ornamental and medicinal plant. However, the species depends entirely on fungi for seed germination under natural conditions. In a previous study, we have successfully isolated and identified the mycorrhizal fungus Coprinellus disseminatus which was able to induce the germination of C. appendiculata seeds. We then speculated that C. disseminatus may do so by breaking the testa imposed dormancy of the seeds. In this study, biochemical and transcriptomic analyses were used to characterize the germination of C. appendiculata seeds, collected at different stages of germination, as affected by C. disseminatus. RESULTS The lignocellulose in the seeds coat of C. appendiculata was degraded by the mycorrhizal fungus resulting in facilitated absorption of water. The rate of decline in lignin content was 67 and 73% at 6 and 12 days after sowing, respectively. The water content increased from 13 to 90% during symbiosis. A total of 15,382 genes showing significantly different levels of expression (log2 FPKM≥2.0, Qvalue≤0.05) were successfully identified among all libraries, where the highest number of DEGs was shared between 6 days versus 0 day after symbiotic germination. Gene annotation results suggested that 15 key genes related water-status, such as DHN gene family and Xero 1 were down-regulated. The genes zeaxanthin epoxidase ZEP, 9-cis-epoxycarotenoid dioxygenase NCED3 and β-carotene hydroxylase involved in the biosynthesis of abscisic acid (ABA) were significantly down-regulated in 6 days as compared to 0 day after symbiotic germination. CONCLUSIONS This work demonstrates that mycorrhizal fungus C. disseminatus can stimulate C. appendiculata seeds germination through a mechanism of breaking the testa imposed dormancy and inducing water absorption of the embryo.
Collapse
Affiliation(s)
- Yanyan Gao
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Jun Ji
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Yujin Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Ningxian Yang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Mingsheng Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China.
| |
Collapse
|
26
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
27
|
Kuga Y, Wu TD, Sakamoto N, Katsuyama C, Yurimoto H. Allocation of Carbon from an Arbuscular Mycorrhizal Fungus, Gigaspora margarita, to Its Gram-Negative and Positive Endobacteria Revealed by High-Resolution Secondary Ion Mass Spectrometry. Microorganisms 2021; 9:microorganisms9122597. [PMID: 34946198 PMCID: PMC8705746 DOI: 10.3390/microorganisms9122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Arbuscular mycorrhizal fungi are obligate symbionts of land plants; furthermore, some of the species harbor endobacteria. Although the molecular approach increased our knowledge of the diversity and origin of the endosymbiosis and its metabolic possibilities, experiments to address the functions of the fungal host have been limited. In this study, a C flow of the fungus to the bacteria was investigated. Onion seedlings colonized with Gigaspora margarita, possessing Candidatus Glomeribacter gigasporarum (CaGg, Gram-negative, resides in vacuole) and Candidatus Moeniiplasma glomeromycotorum (CaMg, Gram-positive, resides in the cytoplasm,) were labelled with 13CO2. The 13C localization within the mycorrhiza was analyzed using high-resolution secondary ion mass spectrometry (SIMS). Correlative TEM-SIMS analysis of the fungal cells revealed that the 13C/12C ratio of CaGg was the lowest among CaMg and mitochondria and was the highest in the cytoplasm. By contrast, the plant cells, mitochondria, plastids, and fungal cytoplasm, which are contributors to the host, showed significantly higher 13C enrichment than the host cytoplasm. The C allocation patterns implied that CaMg has a greater impact than CaGg on G. margarita, but both seemed to be less burdensome to the host fungus in terms of C cost.
Collapse
Affiliation(s)
- Yukari Kuga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Hiroshima, Japan;
- Correspondence:
| | - Ting-Di Wu
- Institut Curie, Université PSL, CNRS UMS2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France;
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan;
| | - Chie Katsuyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Hiroshima, Japan;
| | - Hisayoshi Yurimoto
- Department of Natural History Sciences, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan;
| |
Collapse
|
28
|
Ponert J, Šoch J, Vosolsobě S, Čiháková K, Lipavská H. Integrative Study Supports the Role of Trehalose in Carbon Transfer From Fungi to Mycotrophic Orchid. FRONTIERS IN PLANT SCIENCE 2021; 12:793876. [PMID: 34956293 PMCID: PMC8695678 DOI: 10.3389/fpls.2021.793876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
Orchids rely on mycorrhizal symbiosis, especially in the stage of mycoheterotrophic protocorms, which depend on carbon and energy supply from fungi. The transfer of carbon from fungi to orchids is well-documented, but the identity of compounds ensuring this transfer remains elusive. Some evidence has been obtained for the role of amino acids, but there is also vague and neglected evidence for the role of soluble carbohydrates, probably trehalose, which is an abundant fungal carbohydrate. We therefore focused on the possible role of trehalose in carbon and energy transfer. We investigated the common marsh orchid (Dactylorhiza majalis) and its symbiotic fungus Ceratobasidium sp. using a combination of cultivation approaches, high-performance liquid chromatography, application of a specific inhibitor of the enzyme trehalase, and histochemical localization of trehalase activity. We found that axenically grown orchid protocorms possess an efficient, trehalase-dependent, metabolic pathway for utilizing exogenous trehalose, which can be as good a source of carbon and energy as their major endogenous soluble carbohydrates. This is in contrast to non-orchid plants that cannot utilize trehalose to such an extent. In symbiotically grown protocorms and roots of adult orchids, trehalase activity was tightly colocalized with mycorrhizal structures indicating its pronounced role in the mycorrhizal interface. Inhibition of trehalase activity arrested the growth of both symbiotically grown protocorms and trehalose-supported axenic protocorms. Since trehalose constitutes only an inconsiderable part of the endogenous saccharide spectrum of orchids, degradation of fungal trehalose likely takes place in orchid mycorrhiza. Our results strongly support the neglected view of the fungal trehalose, or the glucose produced by its cleavage as compounds transported from fungi to orchids to ensure carbon and energy flow. Therefore, we suggest that not only amino acids, but also soluble carbohydrates are transported. We may propose that the soluble carbohydrates would be a better source of energy for plant metabolism than amino acids, which is partially supported by our finding of the essential role of trehalase.
Collapse
Affiliation(s)
- Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Prague Botanical Garden, Prague, Czechia
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Jan Šoch
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Klára Čiháková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
29
|
Nagata K, Bajo KI, Mitomo H, Fujita R, Uehara R, Ijiro K, Yurimoto H. Visualization of DNA Replication in Single Chromosome by Stable Isotope Labeling. Cell Struct Funct 2021; 46:95-101. [PMID: 34565768 PMCID: PMC10511050 DOI: 10.1247/csf.21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/11/2021] [Indexed: 11/11/2022] Open
Abstract
Among the inheritance of cellular components during cell division, deoxyribonucleic acid (DNA) and its condensate (chromosome) are conventionally visualized using chemical tag-labeled nucleotide analogs. However, associated mutagenesis with nucleotide analogs in the visualization of chromosomes is cause for concern. This study investigated the efficiency of using stable isotope labels in visualizing the replicating cultured human cell-chromosomes, in the absence of analog labels, at a high spatial resolution of 100 nm. The distinct carbon isotope ratio between sister chromatids reflected the semi-conservative replication of individual DNA strands through cell cycles and suggested the renewal of histone molecules in daughter chromosomes. Thus, this study provides a new, powerful approach to trace and visualize cellular components with stable isotope labeling.Key words: stable isotope, chromosome replication, semi-conservative replication, imaging, mass spectrometry.
Collapse
Affiliation(s)
- Kosuke Nagata
- Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-ichi Bajo
- Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Department of Bioresource Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | | |
Collapse
|
30
|
Ray P, Guo Y, Chi MH, Krom N, Boschiero C, Watson B, Huhman D, Zhao P, Singan VR, Lindquist EA, Yan J, Adam C, Craven KD. Serendipita Fungi Modulate the Switchgrass Root Transcriptome to Circumvent Host Defenses and Establish a Symbiotic Relationship. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1128-1142. [PMID: 34260261 DOI: 10.1094/mpmi-04-21-0084-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yingqing Guo
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Bonnie Watson
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - David Huhman
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Patrick Zhao
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Vasanth R Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Erika A Lindquist
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Juying Yan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Catherine Adam
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | | |
Collapse
|
31
|
Bleša D, Matušinský P, Sedmíková R, Baláž M. The Potential of Rhizoctonia-Like Fungi for the Biological Protection of Cereals against Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020349. [PMID: 33673058 PMCID: PMC7918712 DOI: 10.3390/plants10020349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.
Collapse
Affiliation(s)
- Dominik Bleša
- Department of Plant Pathology, Agrotest Fyto, Ltd., 76701 Kroměříž, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (R.S.); (M.B.)
- Correspondence:
| | - Pavel Matušinský
- Department of Plant Pathology, Agrotest Fyto, Ltd., 76701 Kroměříž, Czech Republic;
- Department of Botany, Faculty of Science, Palacký University in Olomouc, 78371 Olomouc, Czech Republic
| | - Romana Sedmíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (R.S.); (M.B.)
| | - Milan Baláž
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (R.S.); (M.B.)
| |
Collapse
|
32
|
Valadares RBS, Marroni F, Sillo F, Oliveira RRM, Balestrini R, Perotto S. A Transcriptomic Approach Provides Insights on the Mycorrhizal Symbiosis of the Mediterranean Orchid Limodorum abortivum in Nature. PLANTS (BASEL, SWITZERLAND) 2021; 10:251. [PMID: 33525474 PMCID: PMC7911150 DOI: 10.3390/plants10020251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
The study of orchid mycorrhizal interactions is particularly complex because of the peculiar life cycle of these plants and their diverse trophic strategies. Here, transcriptomics has been applied to investigate gene expression in the mycorrhizal roots of Limodorum abortivum, a terrestrial mixotrophic orchid that associates with ectomycorrhizal fungi in the genus Russula. Our results provide new insights into the mechanisms underlying plant-fungus interactions in adult orchids in nature and in particular into the plant responses to the mycorrhizal symbiont(s) in the roots of mixotrophic orchids. Our results indicate that amino acids may represent the main nitrogen source in mycorrhizal roots of L. abortivum, as already suggested for orchid protocorms and other orchid species. The upregulation, in mycorrhizal L. abortivum roots, of some symbiotic molecular marker genes identified in mycorrhizal roots from other orchids as well as in arbuscular mycorrhiza, may mirror a common core of plant genes involved in endomycorrhizal symbioses. Further efforts will be required to understand whether the specificities of orchid mycorrhiza depend on fine-tuned regulation of these common components, or whether specific additional genes are involved.
Collapse
Affiliation(s)
- Rafael B. S. Valadares
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66050-000 Belém, Pará, Brazil; (R.B.S.V.); (R.R.M.O.)
| | - Fabio Marroni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via delle Scienze, I-33100 Udine, Italy;
- Istituto di Genomica Applicata, Via Linussio 51, I-33100 Udine, Italy
| | - Fabiano Sillo
- Consiglio Nazionale Delle Ricerche-Istituto per la Protezione Sostenibile Delle Piante, Viale P.A. Mattioli 25, I-10125 Torino, Italy;
| | - Renato R. M. Oliveira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66050-000 Belém, Pará, Brazil; (R.B.S.V.); (R.R.M.O.)
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Raffaella Balestrini
- Consiglio Nazionale Delle Ricerche-Istituto per la Protezione Sostenibile Delle Piante, Viale P.A. Mattioli 25, I-10125 Torino, Italy;
| | - Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale Mattioli 25, I-10125 Torino, Italy
| |
Collapse
|
33
|
Fritsche Y, Lopes ME, Selosse MA, Stefenon VM, Guerra MP. Serendipita restingae sp. nov. (Sebacinales): an orchid mycorrhizal agaricomycete with wide host range. MYCORRHIZA 2021; 31:1-15. [PMID: 33156451 DOI: 10.1007/s00572-020-01000-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
The Serendipitaceae family was erected in 2016 to accommodate the Sebacinales 'group B' clade, which contains peculiar species of cultivable root-associated fungi involved in symbiotic associations with a wide range of plant species. Here we report the isolation of a new Serendipita species which was obtained from protocorms of the terrestrial orchid Epidendrum fulgens cultivated in a greenhouse. This species is described based on phylogenetic analysis and on its microscopic and ultrastructural features in pure culture and in association with the host's protocorms. Its genome size was estimated using flow cytometry, and its capacity to promote the germination of E. fulgens seeds and to associate with roots of Arabidopsis thaliana was also investigated. Serendipita restingae sp. nov. is closely related to Serendipita sp. MAFF305841, isolated from Microtis rara (Orchidaceae), from which it differs by 14.2% in the ITS region and by 6.5% in the LSU region. It produces microsclerotia formed of non-monilioid hyphae, a feature that was not reported for the Sebacinales hitherto. Serendipita restingae promoted the germination of E. fulgens seeds, forming typical mycorrhizal pelotons within protocorm cells. It was also able to colonize the roots of Arabidopsis thaliana under in vitro conditions. Arabidopsis plants grown in association with S. restingae increased their biomass more than fourfold. Serendipita restingae is the first Serendipitaceae species described for the Americas.
Collapse
Affiliation(s)
- Yohan Fritsche
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, SC, 88034-001, Florianópolis, Brazil
| | - Morgana E Lopes
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, SC, 88034-001, Florianópolis, Brazil
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 39, 57 rue Cuvier, F-750055, Paris, CP, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Valdir M Stefenon
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, SC, 88034-001, Florianópolis, Brazil
| | - Miguel P Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, SC, 88034-001, Florianópolis, Brazil.
- Graduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina, Curitibanos, SC, 89520-000, Brazil.
| |
Collapse
|
34
|
Shan T, Zhou L, Li B, Chen X, Guo S, Wang A, Tian L, Liu J. The Plant Growth-Promoting Fungus MF23 ( Mycena sp.) Increases Production of Dendrobium officinale (Orchidaceae) by Affecting Nitrogen Uptake and NH 4 + Assimilation. FRONTIERS IN PLANT SCIENCE 2021; 12:693561. [PMID: 34552603 PMCID: PMC8451717 DOI: 10.3389/fpls.2021.693561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale Kimura et Migo is a traditional and scarce medicinal orchid in China. Mycorrhizal fungi could supply nitrogen (N) to orchids for seed germination and seedling recruitment. However, the N transport mechanism between orchids and the fungus is poorly understand. Early studies found that the fungus MF23 (Mycena sp.) could promote the growth of D. officinale. To better dissect the molecular interactions involved in N transport between D. officinale and MF23, transcriptome and metabolome analyses were conducted on conventional and mycorrhizal cultivations of D. officinale. Moreover, validation tests were carried out in the greenhouse to measure net fluxes of N O 3 - and N H 4 + of roots by a non-invasive micro-test technology (NMT), determine N assimilation enzyme activity by the ELISA, and analyze the expression level of differentially expressed genes (DEGs) of N transporters and DEGs involved in N metabolism by RT-qPCR. Combined transcriptome and metabolome analyses showed that MF23 may influence N metabolism in D. officinale. The expression of DoNAR2.1 (nitrate transporter-activating protein), DoAMT11 (ammonium transporter), DoATFs (amino acid transporters), DoOPTs (oligopeptide transporters), and DoGDHs (glutamate dehydrogenases) in symbiotic D. officinale was upregulated. NMT results showed a preference for N H 4 + in D. officinale and indicated that MF23 could promote the uptake of N O 3 - and N H 4 + , especially for N H 4 + . ELISA results showed that MF23 could increase the activity of glutamine synthetase (GS) and glutamate dehydrogenase. This study suggested that MF23 increases the production of D. officinale by affecting N uptake and N H 4 + assimilation capacity.
Collapse
|
35
|
Pujasatria GC, Miura C, Kaminaka H. In Vitro Symbiotic Germination: A Revitalized Heuristic Approach for Orchid Species Conservation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1742. [PMID: 33317200 PMCID: PMC7763479 DOI: 10.3390/plants9121742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
As one of the largest families of flowering plants, Orchidaceae is well-known for its high diversity and complex life cycles. Interestingly, such exquisite plants originate from minute seeds, going through challenges to germinate and establish in nature. Alternatively, orchid utilization as an economically important plant gradually decreases its natural population, therefore, driving the need for conservation. As with any conservation attempts, broad knowledge is required, including the species' interaction with other organisms. All orchids establish mycorrhizal symbiosis with certain lineages of fungi to germinate naturally. Since the whole in situ study is considerably complex, in vitro symbiotic germination study is a promising alternative. It serves as a tool for extensive studies at morphophysiological and molecular levels. In addition, it provides insights before reintroduction into its natural habitat. Here we reviewed how mycorrhiza contributes to orchid lifecycles, methods to conduct in vitro study, and how it can be utilized for conservation needs.
Collapse
Affiliation(s)
- Galih Chersy Pujasatria
- Department of Agricultural Science, Graduate School of Sustainable Science, Tottori University, Tottori 680-8553, Japan;
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan;
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan;
| |
Collapse
|
36
|
Xi G, Shi J, Li J, Han Z. Isolation and identification of beneficial orchid mycorrhizal fungi in Bletilla striata (Thunb.) Rchb.f.(Orchidaceae). PLANT SIGNALING & BEHAVIOR 2020; 15:1816644. [PMID: 32897833 PMCID: PMC7671041 DOI: 10.1080/15592324.2020.1816644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Orchid mycorrhizal fungi (OMF) are essential for orchids growth. Bletilla striata (Thunb.) Rchb.f.(Orchidaceae) has high ornamental and medicinal value. Beneficial OMF isolation is crucial to improve the survival rate of B. striata tissue culture and transplanting. In this study, we isolated and identified the beneficial OMF in B. striata from the roots of sterilized wild B. striata seedlings by culturing in four different mediums. The germination states of B. striata seeds inoculated with diverse OMF were classified and calculated. Fresh and dry weight increments of B. striata seedlings inoculated with diverse OMF were recorded after 90 d of culturing on 1/2 MS medium. ITS sequences of beneficial fungi were amplified by PCR and taxonomically identified using BLAST against the GenBank nucleotide database. Ten kinds of OMF strains were isolated from B. striata and named R1 to R10. R6 significantly promoted B. striata seeds germination (p < .01). R3 and R6 significantly promoted both the fresh and dry weight increments of B. striata seedlings (p < .05). The ITS sequence of R6 was most similar to the sequence of Serendipita. R3 was identified as Schizothecium fimbriatum by 100% ITS identity. R6 and R3 were beneficial OMF in B. striata.
Collapse
Affiliation(s)
- Gangjun Xi
- Biological Engineering Technology Center, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
- CONTACT Gangjun Xi Biological Engineering Technology Center, Jiangsu Polytechnic College of Agriculture and Forestry, No. 19 Wenchang Road (East), Jurong, Jiangsu, 212400, China
| | - Jun Shi
- Biological Engineering Technology Center, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Jingbao Li
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhengmin Han
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Zhengmin Han College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
37
|
Ghirardo A, Fochi V, Lange B, Witting M, Schnitzler JP, Perotto S, Balestrini R. Metabolomic adjustments in the orchid mycorrhizal fungus Tulasnella calospora during symbiosis with Serapias vomeracea. THE NEW PHYTOLOGIST 2020; 228:1939-1952. [PMID: 32668507 DOI: 10.1111/nph.16812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 05/25/2023]
Abstract
All orchids rely on mycorrhizal fungi for organic carbon, at least during early development. In fact, orchid seed germination leads to the formation of a protocorm, a heterotrophic postembryonic structure colonized by intracellular fungal coils, thought to be the site of nutrient transfer. The molecular mechanisms underlying mycorrhizal interactions and metabolic changes induced by this symbiosis in both partners remain mostly unknown. We studied plant-fungus interactions in the mycorrhizal association between the Mediterranean orchid Serapias vomeracea and the basidiomycete Tulasnella calospora using nontargeted metabolomics. Plant and fungal metabolomes obtained from symbiotic structures were compared with those obtained under asymbiotic conditions. Symbiosis induced substantial metabolomic alterations in both partners. In particular, structural and signaling lipid compounds increased markedly in the external fungal mycelium growing near the symbiotic protocorms, whereas chito-oligosaccharides were identified uniquely in symbiotic protocorms. This work represents the first description of metabolic changes occurring in orchid mycorrhiza. These results - combined with previous transcriptomic data - provide novel insights on the mechanisms underlying the orchid mycorrhizal association and open intriguing questions on the role of fungal lipids in this symbiosis.
Collapse
Affiliation(s)
- Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Valeria Fochi
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Torino, 10125, Italy
- Institute for Sustainable Plant Protection, National Research Council, Viale Mattioli 25, Torino, 10125, Italy
| | - Birgit Lange
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Torino, 10125, Italy
- Institute for Sustainable Plant Protection, National Research Council, Viale Mattioli 25, Torino, 10125, Italy
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection, National Research Council, Viale Mattioli 25, Torino, 10125, Italy
| |
Collapse
|
38
|
Mujica MI, Cisternas M, Claro A, Simunovic M, Pérez F. Nutrients and fungal identity affect the outcome of symbiotic germination in Bipinnula fimbriata (Orchidaceae). Symbiosis 2020. [DOI: 10.1007/s13199-020-00737-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Hongo H, Hasegawa T, Saito M, Tsuboi K, Yamamoto T, Sasaki M, Abe M, Henrique Luiz de Freitas P, Yurimoto H, Udagawa N, Li M, Amizuka N. Osteocytic Osteolysis in PTH-treated Wild-type and Rankl-/- Mice Examined by Transmission Electron Microscopy, Atomic Force Microscopy, and Isotope Microscopy. J Histochem Cytochem 2020; 68:651-668. [PMID: 32942927 DOI: 10.1369/0022155420961375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To demonstrate the ultrastructure of osteocytic osteolysis and clarify whether osteocytic osteolysis occurs independently of osteoclastic activities, we examined osteocytes and their lacunae in the femora and tibiae of 11-week-old male wild-type and Rankl-/- mice after injection of human parathyroid hormone (PTH) [1-34] (80 µg/kg/dose). Serum calcium concentration rose temporarily 1 hr after PTH administration in wild-type and Rankl-/- mice, when renal arteries and veins were ligated. After 6 hr, enlargement of osteocytic lacunae was evident in the cortical bones of wild-type and Rankl-/- mice, but not so in their metaphyses. Von Kossa staining and transmission electron microscopy showed broadly demineralized bone matrix peripheral to enlarged osteocytic lacunae, which contained fragmented collagen fibrils and islets of mineralized matrices. Nano-indentation by atomic force microscopy revealed the reduced elastic modulus of the PTH-treated osteocytic perilacunar matrix, despite the microscopic verification of mineralized matrix in that region. In addition, 44Ca deposition was detected by isotope microscopy and calcein labeling in the eroded osteocytic lacunae of wild-type and Rankl-/- mice. Taken together, our findings suggest that osteocytes can erode the bone matrix around them and deposit minerals on their lacunar walls independently of osteoclastic activity, at least in the murine cortical bone. (J Histochem Cytochem 68: -XXX, 2020).
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masami Saito
- Bruker Japan K.K., Nano Surfaces & Metrology Division, Tokyo, Japan
| | - Kanako Tsuboi
- Dental Surgery, Haibara General Hospital, Makinohara, Japan
| | - Tomomaya Yamamoto
- Department of Dentistry, Japan Ground Self Defense Force Camp Asaka, Tokyo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hisayoshi Yurimoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Herrera H, Sanhueza T, Martiarena R, Valadares R, Fuentes A, Arriagada C. Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile. Microorganisms 2020; 8:microorganisms8081120. [PMID: 32722489 PMCID: PMC7465119 DOI: 10.3390/microorganisms8081120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/05/2022] Open
Abstract
Mycorrhizal interactions of orchids are influenced by several environmental conditions. Hence, knowledge of mycorrhizal fungi associated with orchids inhabiting different ecosystems is essential to designing recovery strategies for threatened species. This study analyzes the mycorrhizal associations of terrestrial orchids colonizing grassland and understory in native ecosystems of the region of La Araucanía in southern Chile. Mycorrhizal fungi were isolated from peloton-containing roots and identified based on the sequence of the ITS region. Their capacities for seed germination were also investigated. We detected Tulasnella spp. and Ceratobasidium spp. in the pelotons of the analyzed orchids. Additionally, we showed that some Ceratobasidium isolates effectively induce seed germination to differing degrees, unlike Tulasnella spp., which, in most cases, fail to achieve protocorm growth. This process may underline a critical step in the life cycle of Tulasnella-associated orchids, whereas the Ceratobasidium-associated orchids were less specific for fungi and were effectively germinated with mycorrhizal fungi isolated from adult roots.
Collapse
Affiliation(s)
- Hector Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
| | - Rodolfo Martiarena
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria, Av. el Libertador 2472, Montecarlo N3384, Misiones, Argentina;
| | - Rafael Valadares
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Cep, 66050-090 Belém, PA, Brazil;
| | - Alejandra Fuentes
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
- Correspondence: ; Tel.: +56-045-232-5635; Fax: +56-045-234-1467
| |
Collapse
|
41
|
Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth. Symbiosis 2020. [DOI: 10.1007/s13199-020-00681-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Evaluation of secondary ions related to plant tissue using least absolute shrinkage and selection operator. Biointerphases 2020; 15:021010. [PMID: 32272844 DOI: 10.1116/6.0000010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With regard to life sciences, it is important to understand biological functions such as metabolic reactions at the cellular level. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) that can provide chemical mappings at 100 nm lateral resolutions is useful for obtaining three-dimensional maps of biological molecules in cells and tissues. TOF-SIMS spectra generally contain several hundred to several thousand secondary ion peaks that provide detailed chemical information. In order to manage such a large number of peaks, data analysis methods such as multivariate analysis techniques have been applied to TOF-SIMS data of complex samples. However, the interpretation of the data analysis results is sometimes still difficult, especially for biological samples. In this study, TOF-SIMS data of resin-embedded plant samples were analyzed using one of the sparse modeling methods, least absolute shrinkage and selection operator (LASSO), to directly select secondary ions related to biological structures such as cell walls and nuclei. The same sample was measured by optical microscopy and the same measurement area as TOF-SIMS was extracted in order to prepare a target image for LASSO. The same area of the TOF-SIMS and microscope data were fused to evaluate the influence of the image fusion on the TOF-SIMS spectrum information using principal component analysis. Specifically, the authors examined onion mycorrhizal root colonized with Gigaspora margarita (an arbuscular mycorrhizal fungus). The results showed that by employing this approach using LASSO, important secondary ions from biological samples were effectively selected and could be clearly distinguished from the embedding resin.
Collapse
|
43
|
Li YY, Guo SX, Lee YI. Ultrastructural changes during the symbiotic seed germination of Gastrodia elata with fungi, with emphasis on the fungal colonization region. BOTANICAL STUDIES 2020; 61:4. [PMID: 32052210 PMCID: PMC7016048 DOI: 10.1186/s40529-019-0280-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Gastrodia elata is a fully mycoheterotrophic orchid and has long been used in traditional Chinese medicine. The life cycle of G. elata requires an association with two different fungi-Mycena for seed germination and Armillaria for tuber growth. The association with Armillaria is representative of the phytophagous type of orchid mycorrhiza: the intracellular hyphae are lysed without forming condensed pelotons. However, whether the association with Mycena during seed germination belongs to the same type of orchid mycorrhiza is unknown. RESULTS Histological and ultrastructural studies revealed several notable features in different developmental stages. First, a thickened cell wall with papillae-like structures appeared during fungal penetration in the suspensor end cell, epidermal cells and cortical cells of germinating embryos. In addition, the formation of two distinctive cell types in the colonized region of a protocorm (i.e., the passage canal cell filled with actively growing fungal hyphae) can be observed in the epidermal cell, and the distinctive digestion cell with a dense cytoplasm appears in the cortex. Finally, within the digestion cell, numerous electron-dense tubules form a radial system and attach to degrading fungal hyphae. The fungal hyphae appear to be digested through endocytosis. CONCLUSIONS The present study provides important structural evidence for the phytophagous type of orchid mycorrhiza in the symbiotic germination of G. elata with Mycena. This case demonstrates a particular nutrient transfer network between G. elata and its litter-decaying fungal partner.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, People's Republic of China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Yung-I Lee
- Biology Department, National Museum of Natural Science, 40453, Taichung, Taiwan.
- Department of Life Sciences, National Chung Hsing University, 40227, Taichung, Taiwan.
| |
Collapse
|
44
|
Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endophytic bacteria are relevant symbionts that contribute to plant growth and development. However, the diversity of bacteria associated with the roots of terrestrial orchids colonizing Andean ecosystems is limited. This study identifies and examines the capabilities of endophytic bacteria associated with peloton-containing roots of six terrestrial orchid species from southern Chile. To achieve our goals, we placed superficially disinfected root fragments harboring pelotons on oatmeal agar (OMA) with no antibiotic addition and cultured them until the bacteria appeared. Subsequently, they were purified and identified using molecular tools and examined for plant growth metabolites production and antifungal activity. In total, 168 bacterial strains were isolated and assigned to 8 OTUs. The orders Pseudomonadales, Burkholderiales, and Xanthomonadales of phylum Proteobacteria were the most frequent. The orders Bacillales and Flavobacteriales of the phylla Firmicutes and Bacteroidetes were also obtained. Phosphate solubilization was detected in majority of isolates; however, it was significantly higher in Collimonas pratensis and Chryseobacterium sp. (PSI = 1.505 ± 0.09 and 1.405 ± 0.24, respectively). Siderophore production was recorded only for C. pratensis (0.657 ± 0.14 mm day−1), Dyella marensis (0.131 ± 0.02 mm day−1), and Luteibacter rhizovicinus (0.343 ± 0.12 mm day−1). Indole acetic acid production was highly influenced by the isolate identity; however, the significantly higher activity was recorded for Pseudomonas spp. (ranging from 5.507 ± 1.57 µg mL−1 to 7.437 ± 0.99 µg mL−1). Additionally, six bacterial isolates were able to inhibit the growth of some potential plant pathogenic fungi. Our findings demonstrate the potential for plant growth promoting capabilities and some antifungal activities of endophytic bacteria inhabiting the mycorrhizal tissue of terrestrial orchids, which may contribute especially at early developmental stages of orchid seedlings.
Collapse
|
45
|
Zhang Y, Li YY, Chen XM, Guo SX, Lee YI. Effect of different mycobionts on symbiotic germination and seedling growth of Dendrobium officinale, an important medicinal orchid. BOTANICAL STUDIES 2020; 61:2. [PMID: 31989371 PMCID: PMC6985412 DOI: 10.1186/s40529-019-0278-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/24/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Orchids maintain a symbiotic relationship with mycorrhizal fungi in the lifecycle. Previous reports indicated that diverse mycobionts may have different roles during orchid growth and development. Although various mycorrhizal fungi have been isolated from Dendrobium roots and protocorms, little is known about their specific effects on seed germination and seedling growth. To understand the specific role of isolated fungal strains (i.e., Tulasnella and Sebacina), we used symbiotic culture to compare the effect of 6 fungal strains on seed germination and seedling growth of Dendrobium officinale, an important Chinese medicinal orchid. RESULTS In symbiotic germination tests, 6 fungal strains (4 Tulasnella strains and 2 Sebacina strains) promoted seed germination with different efficiencies. Seeds inoculated with Tulasnella strains S6 and S7 conferred higher germination percentage and faster protocorm development than other fungal strains. In symbiotic cultures, seedlings inoculated with Sebacina strain S3 had optimal fresh and dry matter yield. Also, Tulasnella strains S6 and S7 promoted seedling growth with good fresh and dry matter yield. Sebacina strain S2 inoculation greatly enhanced root and tiller production and the content of total crude polysaccharides, although seedlings were smaller with less fresh and dry matter yield than other seedlings. CONCLUSIONS Tulasnella and Sebacina strains could promote seed germination and seedling growth of D. officinale with different efficiencies. Our results suggest a non-specific mycorrhizal association and development-dependent preference. Our data provide the basic knowledge for use of different fungal strains in conservation and/or production practices of D. officinale.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yuan-Yuan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xiao-Mei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Yung-I Lee
- Biology Department, National Museum of Natural Science, Taichung, 40453, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
46
|
Current Progress on Endophytic Microbial Dynamics on Dendrobium Plants. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Herrera H, Soto J, de Bashan LE, Sampedro I, Arriagada C. Root-Associated Fungal Communities in Two Populations of the Fully Mycoheterotrophic Plant Arachnitis uniflora Phil. (Corsiaceae) in Southern Chile. Microorganisms 2019; 7:E586. [PMID: 31756978 PMCID: PMC6955791 DOI: 10.3390/microorganisms7120586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiological interactions of the roots of non-photosynthetic plants in South America have been scarcely explored. This study analyzes culturable fungal diversity associated with the mycoheterotrophic plant Arachnitis uniflora Phil. (Corsiaceae) in southern Chile, growing in two different understoreys of native (Nothofagus-dominated) and mixed forest (native, Cupressus sempervirens, and Pinus radiata). Rhizospheric and endophytic fungi were isolated, cultured, and purified to identify microorganisms associated with A. uniflora roots. We showed the different fungi associated with the plant, and that these distributions are influenced by the sampling site. We isolated 410 fungal strains (144 endophytic and 266 from the rhizosphere). We identified 13 operative taxonomical units from plants sampled in the mixed forest, while 15 were from the native forest. Rhizospheric microorganisms were mainly related to Penicillium spp., whereas some pathogenic and saprophytic strains were more frequent inside the roots. Our results have also shown that the fungal strains are weak for phosphate solubilization, but other pathways such as organic acid exudation and indole acetic acid production can be considered as major mechanisms to stimulate plant growth. Our results point to new fungal associates of A. uniflora plants reported in Andean ecosystems, identifying new beneficial endophytic fungi associated with roots of this fully mycoheterotrophic plant.
Collapse
Affiliation(s)
- Hector Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| | - Javiera Soto
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| | - Luz E. de Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA;
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S., Mexico
| | - Inmaculada Sampedro
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| |
Collapse
|
48
|
Organogermanium suppresses cell death due to oxidative stress in normal human dermal fibroblasts. Sci Rep 2019; 9:13637. [PMID: 31541125 PMCID: PMC6754400 DOI: 10.1038/s41598-019-49883-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are very harmful to dermal cells, and it is thus important to develop cosmetics that protect the skin from ROS and other stimuli. Repagermanium is a synthetic water-soluble organogermanium polymer, and in this study, we attempted to visualize the incorporation of germanium into normal human dermal fibroblasts (NHDFs) using isotope microscopy. In addition, the content of 3-(trihydroxygermyl)propanoic acid (THGP), a hydrolyzed monomer of repagermanium, in NHDFs was determined through liquid chromatography mass spectrometry (LC-MS/MS), and the dose-dependent incorporation of THGP was confirmed. We then evaluated the preventive effects of THGP against ROS-induced NHDF death and confirmed the observed preventive effects through gene profiling and expression analysis. The addition of 0.59–5.9 mM THGP reduced cell death resulting from ROS damage caused by the reaction between xanthine oxidase and hypoxanthine and the direct addition of H2O2. Furthermore, this study provides the first demonstration that the effect of THGP was not due to the direct scavenging of ROS, which indicates that the mechanism of THGP differs from that of general antioxidants, such as ascorbic acid. The gene profiling and expression analysis showed that THGP suppressed the expression of the nuclear receptor subfamily 4 group A member 2 (NR4A2) gene, which is related to cell death, and the interleukin 6 (IL6) and chemokine (C-X-C motif) ligand 2 (CXCL2) genes, which are related to the inflammatory response. Furthermore, the production of IL6 induced by H2O2 was suppressed by the THGP treatment. Our data suggest that the preventive effect of THGP against ROS-induced cell death is not due to antioxidant enzymes or ROS scavenging.
Collapse
|
49
|
Miura C, Saisho M, Yagame T, Yamato M, Kaminaka H. Bletilla striata (Orchidaceae) Seed Coat Restricts the Invasion of Fungal Hyphae at the Initial Stage of Fungal Colonization. PLANTS (BASEL, SWITZERLAND) 2019; 8:E280. [PMID: 31405202 PMCID: PMC6724134 DOI: 10.3390/plants8080280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/02/2022]
Abstract
Orchids produce minute seeds that contain limited or no endosperm, and they must form an association with symbiotic fungi to obtain nutrients during germination and subsequent seedling growth under natural conditions. Orchids need to select an appropriate fungus among diverse soil fungi at the germination stage. However, there is limited understanding of the process by which orchids recruit fungal associates and initiate the symbiotic interaction. This study aimed to better understand this process by focusing on the seed coat, the first point of fungal attachment. Bletilla striata seeds, some with the seed coat removed, were prepared and sown with symbiotic fungi or with pathogenic fungi. The seed coat-stripped seeds inoculated with the symbiotic fungi showed a lower germination rate than the intact seeds, and proliferated fungal hyphae were observed inside and around the stripped seeds. Inoculation with the pathogenic fungi increased the infection rate in the seed coat-stripped seeds. The pathogenic fungal hyphae were arrested at the suspensor side of the intact seeds, whereas the seed coat-stripped seeds were subjected to severe infestation. These results suggest that the seed coat restricts the invasion of fungal hyphae and protects the embryo against the attack of non-symbiotic fungi.
Collapse
Affiliation(s)
- Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Miharu Saisho
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | - Takahiro Yagame
- Mizuho Kyo-do Museum, 316-5 Komagatafujiyama, Mizuho, Tokyo 190-1202, Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan.
| |
Collapse
|
50
|
New Insights into the Symbiotic Relationship between Orchids and Fungi. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030585] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycorrhizas play an important role in plant growth and development. In mycorrhizal symbioses, fungi supply soil mineral nutrients, such as nitrogen and phosphorus, to their host plants in exchange for carbon resources. Plants gain as much as 80% of mineral nutrient requirements from mycorrhizal fungi, which form associations with the roots of over 90% of all plant species. Orchid seeds lack endosperms and contain very limited storage reserves. Therefore, the symbiosis with mycorrhizal fungi that form endomycorrhizas is essential for orchid seed germination and protocorm development under natural conditions. The rapid advancement of next-generation sequencing contributes to identifying the orchid and fungal genes involved in the orchid mycorrhizal symbiosis and unraveling the molecular mechanisms regulating the symbiosis. We aim to update and summarize the current understanding of the mechanisms on orchid-fungus symbiosis, and the main focus will be on the nutrient exchange between orchids and their fungal partners.
Collapse
|