1
|
Leaerts L, Van den Ende W. Sweet Immunity in Action: Unlocking Stem Reserves to Improve Yield and Quality. A Potential Key Role for Jasmonic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18347-18352. [PMID: 39120622 DOI: 10.1021/acs.jafc.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Common agronomic practices such as stem topping, side branch removal, and girdling can induce wound priming, mediated by jasmonic acid (JA). Low light conditions during greenhouse tomato production make the leaves more sensitive to the application of exogenous sugar, which is perceived as a "danger" in accordance with the concept of "Sweet Immunity". Consequently, source-sink balances are altered, leading to the remobilization of stem starch reserves and enabling the redirection of more carbon toward developing fruits, thereby increasing tomato yield and fruit quality. Similarities are drawn with the mobilization of fructans following defoliation of fodder grasses (wounding) and the remobilization of fructan and starch reserves under terminal drought and heat stress in wheat and rice (microwounding, cellular leakage). A central role for JA signaling is evident in all of these processes, closely intertwining with sugar signaling pathways. Therefore, JA signaling, associated with wounding and sugar priming events, offers numerous opportunities to alter source-sink balances across a broader spectrum of agricultural and horticultural crops, for instance, through the exogenous application of JA and fructans or a combination. This may entail reconfiguring and reversing phloem connections, potentially leading to an enhanced yield and product quality. Such processes may also disengage the growth-defense trade-off in plants.
Collapse
Affiliation(s)
- Laura Leaerts
- Lab of Molecular Plant Biology and KU Leuven Plant Institute, Kasteelpark Arenberg 31, B 3001 Leuven, Belgium
| | - Wim Van den Ende
- Lab of Molecular Plant Biology and KU Leuven Plant Institute, Kasteelpark Arenberg 31, B 3001 Leuven, Belgium
| |
Collapse
|
2
|
Chen T, Hayes M, Liu Z, Isenegger D, Mason J, Spangenberg G. Modified fructan accumulation through overexpression of wheat fructan biosynthesis pathway fusion genes Ta1SST:Ta6SFT. BMC PLANT BIOLOGY 2024; 24:352. [PMID: 38689209 PMCID: PMC11059666 DOI: 10.1186/s12870-024-05049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress. RESULTS In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines. Under water-deficit (WD) conditions, transgenic wheat plants showed an increased accumulation of fructan polymers with a high degree of polymerisation (DP) when compared to non-transgenic plants. In wheat grain of a transgenic event, increased deposition of particular fructan polymers such as, DP4 was observed. CONCLUSIONS This study demonstrated that the tissue-regulated expression of a gene fusion between Ta1SST and Ta6SFT resulted in modified fructan accumulation in transgenic wheat plants and was influenced by water-deficit stress conditions.
Collapse
Affiliation(s)
- Tong Chen
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Matthew Hayes
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
| | - Zhiqian Liu
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
| | | | - John Mason
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Present Address: Qingdao Agricultural University, College of Grassland Science, N0. 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province, 266109, P.R. China
| |
Collapse
|
3
|
Rubab M, Jannat S, Freeg H, Abbas H, Attia KA, Fiaz S, Zahra N, Uzair M, Inam S, Shah AH, Kimiko I, Naeem MK, Khan MR. Evaluation of functional kompetitive allele-specific PCR (KASP) markers for selection of drought-tolerant wheat ( Triticum aestivum) genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37308134 DOI: 10.1071/fp23032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/06/2023] [Indexed: 06/14/2023]
Abstract
Wheat (Triticum aestivum ) is a major crop around the globe and different techniques are being used for its productivity enhancement. Germplasm evaluation to improve crop productivity mainly depends on accurate phenotyping and selection of genotypes with a high frequency of superior alleles related to the trait of interest. Therefore, applying functional kompetitive allele-specific PCR (KASP) markers for drought-related genes is essential to characterise the genotypes for developing future climate-resilient wheat crop. In this study, eight functional KASP markers and nine morphological traits were employed to evaluate the 40 wheat genotypes for drought tolerance. Morphological traits showed significant variation (P ≤0.05) among the genotypes, except tiller count (TC), fresh root weight (FRW) and dry root weight (DRW). PCA biplot showed that 63.3% phenotypic variation was explained by the first two PCs under control treatment, while 70.8% variation was explained under drought treatment. It also indicated that root length (RL) and primary root (PR) have considerable variations among the genotypes under both treatments and are positively associated with each other. Hence, the findings of this study suggested that both these traits could be used as a selection criterion to classify the drought-tolerant wheat genotypes. KASP genotyping accompanied by morphological data revealed that genotypes Markaz, Bhakar Star, China 2, Aas and Chakwal-50 performed better under drought stress. These outperforming genotypes could be used as parents in developing drought-tolerant wheat genotypes. Hence, KASP genotyping assay for functional genes or significant haplotypes and phenotypic evaluation are prerequisites for a modern breeding program.
Collapse
Affiliation(s)
- Marya Rubab
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan; and Department of Biotechnology, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Summiya Jannat
- Department of Biotechnology, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Haytham Freeg
- Rice Biotechnology Lab., Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt
| | - Hina Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, POX 2455-11451, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Asad Hussain Shah
- Department of Biotechnology, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
4
|
Wang H, Yu H, Chai L, Lu T, Li Y, Jiang W, Li Q. Exogenous Sucrose Confers Low Light Tolerance in Tomato Plants by Increasing Carbon Partitioning from Stems to Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20625-20642. [PMID: 38096491 DOI: 10.1021/acs.jafc.3c05985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low light (LL) stress adversely affects plant growth and productivity. The role of exogenous sucrose in enhancing plant LL tolerance was investigated by spraying sucrose on tomato (Solanum lycopersicum L.) leaves. This study employed physiological and molecular approaches to identify the underlying mechanisms. Exogenous sucrose activated sucrose hydrolysis-related enzyme activity and upregulated genes encoding sucrose and hexose transporters in mature leaves, decreasing endogenous sucrose levels and promoting sucrose unloading during LL. Stem-related genes associated with sucrose synthesis and transport were also upregulated, enhancing sucrose phloem loading. Furthermore, sucrose from stems activated sucrose unloading in sink leaves, forming a feed-forward loop to sustain sucrose flow during LL. This led to increased nonstructural carbohydrates (NSCs), improved energy metabolism, and enhanced protein synthesis in leaves, ultimately boosting photosynthesis and fruit yield after light recovery. These findings highlight how exogenous sucrose enhances LL tolerance in tomatoes by increasing the transport of NSCs from stems to leaves.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Khan N, Zhang J, Islam S, Appels R, Dell B. Wheat Water-Soluble Carbohydrate Remobilisation under Water Deficit by 1-FEH w3. Curr Issues Mol Biol 2023; 45:6634-6650. [PMID: 37623238 PMCID: PMC10453044 DOI: 10.3390/cimb45080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Fructan 1-exohydrolase (1-FEH) is one of the major enzymes in water-soluble carbohydrate (WSC) remobilisation for grains in wheat. We investigated the functional role of 1-FEH w1, w2, and w3 isoforms in WSC remobilisation under post-anthesis water deficit using mutation lines derived from the Australian wheat variety Chara. F1 seeds, developed by backcrossing the 1-FEH w1, w2, and w3 mutation lines with Chara, were genotyped using the Infinium 90K SNP iSelect platform to characterise the mutated region. Putative deletions were identified in FEH mutation lines encompassing the FEH genomic regions. Mapping analysis demonstrated that mutations affected significantly longer regions than the target FEH gene regions. Functional roles of the non-target genes were carried out utilising bioinformatics and confirmed that the non-target genes were unlikely to confound the effects considered to be due to the influence of 1-FEH gene functions. Glasshouse experiments revealed that the 1-FEH w3 mutation line had a slower degradation and remobilisation of fructans than the 1-FEH w2 and w1 mutation lines and Chara, which reduced grain filling and grain yield. Thus, 1-FEH w3 plays a vital role in reducing yield loss under drought. This insight into the distinct role of the 1-FEH isoforms provides new gene targets for water-deficit-tolerant wheat breeding.
Collapse
Affiliation(s)
- Nusrat Khan
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Jingjuan Zhang
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
| | - Shahidul Islam
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Rudi Appels
- Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Bernard Dell
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
| |
Collapse
|
6
|
Ali I, Anwar S, Ali A, Ullah Z, Binjawhar DN, Sher H, Abdel-Hameed UK, Khan MA, Majeed K, Jaremko M. Biochemical and phenological characterization of diverse wheats and their association with drought tolerance genes. BMC PLANT BIOLOGY 2023; 23:326. [PMID: 37331960 DOI: 10.1186/s12870-023-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Drought is one of the most important wheat production limiting factor, and can lead to severe yield losses. This study was designed to examine the effect of drought stress on wheat physiology and morphology under three different field capacities (FC) viz. 80% (control), 50% (moderate) and 30% (severe drought stress) in a diverse collection of wheat germplasm including cultivars, landraces, synthetic hexaploid and their derivatives. Traits like grain weight, thousand grain weight and biomass were reduced by 38.23%, 18.91% and 26.47% respectively at 30% FC, whereas the reduction rate for these traits at 50% FC were 19.57%, 8.88% and 18.68%. In principal component analysis (PCA), the first two components PC1 and PC2 accounted for 58.63% of the total variation and separated the cultivars and landraces from synthetic-based germplasm. Landraces showed wide range of phenotypic variations at 30% FC compared to synthetic-based germplasm and improved cultivars. However, least reduction in grain weight was observed in improved cultivars which indicated the progress in developing drought resilient cultivars. Allelic variations of the drought-related genes including TaSnRK2.9-5A, TaLTPs-11, TaLTPs-12, TaSAP-7B-, TaPPH-13, Dreb-B1 and 1fehw3 were significantly associated with the phenological traits under drought stress in all 91 wheats including 40 landraces, 9 varieties, 34 synthetic hexaploids and 8 synthetic derivatives. The favorable haplotypes of 1fehw3, Dreb-B1, TaLTPs-11 and TaLTPs-12 increased grain weight, and biomass. Our results iterated the fact that landraces could be promising source to deploy drought adaptability in wheat breeding. The study further identified drought tolerant wheat genetic resources across various backgrounds and identified favourable haplotypes of water-saving genes which should be considered to develop drought tolerant varieties.
Collapse
Affiliation(s)
- Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
| | - Saeed Anwar
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Ahmad Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
| | - Zahid Ullah
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Hassan Sher
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Usama K Abdel-Hameed
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawarah, 42353, Saudi Arabia
- Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Khawar Majeed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 329555-6900, Saudi Arabia
| |
Collapse
|
7
|
Eltaher S, Hashem M, Ahmed AAM, Baenziger PS, Börner A, Sallam A. Effectiveness of TaDreb-B1 and 1-FEH w3 KASP Markers in Spring and Winter Wheat Populations for Marker-Assisted Selection to Improve Drought Tolerance. Int J Mol Sci 2023; 24:ijms24108986. [PMID: 37240333 DOI: 10.3390/ijms24108986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the advances in DNA markers, kompetitive allele-specific PCR (KASP) markers could accelerate breeding programs and genetically improve drought tolerance. Two previously reported KASP markers, TaDreb-B1 and 1-FEH w3, were investigated in this study for the marker-assisted selection (MAS) of drought tolerance. Two highly diverse spring and winter wheat populations were genotyped using these two KASP markers. The same populations were evaluated for drought tolerance at seedling (drought stress) and reproductive (normal and drought stress) growth stages. The single-marker analysis revealed a high significant association between the target allele of 1-FEH w3 and drought susceptibility in the spring population, while the marker-trait association was not significant in the winter population. The TaDreb-B1 marker did not have any highly significant association with seedling traits, except the sum of leaf wilting in the spring population. For field experiments, SMA revealed very few negative and significant associations between the target allele of the two markers and yield traits under both conditions. The results of this study revealed that the use of TaDreb-B1 provided better consistency in improving drought tolerance than 1-FEH w3.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32897, Egypt
| | - Mostafa Hashem
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Asmaa A M Ahmed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
8
|
Mohamed EA, Ahmed AAM, Schierenbeck M, Hussein MY, Baenziger PS, Börner A, Sallam A. Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology. Genes (Basel) 2023; 14:373. [PMID: 36833301 PMCID: PMC9957104 DOI: 10.3390/genes14020373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Drought stress is a major yield-limiting factor throughout the world in wheat (Triticum aestivum L.), causing losses of up to 80% of the total yield. The identification of factors affecting drought stress tolerance in the seedling stage is especially important to increase adaptation and accelerate the grain yield potential. In the current study, 41 spring wheat genotypes were tested for their tolerance to drought at the germination stage under two different polyethylene glycol concentrations (PEG) of 25% and 30%. For this purpose, twenty seedlings from each genotype were evaluated in triplicate with a randomized complete block design (RCBD) in a controlled growth chamber. The following nine parameters were recorded: germination pace (GP), germination percentage (G%), number of roots (NR), shoot length (SL), root length (RL), shoot-root length ratio (SRR), fresh biomass weight (FBW), dry biomass weight (DBW), and water content (WC). An analysis of variance (ANOVA) revealed highly significant differences (p < 0.01) among the genotypes, treatments (PEG25%, PEG30%) and genotypes × treatment interaction, for all traits. The broad-sense heritability (H2) estimates were very high in both concentrations. They ranged from 89.4 to 98.9% under PEG25% and from 70.8 to 98.7% under PEG30%. Citr15314 (Afghanistan) was among the best performing genotypes under both concentrations for most of the germination traits. Two KASP markers for TaDreb-B1 and Fehw3 genes were used to screen all genotypes and to study the effect of these on drought tolerance at the germination stage. All genotypes with Fehw3 (only) showed a better performance for most traits under both concentrations compared to other genotypes having TaDreb-B1 or having both genes. To our knowledge, this work is the first report showing the effect of the two genes on germination traits under severe drought stress conditions.
Collapse
Affiliation(s)
- Elsayed A. Mohamed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Asmaa A. M. Ahmed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Matías Schierenbeck
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- CONICET CCT La Plata, 8 N°1467, La Plata 1900, Argentina
| | - Mohamed Y. Hussein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
9
|
Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, Flavell R, Gwyn J, Sawkins M, Griffiths S. A 'wiring diagram' for sink strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:40-71. [PMID: 36334052 PMCID: PMC9786893 DOI: 10.1093/jxb/erac410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023]
Abstract
Identifying traits for improving sink strength is a bottleneck to increasing wheat yield. The interacting processes determining sink strength and yield potential are reviewed and visualized in a set of 'wiring diagrams', covering critical phases of development (and summarizing known underlying genetics). Using this framework, we reviewed and assembled the main traits determining sink strength and identified research gaps and potential hypotheses to be tested for achieving gains in sink strength. In pre-anthesis, grain number could be increased through: (i) enhanced spike growth associated with optimized floret development and/or a reduction in specific stem-internode lengths and (ii) improved fruiting efficiency through an accelerated rate of floret development, improved partitioning between spikes, or optimized spike cytokinin levels. In post-anthesis, grain, sink strength could be augmented through manipulation of grain size potential via ovary size and/or endosperm cell division and expansion. Prospects for improving spike vascular architecture to support all rapidly growing florets, enabling the improved flow of assimilate, are also discussed. Finally, we considered the prospects for enhancing grain weight realization in relation to genetic variation in stay-green traits as well as stem carbohydrate remobilization. The wiring diagrams provide a potential workspace for breeders and crop scientists to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico
| | - Erik H Murchie
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | | | - Richard Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| |
Collapse
|
10
|
Moderate soil drying improves physiological performances and kernel yield of maize. Food Energy Secur 2022. [DOI: 10.1002/fes3.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Ribeiro M, Ferreira D, Siopa J, Rodríguez-Quijano M, Nunes FM. Natural Variation in the Content and Degree of Polymerization of Fructans in Wheat: Potential for Selection of Genotypes with Beneficial Health Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10929-10939. [PMID: 36001448 DOI: 10.1021/acs.jafc.2c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fructans are important biocompounds because of their health-promoting effects as dietary fiber and prebiotics and also because of their harmful effects as fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) particularly in people suffering from irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), and recently as potential triggers of non-celiac wheat/gluten sensitivity. In this work, we have analyzed the fructan contents as well as its degree of polymerization (DP) in a genetically diverse set of wheat varieties, modern and landraces, from different commonly consumed species (N = 124). A significant variation in fructan contents within and between species was observed, with the following relationship: Triticum aestivum (Landraces) > Triticum aestivum (Modern) ≥ Triticum turgidum (Modern) = T. turgidum (Landraces) ≥ Triticum spelta. In addition, a substantial part of the fructans (>50%) showed a DP ≤ 6. Considering that wheat is a major source of fructans, our results can contribute to a better nutritional management of our diets and be a basis for targeted wheat breeding to alter fructan contents.
Collapse
Affiliation(s)
- Miguel Ribeiro
- CQ-VR, Chemistry Research Centre, Chemistry Department, Food and Wine Chemistry Laboratory, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Daniela Ferreira
- BioISI─Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004 Lisboa, Portugal
| | - João Siopa
- CQ-VR, Chemistry Research Centre, Chemistry Department, Food and Wine Chemistry Laboratory, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Marta Rodríguez-Quijano
- Unit of Genetics, Department of Biotechnology-Plant Biology, UPM, Ciudad Universitaria, 28040 Madrid, Spain
| | - Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Chemistry Department, Food and Wine Chemistry Laboratory, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Yang F, Zhang J, Zhao Y, Liu Q, Islam S, Yang W, Ma W. Wheat glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on chromosome 4B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2369-2384. [PMID: 35588016 PMCID: PMC9271121 DOI: 10.1007/s00122-022-04118-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on 4B, and the gene marker is ready for wheat breeding. A QTL for thousand grain weight (TGW) in wheat was previously mapped on chromosome 4B in a DH population of Westonia × Kauz. For identifying the candidate genes of the QTL, wheat 90 K SNP array was used to saturate the existing linkage map, and four field trials plus one glasshouse experiment over five locations were conducted to refine the QTL. Three nitrogen levels were applied to two of those field trials, resulting in a TGW phenotype data set from nine environments. A robust TGW QTL cluster including 773 genes was detected in six environments with the highest LOD value of 13.4. Based on differentiate gene expression within the QTL cluster in an RNAseq data of Westonia and Kauz during grain filling, a glutamine synthesis gene (GS: TaGSr-4B) was selected as a potential candidate gene for the QTL. A SNP on the promoter region between Westonia and Kauz was used to develop a cleaved amplified polymorphic marker for TaGSr-4B gene mapping and QTL reanalysing. As results, TGW QTL appeared in seven environments, and in four out of seven environments, the TGW QTL were localized on the TaGSr-4B locus and showed significant contributions to the phenotype. Based on the marker, two allele groups of Westonia and Kauz formed showed significant differences on TGW in eight environments. In agreement with the roles of GS genes on nitrogen and carbon remobilizations, TaGSr-4B is likely the candidate gene of the TGW QTL on 4B and the TaGSr-4B gene marker is ready for wheat breeding.
Collapse
Affiliation(s)
- Fan Yang
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610066, China
| | - Jingjuan Zhang
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| | - Yun Zhao
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, China
| | - Qier Liu
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Shahidul Islam
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Chengdu, 610066, China
| | - Wujun Ma
- Australian-China Joint Centre for Wheat Improvement, Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, China.
| |
Collapse
|
13
|
Márquez-López RE, Loyola-Vargas VM, Santiago-García PA. Interaction between fructan metabolism and plant growth regulators. PLANTA 2022; 255:49. [PMID: 35084581 DOI: 10.1007/s00425-022-03826-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The relationship of fructan to plant growth regulators is clearly more complicated than it looks and is likely related to differences between fructan molecules in size and structure as well as localization. Fructans are a complex group of carbohydrates composed mainly of fructose units linked to a sucrose molecule. Fructans are present in plants as heterogeneous mixtures with diverse molecular structures and mass, different polymerization degrees, and linkage types between fructosyl residues. Like sucrose, they are frequently stored in leaves and other organs, acting as carbohydrate reserves. Fructans are synthesized in the cell vacuole by fructosyltransferase enzymes and catabolized by fructan exohydrolase enzymes. Several publications have shown that fructan metabolism varies with the stage of plant development and in response to the environment. Recent studies have shown a correlation between plant growth regulators (PGR), fructan metabolism, and tolerance to drought and cold. PGR are compounds that profoundly influence the growth and differentiation of plant cells, tissues, and organs. They play a fundamental role in regulating plant responses to developmental and environmental signals. In this review, we summarize the most up-to-date knowledge on the metabolism of fructans and their crosstalk with PGR signaling pathways. We identify areas that require more research to complete our understanding of the role of fructans in plants.
Collapse
Affiliation(s)
- Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Patricia Araceli Santiago-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico.
| |
Collapse
|
14
|
Chapman EA, Orford S, Lage J, Griffiths S. Delaying or delivering: identification of novel NAM-1 alleles that delay senescence to extend wheat grain fill duration. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7710-7728. [PMID: 34405865 PMCID: PMC8660559 DOI: 10.1093/jxb/erab368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/06/2021] [Indexed: 05/03/2023]
Abstract
Senescence is a complex trait under genetic and environmental control, in which resources are remobilized from vegetative tissue into grain. Delayed senescence, or 'staygreen' traits, can confer stress tolerance, with extended photosynthetic activity hypothetically sustaining grain filling. The genetics of senescence regulation are largely unknown, with senescence variation often correlated with phenological traits. Here, we confirm staygreen phenotypes of two Triticum aestivum cv. Paragon ethyl methane sulfonate mutants previously identified during a forward genetic screen and selected for their agronomic performance, similar phenology, and differential senescence phenotypes. Grain filling experiments confirmed a positive relationship between onset of senescence and grain fill duration, reporting an associated ~14% increase in final dry grain weight for one mutant (P<0.05). Recombinant inbred line (RIL) populations segregating for the timing of senescence were developed for trait mapping purposes and phenotyped over multiple years under field conditions. Quantification and comparison of senescence metrics aided RIL selection, facilitating exome capture-enabled bulk segregant analysis (BSA). Using BSA we mapped our two staygreen traits to two independent, dominant, loci of 4.8 and 16.7 Mb in size encompassing 56 and 142 genes, respectively. Combining association analysis with variant effect prediction, we identified single nucleotide polymorphisms encoding self-validating mutations located in NAM-1 homoeologues, which we propose as gene candidates.
Collapse
Affiliation(s)
| | - Simon Orford
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob Lage
- KWS-UK, 56 Church Street, Thriplow, Hertfordshire SG8 7RE, UK
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
15
|
Eltaher S, Mourad AMI, Baenziger PS, Wegulo S, Belamkar V, Sallam A. Identification and Validation of High LD Hotspot Genomic Regions Harboring Stem Rust Resistant Genes on 1B, 2A ( Sr38), and 7B Chromosomes in Wheat. Front Genet 2021; 12:749675. [PMID: 34659366 PMCID: PMC8517078 DOI: 10.3389/fgene.2021.749675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is an important disease of common wheat globally. The production and cultivation of genetically resistant cultivars are one of the most successful and environmentally friendly ways to protect wheat against fungal pathogens. Seedling screening and genome-wide association study (GWAS) were used to determine the genetic diversity of wheat genotypes obtained on stem rust resistance loci. At the seedling stage, the reaction of the common stem rust race QFCSC in Nebraska was measured in a set of 212 genotypes from F3:6 lines. The results indicated that 184 genotypes (86.8%) had different degrees of resistance to this common race. While 28 genotypes (13.2%) were susceptible to stem rust. A set of 11,911 single-nucleotide polymorphism (SNP) markers was used to perform GWAS which detected 84 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1B, 2A, 2B, 7B and an unknown chromosome. Promising high linkage disequilibrium (LD) genomic regions were found in all chromosomes except 2B which suggested they include candidate genes controlling stem rust resistance. Highly significant LD was found among these 59 significant SNPs on chromosome 2A and 12 significant SNPs with an unknown chromosomal position. The LD analysis between SNPs located on 2A and Sr38 gene reveal high significant LD genomic regions which was previously reported. To select the most promising stem rust resistant genotypes, a new approach was suggested based on four criteria including, phenotypic selection, number of resistant allele(s), the genetic distance among the selected parents, and number of the different resistant allele(s) in the candidate crosses. As a result, 23 genotypes were considered as the most suitable parents for crossing to produce highly resistant stem rust genotypes against the QFCSC.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Amira M I Mourad
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Stephen Wegulo
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
16
|
Mohammadi F, Naghavi MR, Peighambari SA, Khosravi Dehaghi N, Khaldari I, Bravi E, Marconi O, Perretti G. Abscisic acid crosstalk with auxin and ethylene in biosynthesis and degradation of inulin-type fructans in chicory. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:636-642. [PMID: 33710751 DOI: 10.1111/plb.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The effect of different hormones on fructan accumulation and the genes regulating biosynthesis and degradation is known; however, information on hormonal interaction mechanisms for fructan content and mean degree of polymerization (mDP) is limited. Cell suspension cultures of chicory were prepared and treated with abscisic acid (ABA), auxin (AUX), ethylene (ETH), ABA + AUX or ABA + ETH, then inulin concentration, mDP of inulin and expression of FAZY genes was determined. A low concentration of AUX and ETH increased fructan content, while a high concentration of AUX and ETH decreased it. Exogenous ABA increased mDP of inulin and this coincided with the low expression of 1-FEHII. In hormone interactions, ABA changed and adjusted the effect of both AUX and ETH. ABA, together with a low level of AUX and ETH, resulted in a decrease in inulin content and increase in mDP, which coincided with low expression of FEHII. ABA together with a high level of AUX and ETH caused an increase in inulin content with a lower mDP, which coincided with high expression of biosynthesis (1-FFT) and degradation (1-FEHII) genes. The effect of both AUX and ETH was almost the same, although the effect of ETH was more severe. ABA had a modulating role in combinations with AUX and ETH. Among biosynthesis and degradation genes, the expression of 1-FEHII was more affected by these hormones.
Collapse
Affiliation(s)
- F Mohammadi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - M R Naghavi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - S A Peighambari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - N Khosravi Dehaghi
- Evidence-Based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - I Khaldari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - E Bravi
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - O Marconi
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - G Perretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Ur Rehman S, Ali Sher M, Saddique MAB, Ali Z, Khan MA, Mao X, Irshad A, Sajjad M, Ikram RM, Naeem M, Jing R. Development and Exploitation of KASP Assays for Genes Underpinning Drought Tolerance Among Wheat Cultivars From Pakistan. Front Genet 2021; 12:684702. [PMID: 34178041 PMCID: PMC8220157 DOI: 10.3389/fgene.2021.684702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
High-throughput genotyping for functional markers offers an excellent opportunity to effectively practice marker-assisted selection (MAS) while breeding cultivars. We developed kompetitive allele-specific PCR (KASP) assays for genes conferring drought tolerance in common wheat (Triticum aestivum L.). In total, 11 KASP assays developed in this study and five already reported assays were used for their application in wheat breeding. We investigated alleles at 16 loci associated with drought tolerance among 153 Pakistani hexaploid wheat cultivars released during 1953-2016; 28 diploid wheat accessions (16 for AA and 12 for BB) and 19 tetraploid wheat (AABB) were used to study the evolutionary history of the studied genes. Superior allelic variations of the studied genes were significantly associated with higher grain yield. Favored haplotypes of TaSnRK2.3-1A, TaSnRK2.3-1B, TaSnRK2.9-5A, TaSAP-7B, and TaLTPs-1A predominated in Pakistani wheat germplasm indicating unconscious pyramiding and selection pressure on favorable haplotypes during selection breeding. TaSnRK2.8-5A, TaDreb-B1, 1-feh w3, TaPPH-7A, TaMOC-7A, and TaPARG-2A had moderate to low frequencies of favorable haplotype among Pakistani wheat germplasm pointing toward introgression of favorable haplotypes by deploying functional markers in marker-assisted breeding. The KASP assays were compared with gel-based markers for reliability and phenotypically validated among 62 Pakistani wheat cultivars. Association analyses showed that the favorable allelic variations were significantly associated with grain yield-contributing traits. The developed molecular marker toolkit of the genes can be instrumental for the wheat breeding in Pakistan.
Collapse
Affiliation(s)
- Shoaib Ur Rehman
- Institiute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Ali Sher
- Institiute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Abu Bakar Saddique
- Institiute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Zulfiqar Ali
- Institiute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Mahmood Alam Khan
- Institiute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rao Muhammad Ikram
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Mahnoor Naeem
- Institiute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Eltaher S, Baenziger PS, Belamkar V, Emara HA, Nower AA, Salem KFM, Alqudah AM, Sallam A. GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC Genomics 2021; 22:2. [PMID: 33388036 PMCID: PMC7778801 DOI: 10.1186/s12864-020-07308-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Background Improving grain yield in cereals especially in wheat is a main objective for plant breeders. One of the main constrains for improving this trait is the G × E interaction (GEI) which affects the performance of wheat genotypes in different environments. Selecting high yielding genotypes that can be used for a target set of environments is needed. Phenotypic selection can be misleading due to the environmental conditions. Incorporating information from phenotypic and genomic analyses can be useful in selecting the higher yielding genotypes for a group of environments. Results A set of 270 F3:6 wheat genotypes in the Nebraska winter wheat breeding program was tested for grain yield in nine environments. High genetic variation for grain yield was found among the genotypes. G × E interaction was also highly significant. The highest yielding genotype differed in each environment. The correlation for grain yield among the nine environments was low (0 to 0.43). Genome-wide association study revealed 70 marker traits association (MTAs) associated with increased grain yield. The analysis of linkage disequilibrium revealed 16 genomic regions with a highly significant linkage disequilibrium (LD). The candidate parents’ genotypes for improving grain yield in a group of environments were selected based on three criteria; number of alleles associated with increased grain yield in each selected genotype, genetic distance among the selected genotypes, and number of different alleles between each two selected parents. Conclusion Although G × E interaction was present, the advances in DNA technology provided very useful tools and analyzes. Such features helped to genetically select the highest yielding genotypes that can be used to cross grain production in a group of environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07308-0.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, USA.,Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Vikas Belamkar
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Hamdy A Emara
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt
| | - Ahmed A Nower
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt
| | - Khaled F M Salem
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt.,Department of Biology, College of Science and Humanitarian Studies, Shaqra University, Qwaieah, Saudi Arabia
| | - Ahmad M Alqudah
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assuit, 71526, Egypt.
| |
Collapse
|
19
|
Royo C, Ammar K, Villegas D, Soriano JM. Agronomic, Physiological and Genetic Changes Associated With Evolution, Migration and Modern Breeding in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:674470. [PMID: 34305973 PMCID: PMC8296143 DOI: 10.3389/fpls.2021.674470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
A panel of 172 Mediterranean durum wheat landraces and 200 modern cultivars was phenotyped during three years for 21 agronomic and physiological traits and genotyped with 46,161 DArTseq markers. Modern cultivars showed greater yield, number of grains per spike (NGS) and harvest index (HI), but similar number of spikes per unit area (NS) and grain weight than the landraces. Modern cultivars had earlier heading but longer heading-anthesis and grain-filling periods than the landraces. They had greater RUE (Radiation Use Efficiency) up to anthesis and lower canopy temperature at anthesis than the landraces, but the opposite was true during the grain-filling period. Landraces produced more biomass at both anthesis and maturity. The 120 genotypes with a membership coefficient q > 0.8 to the five genetic subpopulations (SP) that structured the panel were related with the geographic distribution and evolutionary history of durum wheat. SP1 included landraces from eastern countries, the domestication region of the "Fertile Crescent." SP2 and SP3 consisted of landraces from the north and the south Mediterranean shores, where durum wheat spread during its migration westward. Decreases in NS, grain-filling duration and HI, but increases in early soil coverage, days to heading, biomass at anthesis, grain-filling rate, plant height and peduncle length occurred during this migration. SP4 grouped modern cultivars gathering the CIMMYT/ICARDA genetic background, and SP5 contained modern north-American cultivars. SP4 was agronomically distant from the landraces, but SP5 was genetically and agronomically close to SP1. GWAS identified 2,046 marker-trait associations (MTA) and 144 QTL hotspots integrating 1,927 MTAs. Thirty-nine haplotype blocks (HB) with allelic differences among SPs and associated with 16 agronomic traits were identified within 13 QTL hotspots. Alleles in chromosomes 5A and 7A detected in landraces were associated with decreased yield. The late heading and short grain-filling period of SP2 and SP3 were associated with a hotspot on chromosome 7B. The heavy grains of SP3 were associated with hotspots on chromosomes 2A and 7A. The greater NGS and HI of modern cultivars were associated with allelic variants on chromosome 7A. A hotspot on chromosome 3A was associated with the high NGS, earliness and short stature of SP4.
Collapse
Affiliation(s)
- Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
- *Correspondence: Conxita Royo ;
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Jose M. Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
20
|
Al-Sheikh Ahmed S, Zhang J, Farhan H, Zhang Y, Yu Z, Islam S, Chen J, Cricelli S, Foreman A, den Ende WV, Ma W, Dell B. Diurnal Changes in Water Soluble Carbohydrate Components in Leaves and Sucrose Associated TaSUT1 Gene Expression during Grain Development in Wheat. Int J Mol Sci 2020; 21:ijms21218276. [PMID: 33167324 PMCID: PMC7663803 DOI: 10.3390/ijms21218276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
In plant tissues, sugar levels are determined by the balance between sugar import, export, and sugar synthesis. So far, water soluble carbohydrate (WSC) dynamics have not been investigated in a diurnal context in wheat stems as compared to the dynamics in flag leaves during the terminal phases of grain filling. Here, we filled this research gap and tested the hypothesis that WSC dynamics interlink with gene expression of TaSUT1. The main stems and flag leaves of two genotypes, Westonia and Kauz, were sampled at four hourly intervals over a 24 h period at six developmental stages from heading to 28 DAA (days after anthesis). The total levels of WSC and WSC components were measured, and TaSUT1 gene expression was quantified at 21 DAA. On average, the total WSC and fructan levels in the stems were double those in the flag leaves. In both cultivars, diurnal patterns in the total WSC and sucrose were detected in leaves across all developmental stages, but not for the fructans 6-kestose and bifurcose. However, in stems, diurnal patterns of the total WSC and fructan were only found at anthesis in Kauz. The different levels of WSC and WSC components between Westonia and Kauz are likely associated with leaf chlorophyll levels and fructan degradation, especially 6-kestose degradation. High correlation between levels of TaSUT1 expression and sucrose in leaves indicated that TaSUT1 expression is likely to be influenced by the level of sucrose in leaves, and the combination of high levels of TaSUT1 expression and sucrose in Kauz may contribute to its high grain yield under well-watered conditions.
Collapse
Affiliation(s)
- Sarah Al-Sheikh Ahmed
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Jingjuan Zhang
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
- Correspondence: (J.Z.); (B.D.)
| | - Hussein Farhan
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Yingquan Zhang
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Zitong Yu
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Shahidul Islam
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Jiansheng Chen
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Sanda Cricelli
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; (S.C.); (A.F.)
| | - Andrew Foreman
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch 6150, WA, Australia; (S.C.); (A.F.)
| | | | - Wujun Ma
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
| | - Bernard Dell
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (S.A.-S.A.); (H.F.); (Y.Z.); (Z.Y.); (S.I.); (J.C.); (W.M.)
- Correspondence: (J.Z.); (B.D.)
| |
Collapse
|
21
|
Fu L, Wu J, Yang S, Jin Y, Liu J, Yang M, Rasheed A, Zhang Y, Xia X, Jing R, He Z, Xiao Y. Genome-wide association analysis of stem water-soluble carbohydrate content in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2897-2914. [PMID: 32594265 DOI: 10.1007/s00122-020-03640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 05/14/2023]
Abstract
GWAS identified 36 potentially new loci for wheat stem water-soluble carbohydrate (WSC) contents and 13 pleiotropic loci affecting WSC and thousand-kernel weight. Five KASP markers were developed and validated. Water-soluble carbohydrates (WSC) reserved in stems contribute significantly to grain yield (GY) in wheat. However, knowledge of the genetic architecture underlying stem WSC content (SWSCC) is limited. In the present study, 166 diverse wheat accessions from the Yellow and Huai Valleys Winter Wheat Zone of China and five other countries were grown in four well-watered environments. SWSCC at 10 days post-anthesis (10DPA), 20DPA and 30DPA, referred as WSC10, WSC20 and WSC30, respectively, and thousand-kernel weight (TKW) were assessed. Correlation analysis showed that TKW was significantly and positively correlated with WSC10 and WSC20. Genome-wide association study was performed on SWSCC and TKW with 373,106 markers from the wheat 660 K and 90 K SNP arrays. Totally, 62 stable loci were detected for SWSCC, with 36, 24 and 19 loci for WSC10, WSC20 and WSC30, respectively; among these, 36 are potentially new, 16 affected SWSCC at two or three time-points, and 13 showed pleiotropic effects on both SWSCC and TKW. Linear regression showed clear cumulative effects of favorable alleles for increasing SWSCC and TKW. Genetic gain analyses indicated that pyramiding favorable alleles of SWSCC had simultaneously improved TKW. Kompetitive allele-specific PCR markers for five pleiotropic loci associated with both SWSCC and TKW were developed and validated. This study provided a genome-wide landscape of the genetic architecture of SWSCC, gave a perspective for understanding the relationship between WSC and GY and explored the theoretical basis for co-improvement of WSC and GY. It also provided valuable loci and markers for future breeding.
Collapse
Affiliation(s)
- Luping Fu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jingchun Wu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shurong Yang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730000, Gansu, China
| | - Yirong Jin
- Dezhou Institute of Agricultural Sciences, Dezhou, 253000, Shandong, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, 518000, China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ruilian Jing
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing, 100081, China.
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
22
|
Khadka K, Raizada MN, Navabi A. Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1149. [PMID: 32849707 PMCID: PMC7417477 DOI: 10.3389/fpls.2020.01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Abstract
There is a need to increase wheat productivity to meet the food demands of the ever-growing human population. However, accelerated development of high yielding varieties is hindered by drought, which is worsening due to climate change. In this context, germplasm diversity is central to the development of drought-tolerant wheat. Extensive collections of these genetic resources are conserved in national and international genebanks. In addition to phenotypic assessments, the use of advanced molecular techniques (e.g., genotype by sequencing) to identify quantitative trait loci (QTLs) for drought tolerance related traits is useful for genome- and marker-assisted selection based approaches. Therefore, to assist wheat breeders at a critical time, we searched the recent peer-reviewed literature (2011-current), first, to identify wheat germplasm observed to be useful genetic sources for drought tolerance, and second, to report QTLs associated with drought tolerance. Though many breeders limit the parents used in breeding programs to a familiar core collection, the results of this review show that larger germplasm collections have been sources of useful genes for drought tolerance in wheat. The review also demonstrates that QTLs for drought tolerance in wheat are associated with diverse physio-morphological traits, at different growth stages. Here, we also briefly discuss the potential of genome engineering/editing to improve drought tolerance in wheat. The use of CRISPR-Cas9 and other gene-editing technologies can be used to fine-tune the expression of genes controlling drought adaptive traits, while high throughput phenotyping (HTP) techniques can potentially accelerate the selection process. These efforts are empowered by wheat researcher consortia.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
23
|
Zhang P, Liu Y, Li M, Ma J, Wang C, Su J, Yang D. Abscisic acid associated with key enzymes and genes involving in dynamic flux of water soluble carbohydrates in wheat peduncle under terminal drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:719-728. [PMID: 32353677 DOI: 10.1016/j.plaphy.2020.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Remobilization of stem water soluble carbohydrates (WSC) can supply crucial carbon resources for grain filling under drought stress, while the regulatory metabolism associated with abscisic acid (ABA) is still limited. Two cultivars, LJ196 (drought-tolerant) and XD18 (drought-prone), were pot-grown under well-watered (WW) and drought-stressed (DS) conditions. Concentrations of WSC components and ABA, and fructan metabolizing enzymes and genes were investigated in peduncle after anthesis. When compared with those under the WW, LJ196 remained higher grain yield and grain-filling rate than XD18 under the DS. During the early period of grain filling (0-14 DAA), DS increased concentrations of total WSC and its components, but thereafter substantially reduced them. The gene expression levels and enzymatic activities of fructan 1-exohydrolases (1-FEH) and fructan 6-exohydrolases (6-FEH) showed similar trends, whereas those of fructan: fructan 1-fructosyltransferase (1-FFT), and sucrose: fructan 6-fructosyltransferase (6-SFT) were depressed and declined over the period of examination. LJ196 still showed higher levels of ABA and fructan metabolizing. The ABA concentration under the DS was positively and significantly correlated with total WSC and fructan concentration, and expression levels of these enzymes and genes as well, with more prominently with those of 6-FEH. Presumably, ABA could enhance fructan hydrolysis by strongly up-regulating the gene expression and enzymatic activity of 6-FEH to accelerate WSC remobilization. However, stem WSC induced by DS could be not fully remobilized to grains, due to its weaker correlation with grain-filling rate and finally indicating lower grain yield. The findings would provide useful information for wheat production under water-deficit environments.
Collapse
Affiliation(s)
- Peipei Zhang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China
| | - Yuan Liu
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengfei Li
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Jingfu Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Delong Yang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
24
|
Sun L, Huang S, Sun G, Zhang Y, Hu X, Nevo E, Peng J, Sun D. SNP-based association study of kernel architecture in a worldwide collection of durum wheat germplasm. PLoS One 2020; 15:e0229159. [PMID: 32059028 PMCID: PMC7021289 DOI: 10.1371/journal.pone.0229159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Durum wheat, genetic resource with favorable alleles is considered as natural gene pool for wheat breeding. Kernel size and weight are important factors affecting grain yield in crops. Here, association analysis was performed to dissect the genetic constitution of kernel-related traits in 150 lines collected from 46 countries and regions using a set of EST-derived and genome-wide SNP markers with five consecutive years of data. Total 109 significant associations for eight kernel-related traits were detected under a mix linear model, generating 54 unique SNP markers distributed on 13 of 14 chromosomes. Of which, 19 marker-trait associations were identified in two or more environments, including one stable and pleiotropic SNP BE500291_5_A_37 on chromosome 5A correlated with six kernel traits. Although most of our SNP loci were overlapped with the previously known kernel weight QTLs, several novel loci for kernel traits in durum were reported. Correlation analysis implied that the moderate climatic variables during growth and development of durum are needed for the large grain size and high grain weight. Combined with our previous studies, we found that chromosome 5A might play an important role in durum growth and development.
Collapse
Affiliation(s)
- Longqing Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sisi Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Nova Scotia, Canada
| | - Yujuan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Junhua Peng
- Germplasm Enhancement Department, Huazhi Biotech Institute, Changsa, Hunan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei, China
| |
Collapse
|
25
|
Volaire F, Morvan-Bertrand A, Prud’homme MP, Benot ML, Augusti A, Zwicke M, Roy J, Landais D, Picon-Cochard C. The resilience of perennial grasses under two climate scenarios is correlated with carbohydrate metabolism in meristems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:370-385. [PMID: 31557303 PMCID: PMC6913708 DOI: 10.1093/jxb/erz424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 05/30/2023]
Abstract
Extreme climatic events (ECEs) such as droughts and heat waves affect ecosystem functioning and species turnover. This study investigated the effect of elevated CO2 on species' resilience to ECEs. Monoliths of intact soil and their plant communities from an upland grassland were exposed to 2050 climate scenarios with or without an ECE under ambient (390 ppm) or elevated (520 ppm) CO2. Ecophysiological traits of two perennial grasses (Dactylis glomerata and Holcus lanatus) were measured before, during, and after ECE. At similar soil water content, leaf elongation was greater under elevated CO2 for both species. The resilience of D. glomerata increased under enhanced CO2 (+60%) whereas H. lanatus mostly died during ECE. D. glomerata accumulated 30% more fructans, which were more highly polymerized, and 4-fold less sucrose than H. lanatus. The fructan concentration in leaf meristems was significantly increased under elevated CO2. Their relative abundance changed during the ECE, resulting in a more polymerized assemblage in H. lanatus and a more depolymerized assemblage in D. glomerata. The ratio of low degree of polymerization fructans to sucrose in leaf meristems was the best predictor of resilience across species. This study underlines the role of carbohydrate metabolism and the species-dependent effect of elevated CO2 on the resilience of grasses to ECE.
Collapse
Affiliation(s)
| | | | | | - Marie-Lise Benot
- UCA, INRA, VetAgro Sup, UMR 874, Clermont-Ferrand, France
- INRA and Université de Bordeaux, UMR 1202 BIOGECO33610, Cestas, France
| | - Angela Augusti
- UCA, INRA, VetAgro Sup, UMR 874, Clermont-Ferrand, France
- CNR-Institute of Research on Terrestrial Ecosystems, Porano (TR), Italy
| | - Marine Zwicke
- UCA, INRA, VetAgro Sup, UMR 874, Clermont-Ferrand, France
| | - Jacques Roy
- CNRS, UPS 3248, Ecotron Européen de Montpellier, Montferrier-sur-Lez, France
| | - Damien Landais
- CNRS, UPS 3248, Ecotron Européen de Montpellier, Montferrier-sur-Lez, France
| | | |
Collapse
|
26
|
Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. Non-Invasive Phenotyping Reveals Genomic Regions Involved in Pre-Anthesis Drought Tolerance and Recovery in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1307. [PMID: 31708943 PMCID: PMC6823269 DOI: 10.3389/fpls.2019.01307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/19/2019] [Indexed: 05/07/2023]
Abstract
With ongoing climate change, drought events are becoming more frequent and will affect biomass formation when occurring during pre-flowering stages. We explored growth over time under such a drought scenario, via non-invasive imaging and revealed the underlying key genetic factors in spring barley. By comparing with well-watered conditions investigated in an earlier study and including information on timing, QTL could be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The influence of phenology on biomass formation increased under drought. Accordingly, the main QTL during recovery was the region of HvPPD-H1. The most important constitutive QTL for late biomass was located in the vicinity of HvDIM, while the main locus for seedling biomass was the HvWAXY region. The disappearance of QTL marked the genetic architecture of tiller number. The most important constitutive QTL was located on 6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities for genetic manipulation to stabilize biomass and tiller number under drought conditions and thereby also grain yield.
Collapse
Affiliation(s)
- Sidram Dhanagond
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guozheng Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- BBCC – Innovation Center Gent, Gent Zwijnaarde, Belgium
| | - Yusheng Zhao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dijun Chen
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michele Grieco
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benjamin Kilian
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kerstin Neumann
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
27
|
Khalid M, Afzal F, Gul A, Amir R, Subhani A, Ahmed Z, Mahmood Z, Xia X, Rasheed A, He Z. Molecular Characterization of 87 Functional Genes in Wheat Diversity Panel and Their Association With Phenotypes Under Well-Watered and Water-Limited Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:717. [PMID: 31214230 PMCID: PMC6558208 DOI: 10.3389/fpls.2019.00717] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
Modern breeding imposed selection for improved productivity that largely influenced the frequency of superior alleles underpinning traits of breeding interest. Therefore, molecular diagnosis for the allelic variations of such genes is important to manipulate beneficial alleles in wheat molecular breeding. We analyzed a diversity panel largely consisted of advanced lines derived from synthetic hexaploid wheats for allelic variation at 87 functional genes or loci of breeding importance using 124 high-throughput KASP markers. We also developed two KASP markers for water-soluble carbohydrate genes (TaSST-D1 and TaSST-A1) associated with plant height and thousand grain weight (TGW) in the diversity panel. KASP genotyping results indicated that beneficial alleles for genes underpinning flowering time (Ppd-D1 and Vrn-D3), thousand grain weight (TaCKX-D1, TaTGW6-A1, TaSus1-7B, and TaCwi-D1), water-soluble carbohydrates (TaSST-A1), yellow-pigment content (Psy-B1 and Zds-D1), and root lesion nematodes (Rlnn1) were fixed in diversity panel with frequency ranged from 96.4 to 100%. The association analysis of functional genes with agronomic and biochemical traits under well-watered (WW) and water-limited (WL) conditions revealed that 21 marker-trait associations (MTAs) were consistently detected in both moisture conditions. The major developmental genes such as Vrn-A1, Rht-D1, and Ppd-B1 had the confounding effect on several agronomic traits including plant height, grain size and weight, and grain yield in both WW and WL conditions. The accumulation of favorable alleles for grain size and weight genes additively enhanced grain weight in the diversity panel. Graphical genotyping approach was used to identify accessions with maximum number of favorable alleles, thus likely to have high breeding value. These results improved our knowledge on the selection of favorable and unfavorable alleles through unconscious selection breeding and identified the opportunities to deploy alleles with effects in wheat breeding.
Collapse
Affiliation(s)
- Maria Khalid
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fakiha Afzal
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Rabia Amir
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Abid Subhani
- Barani Agriculture Research Institute (BARI), Chakwal, Pakistan
| | - Zubair Ahmed
- Crop Science Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Zahid Mahmood
- Crop Science Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Centre (CIMMYT), CAAS, Beijing, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Centre (CIMMYT), CAAS, Beijing, China
| |
Collapse
|
28
|
Morgun VV, Priadkina GA, Zborivska OV. Depositing ability of stem of winter wheat varieties of different periods of selection. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adaptation of high-yielding winter wheat crops to changes in climatic conditions has great importance for food security of countries. The remobilization of stem assimilates for grain filling is one of the possible ways of increasing wheat yield in unfavourable environmental conditions. Field experiments in natural conditions with three old and three modern varieties of winter wheat were performed to compare depositing abilities of their stems. The objective of this study was a comparative analysis of the parameters of depositing capacity of stems of the main shoots for identification of the criteria for assessing grain productivity of winter wheat. The parameters of depositing capacity of the stem of the main shoots of three old winter wheat varieties (1997, 2003, and 2008) and three modern ones (2013, 2014 and 2016) were studied in field conditions with natural conditions of water supply (Kyiv Oblast, Ukraine). During the period of formation of reproductive organs (April and May), the amount of precipitation, respectively, was only 17% and 68% of long-term values and average monthly air temperature was 3–4 ºС higher than the climatic norm. We analyzed the variability of the parameters of depositing capacity of the stem of the main shoot and grain productivity of the ear of six wheat winter varieties which differed by time of selection. In unfavourable conditions during the period of formation of reproductive organs the modern winter wheat varieties had an 11% higher yield on average compared to the older ones. It was determined that the highest mass of grain from the ear of the main shoots (1.9–2.1 g) belonged to Odeska 267 variety, a drought-tolerant variety from earlier selection, and three modern varieties – Raihorodka, Prydniprovska and Darunok Podillia. It is demonstrated that these varieties also exceeded two old varieties (Podolianka and Yednist) by stem dry matter weight of main shoot at anthesis by 0.3–0.6 g. The highest content of non-structural carbohydrates at this phase was observed in Odeska 267, Raihorodka and Darunok Podillia varieties (273–307 mg/stem). Correlation analysis revealed the significant correlation between mass of grain from ear and dry matter of stem at anthesis and full ripeness, as well mass of grain from ear and the amount of non-structural carbohydrates at anthesis. Therefore, modern varieties of winter wheat and the drought-tolerant variety have higher yield, weight of dry matter of stem of the main shoot at anthesis and grain productivity of the ear, compared to old varieties. The results of this study indicate that the mass of dry matter of the stem of the main shoot at anthesis can be used as a marker of the grain productivity of winter wheat.
Collapse
|
29
|
Al-Sheikh Ahmed S, Zhang J, Ma W, Dell B. Contributions of TaSUTs to grain weight in wheat under drought. PLANT MOLECULAR BIOLOGY 2018; 98:333-347. [PMID: 30288667 DOI: 10.1007/s11103-018-0782-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The homologous genes to OsSUT1-5 in wheat were identified and detailed analysed. TaSUT1 was the predominant sucrose transporter group and it illustrated the genotypic variations towards drought during grain filling. Sucrose transporters (SUT) play crucial roles in wheat stem water soluble carbohydrate (WSC) remobilization to grain. To determine the major functional SUT gene groups in shoot parts of wheat during grain development, drought tolerant varieties, Westonia and Kauz, were investigated in field drought experiments. Fourteen homologous genes to OsSUT1-5 were identified on five homeologous groups, namely TaSUT1_4A, TaSUT1_4B, TaSUT1_4D; TaSUT2_5A, TaSUT2_5B, TaSUT2_5D; TaSUT3_1A, TaSUT3_1D; TaSUT4_6A, TaSUT4_6B, TaSUT4_6D; TaSUT5_2A, TaSUT5_2B, and TaSUT5_2D, and their gene structures were analysed. Wheat plants above the ground were harvested from pre-anthesis to grain maturity and the stem, leaf sheath, rachis, lemma and developing grain were used for analysing TaSUT gene expression. Grain weight, thousand grain weight, kernel number per spike, biomass and stem WSC were characterized. The study showed that among the five TaSUT groups, TaSUT1 was the predominant sucrose transporting group in all organs sampled, and the expression was particularly high in the developing grain. In contrast to TaSUT1, the gene expression levels of TaSUT2, TaSUT3 and TaSUT4 were lower, except for TaSUT3 which showed preferential expression in the lemma before anthesis. The TaSUT5 gene group was very weakly expressed in all tissues. The upregulated gene expression of TaSUT1 Westonia type in stem and grain reveal a crucial role in stem WSC remobilization to grain under drought. The high TaSUT1 gene expression and the significant correlations with thousand grain weight (TGW) and kernel number per spike demonstrated the contribution in Kauz's high grain yield in an irrigated environment and high TGW in Westonia under drought stress. Further molecular level identification is required for gene marker development.
Collapse
Affiliation(s)
- Sarah Al-Sheikh Ahmed
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | - Jingjuan Zhang
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia.
| | - Wujun Ma
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | - Bernard Dell
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
30
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
31
|
Fonteyne S, Muylle H, Lootens P, Kerchev P, Van den Ende W, Staelens A, Reheul D, Roldán-Ruiz I. Physiological basis of chilling tolerance and early-season growth in miscanthus. ANNALS OF BOTANY 2018; 121:281-295. [PMID: 29300823 PMCID: PMC5808799 DOI: 10.1093/aob/mcx159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The high productivity of Miscanthus × giganteus has been at least partly ascribed to its high chilling tolerance compared with related C4 crops, allowing for a longer productive growing season in temperate climates. However, the chilling tolerance of M. × giganteus has been predominantly studied under controlled environmental conditions. The understanding of the underlying mechanisms contributing to chilling tolerance in the field and their variation in different miscanthus genotypes is largely unexplored. METHODS Five miscanthus genotypes with different sensitivities to chilling were grown in the field and scored for a comprehensive set of physiological traits throughout the spring season. Chlorophyll fluorescence was measured as an indication of photosynthesis, and leaf samples were analysed for biochemical traits related to photosynthetic activity (chlorophyll content and pyruvate, Pi dikinase activity), redox homeostasis (malondialdehyde, glutathione and ascorbate contents, and catalase activity) and water-soluble carbohydrate content. KEY RESULTS Chilling-tolerant genotypes were characterized by higher levels of malondialdehyde, raffinose and sucrose, and higher catalase activity, while the chilling-sensitive genotypes were characterized by higher concentrations of glucose and fructose, and higher pyruvate, Pi dikinase activity later in the growing season. On the early sampling dates, the biochemical responses of M. × giganteus were similar to those of the chilling-tolerant genotypes, but later in the season they became more similar to those of the chilling-sensitive genotypes. CONCLUSIONS The overall physiological response of chilling-tolerant genotypes was distinguishable from that of chilling-sensitive genotypes, while M. × giganteus was intermediate between the two. There appears to be a trade-off between high and efficient photosynthesis and chilling stress tolerance. Miscanthus × giganteus is able to overcome this trade-off and, while it is more similar to the chilling-sensitive genotypes in early spring, its photosynthetic capacity is similar to that of the chilling-tolerant genotypes later on.
Collapse
Affiliation(s)
- Simon Fonteyne
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
- Ghent University, Department of Plant Production, Ghent, Belgium
| | - Hilde Muylle
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Peter Lootens
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Pavel Kerchev
- Ghent University, VIB Department of Plant Systems Biology, Ghent, Belgium
| | - Wim Van den Ende
- KU Leuven, Laboratory of Molecular Plant Biology, Leuven, Belgium
| | - Ariane Staelens
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Dirk Reheul
- Ghent University, Department of Plant Production, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
| |
Collapse
|
32
|
Yáñez A, Tapia G, Guerra F, del Pozo A. Stem carbohydrate dynamics and expression of genes involved in fructan accumulation and remobilization during grain growth in wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress. PLoS One 2017; 12:e0177667. [PMID: 28552955 PMCID: PMC5446126 DOI: 10.1371/journal.pone.0177667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/01/2017] [Indexed: 11/18/2022] Open
Abstract
The genetic and physiological mechanisms underlying the relationship between water-soluble carbohydrates (WSC) and water stress tolerance are scarcely known. This study aimed to evaluate the main WSC in stems, and the expression of genes involved in fructan metabolism in wheat genotypes growing in a glasshouse with water stress (WS; 50% field capacity from heading) and full irrigation (FI; 100% field capacity). Eight wheat genotypes (five tolerant and three susceptible to water stress) were evaluated initially (experiment 1) and the two most contrasting genotypes in terms of WSC accumulation were evaluated in a subsequent experiment (experiment 2). Maximum accumulation of WSC occurred 10-20 days after anthesis. Under WS, the stress-tolerant genotype exhibited higher concentrations of WSC, glucose, fructose and fructan in the stems, compared to FI. In addition, the stress-tolerant genotype exhibited higher up-regulation of the fructan 1-fructosyltransferase B (1-FFTB) and fructan 1-exohydrolase w2 (1-FEHw2) genes, whereas the susceptible cultivar presented an up-regulation of the fructan 6-fructosyltransferase (6-SFT) and fructan 1-exohydrolase w3 (1-FEHw3) genes. Our results indicated clear differences in the pattern of WSC accumulation and the expression of genes regulating fructan metabolism between the tolerant and susceptible genotypes under WS.
Collapse
Affiliation(s)
- Alejandra Yáñez
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca, Chile
| | - Gerardo Tapia
- CRI-Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Fernando Guerra
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Alejandro del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca, Chile
| |
Collapse
|
33
|
Valluru R, Reynolds MP, Davies WJ, Sukumaran S. Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. THE NEW PHYTOLOGIST 2017; 214:271-283. [PMID: 27918628 DOI: 10.1111/nph.14367] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/26/2016] [Indexed: 05/19/2023]
Abstract
The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.
Collapse
Affiliation(s)
- Ravi Valluru
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
- Plant Biology Department, Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
| | - William J Davies
- Plant Biology Department, Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sivakumar Sukumaran
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
| |
Collapse
|
34
|
Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS One 2017; 12:e0174425. [PMID: 28355304 PMCID: PMC5371334 DOI: 10.1371/journal.pone.0174425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/08/2017] [Indexed: 12/30/2022] Open
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were transformed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH) was significantly lower.
Collapse
|
35
|
Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1843-60. [PMID: 27306516 DOI: 10.1007/s00122-016-2743-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
We developed and validated a robust marker toolkit for high-throughput and cost-effective screening of a large number of functional genes in wheat. Functional markers (FMs) are the most valuable markers for crop breeding programs, and high-throughput genotyping for FMs could provide an excellent opportunity to effectively practice marker-assisted selection while breeding cultivars. Here we developed and validated kompetitive allele-specific PCR (KASP) assays for genes that underpin economically important traits in bread wheat including adaptability, grain yield, quality, and biotic and abiotic stress resistances. In total, 70 KASP assays either developed in this study or obtained from public databases were validated for reliability in application. The validation of KASP assays were conducted by (a) comparing the assays with available gel-based PCR markers on 23 diverse wheat accessions, (b) validation of the derived allelic information using phenotypes of a panel comprised of 300 diverse cultivars from China and 13 other countries, and (c) additional testing, where possible, of the assays in four segregating populations. All KASP assays being reported were significantly associated with the relevant phenotypes in the cultivars panel and bi-parental populations, thus revealing potential application in wheat breeding programs. The results revealed 45 times superiority of the KASP assays in speed than gel-based PCR markers. KASP has recently emerged as single-plex high-throughput genotyping technology; this is the first report on high-throughput screening of a large number of functional genes in a major crop. Such assays could greatly accelerate the characterization of crossing parents and advanced lines for marker-assisted selection and can complement the inflexible, high-density SNP arrays. Our results offer a robust and reliable molecular marker toolkit that can contribute towards maximizing genetic gains in wheat breeding programs.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS 12 Zhongguancun South Street, Beijing, 100081, China
| | - Weie Wen
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fengmei Gao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shengnan Zhai
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Jin
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jindong Liu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Qi Guo
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yingjun Zhang
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
36
|
del Pozo A, Yáñez A, Matus IA, Tapia G, Castillo D, Sanchez-Jardón L, Araus JL. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment. FRONTIERS IN PLANT SCIENCE 2016; 7:987. [PMID: 27458470 PMCID: PMC4936474 DOI: 10.3389/fpls.2016.00987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/21/2016] [Indexed: 05/03/2023]
Abstract
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.
Collapse
Affiliation(s)
- Alejandro del Pozo
- Programa de Investigación de Excelencia Interdisciplinaria, Adaptación de la Agricultura al Cambio Climático (A2C2), Facultad de Ciencias Agrarias, Centro de Mejoramiento Genético y Fenómica Vegetal, Universidad de TalcaTalca, Chile
| | - Alejandra Yáñez
- Programa de Investigación de Excelencia Interdisciplinaria, Adaptación de la Agricultura al Cambio Climático (A2C2), Facultad de Ciencias Agrarias, Centro de Mejoramiento Genético y Fenómica Vegetal, Universidad de TalcaTalca, Chile
- Departamento de Ciencias Agrarias, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del MauleCuricó, Chile
| | - Iván A. Matus
- Centro Regional Investigación Quilamapu, Instituto de Investigaciones AgropecuariasChillán, Chile
| | - Gerardo Tapia
- Centro Regional Investigación Quilamapu, Instituto de Investigaciones AgropecuariasChillán, Chile
| | - Dalma Castillo
- Centro Regional Investigación Quilamapu, Instituto de Investigaciones AgropecuariasChillán, Chile
| | | | - José L. Araus
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
37
|
Sharbatkhari M, Shobbar ZS, Galeshi S, Nakhoda B. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. PLANTA 2016; 244:191-202. [PMID: 27016249 DOI: 10.1007/s00425-016-2497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Fructan accumulation and remobilization to grains under salinity can decrease dependency of the wheat tolerant cultivar on current photosynthesis and protect it from severe yield loss under salt stress. Tolerance of plants to abiotic stresses can be enhanced by accumulation of soluble sugars, such as fructan. The current research sheds light on the role of stem fructan remobilization on yield of bread wheat under salt stress conditions. Fructan accumulation and remobilization as well as relative expression of the major genes of fructan metabolism were investigated in the penultimate internodes of 'Bam' as the salt-tolerant and 'Ghods' as the salt-sensitive wheat cultivars under salt-stressed and controlled conditions and their correlations were analyzed. More fructan production and higher efficiency of fructan remobilization was detected in Bam cultivar under salinity. Up-regulation of sucrose: sucrose 1-fructosyltransferase (1-SST) and sucrose: fructan 6-fructosyltransferase (6-SFT) (fructan biosynthesis genes) at anthesis and up-regulation of fructan exohydrolase (1-FEH) and vacuolar invertase (IVR) genes (contributed to fructan metabolism) during grain filling stage and higher expression of sucrose transporter gene (SUT1) in Bam was in accordance with its induced fructan accumulation and remobilization under salt stress. A significant correlation was observed between weight density, WSCs and gene expression changes under salt stress. Based on the these results, increased fructan production and induced stem reserves remobilization under salinity can decrease dependency of the wheat tolerant cultivar on current photosynthesis and protect it from severe yield loss under salt stress conditions.
Collapse
Affiliation(s)
- Mahrokh Sharbatkhari
- Molecular Physiology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
- Department of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Zahra-Sadat Shobbar
- Molecular Physiology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran.
| | - Serrolah Galeshi
- Department of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Babak Nakhoda
- Molecular Physiology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| |
Collapse
|
38
|
Zhang J, Dell B, Ma W, Vergauwen R, Zhang X, Oteri T, Foreman A, Laird D, Van den Ende W. Contributions of Root WSC during Grain Filling in Wheat under Drought. FRONTIERS IN PLANT SCIENCE 2016; 7:904. [PMID: 27446134 PMCID: PMC4917532 DOI: 10.3389/fpls.2016.00904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/08/2016] [Indexed: 05/26/2023]
Abstract
As the first organ in plants to sense water-deficit in the soil, roots have important roles for improving crop adaption to water limited environments. Stem water soluble carbohydrates (WSC) are a major carbon source for grain filling under drought conditions. The contributions of root WSC during grain filling under drought has not been revealed. Wheat parental lines of Westonia, Kauz and their derived four double haploid (DH) lines, namely, DH 125, DH 139, DH 307, and DH 338 were used in a field drought experiment with four replications. Through measurements of the root and stem WSC components, and the associated enzyme activities during grain filling, we identified that the levels of root WSC and fructan were one third of the levels in stems. In particular, root glucose and 6-kestose levels were one third of the stem, while the root fructose and bifurcose level were almost half of the stem and sucrose level was two third of the stem. The accumulation and the degradation patterns of root fructan levels were similar to that in the stem, especially under drought. Correlations between root fructan levels and grain assimilation were highly significant, indicating that under terminal drought, root WSC represents a redistributed carbon source for grain filling rather than deep rooting. The significantly higher root sucrose levels under drought suggest that sucrose may act as a signal under drought stress. As compared with stem fructose levels, the earlier increased root fructose levels in DH 307, DH 139, and DH 338 provided agile response to drought stress. Our root results further confirmed that β-(2-6) linkages predominate in wheat with patterns of 6-kestose being closely correlated with overall fructan patterns. Further research will focus on the roles of 6-FEH during fructan remobilization in stems.
Collapse
Affiliation(s)
- Jingjuan Zhang
- School of Veterinary and Life Sciences, Murdoch University, MurdochWA, Australia
| | - Bernard Dell
- School of Veterinary and Life Sciences, Murdoch University, MurdochWA, Australia
| | - Wujun Ma
- School of Veterinary and Life Sciences, Murdoch University, MurdochWA, Australia
| | - Rudy Vergauwen
- Laboratory of Molecular Plant Biology, KU LeuvenLeuven, Belgium
| | - Xinmin Zhang
- School of Veterinary and Life Sciences, Murdoch University, MurdochWA, Australia
| | - Tina Oteri
- School of Engineering and Information Technology, Murdoch University, MurdochWA, Australia
| | - Andrew Foreman
- School of Engineering and Information Technology, Murdoch University, MurdochWA, Australia
| | - Damian Laird
- School of Engineering and Information Technology, Murdoch University, MurdochWA, Australia
| | | |
Collapse
|
39
|
Gasperl A, Morvan-Bertrand A, Prud'homme MP, van der Graaff E, Roitsch T. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.). FRONTIERS IN PLANT SCIENCE 2016; 6:1251. [PMID: 26834764 PMCID: PMC4719101 DOI: 10.3389/fpls.2015.01251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/21/2015] [Indexed: 05/05/2023]
Abstract
Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool.
Collapse
Affiliation(s)
- Anna Gasperl
- Institute of Plant Sciences, Karl-Franzens-Universität GrazGraz, Austria
| | - Annette Morvan-Bertrand
- Normandie UniversitéCaen, France
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Université de Caen NormandieCaen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCSCaen, France
| | - Marie-Pascale Prud'homme
- Normandie UniversitéCaen, France
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Université de Caen NormandieCaen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCSCaen, France
| | | | - Thomas Roitsch
- Institute of Plant Sciences, Karl-Franzens-Universität GrazGraz, Austria
| |
Collapse
|
40
|
Del Pozo A, Yáñez A, Matus IA, Tapia G, Castillo D, Sanchez-Jardón L, Araus JL. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27458470 DOI: 10.3389/fenvs.2014.00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.
Collapse
Affiliation(s)
- Alejandro Del Pozo
- Programa de Investigación de Excelencia Interdisciplinaria, Adaptación de la Agricultura al Cambio Climático (A2C2), Facultad de Ciencias Agrarias, Centro de Mejoramiento Genético y Fenómica Vegetal, Universidad de Talca Talca, Chile
| | - Alejandra Yáñez
- Programa de Investigación de Excelencia Interdisciplinaria, Adaptación de la Agricultura al Cambio Climático (A2C2), Facultad de Ciencias Agrarias, Centro de Mejoramiento Genético y Fenómica Vegetal, Universidad de TalcaTalca, Chile; Departamento de Ciencias Agrarias, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del MauleCuricó, Chile
| | - Iván A Matus
- Centro Regional Investigación Quilamapu, Instituto de Investigaciones Agropecuarias Chillán, Chile
| | - Gerardo Tapia
- Centro Regional Investigación Quilamapu, Instituto de Investigaciones Agropecuarias Chillán, Chile
| | - Dalma Castillo
- Centro Regional Investigación Quilamapu, Instituto de Investigaciones Agropecuarias Chillán, Chile
| | - Laura Sanchez-Jardón
- Centro Universitario de la Patagonia, Universidad de Magallanes Coyhiaque, Chile
| | - José L Araus
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
41
|
Wang S, Yan X, Wang Y, Liu H, Cui D, Chen F. Haplotypes of the TaGS5-A1 Gene Are Associated with Thousand-Kernel Weight in Chinese Bread Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:783. [PMID: 27375643 PMCID: PMC4891348 DOI: 10.3389/fpls.2016.00783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/20/2016] [Indexed: 05/19/2023]
Abstract
In previous work, we cloned TaGS5 gene and found the association of TaGS5-A1 alleles with agronomic traits. In this study, the promoter sequence of the TaGS5-A1 gene was isolated from bread wheat. Sequencing results revealed that a G insertion was found in position -1925 bp of the TaGS5-A1 gene (Reference to ATG), which occurred in the Sp1 domain of the promoter sequence. Combined with previous single nucleotide polymorphism (SNP) in the TaGS5-A1 exon sequence, four genotypes were formed at the TaGS5-A1 locus and were designated as TaGS5-A1a-a, TaGS5-A1a-b, TaGS5-A1b-a, and TaGS5-A1b-b, respectively. Analysis of the association of TaGS5-A1 alleles with agronomic traits indicated that cultivars with the TaGS5-A1a-b allele possessed significantly higher thousand-kernel weight (TKW) and lower plant height than cultivars with the TaGS5-A1a-a allele, and cultivars with the TaGS5-A1b-b allele showed higher TKW than cultivars with the TaGS5-A1b-a allele. The differences of these traits between the TaGS5-A1a-a and TaGS5-A1a-b alleles were larger than those of the TaGS5-A1b-a and TaGS5-A1b-b alleles, suggesting that the -1925G insertion plays the more important role in TaGS5-A1a genotypes than in TaGS5-A1b genotypes. qRT-PCR indicated that TaGS5-A1b-b possessed the significantly highest expression level among four TaGS5-A1 haplotypes in mature seeds and further showed a significantly higher expression level than TaGS5-A1b-a at five different developmental stages of the seeds, suggesting that high expression of TaGS5-A1 was positively associated with high TKW in bread wheat. This study could provide a relatively superior genotype in view of TKW in wheat breeding programs and could also provide important information for dissection of the regulatory mechanism of the yield-related traits.
Collapse
|
42
|
Gasperl A, Morvan-Bertrand A, Prud’homme MP, van der Graaff E, Roitsch T. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1154. [PMID: 26734049 PMCID: PMC4686730 DOI: 10.3389/fpls.2015.01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/04/2015] [Indexed: 05/16/2023]
Abstract
Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.
Collapse
Affiliation(s)
- Anna Gasperl
- Institute of Plant Sciences, Karl-Franzens-Universität GrazGraz, Austria
| | - Annette Morvan-Bertrand
- Normandie Université, CaenFrance
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Université de Caen NormandieCaen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCSCaen, France
| | - Marie-Pascale Prud’homme
- Normandie Université, CaenFrance
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Université de Caen NormandieCaen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCSCaen, France
| | | | - Thomas Roitsch
- Institute of Plant Sciences, Karl-Franzens-Universität GrazGraz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
43
|
Jagadish KSV, Kavi Kishor PB, Bahuguna RN, von Wirén N, Sreenivasulu N. Staying Alive or Going to Die During Terminal Senescence-An Enigma Surrounding Yield Stability. FRONTIERS IN PLANT SCIENCE 2015; 6:1070. [PMID: 26648957 PMCID: PMC4663250 DOI: 10.3389/fpls.2015.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.
Collapse
Affiliation(s)
| | | | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, Metro Manila, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
44
|
Zhang J, Chen W, Dell B, Vergauwen R, Zhang X, Mayer JE, Van den Ende W. Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling. FRONTIERS IN PLANT SCIENCE 2015; 6:624. [PMID: 26322065 PMCID: PMC4531436 DOI: 10.3389/fpls.2015.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/27/2015] [Indexed: 05/13/2023]
Abstract
In wheat, stem water soluble carbohydrates (WSC), composed mainly of fructans, are the major carbon sources for grain filling during periods of decreasing photosynthesis or under drought stress after anthesis. Here, in a field drought experiment, WSC levels and associated enzyme activities were followed in different stem segments (peduncle, penultimate internode, lower parts of stem, and sheath) during grain filling. The focus was on two double haploid (DH) lines, DH 307 and DH 338, derived from a Westonia/Kauz cross, two drought-tolerant wheat varieties that follow different drought adaptation strategies during grain filling. The results showed that in irrigated plants, in the period between 20 and 30 days after anthesis (DAA), 70-80% of WSC were fructans. Before and after this period, the fructan proportion varied from 10 to 60%, depending on the location along the stem. Under drought, the fructan proportion changed, depending on genotype, and developmental stages. After anthesis, stem fructans accumulation occurred mainly in the peduncle and penultimate internode until 14 DAA in both DH lines, with clear genotypic variation in subsequent fructan degradation under drought. In DH 307 a significant reduction of fructans with a concomitant increase in fructose levels occurred earlier in the lower parts of the stem and the sheath, as compared to DH 338 or other stem segments in both lines. This was associated with an earlier increase of grain weight and thousand grain weight in DH 307. Spatiotemporal analysis of fructan dynamics and enzymatic activities in fructan metabolism revealed that several types of FEHs are involved in fructan remobilization to the grain under drought.
Collapse
Affiliation(s)
- Jingjuan Zhang
- Agricultural Sciences, School of Veterinary and Life Sciences, Murdoch UniversityMurdoch, WA, Australia
| | - Wei Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water ResourcesYangling, Shaanxi, China
| | - Bernard Dell
- Agricultural Sciences, School of Veterinary and Life Sciences, Murdoch UniversityMurdoch, WA, Australia
| | - Rudy Vergauwen
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU LeuvenLeuven, Belgium
| | - Xinmin Zhang
- Agricultural Sciences, School of Veterinary and Life Sciences, Murdoch UniversityMurdoch, WA, Australia
| | - Jorge E. Mayer
- Grains Research and Development CorporationBarton, ACT, Australia
| | - Wim Van den Ende
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU LeuvenLeuven, Belgium
| |
Collapse
|
45
|
Cruz-Cárdenas CI, Miranda-Ham ML, Castro-Concha LA, Ku-Cauich JR, Vergauwen R, Reijnders T, Van den Ende W, Escobedo-GraciaMedrano RM. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions. FRONTIERS IN PLANT SCIENCE 2015; 6:395. [PMID: 26106398 PMCID: PMC4460310 DOI: 10.3389/fpls.2015.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 05/26/2023]
Abstract
The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to the development of genuine banana fructosyltransferases that are able to increase fructan content in banana fruits.
Collapse
Affiliation(s)
| | | | | | | | - Rudy Vergauwen
- Laboratory of Molecular Plant Biology, KU LeuvenLeuven, Belgium
| | - Timmy Reijnders
- Laboratory of Molecular Plant Biology, KU LeuvenLeuven, Belgium
| | | | | |
Collapse
|
46
|
Rigui AP, Gaspar M, Oliveira VF, Purgatto E, Carvalho MAMD. Endogenous hormone concentrations correlate with fructan metabolism throughout the phenological cycle in Chrysolaena obovata. ANNALS OF BOTANY 2015; 115:1163-75. [PMID: 25921788 PMCID: PMC4648463 DOI: 10.1093/aob/mcv053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Chrysolaena obovata, an Asteraceae of the Brazilian Cerrado, presents seasonal growth, marked by senescence of aerial organs in winter and subsequent regrowth at the end of this season. The underground reserve organs, the rhizophores, accumulate inulin-type fructans, which are known to confer tolerance to drought and low temperature. Fructans and fructan-metabolizing enzymes show a characteristic spatial and temporal distribution in the rhizophores during the developmental cycle. Previous studies have shown correlations between abscisic acid (ABA) or indole acetic acid (IAA), fructans, dormancy and tolerance to drought and cold, but the signalling mechanism for the beginning of dormancy and sprouting in this species is still unknown. METHODS Adult plants were sampled from the field across phenological phases including dormancy, sprouting and vegetative growth. Endogenous concentrations of ABA and IAA were determined by GC-MS-SIM (gas chromatography-mass spectrometry-selected ion monitoring), and measurements were made of fructan content and composition, and enzyme activities. The relative expression of corresponding genes during dormancy and sprouting were also determined. KEY RESULTS Plants showed a high fructan 1-exohydrolase (EC 3.2.1.153) activity and expression during sprouting in proximal segments of the rhizophores, indicating mobilization of fructan reserves, when ABA concentrations were relatively low and precipitation and temperature were at their minimum values. Concomitantly, higher IAA concentrations were consistent with the role of this regulator in promoting cell elongation and plant growth. With high rates of precipitation and high temperatures in summer, the fructan-synthesizing enzyme sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) showed higher activity and expression in distal segments of the rhizophores, which decreased over the course of the vegetative stage when ABA concentrations were higher, possibly signalling the entry into dormancy. CONCLUSIONS The results show that fructan metabolism correlates well with endogenous hormone concentrations and environmental changes, suggesting that the co-ordinated action of carbohydrate metabolism and hormone synthesis enables C. obovata to survive unfavourable field conditions. Endogenous hormone concentrations seem to be related to regulation of fructan metabolism and to the transition between phenophases, signalling for energy storage, reserve mobilization and accumulation of oligosaccharides as osmolytes.
Collapse
Affiliation(s)
- Athos Poli Rigui
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil
| | - Marília Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil
| | - Vanessa F Oliveira
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil
| | - Eduardo Purgatto
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil
| | - Maria Angela Machado de Carvalho
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, PO Box 68041, CEP 04045-972, São Paulo, SP, Brazil, Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil, Universidade de Mogi das Cruzes-Campus Villa Lobos, CEP 05305-000, São Paulo, SP, Brazil and Departamento de Alimentos e Nutrição Experimental/NAPAN, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422-970 São Paulo, SP, Brazil
| |
Collapse
|
47
|
Valluru R. Fructan and hormone connections. FRONTIERS IN PLANT SCIENCE 2015; 6:180. [PMID: 25852727 PMCID: PMC4369654 DOI: 10.3389/fpls.2015.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
|