1
|
Tiemuerbieke B, Ma JY, Sun W. Differential eco-physiological performance to declining groundwater depth in Central Asian C 3 and C 4 shrubs in the Gurbantunggut Desert. FRONTIERS IN PLANT SCIENCE 2024; 14:1244555. [PMID: 38312360 PMCID: PMC10835802 DOI: 10.3389/fpls.2023.1244555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Resources in water-limited ecosystems are highly variable and unpredictable, and the maintenance of functional diversity among coexisting species is a crucial ecological strategy through which plants mitigate environmental stress. The comparison of differential eco-physiological responses among co-occurring plants in harsh environments could help provide deep insights into the coexistence mechanisms of competing species. Two coexisting desert shrubs with different photosynthetic pathways (Haloxylon ammodendron and Tamarix ramosissima) were selected in the Gurbantunggut Desert located in northwest China. This study detected variations in the water sources, photosynthetic parameters, stem water status, and non-structural carbohydrates of the two shrubs at three sites with different groundwater table depths during the growing seasons of 2015 and 2016 to identify distinct eco-physiological performances in coexisting plants with different functional types under fluctuating water conditions. The water sources of H. ammodendron shifted from soil water to groundwater, while T. ramosissima extracted water mainly from deep soil layers at both sites. Significant reductions in carbon assimilation and stomatal conductance in H. ammodendron with deeper groundwater table depth were detected during most drought periods, but no significant decreases in transpiration rate were detected with declining groundwater table depth. For T. ramosissima, all of these gas exchange parameters decreased with the progression of summer drought, and their relative reduction rates were larger compared with those of H. ammodendron. The stem water status of H. ammodendron deteriorated, and the relative reduction rates of water potential increased with deeper groundwater, whereas those of T. ramosissima did not differ with greater groundwater depth. These findings indicated that prolonged drought would intensify the impact of declining groundwater depth on the eco-physiology of both shrubs, but the extent to which the shrubs would respond differed. The two shrubs were segregated along the water-carbon balance continuum: the C3 shrub T. ramosissima maximized its carbon fixation at an enormous cost of water, while greater carbon fixation was achieved with far greater water economy for H. ammodendron. These results demonstrated that the two shrubs prioritized carbon gain and water loss differently when faced with limited water sources. These mechanisms might mitigate competitive stress and enable their coexistence.
Collapse
Affiliation(s)
- Bahejiayinaer Tiemuerbieke
- Xinjiang Key Laboratory of Oasis Ecology, College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, China
| | - Jian-Ying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
2
|
Chen L, Li M, Li C, Zheng W, Liu R. Different Physiological Responses to Continuous Drought between Seedlings and Younger Individuals of Haloxylon ammodendron. PLANTS (BASEL, SWITZERLAND) 2023; 12:3683. [PMID: 37960040 PMCID: PMC10647405 DOI: 10.3390/plants12213683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Drought is an important environmental factor that influences physiological processes in plants; however, few studies have examined the physiological mechanisms underlying plants' responses to continuous drought. In this study, the seedlings and younger individuals of Haloxylon ammodendron were experimentally planted in the southern part of the Gurbantunggut Desert. We measured their photosynthetic traits, functional traits and non-structural carbohydrate contents (NSCs) in order to assess the effects of continuous drought (at 15-day and 30-day drought points) on the plants' physiological responses. The results showed that at the 15-day (15 d) drought point, the leaf light-saturated net photosynthetic rate (An) values of both the seedlings and the younger individuals were decreased (by -68.9% and -45.2%, respectively). The intrinsic water use efficiency (iWUE) of the seedlings was significantly lower than that of the control group (-52.2%), but there was no diffenrence of iWUE observed in younger individuals. At the 30-day (30 d) drought point, a decrease in the An (-129.8%) of the seedlings was induced via biochemical inhibition, with a lower potential maximum photochemical rate (Fv/Fm, 0.42) compared with the control group, while a decrease in the An (-52.3%) of the younger individuals was induced due to lower stomatal conductance (gs, -50.5%). Our results indicated that prolonged drought induced a greater risk of seedling mortality as the relatively limited ability of stomatal regulation may increase the possibility of massive embolism, resulting in hydraulic failure.
Collapse
Affiliation(s)
- Lidan Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.C.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Fukang 831505, China
| | - Minqing Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.C.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Fukang 831505, China
| | - Congjuan Li
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Weihua Zheng
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciecnes, Urumuqi 830091, China;
| | - Ran Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.C.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li M, Wang H, Zhao X, Feng W, Ding G, Quan W. Effect of Ectomycorrhizal Fungi on the Drought Resistance of Pinus massoniana Seedlings. J Fungi (Basel) 2023; 9:jof9040471. [PMID: 37108925 PMCID: PMC10146878 DOI: 10.3390/jof9040471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Studies on the dynamics of non-structural carbohydrates (NSCs) play an important role in understanding the mechanisms of plant responses to drought stress. The objective of this study was to assess the influence of ectomycorrhizal fungi (ECMF) on the content and distribution of NSCs in Pinus massoniana seedlings under different drought intensities and to further explore the possible mechanism by which ECMF enhances the stress resistance of host plants. We conducted a pot experiment using P. massoniana seedlings that were inoculated (M) or non-inoculated (NM) with Suillus luteus (Sl) under well-watered, moderate, and severe drought stress conditions. The results showed that drought significantly reduced the photosynthetic capacity of P. massoniana seedlings and inhibited their growth rate. P. massoniana could respond to different degrees of drought stress by increasing the accumulation of NSCs and increasing WUE. However, compared with well-watered treatment, NSCs consumption began to appear in the roots of NM due to the decrease in starch content under severe drought, whereas NSCs content in M seedlings was higher than that in the well-watered treatment, showing that the ability to maintain C balance was higher in M seedlings. Compared with NM, inoculation with Sl increased the growth rate and biomass of roots, stems, and leaves under moderate and severe drought. In addition, Sl can also improve the gas exchange parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration and stomatal conductance) of P. massoniana seedlings compared with NM seedlings, which was conducive to the hydraulic regulation of seedlings and improved their C fixation capacity. Meanwhile, the content of NSCs in M seedlings was higher. Moreover, the soluble sugar content and SS/St ratio of leaves, roots, and whole plants were higher under drought stress after Sl inoculation, indicating that Sl could also change the C distribution mode, regulate more soluble sugar to respond to drought stress, which was conducive to improving the osmotic adjustment ability of seedlings, and providing more available C sources for plant growth and defense. Overall, inoculation with Sl could enhance the drought resistance of seedlings and promote their growth under drought stress by improving NSCs storage, increasing soluble sugar distribution, and improving the plant water balance of P. massoniana seedlings.
Collapse
Affiliation(s)
- Min Li
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Haoyun Wang
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xizhou Zhao
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Wenxuan Quan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
4
|
Xu GQ, Chen TQ, Liu SS, Ma J, Li Y. Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158802. [PMID: 36115397 DOI: 10.1016/j.scitotenv.2022.158802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tu-Qiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Si Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yan Li
- State Key Lab of Subtropical Siviculture, Zhejiang A&F University, 666Wusu Street, Lin-An, Hangzhou 311300, China
| |
Collapse
|
5
|
Wang X, Schönbeck L, Gessler A, Yang Y, Rigling A, Yu D, He P, Li M. The effects of previous summer drought and fertilization on winter non-structural carbon reserves and spring leaf development of downy oak saplings. FRONTIERS IN PLANT SCIENCE 2022; 13:1035191. [PMID: 36407605 PMCID: PMC9669721 DOI: 10.3389/fpls.2022.1035191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
It is still unknown whether the previous summer season drought and fertilization will affect the winter non-structural carbohydrate (NSC) reserves, spring leaf development, and mortality of trees in the next year. We, therefore, conducted an experiment with Quercus pubescens (downy oaks) saplings grown under four drought levels from field capacity (well-watered; ~25% volumetric water content) to wilting point (extreme drought; ~6%), in combination with two fertilizer treatments (0 vs. 50 kg/ha/year blended) for one growing season to answer this question. We measured the pre- and post-winter NSC, and calculated the over-winter NSC consumption in storage tissues (i.e. shoots and roots) following drought and fertilization treatment, and recorded the spring leaf phenology, leaf biomass, and mortality next year. The results showed that, irrespective of drought intensity, carbon reserves were abundant in storage tissues, especially in roots. Extreme drought did not significantly alter NSC levels in tissues, but delayed the spring leaf expansion and reduced the leaf biomass. Previous season fertilization promoted shoot NSC use in extreme drought-stressed saplings over winter (showing reduced carbon reserves in shoots after winter), but it also showed positive effects on survival next year. We conclude that: (1) drought-stressed downy oak saplings seem to be able to maintain sufficient mobile carbohydrates for survival, (2) fertilization can alleviate the negative effects of extreme drought on survival and recovery growth of tree saplings.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Leonie Schönbeck
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne, Geneva, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Yue Yang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Dapao Yu
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, Liaoning, China
| | - Peng He
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
6
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
7
|
Potkay A, Hölttä T, Trugman AT, Fan Y. Turgor-limited predictions of tree growth, height and metabolic scaling over tree lifespans. TREE PHYSIOLOGY 2022; 42:229-252. [PMID: 34296275 DOI: 10.1093/treephys/tpab094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence suggests that tree growth is sink-limited by environmental and internal controls rather than by carbon availability. However, the mechanisms underlying sink-limitations are not fully understood and thus not represented in large-scale vegetation models. We develop a simple, analytically solved, mechanistic, turgor-driven growth model (TDGM) and a phloem transport model (PTM) to explore the mechanics of phloem transport and evaluate three hypotheses. First, phloem transport must be explicitly considered to accurately predict turgor distributions and thus growth. Second, turgor-limitations can explain growth-scaling with size (metabolic scaling). Third, turgor can explain realistic growth rates and increments. We show that mechanistic, sink-limited growth schemes based on plant turgor limitations are feasible for large-scale model implementations with minimal computational demands. Our PTM predicted nearly uniform sugar concentrations along the phloem transport path regardless of phloem conductance, stem water potential gradients and the strength of sink-demands contrary to our first hypothesis, suggesting that phloem transport is not limited generally by phloem transport capacity per se but rather by carbon demand for growth and respiration. These results enabled TDGM implementation without explicit coupling to the PTM, further simplifying computation. We test the TDGM by comparing predictions of whole-tree growth rate to well-established observations (site indices) and allometric theory. Our simple TDGM predicts realistic tree heights, growth rates and metabolic scaling over decadal to centurial timescales, suggesting that tree growth is generally sink and turgor limited. Like observed trees, our TDGM captures tree-size- and resource-based deviations from the classical ¾ power-law metabolic scaling for which turgor is responsible.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Anna T Trugman
- Department of Geography, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
8
|
Wang J, Zhang H, Gao J, Zhang Y, Liu Y, Tang M. Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC PLANT BIOLOGY 2021; 21:171. [PMID: 33838652 PMCID: PMC8035767 DOI: 10.1186/s12870-021-02945-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND A better understanding of non-structural carbohydrate (NSC) dynamics in trees under drought stress is critical to elucidate the mechanisms underlying forest decline and tree mortality from extended periods of drought. This study aimed to assess the contribution of ectomycorrhizal (ECM) fungus (Suillus variegatus) to hydraulic function and NSC in roots, stems, and leaves of Pinus tabulaeformis subjected to different water deficit intensity. We performed a continuous controlled drought pot experiment from July 10 to September 10, 2019 using P. tabulaeformis seedlings under 80, 40, and 20% of the field moisture capacity that represented the absence of non-drought, moderate drought, and severe drought stress, respectively. RESULTS Results indicated that S. variegatus decreased the mortality rate and increased height, root biomass, and leaf biomass of P. tabulaeformis seedlings under moderate and severe drought stress. Meanwhile, the photosynthetic rates, stomatal conductance, and transpiration rates of P. tabulaeformis were significantly increased after S. variegatus inoculation. Moreover, the inoculation of S. variegatus also significantly increased the NSC concentrations of all seedling tissues, enhanced the soluble sugars content, and increased the ratios of soluble sugars to starch on all tissues under severe drought. Overall, the inoculation of S. variegatus has great potential for improving the hydraulic function, increasing the NSC storage, and improving the growth of P. tabulaeformis under severe drought. CONCLUSIONS Therefore, the S. variegatus can be used as a potential application strain for ecological restoration on arid regions of the Loess Plateau, especially in the P. tabulaeformis woodlands.
Collapse
Affiliation(s)
- Jiaxing Wang
- College of Forestry, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jing Gao
- College of Forestry, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Yu Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Yaqin Liu
- College of Forestry, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, 712100, People's Republic of China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
9
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Gear L, Wilson M, Jefferys S, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temporal controls on crown nonstructural carbohydrates in southwestern US tree species. TREE PHYSIOLOGY 2021; 41:388-402. [PMID: 33147630 DOI: 10.1093/treephys/tpaa149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g., soluble sugars vs starch). Using landscape-scale crown (leaves and twigs) NSC concentration measurements in three foundation tree species (Populus tremuloides, Pinus edulis, Juniperus osteosperma), we evaluated in situ, seasonal variation in NSC responses to moisture stress on three timescales: short-term (via predawn water potential), seasonal (via leaf δ13C) and annual (via current year's ring width index). Crown NSC responses to moisture stress appeared to depend on hydraulic strategy, where J. osteosperma appears to regulate osmotic potentials (via higher sugar concentrations), P. edulis NSC responses suggest respiratory depletion and P. tremuloides responses were consistent with direct sink limitations. We also show that overly simplistic models can mask seasonal and tissue variation in NSC responses, as well as strong interactions among moisture stress at different timescales. In general, our results suggest large seasonal variation in crown NSC concentrations reflecting the multiple cofunctions of NSCs in plant tissues, including storage, growth and osmotic regulation of hydraulically vulnerable leaves. We emphasize that crown NSC pool size cannot be viewed as a simple physiological metric of stress; in situ NSC dynamics are complex, varying temporally, across species, among NSC fractions and among tissue types.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Linnea Gear
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Stacy Jefferys
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
10
|
Jiang P, Meinzer FC, Fu X, Kou L, Dai X, Wang H. Trade-offs between xylem water and carbohydrate storage among 24 coexisting subtropical understory shrub species spanning a spectrum of isohydry. TREE PHYSIOLOGY 2021; 41:403-415. [PMID: 33079181 DOI: 10.1093/treephys/tpaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic capacitance and carbohydrate storage are two drought adaptation strategies of woody angiosperms. However, we currently lack information on their associations and how they are associated with species' degree of isohydry. We measured total stem xylem nonstructural carbohydrate (NSC) concentration in the dry and wet seasons, xylem hydraulic capacitance, native leaf water potentials, pressure-volume curve parameters and photosynthetic performance in 24 woody understory species differing in their degree of isohydry. We found a trade-off between xylem water and carbohydrate storage both in storage capacitance and along a spectrum of isohydry. Species with higher hydraulic capacitance had lower native NSC storage. The less isohydric species tended to show greater NSC depletion in the dry season and have more drought-tolerant leaves. In contrast, the more isohydric species had higher hydraulic capacitance, which may enhance their drought avoidance capacity. In these species, leaf flushing in the wet season and higher photosynthetic rates in the dry season resulted in accumulation rather than depletion of NSC in the dry season. Our results provide new insights into the mechanisms through which xylem storage functions determine co-occurring species' drought adaptation strategies and improve our capacity to predict community assembly processes under drought.
Collapse
Affiliation(s)
- Peipei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Davidson AM, Le ST, Cooper KB, Lange E, Zwieniecki MA. No time to rest: seasonal dynamics of non-structural carbohydrates in twigs of three Mediterranean tree species suggest year-round activity. Sci Rep 2021; 11:5181. [PMID: 33664332 PMCID: PMC7933270 DOI: 10.1038/s41598-021-83935-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/18/2021] [Indexed: 12/02/2022] Open
Abstract
Perennial plants in temperate climates evolved short and long-term strategies to store and manage reserves in the form of non-structural carbohydrates (NSC; soluble sugars (SC) and starch (St)). NSC storage allows plants to survive seasonal periods of photosynthetic inactivity (dormancy). To study year-to-year seasonal patterns of trees’ NSC dynamics that control phenology and yields, we established a large scale, multi-year study called the “Carbohydrate Observatory” using a citizen science approach with ~ 590 sites throughout the Central Valley of California. Monthly sampling tracked seasonal trends of starch and sugar levels in both xylem and phloem of twigs in Prunus dulcis, Pistacia vera and Juglans regia. Presented is the initial technical analysis of the first 3 years. With no exception, levels of reserves changed continuously throughout the year suggesting that even during dormancy, the average concentration of NSC, starch and sugars varies seasonally. In general, carbohydrate reserves are highest entering dormancy. During winter, NSCs slowly decrease to depletion during bloom time and remain low during summer until recovery near harvest. Starch is the major reserve compound in the wood of P. dulcis and P. vera while soluble sugars are the major reserves in J. regia. NSC content fluctuates throughout a season and significantly varies between years suggesting intrinsic and climatic effects on trees’ energy reserves.
Collapse
Affiliation(s)
- Anna M Davidson
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA. .,Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA.
| | - Sylvia T Le
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Katelyn B Cooper
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Eden Lange
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - M A Zwieniecki
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Precipitation Gradient Drives Divergent Relationship between Non-Structural Carbohydrates and Water Availability in Pinus tabulaeformis of Northern China. FORESTS 2021. [DOI: 10.3390/f12020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seasonal non-structural carbohydrate (NSC) dynamics in different organs can indicate the strategies trees use to cope with water stress; however, these dynamics remain poorly understood along a large precipitation gradient. In this study, we hypothesized that the correlation between water availability and NSC concentrations in different organs might be strengthened by decreasing precipitation in Pinus tabulaeformis Carr. forests in temperate China. Our results show that the concentrations of soluble sugars were lower in stems and coarse roots, and starch was higher in branches in the early growing season at drier sites. Throughout the growing season, the concentrations of soluble sugars increased in drier sites, especially for leaves, and remained stable in wetter sites, while starch concentrations were relatively stable in branches and stems at all sites. The NSC concentrations, mainly starch, decreased in coarse roots along the growing season at drier sites. Trees have a faster growth rate with an earlier cessation in active stem growth at drier sites. Interestingly, we also found a divergent relationship between NSCs in different organs and mean growing season water availability, and a stronger correlation was observed in drier sites. These results show that pine forests in arid and semi-arid regions of northern China exhibit different physiological responses to water availability, improving our understanding of the adaptive mechanisms of trees to water limitations in a warmer and drier climate.
Collapse
|
13
|
Li Q, Zhao M, Wang N, Liu S, Wang J, Zhang W, Yang N, Fan P, Wang R, Wang H, Du N. Water use strategies and drought intensity define the relative contributions of hydraulic failure and carbohydrate depletion during seedling mortality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:106-118. [PMID: 32485615 DOI: 10.1016/j.plaphy.2020.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
COMBINING HYDRAULIC: and carbon-related measurements can help elucidate drought-induced plant mortality. To study drought mortality mechanisms, seedlings of two woody species, including the anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, were cultivated in a greenhouse and subjected to intense drought by withholding water and mild drought by adding half of the amount of daily water lost. Patterns of leaf and root gas exchange, leaf surface areas, growth, leaf and stem hydraulics, and carbohydrate dynamics were determined in drought-stressed and control seedlings. We detected a complete loss of hydraulic conductivity and partial depletion of total nonstructural carbohydrates contents (TNC) in the dead seedlings. We also found that intense drought triggered a more rapid decrease in plant water potential and a faster drop in net photosynthesis below zero, and a greater TNC loss in dead seedlings than mild drought. Additionally, anisohydric R. pseudoacacia suffered a rapider death than the isohydric Q. acutissima. Based on these findings, we propose that hydraulic conductivity loss and carbon limitation jointly contributed to drought-induced death, while the relative contributions could be altered by drought intensity. We thus believe that it is important to illustrate the mechanistic relationships between stress intensity and carbon-hydraulics coupling in the context of isohydric vs. anisohydric hydraulic strategies.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Mingming Zhao
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Shuna Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Jingwen Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Wenxin Zhang
- Shandong Academy of Forestry, 42 Wenhuadong Road, Jinan, 250014, China
| | - Ning Yang
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Peixian Fan
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
14
|
Tixier A, Guzmán-Delgado P, Sperling O, Amico Roxas A, Laca E, Zwieniecki MA. Comparison of phenological traits, growth patterns, and seasonal dynamics of non-structural carbohydrate in Mediterranean tree crop species. Sci Rep 2020; 10:347. [PMID: 31941910 PMCID: PMC6962427 DOI: 10.1038/s41598-019-57016-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Despite non-structural carbohydrate (NSC) importance for tree productivity and resilience, little is known about their seasonal regulations and trade-off with growth and reproduction. We characterize the seasonal dynamics of NSC in relation to the aboveground phenology and temporal growth patterns of three deciduous Mediterranean species: almond (Prunus dulcis (Mill.) D. A. Webb), walnut (Juglans regia L.) and pistachio (Pistacia vera L.). Seasonal dynamics of NSC were synchronous between wood tissues from trunk, branches and twigs. Almond had almost identical levels and patterns of NSC variation in twigs, branches and trunks whereas pistachio and walnut exhibited clear concentration differences among plant parts whereby twigs had the highest and most variable NSC concentration, followed by branches and then trunk. While phenology had a significant influence on NSC seasonal trends, there was no clear trade-off between NSC storage and growth suggesting that both were similarly strong sinks for NSC. A temporal trade-off observed at the seasonal scale was influenced by the phenology of the species. We propose that late senescing species experience C allocation trade-off at the end of the growing season because of C-limiting thermal conditions and priority allocation to storage in order to survive winter.
Collapse
Affiliation(s)
- Aude Tixier
- UMR 1347 Agroécologie, AgroSup/INRA/uB, Dijon, France.
| | | | - Or Sperling
- Department of Plant Sciences, Agriculture Research Organization (ARO), Negev, Israel
| | - Adele Amico Roxas
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Emilio Laca
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
15
|
Chen Z, Liu S, Lu H, Wan X. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species. AOB PLANTS 2019; 11:plz058. [PMID: 31649812 PMCID: PMC6802943 DOI: 10.1093/aobpla/plz058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
How the mortality and growth of tree species vary with the iso-anisohydric continuum and xylem vulnerability is still being debated. We conducted a precipitation reduction experiment to create a mild drought condition in a forest in the Baotianman Mountains, China, a sub-humid region. Three main sub-canopy tree species in this region were examined. After rainfall reduction, Lindera obtusiloba showed severe dieback, but two other co-occurring species did not show dieback. The water potential at stomatal closure of Dendrobenthamia japonica, L. obtusiloba and Sorbus alnifolia was -1.70, -2.54 and -3.41 MPa, respectively, whereas the water potential at 88 % loss in hydraulic conductivity of the three species was -2.31, -2.11 and -7.01 MPa, respectively. Taken together, near-anisohydric L. obtusiloba with vulnerable xylem was highly susceptible to drought dieback. Anisohydric S. alnifolia had the most negative minimum water potential, and its xylem was the most resistant to cavitation. Isohydric D. japonica conserved water by rapidly closing its stomata. Ultimately, the hydraulic safety margin (HSM) of L. obtusiloba was the smallest among the three species, especially in precipitation-reduced plots. In terms of the stomatal safety margin (SSM), L. obtusiloba was negative, while S. alnifolia and D. japonica were positive. Of the two species without dieback, rainfall reduction decreased growth of D. japonica, but did not influence growth of S. Alnifolia; meanwhile, rainfall reduction led to a decrease of non-structural carbohydrates (NSCs) in D. japonica, but an increase in S. alnifolia. It is concluded that HSM as well as SSM allow interpreting the sensitivity of the three sub-canopy species to drought. The drought-induced dieback of L. obtusiloba is determined by the interaction of stomatal behaviour and xylem vulnerability, and the species could be sensitive to climate change-caused drought although still in sub-humid areas. The isohydric/anisohydric degree is associated with NSCs status and growth of plants.
Collapse
Affiliation(s)
- Zhicheng Chen
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Haibo Lu
- Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Chen Z, Li S, Luan J, Zhang Y, Zhu S, Wan X, Liu S. Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. TREE PHYSIOLOGY 2019; 39:1428-1437. [PMID: 30977822 DOI: 10.1093/treephys/tpz045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
A growing body of evidence highlights the occurrence of increased widespread tree mortality during climate change-associated severe droughts; however, in situ long-term drought experiments with multispecies communities for the prediction of tree mortality and exploration of related mechanisms are rather limited in natural environments. We conducted a 7-year afforestation trial with 20 drought-resistant broadleaf tree species in an arid limestone habitat in northern China, where the species displayed a broad range of survival rates. The stomatal and xylem hydraulic traits of all the species were measured. We found that species' stomatal closure points were strongly related to their xylem embolism resistance and xylem minimum water potential but not to their survival rates. Hydraulic failure of the vascular system appeared to be the main cause of tree mortality, and the stomatal safety margin was a better predictor of tree mortality than the traditionally considered xylem embolism resistance and hydraulic safety margin. We recommend the stomatal safety margin as the indicator for predicting drought-induced tree mortality and for selecting tree species in future forest restorations in arid regions.
Collapse
Affiliation(s)
- Zhicheng Chen
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Junwei Luan
- Institute for Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, National Forestry and Grassland Administration, Beijing, China
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Yongtao Zhang
- Mountain Tai Forest Ecosystem Research Station of National Forestry and Grassland Administration, Forestry College of Shandong Agricultural University, Taian, China
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Xianchong Wan
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
17
|
Buckley TN, Sack L. The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. AMERICAN JOURNAL OF BOTANY 2019; 106:618-621. [PMID: 31059119 PMCID: PMC6850086 DOI: 10.1002/ajb2.1282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 05/23/2023]
Affiliation(s)
| | - Lawren Sack
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
18
|
Zhang WW, Wang M, Wang AY, Yin XH, Feng ZZ, Hao GY. Elevated ozone concentration decreases whole-plant hydraulic conductance and disturbs water use regulation in soybean plants. PHYSIOLOGIA PLANTARUM 2018; 163:183-195. [PMID: 29193125 DOI: 10.1111/ppl.12673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Elevated tropospheric ozone (O3 ) concentration has been shown to affect many aspects of plant performance including detrimental effects on leaf photosynthesis and plant growth. However, it is not known whether such changes are accompanied by concomitant responses in plant hydraulic architecture and water relations, which would have great implications for plant growth and survival in face of unfavorable water conditions. A soybean (Glycine max (L.) Merr.) cultivar commonly used in Northeast China was exposed to non-filtered air (NF, averaged 24.0 nl l-1 ) and elevated O3 concentrations (eO3 , 40 nl l-1 supplied with NF air) in six open-top chambers for 50 days. The eO3 treatment resulted in a significant decrease in whole-plant hydraulic conductance that is mainly attributable to the reduced hydraulic conductance of the root system and the leaflets, while stem and leaf petiole hydraulic conductance showed no significant response to eO3 . Stomatal conductance of plants grown under eO3 was lower during mid-morning but significantly higher at midday, which resulted in substantially more negative daily minimum water potentials. Moreover, excised leaves from the eO3 treated plants showed significantly higher rates of water loss, suggesting a lower ability to withhold water when water supply is impeded. Our results indicate that, besides the direct detrimental effects of eO3 on photosynthetic carbon assimilation, its influences on hydraulic architecture and water relations may also negatively affect O3 -sensitive crops by deteriorating the detrimental effects of unfavorable water conditions.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Miao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ai-Ying Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Han Yin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao-Zhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
19
|
Kannenberg SA, Novick KA, Phillips RP. Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. TREE PHYSIOLOGY 2018; 38:582-590. [PMID: 29036648 DOI: 10.1093/treephys/tpx119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 05/17/2023]
Abstract
Predicted increases in the frequency and severity of droughts have led to a renewed focus on how plants physiologically adjust to low water availability. A popular framework for understanding plant responses to drought characterizes species along a spectrum from isohydry to anisohydry based on their regulation of gas exchange and leaf water potential under drying conditions. One prediction that arises from this theory is that plant drought responses may hinge, in part, on their usage of non-structural carbohydrate (NSC) pools. For example, trees that respond to drought by closing stomates (i.e., isohydric) are predicted to deplete NSC reserves to maintain metabolism, whereas plants that keep stomata open during water stress (i.e., anisohydric), may show little change or even increases in NSC concentration. However, empirical tests of this theory largely rely on aboveground measurements of NSC, ignoring the potentially conflicting responses of root NSC pools. We sought to test these predictions by subjecting potted saplings of Quercus alba L. (an anisohydric species) and Liriodendron tulipifera L. (an isohydric species) to a 6 week experimental drought. We found that stem NSC concentrations were depleted in the isohydric L. tulipifera but maintained in the anisohydric Q. alba-as predicted. However, when scaled to whole-plant NSC content, the drought-induced decreases in stem NSCs in L. tulipifera were offset by increases in root NSCs (especially soluble sugars), resulting in no net change to whole-plant NSC content. Similarly, root sugars increased in Q. alba in response to drought. This increase was concurrent with declines in growth, suggesting a potential trade-off between allocation of photoassimilates to root sugars vs biomass during drought. Collectively, our results suggest that the responses of NSC in coarse roots can differ from stems, and indicate a prominent role of coarse roots in mitigating drought-induced declines in whole-tree NSC pools.
Collapse
Affiliation(s)
| | - Kimberly A Novick
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
20
|
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research. FIRE-SWITZERLAND 2018. [DOI: 10.3390/fire1010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Martínez-Vilalta J, Garcia-Forner N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. PLANT, CELL & ENVIRONMENT 2017; 40:962-976. [PMID: 27739594 DOI: 10.1111/pce.12846] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 05/02/2023]
Abstract
In this review, we address the relationship between stomatal behaviour, water potential regulation and hydraulic transport in plants, focusing on the implications for the iso/anisohydric classification of plant drought responses at seasonal timescales. We first revise the history of the isohydric concept and its possible definitions. Then, we use published data to answer two main questions: (1) is greater stomatal control in response to decreasing water availability associated with a tighter regulation of leaf water potential (ΨL ) across species? and (2) is there an association between tighter ΨL regulation (~isohydric behaviour) and lower leaf conductance over time during a drought event? These two questions are addressed at two levels: across species growing in different sites and comparing only species coexisting at a given site. Our analyses show that, across species, a tight regulation of ΨL is not necessarily associated with greater stomatal control or with more constrained assimilation during drought. Therefore, iso/anisohydry defined in terms of ΨL regulation cannot be used as an indicator of a specific mechanism of drought-induced mortality or as a proxy for overall plant vulnerability to drought.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | | |
Collapse
|
22
|
Liu JF, Arend M, Yang WJ, Schaub M, Ni YY, Gessler A, Jiang ZP, Rigling A, Li MH. Effects of drought on leaf carbon source and growth of European beech are modulated by soil type. Sci Rep 2017; 7:42462. [PMID: 28195166 PMCID: PMC5307967 DOI: 10.1038/srep42462] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/11/2017] [Indexed: 02/01/2023] Open
Abstract
Drought potentially affects carbon balance and growth of trees, but little is known to what extent soil plays a role in the trade-off between carbon gain and growth investment. In the present study, we analyzed leaf non-structural carbohydrates (NSC) as an indicator of the balance of photosynthetic carbon gain and carbon use, as well as growth of European beech (Fagus sylvatica L.) saplings, which were grown on two different soil types (calcareous and acidic) in model ecosystems and subjected to a severe summer drought. Our results showed that drought led in general to increased total NSC concentrations and to decreased growth rate, and drought reduced shoot and stem growth of plants in acidic soil rather than in calcareous soil. This result indicated that soil type modulated the carbon trade-off between net leaf carbon gain and carbon investment to growth. In drought-stressed trees, leaf starch concentration and growth correlated negatively whereas soluble sugar:starch ratio and growth correlated positively, which may contribute to a better understanding of growth regulation under drought conditions. Our results emphasize the role of soil in determining the trade-off between the balance of carbon gain and carbon use on the leaf level and growth under stress (e.g. drought).
Collapse
Affiliation(s)
- Jian-Feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
| | - Matthias Arend
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Botany, University of Basel, Basel, Switzerland
| | - Wen-Juan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
| | - Yan-Yan Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Ze-Ping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
| | - Mai-He Li
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
23
|
Rodríguez-Calcerrada J, Li M, López R, Cano FJ, Oleksyn J, Atkin OK, Pita P, Aranda I, Gil L. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species. THE NEW PHYTOLOGIST 2017; 213:597-610. [PMID: 27575435 DOI: 10.1111/nph.14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/12/2016] [Indexed: 05/17/2023]
Abstract
Combining hydraulic- and carbon-related measurements helps to understand drought-induced plant mortality. Here, we investigated the role that plant respiration (R) plays in determining carbon budgets under drought. We measured the hydraulic conductivity of stems and roots, and gas exchange and nonstructural carbohydrate (NSC) concentrations of leaves, stems and roots of seedlings of two resprouting species exposed to drought or well-watered conditions: Ulmus minor (riparian tree) and Quercus ilex (dryland tree). With increasing water stress (occurring more rapidly in larger U. minor), declines in leaf, stem and root R were less pronounced than that in leaf net photosynthetic CO2 uptake (Pn ). Daytime whole-plant carbon gain was negative below -4 and -6 MPa midday xylem water potential in U. minor and Q. ilex, respectively. Relative to controls, seedlings exhibiting shoot dieback suffered c. 80% loss of hydraulic conductivity in both species, and reductions in NSC concentrations in U. minor. Higher drought-induced depletion of NSC reserves in U. minor was related to higher plant R, faster stomatal closure, and premature leaf-shedding. Differences in drought resistance relied on the ability to maintain hydraulic conductivity during drought, rather than tolerating conductivity loss. Root hydraulic failure elicited shoot dieback and precluded resprouting without root NSC reserves being apparently limiting for R.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid, 28040, Spain
| | - Meng Li
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid, 28040, Spain
| | - Rosana López
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid, 28040, Spain
- Hawkesbury Institute for the Environment, UWS, Science Road, Richmond, 2753, NSW, Australia
| | - Francisco Javier Cano
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid, 28040, Spain
- Hawkesbury Institute for the Environment, UWS, Science Road, Richmond, 2753, NSW, Australia
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, 62-035, Poland
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Pilar Pita
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid, 28040, Spain
| | - Ismael Aranda
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Avda. A Coruña km 7.5, 28040, Madrid, Spain
| | - Luis Gil
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
24
|
Sack L, Ball MC, Brodersen C, Davis SD, Des Marais DL, Donovan LA, Givnish TJ, Hacke UG, Huxman T, Jansen S, Jacobsen AL, Johnson DM, Koch GW, Maurel C, McCulloh KA, McDowell NG, McElrone A, Meinzer FC, Melcher PJ, North G, Pellegrini M, Pockman WT, Pratt RB, Sala A, Santiago LS, Savage JA, Scoffoni C, Sevanto S, Sperry J, Tyerman SD, Way D, Holbrook NM. Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for 'Emerging Frontiers in Plant Hydraulics' (Washington, DC, May 2015). PLANT, CELL & ENVIRONMENT 2016; 39:2085-94. [PMID: 27037757 DOI: 10.1111/pce.12732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/06/2016] [Indexed: 05/25/2023]
Abstract
Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.
Collapse
Affiliation(s)
- Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Marilyn C Ball
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Craig Brodersen
- School of Forestry & Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| | - Stephen D Davis
- Natural Science Division, Pepperdine University, Malibu, CA, 90263, USA
| | - David L Des Marais
- Arnold Arboretum, Harvard University, Cambridge, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, 02138, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Travis Huxman
- Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA, 92697, USA
| | - Steven Jansen
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - Daniel M Johnson
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - George W Koch
- Center for Ecosystem Science and Society, and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, INRA-CNRS-Sup Agro-Université de Montpellier, 2 Place Viala, Montpellier, F-34060, France
| | | | - Nate G McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Andrew McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- USDA-Agricultural Research Service, Davis, CA, 95616, USA
| | - Frederick C Meinzer
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA
| | - Peter J Melcher
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Gretchen North
- Department of Biology, Occidental College, Los Angeles, CA, 90041, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - William T Pockman
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131, USA
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Louis S Santiago
- Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Jessica A Savage
- Arnold Arboretum, Harvard University, Cambridge, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, 02138, USA
| | - Christine Scoffoni
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - John Sperry
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Danielle Way
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, 02138, USA
| |
Collapse
|
25
|
Ziaco E, Biondi F, Rossi S, Deslauriers A. Environmental drivers of cambial phenology in Great Basin bristlecone pine. TREE PHYSIOLOGY 2016; 36:818-831. [PMID: 26917705 DOI: 10.1093/treephys/tpw006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change.
Collapse
Affiliation(s)
| | - Franco Biondi
- DendroLab, University of Nevada, Reno, NV 89557, USA
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H2B1, Canada Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratories of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H2B1, Canada
| |
Collapse
|
26
|
Merchant A. The importance of storage and redistribution in vascular plants. TREE PHYSIOLOGY 2016; 36:533-5. [PMID: 26960388 PMCID: PMC4886289 DOI: 10.1093/treephys/tpw011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/27/2016] [Indexed: 05/29/2023]
Affiliation(s)
- Andrew Merchant
- Centre for Carbon, Water and Food, Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Salmon Y, Torres-Ruiz JM, Poyatos R, Martinez-Vilalta J, Meir P, Cochard H, Mencuccini M. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. PLANT, CELL & ENVIRONMENT 2015; 38:2575-88. [PMID: 25997464 PMCID: PMC4989476 DOI: 10.1111/pce.12572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/04/2023]
Abstract
Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.
Collapse
Affiliation(s)
- Yann Salmon
- School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK
| | - José M Torres-Ruiz
- BIOGECO, UMR 1202, Université de Bordeaux, F-33615, Pessac, France
- UMR 1202 BIOGECO, INRA, 33612, Cestas, France
| | | | - Jordi Martinez-Vilalta
- Campus de UAB, CREAF, 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK
- Research School of Biology, Australian National University, ACT 2601, Canberra, Australian Capital Territory, Australia
| | - Hervé Cochard
- INRA, UMR547 PIAF, Clermont Université, F-63100, Clermont-Ferrand, France
| | - Maurizio Mencuccini
- School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK
- ICREA, CREAF, 08193, Barcelona, Spain
| |
Collapse
|
28
|
Duan H, O'Grady AP, Duursma RA, Choat B, Huang G, Smith RA, Jiang Y, Tissue DT. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. TREE PHYSIOLOGY 2015; 35:756-70. [PMID: 26063706 DOI: 10.1093/treephys/tpv047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/28/2015] [Indexed: 05/06/2023]
Abstract
Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought.
Collapse
Affiliation(s)
- Honglang Duan
- Institute of Ecology and Environmental Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China
| | - Anthony P O'Grady
- CSIRO Land and Water Flagship, Private Bag 12, Hobart, Tasmania 7001, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Guomin Huang
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Renee A Smith
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Yanan Jiang
- Institute of Ecology and Environmental Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
29
|
McCulloh KA, Meinzer FC. Further evidence that some plants can lose and regain hydraulic function daily. TREE PHYSIOLOGY 2015; 35:691-3. [PMID: 26163489 DOI: 10.1093/treephys/tpv066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 05/02/2023]
Affiliation(s)
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| |
Collapse
|