1
|
Romero-Munar A, Muñoz-Carrasco M, Balestrini R, De Rose S, Giovannini L, Aroca R, Ruiz-Lozano JM. Differential root and cell regulation of maize aquaporins by the arbuscular mycorrhizal symbiosis highlights its role in plant water relations. PLANT, CELL & ENVIRONMENT 2024; 47:4337-4353. [PMID: 38965812 DOI: 10.1111/pce.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
This study aims to elucidate if the regulation of plant aquaporins by the arbuscular mycorrhizal (AM) symbiosis occurs only in roots or cells colonized by the fungus or at whole root system. Maize plants were cultivated in a split-root system, with half of the root system inoculated with the AM fungus and the other half uninoculated. Plant growth and hydraulic parameters were measured and aquaporin gene expression was determined in each root fraction and in microdissected cells. Under well-watered conditions, the non-colonized root fractions of AM plants grew more than the colonized root fraction. Total osmotic and hydrostatic root hydraulic conductivities (Lo and Lpr) were higher in AM plants than in non-mycorrhizal plants. The expression of most maize aquaporin genes analysed was different in the mycorrhizal root fraction than in the non-mycorrhizal root fraction of AM plants. At the cellular level, differential aquaporin expression in AM-colonized cells and in uncolonized cells was also observed. Results indicate the existence of both, local and systemic regulation of plant aquaporins by the AM symbiosis and suggest that such regulation is related to the availability of water taken up by fungal hyphae in each root fraction and to the plant need of water mobilization.
Collapse
Affiliation(s)
- Antonia Romero-Munar
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María Muñoz-Carrasco
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Raffaella Balestrini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Silvia De Rose
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Luca Giovannini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Ricardo Aroca
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
2
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
3
|
Sun PF, Lu MR, Liu YC, Shaw BJP, Lin CP, Chen HW, Lin YF, Hoh DZ, Ke HM, Wang IF, Lu MYJ, Young EB, Millett J, Kirschner R, Lin YCJ, Chen YL, Tsai IJ. An acidophilic fungus promotes prey digestion in a carnivorous plant. Nat Microbiol 2024; 9:2522-2537. [PMID: 39090391 PMCID: PMC11445062 DOI: 10.1038/s41564-024-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Leaves of the carnivorous sundew plants (Drosera spp.) secrete mucilage that hosts microorganisms, but whether this microbiota contributes to prey digestion is unclear. We identified the acidophilic fungus Acrodontium crateriforme as the dominant species in the mucilage microbial communities, thriving in multiple sundew species across the global range. The fungus grows and sporulates on sundew glands as its preferred acidic environment, and its presence in traps increased the prey digestion process. A. crateriforme has a reduced genome similar to other symbiotic fungi. During A. crateriforme-Drosera spatulata coexistence and digestion of prey insects, transcriptomes revealed significant gene co-option in both partners. Holobiont expression patterns during prey digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, facilitating prey digestion in leaves, as well as nutrient assimilation and jasmonate signalling pathway expression. This study establishes that botanical carnivory is defined by adaptations involving microbial partners and interspecies interactions.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brandon J P Shaw
- Geography and Environment, Loughborough University, Loughborough, UK
- NERC Environmental Omics Facility (NEOF), NEOF Visitor Facility, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Chieh-Ping Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Wei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Daphne Z Hoh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - I-Fan Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Erica B Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, UK
| | - Roland Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
4
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
5
|
Ahmad I, Jimenez-Gasco MDM, Barbercheck ME. Water Stress and Black Cutworm Feeding Modulate Plant Response in Maize Colonized by Metarhizium robertsii. Pathogens 2024; 13:544. [PMID: 39057771 PMCID: PMC11280422 DOI: 10.3390/pathogens13070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Plants face many environmental challenges and have evolved different strategies to defend against stress. One strategy is the establishment of mutualistic associations with endophytic microorganisms which contribute to plant defense and promote plant growth. The fungal entomopathogen Metarhizium robertsii is also an endophyte that can provide plant-protective and growth-promoting benefits to the host plant. We conducted a greenhouse experiment in which we imposed stress from deficit and excess soil moisture and feeding by larval black cutworm (BCW), Agrotis ipsilon, to maize plants that were either inoculated or not inoculated with M. robertsii (Mr). We evaluated plant growth and defense indicators to determine the effects of the interaction between Mr, maize, BCW feeding, and water stress. There was a significant effect of water treatment, but no effect of Mr treatment, on plant chlorophyl, height, and dry biomass. There was no effect of water or Mr treatment on damage caused by BCW feeding. There was a significant effect of water treatment, but not Mr treatment, on the expression of bx7 and rip2 genes and on foliar content of abscisic acid (ABA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and gibberellin 19 (GA19), whereas GA53 was modulated by Mr treatment. Foliar content of GA19 and cis-Zeatin (cZ) was modulated by BCW feeding. In a redundancy analysis, plant phenology, plant nutrient content, and foliar DIMBOA and ABA content were most closely associated with water treatments. This study contributes toward understanding the sophisticated stress response signaling and endophytic mutualisms in crops.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maria del Mar Jimenez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Mary E. Barbercheck
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Sun W, Luo C, Wu Y, Ding M, Feng M, Leng F, Wang Y. Paraphoma chrysanthemicola Affects the Carbohydrate and Lobetyolin Metabolism Regulated by Salicylic Acid in the Soilless Cultivation of Codonopsis pilosula. BIOLOGY 2024; 13:408. [PMID: 38927288 PMCID: PMC11200528 DOI: 10.3390/biology13060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Paraphoma chrysanthemicola, an endophytic fungus isolated from the roots of Codonopsis pilosula, influences salicylic acid (SA) levels. The interaction mechanism between SA and P. chrysanthemicola within C. pilosula remains elusive. To elucidate this, an experiment was conducted with four treatments: sterile water (CK), P. chrysanthemicola (FG), SA, and a combination of P. chrysanthemicola with salicylic acid (FG+SA). Results indicated that P. chrysanthemicola enhanced plant growth and counteracted the growth inhibition caused by exogenous SA. Physiological analysis showed that P. chrysanthemicola reduced carbohydrate content and enzymatic activity in C. pilosula without affecting total chlorophyll concentration and attenuated the increase in these parameters induced by exogenous SA. Secondary metabolite profiling showed a decrease in soluble proteins and lobetyolin levels in the FG group, whereas SA treatment led to an increase. Both P. chrysanthemicola and SA treatments decreased antioxidase-like activity. Notably, the FG group exhibited higher nitric oxide (NO) levels, and the SA group exhibited higher hydrogen peroxide (H2O2) levels in the stems. This study elucidated the intricate context of the symbiotic dynamics between the plant species P. chrysanthemicola and C. pilosula, where an antagonistic interaction involving salicylic acid was prominently observed. This antagonism was observed in the equilibrium between carbohydrate metabolism and secondary metabolism. This equilibrium had the potential to engage reactive oxygen species (ROS) and nitric oxide (NO).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.S.); (C.L.); (Y.W.); (M.D.); (M.F.); (F.L.)
| |
Collapse
|
7
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
8
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
9
|
Ali A, Zareen S, Park J, Khan HA, Lim CJ, Bader ZE, Hussain S, Chung WS, Gechev T, Pardo JM, Yun DJ. ABA INSENSITIVE 2 promotes flowering by inhibiting OST1/ABI5-dependent FLOWERING LOCUS C transcription in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2481-2493. [PMID: 38280208 PMCID: PMC11016836 DOI: 10.1093/jxb/erae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024]
Abstract
The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis. Loss-of-function abi2-2 mutant shows significantly delayed flowering both under long day and short day conditions. Expression of floral repressor genes such as FLOWERING LOCUS C (FLC) and CYCLING DOF FACTOR 1 (CDF1) was significantly up-regulated in abi2-2 plants while expression of the flowering promoting genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was down-regulated. Through genetic interactions we further found that ost1-3 and abi5-1 mutations are epistatic to abi2-2, as both of them individually rescued the late flowering phenotype of abi2-2. Interestingly, phosphorylation and protein stability of ABA INSENSITIVE 5 (ABI5) were enhanced in abi2-2 plants suggesting that ABI2 dephosphorylates ABI5, thereby reducing protein stability and the capacity to induce FLC expression. Our findings uncovered the unexpected role of ABI2 in promoting flowering by inhibiting ABI5-mediated FLC expression in Arabidopsis.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Shah Zareen
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Junghoon Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Chae Jin Lim
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Zein Eddin Bader
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Shah Hussain
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Woo Sik Chung
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Tsanko Gechev
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, Plovdiv University, Plovdiv 4000, Bulgaria
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Americo Vespucio 49, Sevilla-41092, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
10
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
11
|
Zobel M, Koorem K, Moora M, Semchenko M, Davison J. Symbiont plasticity as a driver of plant success. THE NEW PHYTOLOGIST 2024; 241:2340-2352. [PMID: 38308116 DOI: 10.1111/nph.19566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
We discuss which plant species are likely to become winners, that is achieve the highest global abundance, in changing landscapes, and whether plant-associated microbes play a determining role. Reduction and fragmentation of natural habitats in historic landscapes have led to the emergence of patchy, hybrid landscapes, and novel landscapes where anthropogenic ecosystems prevail. In patchy landscapes, species with broad niches are favoured. Plasticity in the degree of association with symbiotic microbes may contribute to broader plant niches and optimization of symbiosis costs and benefits, by downregulating symbiosis when it is unnecessary and upregulating it when it is beneficial. Plasticity can also be expressed as the switch from one type of mutualism to another, for example from nutritive to defensive mutualism with increasing soil fertility and the associated increase in parasite load. Upon dispersal, wide mutualistic partner receptivity is another facet of symbiont plasticity that becomes beneficial, because plants are not limited by the availability of specialist partners when arriving at new locations. Thus, under conditions of global change, symbiont plasticity allows plants to optimize the activity of mutualistic relationships, potentially allowing them to become winners by maximizing geographic occupancy and local abundance.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| |
Collapse
|
12
|
Das S, Sarkar S. Arbuscular mycorrhizal fungal contribution towards plant resilience to drought conditions. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1355999. [PMID: 38434188 PMCID: PMC10904651 DOI: 10.3389/ffunb.2024.1355999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Climate changes cause altering rainfall patterns resulting in an increase in drought occurrences globally. These events are disrupting plants and agricultural productivity. To evade droughts, plants try to adapt and modify in the best capacities possible. The plants have adapted by structurally modifying roots, stems, and leaves, as well as modifying functions. Lately, the association of microbial communities with plants has also been proven to be an important factor in aiding resilience. The fungal representatives of the microbial community also help safeguard the plants against drought. We discuss how these fungi associate with plants and contribute to evading drought stress. We specifically focus on Arbuscular mycorrhizal fungi (AMF) mediated mechanisms involving antioxidant defenses, phytohormone mediations, osmotic adjustments, proline expressions, fungal water absorption and transport, morphological modifications, and photosynthesis. We believe understanding the mechanisms would help us to optimize the use of fungi in agricultural practices. That way we could better prepare the plants for the anticipated future drought events.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Soumyadev Sarkar
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Votta C, Wang JY, Cavallini N, Savorani F, Capparotto A, Liew KX, Giovannetti M, Lanfranco L, Al-Babili S, Fiorilli V. Integration of rice apocarotenoid profile and expression pattern of Carotenoid Cleavage Dioxygenases reveals a positive effect of β-ionone on mycorrhization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108366. [PMID: 38244387 DOI: 10.1016/j.plaphy.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Carotenoids are susceptible to degrading processes initiated by oxidative cleavage reactions mediated by Carotenoid Cleavage Dioxygenases that break their backbone, leading to products called apocarotenoids. These carotenoid-derived metabolites include the phytohormones abscisic acid and strigolactones, and different signaling molecules and growth regulators, which are utilized by plants to coordinate many aspects of their life. Several apocarotenoids have been recruited for the communication between plants and arbuscular mycorrhizal (AM) fungi and as regulators of the establishment of AM symbiosis. However, our knowledge on their biosynthetic pathways and the regulation of their pattern during AM symbiosis is still limited. In this study, we generated a qualitative and quantitative profile of apocarotenoids in roots and shoots of rice plants exposed to high/low phosphate concentrations, and upon AM symbiosis in a time course experiment covering different stages of growth and AM development. To get deeper insights in the biology of apocarotenoids during this plant-fungal symbiosis, we complemented the metabolic profiles by determining the expression pattern of CCD genes, taking advantage of chemometric tools. This analysis revealed the specific profiles of CCD genes and apocarotenoids across different stages of AM symbiosis and phosphate supply conditions, identifying novel reliable markers at both local and systemic levels and indicating a promoting role of β-ionone in AM symbiosis establishment.
Collapse
Affiliation(s)
- Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Cavallini
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Francesco Savorani
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Arianna Capparotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Kit Xi Liew
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy; Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy.
| |
Collapse
|
14
|
Moss RA, Murphy KM, Gardner ST, Watkins MM, Finger JW, Kelley MD, Elsey RM, Warner DA, Mendonça MT. Exposure to ecologically relevant estrogen levels do not influence morphology or immune parameters in hatchling American alligators (Alligator mississippiensis). Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109767. [PMID: 37827394 DOI: 10.1016/j.cbpc.2023.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Human activity has increased concentrations of endocrine-disrupting contaminants (EDCs) in many ecological systems. Many EDCs are xenoestrogens, which imitate naturally derived estrogen like estradiol 17-β (E2). These pollutants can critically affect a broad range of biological functions, particularly in organisms inhabiting aquatic environments. E2 and associated receptors are involved in regulating innate immune responses, where documentation of exogenous E2 on immune parameters is important for understanding health consequences. In this study, we explore the impact of environmentally relevant concentrations of E2 on circulating glucocorticoid levels and several innate immune parameters in hatchling American alligators (Alligator mississippiensis). Twenty-three hatchling alligators were randomly placed in one of three groups that differed in dietary E2 concentration: control (no E2 exposure), low E2 (0.5 μg/kg E2), or high E2 (1 μg/kg E2) for 10 weeks. Following this period, several biomarkers were quantified to monitor the impact of E2: growth, change in body condition, white blood cell (WBC) counts, glucocorticoid levels, and general antibody response. Blood E2 concentrations were greater in individuals exposed to E2, but plasma corticosterone levels were reduced among the experimental groups. Morphology, growth, and immune parameters of E2 exposed animals did not differ from controls. These results suggest that acute exposure to increased environmental estrogen concentrations may alter plasma hormone concentrations but have little to no impact on immediate morphology or immune responses. Future studies may expand on this by monitoring biomarkers in wild populations across time, which will provide insight into how different ontogenetic stages are impacted by environmental contaminants.
Collapse
Affiliation(s)
- Regan A Moss
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America; Mailman School of Public Health, Columbia University, New York, NY 10027, United States of America
| | - Kaitlyn M Murphy
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America.
| | - Steven T Gardner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Madison M Watkins
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - John W Finger
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, United States of America
| | - Meghan D Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, United States of America
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA 70643, United States of America; 728 Saratoga Drive, Murfreesboro, TN 37130, United States of America
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| |
Collapse
|
15
|
Li Y, Wang X, Chen X, Lu J, Jin Z, Li J. Functions of arbuscular mycorrhizal fungi in regulating endangered species Heptacodium miconioides growth and drought stress tolerance. PLANT CELL REPORTS 2023; 42:1967-1986. [PMID: 37812279 DOI: 10.1007/s00299-023-03076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE The important values of AMF in regulating endangered species Heptacodium miconioides growth and drought stress tolerance. The wild endangered tree Heptacodium miconioides is distributed sporadically in mountainous areas and often subjected to various abiotic stresses, such as drought. The mutualistic association between plants and arbuscular mycorrhizal fungi (AMF) is known to have a significant impact on plant growth and their ability to withstand drought conditions. However, the role of AMF in H. miconioides seedlings in regulating drought tolerance remains unknown. This study investigated the ability of AMF symbionts to mitigate drought and their underlying mechanism on H. miconioides leaves. The results showed that drought stress dramatically decreased the leaf biomass and damaged the chloroplast structure in seedlings. Conversely, inoculation with AMF noticeably alleviated the deleterious effects of drought stress by restoring leaf morphology and improving the photosynthetic capacity. Moreover, plants inoculated with AMF enhanced the proportion of palisade tissue to spongy tissue in the leaves and the size of starch grains and number of plastoglobules in the chloroplast ultrastructure. A transcriptomic analysis showed that 2157 genes (691 upregulated and 1466 downregulated) were differentially expressed between drought stress with AMF inoculation and drought treatment. Further examination demonstrated that the genes exhibiting differential expression were predominantly associated with the advancement of photosynthesis, sucrose and starch metabolism, nitrogen metabolism, chloroplast development, and phenylpropanoid biosynthetic pathways, and the key potential genes were screened. These findings conclusively provided the physiological and molecular mechanisms that underlie improved drought resistance in H. miconioides in the presence of AMF, which could contribute to improving the survival and species conservation of H. miconioides.
Collapse
Affiliation(s)
- Yueling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Xiaoyan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Xingyu Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Jieyang Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
16
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
17
|
Becklin KM, Viele BM, Coleman HD. Nutrient conditions mediate mycorrhizal effects on biomass production and cell wall chemistry in poplar. TREE PHYSIOLOGY 2023; 43:1571-1583. [PMID: 37166359 DOI: 10.1093/treephys/tpad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Large-scale biofuel production from lignocellulosic feedstock is limited by the financial and environmental costs associated with growing and processing lignocellulosic material and the resilience of these plants to environmental stress. Symbiotic associations with arbuscular (AM) and ectomycorrhizal (EM) fungi represent a potential strategy for expanding feedstock production while reducing nutrient inputs. Comparing AM and EM effects on wood production and chemical composition is a necessary step in developing biofuel feedstocks. Here, we assessed the productivity, biomass allocation and secondary cell wall (SCW) composition of greenhouse-grown Populus tremuloidesMichx. inoculated with either AM or EM fungi. Given the long-term goal of reducing nutrient inputs for biofuel production, we further tested the effects of nutrient availability and nitrogen:phosphorus stoichiometry on mycorrhizal responses. Associations with both AM and EM fungi increased plant biomass by 14-74% depending on the nutrient conditions but had minimal effects on SCW composition. Mycorrhizal plants, especially those inoculated with EM fungi, also allocated a greater portion of their biomass to roots, which could be beneficial in the field where plants are likely to experience both water and nutrient stress. Leaf nutrient content was weakly but positively correlated with wood production in mycorrhizal plants. Surprisingly, phosphorus played a larger role in EM plants compared with AM plants. Relative nitrogen and phosphorus availability were correlated with shifts in SCW composition. For AM associations, the benefit of increased wood biomass may be partially offset by increased lignin content, a trait that affects downstream processing of lignocellulosic tissue for biofuels. By comparing AM and EM effects on the productivity and chemical composition of lignocellulosic tissue, this work links broad functional diversity in mycorrhizal associations to key biofuel traits and highlights the importance of considering both biotic and abiotic factors when developing strategies for sustainable biofuel production.
Collapse
Affiliation(s)
- Katie M Becklin
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Bethanie M Viele
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| |
Collapse
|
18
|
In search of the phytohormone functions in Fungi:Cytokinins. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Proietti S, Falconieri GS, Bertini L, Pascale A, Bizzarri E, Morales-Sanfrutos J, Sabidó E, Ruocco M, Monti MM, Russo A, Dziurka K, Ceci M, Loreto F, Caruso C. Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4225-4243. [PMID: 37094092 PMCID: PMC10400115 DOI: 10.1093/jxb/erad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Alberto Pascale
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Maurilia M Monti
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Francesco Loreto
- Department of Biology, Via Cinthia, University of Naples Federico II, 80126, Naples, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
20
|
Duc NH, Szentpéteri V, Mayer Z, Posta K. Distinct impact of arbuscular mycorrhizal isolates on tomato plant tolerance to drought combined with chronic and acute heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107892. [PMID: 37490823 DOI: 10.1016/j.plaphy.2023.107892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi could mitigate individual drought and heat stress in host plants. However, there are still major gaps in our understanding of AM symbiosis response to the combined stresses. Here, we compared seven AM fungi, Rhizophagus irregularis, Funneliformis mosseae, Funneliformis geosporum, Funneliformis verruculosum, Funneliformis coronatum, Septoglomus deserticola, Septoglomus constrictum, distributed to many world regions in terms of their impacts on tomato endurance to combined drought and chronic heat as well as combined drought and heat shock. A multidisciplinary approach including morphometric, ecophysiological, biochemical, targeted metabolic (by ultrahigh-performance LC-MS), and molecular analyses was applied. The variation among AM fungi isolates in the enhancement in leaf water potential, stomatal conductance, photosynthetic activity, and maximal PSII photochemical efficiency, proline accumulation, antioxidant enzymes (POD, SOD, CAT), and lowered ROS markers (H2O2, MDA) in host plants under combined stresses were observed. S. constrictum inoculation could better enhanced the host plant physiology and biochemical parameters, while F. geosporum colonization less positively influenced the host plants than other treatments under both combined stresses. F. mosseae- and S. constrictum-associated plants showed the common AM-induced modifications and AM species-specific alterations in phytohormones (ABA, SA, JA, IAA), aquaporin (SlSIP1-2; SlTIP2-3; SlNIP2-1; SlPIP2-1) and abiotic stress-responsive genes (SlAREB1, SlLEA, SlHSP70, SlHSP90) in host plants under combined stresses. Altogether, mycorrhizal mitigation of the negative impacts of drought + prolonged heat and drought + acute heat, with the variation among different AM fungi isolates, depending on the specific combined stress and stress duration.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Viktor Szentpéteri
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Zoltán Mayer
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary.
| |
Collapse
|
21
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
22
|
Yadav VK, Kumar D, Jha RK, Bairwa RK, Singh R, Mishra G, Singh JP, Kumar A, Vinesh B, Jayaswall K, Rai AK, Singh AN, Kumar S, Rajavat MVS, Jayaswal D. Mycorrhizae set the stage for plants to produce a higher production of biomolecules and stress-related metabolites: a sustainable alternative of agrochemicals to enhance the quality and yield of beetroot ( Beta vulgaris L.). Front Microbiol 2023; 14:1196101. [PMID: 37465020 PMCID: PMC10352028 DOI: 10.3389/fmicb.2023.1196101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Population explosions, environmental deprivation, and industrial expansion led to an imbalanced agricultural system. Non-judicial uses of agrochemicals have decreased agrodiversity, degraded agroecosystems, and increased the cost of farming. In this scenario, a sustainable agriculture system could play a crucial role; however, it needs rigorous study to understand the biological interfaces within agroecosystems. Among the various biological components with respect to agriculture, mycorrhizae could be a potential candidate. Most agricultural crops are symbiotic with arbuscular mycorrhizal fungi (AMF). In this study, beetroot has been chose to study the effect of different AMFs on various parameters such as morphological traits, biochemical attributes, and gene expression analysis (ALDH7B4 and ALDH3I1). The AMF Gm-Funneliformis mosseae (Glomus mosseae), Acaulospora laevis, and GG-Gigaspora gigantean were taken as treatments to study the effect on the above-mentioned parameters in beetroot. We observed that among all the possible combinations of mycorrhizae, Gm+Al+GG performed best, and the Al-alone treatment was found to be a poor performer with respect to all the studied parameters. This study concluded that the more the combinations of mycorrhizae, the better the results will be. However, the phenomenon depends on the receptivity, infectivity, and past nutrient profile of the soil.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Radha Krishna Jha
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | | | - Rajan Singh
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Gaurav Mishra
- Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, India
| | - Jyoti Prakash Singh
- ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Banoth Vinesh
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Kuldip Jayaswall
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | | | | | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | | | | |
Collapse
|
23
|
Duan D, Feng X, Wu N, Tian Z, Dong X, Liu H, Nan Z, Chen T. Drought Eliminates the Difference in Root Trait Plasticity and Mycorrhizal Responsiveness of Two Semiarid Grassland Species with Contrasting Root System. Int J Mol Sci 2023; 24:10262. [PMID: 37373408 DOI: 10.3390/ijms241210262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Root traits and arbuscular mycorrhizal (AM) fungi are important in determining the access of plants to soil resources. However, whether plants with different root systems (i.e., taproot vs. fibrous-root) exhibit different root trait plasticity and mycorrhizal responsiveness under drought remains largely unexplored. Tap-rooted Lespedeza davurica and fibrous-rooted Stipa bungeana were grown in monocultures in sterilized and live soils, followed by a drought treatment. Biomass, root traits, root colonization by AM fungi, and nutrient availability were evaluated. Drought decreased biomass and root diameter but increased the root:shoot ratio (RSR), specific root length (SRL), soil NO3--N, and available P for the two species. Under control and drought conditions, soil sterilization significantly increased the RSR, SRL, and soil NO3--N for L. davurica, but this only occurs under drought condition for S. bungeana. Soil sterilization significantly reduced AM fungal root colonization of both species, but drought significantly increased it in live soil. In water-abundant conditions, tap-rooted L. davurica may depend more on AM fungi than fibrous-rooted S. bungeana; however, under drought conditions, AM fungi are of equal importance in favoring both plant species to forage soil resources. These findings provide new insights for understanding the resource utilization strategies under climate change.
Collapse
Affiliation(s)
- Dongdong Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Xiaoxuan Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Nana Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xin Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Huining Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Tao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Vahter T, Lillipuu EM, Oja J, Öpik M, Vasar M, Hiiesalu I. Do commercial arbuscular mycorrhizal inoculants contain the species that they claim? MYCORRHIZA 2023; 33:211-220. [PMID: 36786883 DOI: 10.1007/s00572-023-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 06/08/2023]
Abstract
The use of arbuscular mycorrhizal (AM) fungal inoculants as a means to promote plant growth is gaining momentum worldwide. Although there is an increasing number of commercial products available for various applications, the quality of these remains uncertain. We determined the AM fungal species composition in eleven inoculants from four producers by using DNA metabarcoding and compared them to the AM fungal species declared on the product labels. Our DNA metabarcoding of the inoculants revealed a concerning discrepancy between the declared and detected AM fungal species compositions of the products. While nine products contained at least one declared species, two did not contain any matching species and all inoculants but one contained additional species not declared on the product label. These findings highlight the need for better guidelines and industry standards to ensure consumer protection in the AM fungal inoculum market. Additionally, we call for caution when using commercial AM fungal inoculants in scientific experiments without confirmatory information about their species composition.
Collapse
Affiliation(s)
- Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia.
| | - Epp Maria Lillipuu
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| |
Collapse
|
25
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
26
|
Dual Inoculation with Rhizophagus irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses. Int J Mol Sci 2023; 24:ijms24065193. [PMID: 36982272 PMCID: PMC10049376 DOI: 10.3390/ijms24065193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Climate change is leading to combined drought and high temperature stress in many areas, drastically reducing crop production, especially for high-water-consuming crops such as maize. This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement and physiology in maize plants in order to cope with combined drought and high temperature stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B. megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought and high temperature stress (D + T). We measured plant physiological responses, root hydraulic parameters, aquaporin gene expression and protein abundances and sap hormonal content. The results showed that dual AM + Bm inoculation was more effective against combined D + T stress than single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II, stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3, ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates the usefulness of combining beneficial soil microorganisms to improve crop productivity under the current climate-change scenario.
Collapse
|
27
|
Wan P, Zhang N, Li Y, Li S, Li FM, Cui Z, Zhang F. Reducing plant pathogens could increase crop yields after plastic film mulching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160615. [PMID: 36464048 DOI: 10.1016/j.scitotenv.2022.160615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Soil fungi are closely associated with crop growth in agricultural ecosystems through processes such as nutrient uptake and pathogenesis. Plastic film mulching (PM) plays a dominant role in increasing crop yields in dryland agriculture worldwide. The functional guilds of soil fungi under PM and their effects on crops remain unclear. In this study, we explored the absolute abundance, diversity, community composition, and functional guilds of soil fungi after short-term (2 years) and long-term (10 years) mulching experiments. Short-term mulching caused a 37 %-51 % decrease in absolute fungal abundance owing to abrupt changes in the microenvironment. The response of the fungal community to PM varied with sites, with the effect being more pronounced under poor hydrothermal conditions (314 mm). The abundance of potential fungal pathogens decreased under PM; for example, Gibberella (maize ear rot) abundance was 45 % and 72 % lower under short- and long-term mulching, respectively, when compared with that in control. In contrast, the abundance of plant biocontrol fungi increased under PM; for instance, Glomeromycota abundance increased twofold under long-term mulching. Although PM did not alter the complexity and stability of fungal co-occurrence network, competition among fungi increased in the absence of sufficient carbon (C) sources. Long-term mulching reduced phytopathogen guilds by 12 %-77 % and increased arbuscular mycorrhizal fungi (AMF) guilds by 89 %-94 %. Structural equation modeling suggested that PM altered fungal functional guilds mainly by shaping the structure of the fungal community, and fungal pathogens decreased with increased AMF functional guilds, inducing higher maize yields. These results showed for the first time, from a microbial perspective, that pathogens reduction owing to PM could explain 4.4 % of maize yield variation, providing theoretical guidance to accomplish sustainability of continuous maize mulching.
Collapse
Affiliation(s)
- Pingxing Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ningning Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yufei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling 712100, China
| | - Feng-Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China; College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengtuan Cui
- General Station of Gansu Cultivated Land Quality Construction and Protection, Lanzhou, Gansu 730000, China.
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
28
|
Ahmad N, Jiang Z, Zhang L, Hussain I, Yang X. Insights on Phytohormonal Crosstalk in Plant Response to Nitrogen Stress: A Focus on Plant Root Growth and Development. Int J Mol Sci 2023; 24:ijms24043631. [PMID: 36835044 PMCID: PMC9958644 DOI: 10.3390/ijms24043631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Nitrogen (N) is a vital mineral component that can restrict the growth and development of plants if supplied inappropriately. In order to benefit their growth and development, plants have complex physiological and structural responses to changes in their nitrogen supply. As higher plants have multiple organs with varying functions and nutritional requirements, they coordinate their responses at the whole-plant level based on local and long-distance signaling pathways. It has been suggested that phytohormones are signaling substances in such pathways. The nitrogen signaling pathway is closely associated with phytohormones such as auxin (AUX), abscisic acid (ABA), cytokinins (CKs), ethylene (ETH), brassinosteroid (BR), strigolactones (SLs), jasmonic acid (JA), and salicylic acid (SA). Recent research has shed light on how nitrogen and phytohormones interact to modulate physiology and morphology. This review provides a summary of the research on how phytohormone signaling affects root system architecture (RSA) in response to nitrogen availability. Overall, this review contributes to identifying recent developments in the interaction between phytohormones and N, as well as serving as a foundation for further study.
Collapse
Affiliation(s)
- Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Iqbal Hussain
- Department of Horticulture, Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
29
|
Ortiz-García P, González Ortega-Villaizán A, Onejeme FC, Müller M, Pollmann S. Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. Int J Mol Sci 2023; 24:ijms24043090. [PMID: 36834499 PMCID: PMC9960826 DOI: 10.3390/ijms24043090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Plants are constantly exposed to a variety of different environmental stresses, including drought, salinity, and elevated temperatures. These stress cues are assumed to intensify in the future driven by the global climate change scenario which we are currently experiencing. These stressors have largely detrimental effects on plant growth and development and, therefore, put global food security in jeopardy. For this reason, it is necessary to expand our understanding of the underlying mechanisms by which plants respond to abiotic stresses. Especially boosting our insight into the ways by which plants balance their growth and their defense programs appear to be of paramount importance, as this may lead to novel perspectives that can pave the way to increase agricultural productivity in a sustainable manner. In this review, our aim was to present a detailed overview of different facets of the crosstalk between the antagonistic plant hormones abscisic acid (ABA) and auxin, two phytohormones that are the main drivers of plant stress responses, on the one hand, and plant growth, on the other.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Francis Chukwuma Onejeme
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| |
Collapse
|
30
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
31
|
Lidoy J, Berrio E, García M, España-Luque L, Pozo MJ, López-Ráez JA. Flavonoids promote Rhizophagus irregularis spore germination and tomato root colonization: A target for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 13:1094194. [PMID: 36684723 PMCID: PMC9849897 DOI: 10.3389/fpls.2022.1094194] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The use of arbuscular mycorrhizal (AM) fungi has great potential, being used as biostimulants, biofertilizers and bioprotection agents in agricultural and natural ecosystems. However, the application of AM fungal inoculants is still challenging due to the variability of results when applied in production systems. This variability is partly due to differences in symbiosis establishment. Reducing such variability and promoting symbiosis establishment is essential to improve the efficiency of the inoculants. In addition to strigolactones, flavonoids have been proposed to participate in the pre-symbiotic plant-AM fungus communication in the rhizosphere, although their role is still unclear. Here, we studied the specific function of flavonoids as signaling molecules in AM symbiosis. For that, both in vitro and in planta approaches were used to test the stimulatory effect of an array of different subclasses of flavonoids on Rhizophagus irregularis spore germination and symbiosis establishment, using physiological doses of the compounds. We show that the flavone chrysin and the flavonols quercetin and rutin were able to promote spore germination and root colonization at low doses, confirming their role as pre-symbiotic signaling molecules in AM symbiosis. The results pave the way to use these flavonoids in the formulation of AM fungal-based products to promote the symbiosis. This can improve the efficiency of commercial inoculants, and therefore, help to implement their use in sustainable agriculture.
Collapse
|
32
|
Fresno DH, Solé‐Corbatón H, Munné‐Bosch S. Water stress protection by the arbuscular mycorrhizal fungus Rhizoglomus irregulare involves physiological and hormonal responses in an organ-specific manner. PHYSIOLOGIA PLANTARUM 2023; 175:e13854. [PMID: 36651309 PMCID: PMC10108154 DOI: 10.1111/ppl.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi may alleviate water stress in plants. Although several protection mechanisms have already been described, little information is available on how these fungi influence the hormonal response to water stress at an organ-specific level. In this study, we evaluated the physiological and hormonal responses to water stress in above and below-ground tissues of the legume grass Trifolium repens colonized by the arbuscular mycorrhizal fungus Rhizoglomus irregulare. Plants were subjected to progressive water stress and recovery. Different leaf and root physiological parameters, as well as phytohormone levels, were quantified. Water-stressed mycorrhizal plants showed an improved water status and no photoinhibition compared to uncolonized individuals, while some stress markers like α-tocopherol and malondialdehyde content, an indicator of the extent of lipid peroxidation, transiently increased in roots, but not in leaves. Water stress protection exerted by mycorrhiza appeared to be related to a differential root-to-shoot redox signaling, probably mediated by jasmonates, and mycorrhization enhanced the production of the cytokinin trans-zeatin in both roots and leaves. Overall, our results suggest that mycorrhization affects physiological, redox and hormonal responses to water stress at an organ-specific level, which may eventually modulate the final protection of the host from water stress.
Collapse
Affiliation(s)
- David H. Fresno
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
- Institute of Nutrition and Food Safety (INSA), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Helena Solé‐Corbatón
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
- Institute of Nutrition and Food Safety (INSA), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
33
|
Bastías DA, Gundel PE. Plant stress responses compromise mutualisms with Epichloë endophytes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:19-23. [PMID: 36309896 PMCID: PMC9786834 DOI: 10.1093/jxb/erac428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Affiliation(s)
| | - Pedro E Gundel
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
34
|
Dejana L, Ramírez-Serrano B, Rivero J, Gamir J, López-Ráez JA, Pozo MJ. Phosphorus availability drives mycorrhiza induced resistance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1060926. [PMID: 36600909 PMCID: PMC9806178 DOI: 10.3389/fpls.2022.1060926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can provide multiple benefits to the host plant, including improved nutrition and protection against biotic stress. Mycorrhiza induced resistance (MIR) against pathogens and insect herbivores has been reported in different plant systems, but nutrient availability may influence the outcome of the interaction. Phosphorus (P) is a key nutrient for plants and insects, but also a regulatory factor for AM establishment and functioning. However, little is known about how AM symbiosis and P interact to regulate plant resistance to pests. Here, using the tomato-Funneliformis mosseae mycorrhizal system, we analyzed the effect of moderate differences in P fertilization on plant and pest performance, and on MIR against biotic stressors including the fungal pathogen Botrytis cinerea and the insect herbivore Spodoperta exigua. P fertilization impacted plant nutritional value, plant defenses, disease development and caterpillar survival, but these effects were modulated by the mycorrhizal status of the plant. Enhanced resistance of F. mosseae-inoculated plants against B. cinerea and S. exigua depended on P availability, as no protection was observed under the most P-limiting conditions. MIR was not directly explained by changes in the plant nutritional status nor to basal differences in defense-related phytohormones. Analysis of early plant defense responses to the damage associated molecules oligogalacturonides showed primed transcriptional activation of plant defenses occurring at intermediate P levels, but not under severe P limitation. The results show that P influences mycorrhizal priming of plant defenses and the resulting induced-resistance is dependent on P availability, and suggest that mycorrhiza fine-tunes the plant growth vs defense prioritization depending on P availability. Our results highlight how MIR is context dependent, thus unravel molecular mechanism based on plant defence in will contribute to improve the efficacy of mycorrhizal inoculants in crop protection.
Collapse
Affiliation(s)
- Laura Dejana
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Beatriz Ramírez-Serrano
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, /Universite de Tours Centre National de la Recherche Scientifique (CNRS), Tours, France
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jordi Gamir
- Plant Immunity and Biochemistry Group, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I, Avd. Vicente Sos Baynat s/n, Castellón, Spain
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
35
|
He C, Lin Y, Zhang Y, Tong L, Ding Y, Yao M, Liu Q, Zeng R, Chen D, Song Y. Aboveground herbivory does not affect mycorrhiza-dependent nitrogen acquisition from soil but inhibits mycorrhizal network-mediated nitrogen interplant transfer in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1080416. [PMID: 36589048 PMCID: PMC9795027 DOI: 10.3389/fpls.2022.1080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered biofertilizers for sustainable agriculture due to their ability to facilitate plant uptake of important mineral elements, such as nitrogen (N). However, plant mycorrhiza-dependent N uptake and interplant transfer may be highly context-dependent, and whether it is affected by aboveground herbivory remains largely unknown. Here, we used 15N labeling and tracking to examine the effect of aboveground insect herbivory by Spodoptera frugiperda on mycorrhiza-dependent N uptake in maize (Zea mays L.). To minimize consumption differences and 15N loss due to insect chewing, insect herbivory was simulated by mechanical wounding and oral secretion of S. frugiperda larvae. Inoculation with Rhizophagus irregularis (Rir) significantly improved maize growth, and N/P uptake. The 15N labeling experiment showed that maize plants absorbed N from soils via the extraradical mycelium of mycorrhizal fungi and from neighboring plants transferred by common mycorrhizal networks (CMNs). Simulated aboveground leaf herbivory did not affect mycorrhiza-mediated N acquisition from soil. However, CMN-mediated N transfer from neighboring plants was blocked by leaf simulated herbivory. Our findings suggest that aboveground herbivory inhibits CMN-mediated N transfer between plants but does not affect N acquisition from soil solutions via extraradical mycorrhizal mycelium.
Collapse
Affiliation(s)
- Chenling He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Tong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanxing Ding
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Chemical Ecology and Crop Resistance, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Chemical Ecology and Crop Resistance, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Chemical Ecology and Crop Resistance, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Bastías DA, Balestrini R, Pollmann S, Gundel PE. Environmental interference of plant-microbe interactions. PLANT, CELL & ENVIRONMENT 2022; 45:3387-3398. [PMID: 36180415 PMCID: PMC9828629 DOI: 10.1111/pce.14455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses can compromise the interactions of plants with beneficial microbes. In the present review, experimental results showing that stresses negatively affect the abundance and/or functionality of plant beneficial microbes are summarized. It is proposed that the environmental interference of these plant-microbe interactions is explained by the stress-mediated induction of plant signalling pathways associated with defence hormones and reactive oxygen species. These plant responses are recognized to regulate beneficial microbes within plants. The direct negative effect of stresses on microbes may also contribute to the environmental regulation of these plant mutualisms. It is also posited that, in stress situations, beneficial microbes harbour mechanisms that contribute to maintain the mutualistic associations. Beneficial microbes produce effector proteins and increase the antioxidant levels in plants that counteract the detrimental effects of plant stress responses on them. In addition, they deliver specific stress-protective mechanisms that assist to their plant hosts to mitigate the negative effects of stresses. Our study contributes to understanding how environmental stresses affect plant-microbe interactions and highlights why beneficial microbes can still deliver benefits to plants in stressful environments.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch LimitedGrasslands Research CentrePalmerston NorthNew Zealand
| | | | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Pedro E. Gundel
- IFEVA, CONICET, Universidad de Buenos AiresFacultad de AgronomíaBuenos AiresArgentina
- Centro de Ecología Integrativa, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
| |
Collapse
|
37
|
Romero-Muñoz M, Gálvez A, Martínez-Melgarejo PA, Piñero MC, del Amor FM, Albacete A, López-Marín J. The Interaction between Hydromulching and Arbuscular Mycorrhiza Improves Escarole Growth and Productivity by Regulating Nutrient Uptake and Hormonal Balance. PLANTS (BASEL, SWITZERLAND) 2022; 11:2795. [PMID: 36297821 PMCID: PMC9612124 DOI: 10.3390/plants11202795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
To improve water and nutrient use efficiencies some strategies have been proposed, such as the use of mulching techniques or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights into the interaction between the use of hydromulch and AMF inoculation on plant growth and productivity, escarole plants (Cichorium endivia, L.) were inoculated with the AMF Rhizophagus irregularis and grown with non-inoculated plants under different soil cover treatments: ecological hydromulching based on the substrate of mushroom cultivation (MS), low-density black polyethylene (PE), and non-covered soil (BS). AMF inoculation or the use of mulching alone, but especially their interaction, increased the plant growth. The growth improvement observed in AMF-inoculated escarole plants grown under hydromulching conditions was mainly associated with the upgrading of nitrogen and phosphorous use efficiency through the regulation of the hormonal balance. Both hydromulching and AMF inoculation were found to increase the active gibberellins (GAs) and cytokinins (CKs), resulting in a positive correlation between these hormones and the growth-related parameters. In contrast, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA) decreased in AMF-inoculated plants and especially in those grown with the MS treatment. This study demonstrates that there exists a positive interaction between AMF and hydromulching which enhances the growth of escarole plants by improving nutrient use efficiency and hormonal balance.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Amparo Gálvez
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Purificación A. Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - María Carmen Piñero
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Francisco M. del Amor
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Alfonso Albacete
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Josefa López-Marín
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| |
Collapse
|
38
|
Du E, Chen Y, Li Y, Zhang F, Sun Z, Hao R, Gui F. Effect of arbuscular mycorrhizal fungi on the responses of Ageratina adenophora to Aphis gossypii herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:1015947. [PMID: 36325539 PMCID: PMC9618805 DOI: 10.3389/fpls.2022.1015947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The invasive weed Ageratina adenophora can form a positive symbiotic relationship with native arbuscular mycorrhizal fungi (AMF) to promote its invasion ability. However, the function of AMF during the feeding of Aphis gossypii in A. adenophora was poorly understand. This study aimed to investigate the effects of two dominant AMF (Claroideoglomus etunicatum and Septoglomus constrictum) on A. adenophora in response to the feeding of the generalist herbivore A. gossypii. The results showed that A. gossypii infestation could significantly reduce the biomass, nutrient and proline contents of A. adenophora, and increase the antioxidant enzyme activities, defense hormone and secondary metabolite contents of the weed. Compared with the A. gossypii infested A. adenophora, inoculation C. etunicatum and S. constrictum could significantly promote the growth ability and enhanced the resistance of A. adenophora to A. gossypii infestation, and the aboveground biomass of A. adenophora increased by 317.21% and 114.73%, the root biomass increased by 347.33% and 120.58%, the polyphenol oxidase activity heightened by 57.85% and 12.62%, the jasmonic acid content raised by 13.49% and 4.92%, the flavonoid content increased by 27.29% and 11.92%, respectively. The survival rate of A. gossypii and density of nymphs were significantly inhibited by AMF inoculation, and the effect of C. etunicatum was significantly greater than that of S. constrictum. This study provides clarified evidence that AMF in the rhizosphere of A. adenophora are effective in the development of tolerance and chemical defense under the feeding pressure of insect herbivory, and offer references for the management of the A. adenophora from the perspective of soil microorganisms.
Collapse
Affiliation(s)
- Ewei Du
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yaping Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yahong Li
- Department of Plant Quarantine, Yunnan Plant Protection and Quarantine Station, Kunming, China
| | - Fengjuan Zhang
- College of Life Science, Hebei University, Baoding, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ruoshi Hao
- Department of Industrial Development, Yunnan Plateau Charateristic Agriculture Industry Research Institute, Kunming, China
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
39
|
Li L, Wang J, Chen J, Wang Z, Qaseem MF, Li H, Wu A. Physiological and Transcriptomic Responses of Growth in Neolamarckia cadamba Stimulated by Exogenous Gibberellins. Int J Mol Sci 2022; 23:ijms231911842. [PMID: 36233144 PMCID: PMC9569647 DOI: 10.3390/ijms231911842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023] Open
Abstract
(1) The phytohormones gibberellins (GAs) play a crucial role in plant growth and development, such as seed germination, flowering, fruiting, and stem elongation. Although many biological roles of GAs have been studied intensively, the molecular mechanisms of GAs in woody plants are still unclear. (2) In this study, we investigated the effects of exogenous application of GAs on Neolamarckia cadamba. (3) The height and biomass of N. cadamba increased after 7 days of GA treatment, especially on the second internode. Transcriptome analysis showed that although the majority of genes involved in the GA signaling pathway were up-regulated, the expression of GA20 oxidase (GA20ox) and GA3 oxidase (GA3ox) was down-regulated in the 3 days GA-treated group compared to the CK group. The expression of the cell elongation-related basic helix-loop-helix genes bHLH74 and bHLH49 was up-regulated in the GA-treated group compared with the CK group. Transcriptional expression levels of transcription factors involved in hormone signaling were changed, mainly including bHLH, ethylene response factor (ERF), and WRKY families. In addition, the transcriptional expression level of the key enzymes engaged in the phenylalanine pathway was downregulated after GA treatment. (4) In brief, our findings reveal the physiological and molecular mechanisms of exogenous GA treatment stimulation in N. cadamba.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Jiajun Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Zhihua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.L.); (A.W.)
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.L.); (A.W.)
| |
Collapse
|
40
|
Frattini A, Martínez‐Solís M, Llopis‐Giménez Á, Pozo MJ, Rivero J, Crava CM, Herrero S. Compatibility of mycorrhiza-induced resistance with viral and bacterial entomopathogens in the control of Spodoptera exigua in tomato. PEST MANAGEMENT SCIENCE 2022; 78:4388-4396. [PMID: 35767223 PMCID: PMC9543428 DOI: 10.1002/ps.7058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are soil-borne microorganisms that establish mutualistic associations with roots of most terrestrial plants. This symbiosis results in nutritional and defensive benefits to the host plant, usually conferring protection against biotic stresses, but its indirect impact on third trophic levels is still unknown. In the present work, we explore whether the symbiosis of tomato plants with Funneliformis mosseae (and/or exposition to herbivory) influences the interaction of the generalist pest Spodoptera exigua (Lepidoptera: Noctuidae) with bacterial (Bacillus thuringiensis) and viral (baculovirus, SeMNPV) natural entomopathogens. RESULTS Symbiosis with AMF and previous herbivory reduces the relative growth of S. exigua, increases its susceptibility to a sublethal dose of B. thuringiensis and has positive or neutral impact on the lethality of SeMNPV. Reduction of the phenoloxidase activity, a marker of the insect immune response, was associated with the larval feeding on plant material previously exposed to herbivory but not to the AMF. In addition, no changes in the insect gut microbiota could be associated with the observed changes in larval growth and susceptibility to the entomopathogens. CONCLUSION Our findings provide the first evidence of compatibility of AMF symbiosis in tomato with the use of bacterial and viral entomopathogens, contributing to the development of novel approaches to combine the beneficial effect of AMF and entomopathogens in biological pest control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ada Frattini
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - María Martínez‐Solís
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - Ángel Llopis‐Giménez
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Cristina M. Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| |
Collapse
|
41
|
Ahmad I, Jiménez-Gasco MDM, Luthe DS, Barbercheck ME. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses. PLoS One 2022; 17:e0272944. [PMID: 36137142 PMCID: PMC9499252 DOI: 10.1371/journal.pone.0272944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022] Open
Abstract
Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect-pathogens and endophytes that can benefit their host plant through growth promotion and protection against stresses. Cochliobolus heterostrophus (Drechsler) Drechsler (Pleosporales: Pleosporaceae) is an economically-significant phytopathogenic fungus that causes Southern Corn Leaf Blight (SCLB) in maize. We conducted greenhouse and lab-based experiments to determine the effects of endophytic M. robertsii J.F. Bisch., Rehner & Humber on growth and defense in maize (Zea mays L.) infected with C. heterostrophus. We inoculated maize seeds with spores of M. robertsii and, at the 3 to 4-leaf stage, the youngest true leaf of M. robertsii-treated and untreated control plants with spores of C. heterostrophus. After 96 h, we measured maize height, above-ground biomass, endophytic colonization by M. robertsii, severity of SCLB, and expression of plant defense genes and phytohormone content. We recovered M. robertsii from 74% of plants grown from treated seed. The severity of SCLB in M. robertsii-treated maize plants was lower than in plants inoculated only with C. heterostrophus. M. robertsii-treated maize inoculated or not inoculated with C. heterostrophus showed greater height and above-ground biomass compared with untreated control plants. Height and above-ground biomass of maize co-inoculated with M. robertsii and C. heterostrophus were not different from M. robertsii-treated maize. M. robertsii modulated the expression of defense genes and the phytohormone content in maize inoculated with C. heterostrophus compared with plants not inoculated with C. heterostrophus and control plants. These results suggest that endophytic M. robertsii can promote maize growth and reduce development of SCLB, possibly by induced systemic resistance mediated by modulation of phytohormones and expression of defense and growth-related genes in maize.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (MEB); (IA)
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dawn S. Luthe
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mary E. Barbercheck
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (MEB); (IA)
| |
Collapse
|
42
|
Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 235:2158-2175. [PMID: 35713988 DOI: 10.1111/nph.18308] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Collapse
Affiliation(s)
- Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Annie Schauster
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
43
|
Votta C, Fiorilli V, Haider I, Wang JY, Balestrini R, Petřík I, Tarkowská D, Novák O, Serikbayeva A, Bonfante P, Al‐Babili S, Lanfranco L. Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1688-1700. [PMID: 35877598 PMCID: PMC9543690 DOI: 10.1111/tpj.15917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 05/12/2023]
Abstract
The Oryza sativa (rice) carotenoid cleavage dioxygenase OsZAS was described to produce zaxinone, a plant growth-promoting apocarotenoid. A zas mutant line showed reduced arbuscular mycorrhizal (AM) colonization, but the mechanisms underlying this behavior are unknown. Here, we investigated how OsZAS and exogenous zaxinone treatment regulate mycorrhization. Micromolar exogenous supply of zaxinone rescued root growth but not the mycorrhizal defects of the zas mutant, and even reduced mycorrhization in wild-type and zas genotypes. The zas line did not display the increase in the level of strigolactones (SLs) that was observed in wild-type plants at 7 days post-inoculation with AM fungus. Moreover, exogenous treatment with the synthetic SL analog GR24 rescued the zas mutant mycorrhizal phenotype, indicating that the lower AM colonization rate of zas is caused by a deficiency in SLs at the early stages of the interaction, and indicating that during this phase OsZAS activity is required to induce SL production, possibly mediated by the Dwarf14-Like (D14L) signaling pathway. OsZAS is expressed in arbuscule-containing cells, and OsPT11prom::OsZAS transgenic lines, where OsZAS expression is driven by the OsPT11 promoter active in arbusculated cells, exhibit increased mycorrhization compared with the wild type. Overall, our results show that the genetic manipulation of OsZAS activity in planta leads to a different effect on AM symbiosis from that of exogenous zaxinone treatment, and demonstrate that OsZAS influences the extent of AM colonization, acting as a component of a regulatory network that involves SLs.
Collapse
Affiliation(s)
- Cristina Votta
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Imran Haider
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Raffaella Balestrini
- National Research CouncilInstitute for Sustainable Plant ProtectionTurin10135Italy
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Akmaral Serikbayeva
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Paola Bonfante
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Salim Al‐Babili
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| |
Collapse
|
44
|
Ruiz-Lozano JM, Quiroga G, Erice G, Pérez-Tienda J, Zamarreño ÁM, García-Mina JM, Aroca R. Using the Maize Nested Association Mapping (NAM) Population to Partition Arbuscular Mycorrhizal Effects on Drought Stress Tolerance into Hormonal and Hydraulic Components. Int J Mol Sci 2022; 23:ijms23179822. [PMID: 36077217 PMCID: PMC9456450 DOI: 10.3390/ijms23179822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a first experiment was conducted with the objective of determining how drought stress alters the radial water flow and physiology in the whole maize nested association mapping (NAM) population and to find out which contrasting maize lines should be tested in a second experiment for their responses to drought in combination with an arbuscular mycorrhizal (AM) fungus. Emphasis was placed on determining the role of plant aquaporins and phytohormones in the responses of these contrasting maize lines to cope with drought stress. Results showed that both plant aquaporins and hormones are altered by the AM symbiosis and are highly involved in the physiological responses of maize plants to drought stress. The regulation by the AM symbiosis of aquaporins involved in water transport across cell membranes alters radial water transport in host plants. Hormones such as IAA, SA, ABA and jasmonates must be involved in this process either by regulating the own plant-AM fungus interaction and the activity of aquaporins, or by inducing posttranscriptional changes in these aquaporins, which in turns alter their water transport capacity. An intricate relationship between root hydraulic conductivity, aquaporins and phytohormones has been observed, revealing a complex network controlling water transport in maize roots.
Collapse
Affiliation(s)
- Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- Correspondence:
| | - Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- ATENS—Agrotecnologías Naturales S.L., Ctra.T-214, s/n, Km 4, La Riera de Gaia, 43762 Tarragona, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain
| | - José María García-Mina
- Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
| |
Collapse
|
45
|
Ma Z, Zhao X, He A, Cao Y, Han Q, Lu Y, Yong JWH, Huang J. Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress. PLANT PHYSIOLOGY 2022; 189:2481-2499. [PMID: 35604107 PMCID: PMC9342988 DOI: 10.1093/plphys/kiac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 05/25/2023]
Abstract
Chinese jujube (Ziziphus jujuba) is an important fruit tree in China, and soil salinity is the main constraint affecting jujube production. It is unclear how arbuscular mycorrhizal (AM) symbiosis supports jujube adaptation to salt stress. Herein, we performed comparative physiological, ion flux, fatty acid (FA) metabolomic, and transcriptomic analyses to examine the mechanism of AM jujube responding to salt stress. AM seedlings showed better performance during salt stress. AM symbiosis altered phytohormonal levels: indole-3-acetic acid and abscisic acid contents were significantly increased in AM roots and reduced by salt stress. Mycorrhizal colonization enhanced root H+ efflux and K+ influx, while inducing expression of plasma membrane-type ATPase 7 (ZjAHA7) and high-affinity K+ transporter 2 (ZjHAK2) in roots. High K+/Na+ homeostasis was maintained throughout salt exposure. FA content was elevated in AM leaves as well as roots, especially for palmitic acid, oleic acid, trans oleic acid, and linoleic acid, and similar effects were also observed in AM poplar (Populus. alba × Populus. glandulosa cv. 84K) and Medicago truncatula, indicating AM symbiosis elevating FA levels could be a conserved physiological effect. Gene co-expression network analyses uncovered a core gene set including 267 genes in roots associated with AM symbiosis and conserved transcriptional responses, for example, FA metabolism, phytohormone signal transduction, SNARE interaction in vesicular transport, and biotin metabolism. In contrast to widely up-regulated genes related to FA metabolism in AM roots, limited genes were affected in leaves. We propose a model of AM symbiosis-linked reprogramming of FA metabolism and provide a comprehensive insight into AM symbiosis with a woody species adaptation to salt stress.
Collapse
Affiliation(s)
- Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Xinchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Aobing He
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yan Cao
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Qisheng Han
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yanjun Lu
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 75007, Sweden
| | | |
Collapse
|
46
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
47
|
Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH, Liu Y, Miao J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:919166. [PMID: 35873982 PMCID: PMC9298553 DOI: 10.3389/fpls.2022.919166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 05/14/2023]
Abstract
Drought stress (DS) is a serious abiotic stress and a major concern across the globe as its intensity is continuously climbing. Therefore, it is direly needed to develop new management strategies to mitigate the adverse effects of DS to ensure better crop productivity and food security. The use of arbuscular mycorrhizal fungi (AMF) has emerged as an important approach in recent years to improve crop productivity under DS conditions. AMF establishes a relationship with 80% of land plants and it induces pronounced impacts on plant growth and provides protection to plants from abiotic stress. Drought stress significantly reduces plant growth and development by inducing oxidative stress, disturbing membrane integrity, plant water relations, nutrient uptake, photosynthetic activity, photosynthetic apparatus, and anti-oxidant activities. However, AMF can significantly improve the plant tolerance against DS. AMF maintains membrane integrity, improves plant water contents, nutrient and water uptake, and water use efficiency (WUE) therefore, improve the plant growth under DS. Moreover, AMF also protects the photosynthetic apparatus from drought-induced oxidative stress and improves photosynthetic efficiency, osmolytes, phenols and hormone accumulation, and reduces the accumulation of reactive oxygen species (ROS) by increasing anti-oxidant activities and gene expression which provide the tolerance to plants against DS. Therefore, it is imperative to understand the role of AMF in plants grown under DS. This review presented the different functions of AMF in different responses of plants under DS. We have provided a detailed picture of the different mechanisms mediated by AMF to induce drought tolerance in plants. Moreover, we also identified the potential research gaps that must be fulfilled for a promising future for AMF. Lastly, nitrogen (N) is an important nutrient needed for plant growth and development, however, the efficiency of applied N fertilizers is quite low. Therefore, we also present the information on how AMF improves N uptake and nitrogen use efficiency (NUE) in plants.
Collapse
Affiliation(s)
- Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Liang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jianqun Miao
- School of Computer Information and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
48
|
Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:ijms23115960. [PMID: 35682640 PMCID: PMC9180548 DOI: 10.3390/ijms23115960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Plant-microorganism interactions at the rhizosphere level have a major impact on plant growth and plant tolerance and/or resistance to biotic and abiotic stresses. Of particular importance for forestry and agricultural systems is the cooperative and mutualistic interaction between plant roots and arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycotina, since about 80% of terrestrial plant species can form AM symbiosis. The interaction is tightly regulated by both partners at the cellular, molecular and genetic levels, and it is highly dependent on environmental and biological variables. Recent studies have shown how fungal signals and their corresponding host plant receptor-mediated signalling regulate AM symbiosis. Host-generated symbiotic responses have been characterized and the molecular mechanisms enabling the regulation of fungal colonization and symbiosis functionality have been investigated. This review summarizes these and other recent relevant findings focusing on the molecular players and the signalling that regulate AM symbiosis. Future progress and knowledge about the underlying mechanisms for AM symbiosis regulation will be useful to facilitate agro-biotechnological procedures to improve AM colonization and/or efficiency.
Collapse
|
49
|
Bennett AE, Groten K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:649-672. [PMID: 35216519 DOI: 10.1146/annurev-arplant-102820-124504] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant-AM fungal interaction across disciplines.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA;
| | - Karin Groten
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
50
|
Jiang D, Lin R, Tan M, Yan J, Yan S. The mycorrhizal-induced growth promotion and insect resistance reduction in Populus alba × P. berolinensis seedlings: a multi-omics study. TREE PHYSIOLOGY 2022; 42:1059-1069. [PMID: 35022794 DOI: 10.1093/treephys/tpab155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are an alternative to chemical insecticides or fertilizers, and there is an urgent need to extend the application of AM fungi to woody plants. This study aims to investigate the growth and resistance against the gypsy moth larvae (Lymantria dispar) in Glomus intraradices-colonized Populus alba × P. berolinensis seedlings, and to unravel the transcriptome and metabolome phenotypes recruited by AM fungus colonization that affect plant growth and insect resistance. Our results showed a positive mycorrhizal growth response, i.e., growth and biomass of mycorrhizal seedlings were enhanced. However, AM fungus inoculation reduced the resistance of poplar to gypsy moth larvae, as evidenced by the decreased carbon/nitrogen ratio in leaves, as well as the increased larval growth and shortened larval developmental duration. Transcriptome analysis revealed that in both auxin and gibberellin signaling transductions, all nodes were responsive to AM symbiosis and most differentially expressed genes belonging to effectors were up-regulated in mycorrhizal seedlings. Furthermore, the two key enzymes (4-coumarate-CoA ligase and trans-cinnamate 4-monooxygenase) involved in the synthesis of p-Coumaroyl-CoA, an initial metabolite in flavonoid biosynthesis and the first rate-limiting enzyme (chalcone synthase) in flavonoid biosynthesis, were down-regulated at the transcriptional level. Consistent with the transcriptome results, metabolome analysis found that the amounts of all differentially accumulated flavonoid compounds (e.g., catechin and quercetin) identified in mycorrhizal seedlings were decreased. Taken together, these findings highlight the diverse outcomes of AM fungi-host plant-insect interaction and reveal the regulatory network of the positive mycorrhizal growth response and mycorrhizal-induced reduction of insect resistance in poplar.
Collapse
Affiliation(s)
- Dun Jiang
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Ruoxuan Lin
- Department of Economics College of Economics and Management, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R.China
| | - Mingtao Tan
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Junxin Yan
- Department of Landscape Architecture College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Shanchun Yan
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| |
Collapse
|