1
|
Xie Y, Shen Z, Wang T, Malanson GP, Peñuelas J, Wang X, Chen X, Liang E, Liu H, Yang M, Ying L, Zhao F, Piao S. Uppermost global tree elevations are primarily limited by low temperature or insufficient moisture. GLOBAL CHANGE BIOLOGY 2024; 30:e17260. [PMID: 38563236 DOI: 10.1111/gcb.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.
Collapse
Affiliation(s)
- Yuyang Xie
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Zehao Shen
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | | | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
| | - Xiaoyi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiangwu Chen
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Mingzheng Yang
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Lingxiao Ying
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fu Zhao
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Shilong Piao
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| |
Collapse
|
2
|
Shi L, Liu H, Wang L, Peng R, He H, Liang B, Cao J. Transitional responses of tree growth to climate warming at the southernmost margin of high latitudinal permafrost distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168503. [PMID: 37952654 DOI: 10.1016/j.scitotenv.2023.168503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
The marked increase in temperature warming and permafrost degradation has raised apprehensions about the fate of forests of boreal forests in permafrost regions. However, the impact of climate on tree growth is not limited to direct effects but also involves complex interactions with permafrost. The degradation of permafrost poses a threat to forest growth that has received insufficient attention thus far, after analyzing the impact of permafrost degradation and climate on Dahurican larch (Larix gmelinii) growth from six forest sites with two maximum active layer thickness (ALT) classifications (more and less than tree root length) across the southern margin of the permafrost region. We found that accompanying the continued degradation of permafrost, tree growth was inhibited (slope = -0.67, p < 0.05) by the degradation of permafrost and the growth-climate relationship was shifted from positive to negative at maximum ALT less than tree root length sites. However, the growth rate of trees significantly accelerated (slope = 5.46, p < 0.05) at maximum ALT more than tree root length sites. Path analysis indicated that tree growth did not benefit from temperature warming and more stress could be caused by waterlogging due to permafrost degradation at maximum ALT less than tree root length sites, however, enhanced tree growth primarily by reducing the physical spatial constraints and root layer additional water source with permafrost degradation at maximum ALT more than tree root length sites. It also implies that the matchiness between tree root and maximum active layer depth is critical to the effect of permafrost degradation on tree growth. The transitional response to climate warming and the opposite trend of tree growth at two ALT classification sites suggest that future tree growth responds to the different stages of permafrost degradation differently. Our study provides a new insight on permafrost degradation impact on tree growth.
Collapse
Affiliation(s)
- Liang Shi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Urban and Environmental Sciences, Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Lu Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ruonan Peng
- College of Urban and Environmental Sciences, Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Honglin He
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Boyi Liang
- College of Forestry, Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing, China
| | - Jing Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
3
|
Hankin LE, Leger EA, Bisbing SM. Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2897. [PMID: 37305925 DOI: 10.1002/eap.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Forest persistence in regions impacted by increasing water and temperature stress will depend upon species' ability to either rapidly adjust to novel conditions or migrate to track ecological niches. Predicted, rapid climate change is likely to outpace the adaptive and migratory capacity of long-lived isolated tree species, and reforestation may be critical to species' persistence. Facilitating persistence both within and beyond a species' range requires identification of seed lots best adapted to the current and future conditions predicted with rapid climate change. We evaluate variation in emergent seedling performance that leads to differential survival among species and populations for three high elevation five-needle pines. We paired a fully reciprocal field common garden experiment with a greenhouse common garden study to (1) quantify variation in seedling emergence and functional traits, (2) ask how functional traits affect performance under different establishment conditions, and (3) evaluate whether trait and performance variation demonstrates local adaptation and plasticity. Among study species-limber, Great Basin bristlecone, and whitebark pines-we found divergence in emergence and functional traits, though soil moisture was the strongest driver of seedling emergence and abundance across all species. Generalist limber pine had a clear emergence advantage as well as traits associated with drought adaptation, while edaphic specialist bristlecone pine was characterized by low emergence yet high early survival once established. Despite evidence for edaphic specialization, soil characteristics alone did not explain bristlecone success. Across species, trait-environment relationships provided some evidence for local adaptation in drought-adapted traits, but we found no evidence of local adaptation in emergence or survival at this early life stage. For managers looking to promote persistence, sourcing seed from drier environments is likely to impart greater drought resistance into reforestation efforts through strategies such as greater root investment, increasing the probability of early seedling survival. This research demonstrates, through a rigorous reciprocal transplant experimental design, that it may be possible to select climate- and soil-appropriate seed sources for reforestation. However, planting success will ultimately rely on a suitable establishment environment, requiring careful consideration of interannual climate variability for management interventions in these climate and disturbance-impacted tree species.
Collapse
Affiliation(s)
- Lacey E Hankin
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, Nevada, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Elizabeth A Leger
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Sarah M Bisbing
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, Nevada, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
4
|
Dudney J, Latimer AM, van Mantgem P, Zald H, Willing CE, Nesmith JCB, Cribbs J, Milano E. The energy-water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios. GLOBAL CHANGE BIOLOGY 2023; 29:4368-4382. [PMID: 37089078 DOI: 10.1111/gcb.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12-9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13 C) and nitrogen (δ15 N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E-W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Collapse
Affiliation(s)
- Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Phillip van Mantgem
- U.S. Geological Survey, Western Ecological Research Center, Sacramento, California, USA
| | - Harold Zald
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Claire E Willing
- Department of Biology, Stanford University, Stanford, California, USA
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | | | - Jennifer Cribbs
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Elizabeth Milano
- U.S. Geological Survey, Western Ecological Research Center, Sacramento, California, USA
- USDA Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| |
Collapse
|
5
|
Zou F, Tu C, Liu D, Yang C, Wang W, Zhang Z. Alpine Treeline Dynamics and the Special Exposure Effect in the Hengduan Mountains. FRONTIERS IN PLANT SCIENCE 2022; 13:861231. [PMID: 35463438 PMCID: PMC9024247 DOI: 10.3389/fpls.2022.861231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Alpine treeline is highly sensitive to climate change, but there remains a lack of research on the spatiotemporal heterogeneity of treeline and their relationships with climate change at the landscape scale. We extracted positions of alpine treeline from high-resolution Google Earth images from three periods (2000, 2010, and 2020) and analyzed the elevation patterns and dynamics of treeline positions in the Hengduan Mountains. Based on the treeline positions in 2020, a buffer zone of 300 m is established as the treeline transition zone, and the changing trend of the fraction vegetation cover (FVC) from 2000 to 2020 and its relationship with climate are also analyzed. Due to the special geographical and climatic environment, the treeline in the Hengduan Mountains area is high in the middle but lower in the surrounding areas. We found that over the past 20 years, the treeline position did not change significantly but that the FVC increased in 80.3% of the treeline areas. The increase in FVC was related to the decrease in precipitation in the growing season. The results also revealed a special exposure effect on the alpine treeline in the Hengduan Mountains. Because of the lower treeline, isotherm position caused by the monsoon climate, the treeline position on south-facing slopes is lower than that on slopes with other exposures. Our results confirmed that the pattern and dynamics of the alpine treeline are driven by the regional monsoon climate regime.
Collapse
Affiliation(s)
- Fuyan Zou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Chengyi Tu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Dongmei Liu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chaoying Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Wenli Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Zhiming Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Sumner EE, Morgan JW, Venn SE, Camac JS. Survival and growth of a high-mountain daisy transplanted outside its local range, and implications for climate-induced distribution shifts. AOB PLANTS 2022; 14:plac014. [PMID: 35498909 PMCID: PMC9049260 DOI: 10.1093/aobpla/plac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Field transplant experiments can improve our understanding of the effects of climate on distributions of plants versus a milieu of biotic factors which may be mediated by climate. We use a transplant experiment to test how survival and growth of a mountain-top daisy (Podolepis robusta), when planted within and outside its current local range, varies as a function of individual plant size, elevation, aspect and the presence of other vegetation. We expected a home-site advantage for the species, with highest survival and growth within the species' current elevational limits, and a decline in vital rates above (due to physiological limitations) and below (due to competition with near-neighbours) these limits. Transplant survival during the beginning of the census was high (89 %), though by the third growing season, 36 % of initial transplants were remaining. Elevation had a significant negative effect on individual mortality rates; plants growing at higher elevations had a lower estimated hazard rate and thus, higher survival relative to those planted at elevations below the current lower limit of the distribution. By contrast, we detected no significant effect of elevation on growth rates. Small vegetation gaps had no effect on growth rates, though we found a negative, but non-significant, effect on mortality rates. Aspect had a very strong impact on growth. Plants transplanted to cool aspects had a significantly lower growth rate relative to transplants growing on a warm aspect. Conversely, aspect was not a significant predictor of individual mortality rates. Restrictions on the local distribution of P. robusta appear to be governed by mortality drivers at lower elevation and by growth drivers associated with aspect. We highlight that our ability to understand the drivers of distributions in current and future climates will be limited if contextual- and individual-level plant responses remain understudied.
Collapse
Affiliation(s)
- Emma E Sumner
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia
| | - John W Morgan
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
| | - Susanna E Venn
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia
| | - James S Camac
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Multiple Effects of Topographic Factors on Spatio-Temporal Variations of Vegetation Patterns in the Three Parallel Rivers Region, Southeast Qinghai-Tibet Plateau. REMOTE SENSING 2021. [DOI: 10.3390/rs14010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topographic factors are critical for influencing vegetation distribution patterns, and studying the interactions between them can enhance our understanding of future vegetation dynamics. We used the Moderate-resolution Imaging Spectroradiometer Normalized Differential Vegetation Index (MODIS NDVI) image dataset (2000–2019), combined with the Digital Elevation Model (DEM), and vegetation type data for trend analysis, and explored NDVI variation and its relationship with topographic factors through an integrated geographically-weighted model in the Three Parallel Rivers Region (TPRR) of southeastern Qinghai-Tibet Plateau (QTP) in the past 20 years. Our results indicated that there was no significant increase of NDVI in the entire basin between 2000–2019, except for the Lancang River basin. In the year 2004, abrupt changes in NDVI were observed across the entire basin and each sub-basin. During 2000–2019, the mean NDVI value of the whole basin increased initially and then decreased with the increasing elevation. However, it changed marginally with variations in slope and aspect. We observed a distinct spatial heterogeneity in vegetation patterns with elevation, with higher NDVI in the southern regions NDVI than those in the north as a whole. Most of the vegetation cover was concentrated in the slope range of 8~35°, with no significant difference in distribution except flat land. Furthermore, from 2000 to 2019, the vegetation cover in the TPRR showed an improving trend with the changes of various topographic factors, with the largest improvement area (36.10%) in the slightly improved category. The improved region was mainly distributed in the source area of the Jinsha River basin and the southern part of the whole basin. Geographically weighted regression (GWR) analysis showed that elevation was negatively correlated with NDVI trends in most areas, especially in the middle reaches of Nujiang River basin and Jinsha River basin, where the influence of slope and aspect on NDVI change was considerably much smaller than elevation. Our results confirmed the importance of topographic factors on vegetation growth processes and have implications for understanding the sustainable development of mountain ecosystems.
Collapse
|
8
|
Losso A, Bär A, Unterholzner L, Bahn M, Mayr S. Branch water uptake and redistribution in two conifers at the alpine treeline. Sci Rep 2021; 11:22560. [PMID: 34799592 PMCID: PMC8604952 DOI: 10.1038/s41598-021-00436-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
During winter, conifers at the alpine treeline suffer dramatic losses of hydraulic conductivity, which are successfully recovered during late winter. Previous studies indicated branch water uptake to support hydraulic recovery. We analyzed water absorption and redistribution in Picea abies and Larix decidua growing at the treeline by in situ exposure of branches to δ2H-labelled water. Both species suffered high winter embolism rates (> 40-60% loss of conductivity) and recovered in late winter (< 20%). Isotopic analysis showed water to be absorbed over branches and redistributed within the crown during late winter. Labelled water was redistributed over 425 ± 5 cm within the axes system and shifted to the trunk, lower and higher branches (tree height 330 ± 40 cm). This demonstrated relevant branch water uptake and re-distribution in treeline conifers. The extent of water absorption and re-distribution was species-specific, with L. decidua showing higher rates. In natura, melting snow might be the prime source for absorbed and redistributed water, enabling embolism repair and restoration of water reservoirs prior to the vegetation period. Pronounced water uptake in the deciduous L. decidua indicated bark to participate in the process of water absorption.
Collapse
Affiliation(s)
- Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | | | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| |
Collapse
|
9
|
Bailey SN, Elliott GP, Schliep EM. Seasonal temperature–moisture interactions limit seedling establishment at upper treeline in the Southern Rockies. Ecosphere 2021. [DOI: 10.1002/ecs2.3568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sydney N. Bailey
- Department of Geography University of Missouri Columbia Missouri65211USA
| | - Grant P. Elliott
- Department of Geography University of Missouri Columbia Missouri65211USA
| | - Erin M. Schliep
- Department of Statistics University of Missouri Columbia Missouri65211USA
| |
Collapse
|
10
|
Woodward A, Soll JA. Establishment and Survival of Subalpine Fir (Abies lasiocarpa) in Meadows of Olympic National Park, Washington. NORTHWEST SCIENCE 2021. [DOI: 10.3955/046.094.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrea Woodward
- US Geological Survey, 6505 N.E. 65th Street, Seattle, Washington 98115
| | - Jonathan A. Soll
- Portland Metro Regional Government, 600 N.E. Grand Avenue, Portland, Oregon 97232
| |
Collapse
|
11
|
Carroll CJ, Knapp AK, Martin PH. Higher temperatures increase growth rates of Rocky Mountain montane tree seedlings. Ecosphere 2021. [DOI: 10.1002/ecs2.3414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Charles J.W. Carroll
- Graduate Degree Program in Ecology and Department of Biology Colorado State University Fort CollinsColorado80526USA
| | - Alan K. Knapp
- Graduate Degree Program in Ecology and Department of Biology Colorado State University Fort CollinsColorado80526USA
| | - Patrick H. Martin
- Department of Biological Sciences University of Denver Denver Colorado80208USA
| |
Collapse
|
12
|
Verrall B, Pickering CM. Alpine vegetation in the context of climate change: A global review of past research and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141344. [PMID: 32814293 DOI: 10.1016/j.scitotenv.2020.141344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Climate change is causing extensive alterations to ecosystems globally, with some more vulnerable than others. Alpine ecosystems, characterised by low-temperatures and cryophilic vegetation, provide ecosystems services for billions of people but are considered among the most susceptible to climate change. Therefore, it is timely to review research on climate change on alpine vegetation including assessing trends, topics, themes and gaps. Using a multicomponent bibliometric approach, we extracted bibliometric metadata from 3143 publications identified by searching titles, keywords and abstracts for research on 'climate change' and 'alpine vegetation' from Scopus and Web of Science. While primarily focusing on 'alpine vegetation', some literature that also assessed vegetation below the treeline was captured. There has been an exponential increase in research over 50 years, greater engagement and diversification in who does research, and where it is published and conducted, with increasing focus beyond Europe, particularly in China. Content analysis of titles, keywords and abstracts revealed that most of the research has focused on alpine grasslands but there have been relatively few publications that examine specialist vegetation communities such as snowbeds, subnival vegetation and fellfields. Important themes emerged from analysis of keywords, including treelines and vegetation dynamics, biodiversity, the Tibetan Plateau as well as grasslands and meadows. Traditional ecological monitoring techniques were important early on, but remote sensing has become the primary method for assessment. A key book on alpine plants, the IPCC reports and a few papers in leading journals underpin much of the research. Overall, research on this topic is increasing, with new methods and directions but thematic and geographical gaps remain particularly for research on extreme climatic events, and research in South America, in part due to limited capacity for research on these rare but valuable ecosystems.
Collapse
Affiliation(s)
- Brodie Verrall
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia.
| | - Catherine Marina Pickering
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia
| |
Collapse
|
13
|
Repeat Oblique Photography Shows Terrain and Fire-Exposure Controls on Century-Scale Canopy Cover Change in the Alpine Treeline Ecotone. REMOTE SENSING 2020. [DOI: 10.3390/rs12101569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpine Treeline Ecotone (ATE), the typically gradual transition zone between closed canopy forest and alpine tundra vegetation in mountain regions, displays an elevational range that is generally constrained by thermal deficits. At landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Advances in monoplotting have enabled the extraction of canopy cover information from oblique photography. Using airborne lidar, and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; ~103 km2; 49.3° N, 114.4° W) over a 92-year period (1914–2006). Two wildfires, occurring 1934 and 1936, provided an opportunity to compare topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Aspect was a strong predictor of mortality and succession. Fire-exposed areas accounted for 83.6% of all mortality, with 72.1% of mortality occurring on south- and east-facing slope aspects. Succession was balanced between fire-exposed and unburned areas, with 62.0% of all succession occurring on north- and east-facing slope aspects. The mean elevation increase in closed canopy forest (i.e., the lower boundary of ATE) on north- and east-facing undisturbed slopes was estimated to be 0.44 m per year, or ~44 m per century. The observed retardation of treeline advance on south-facing slopes is likely due to moisture limitation.
Collapse
|
14
|
Chen J, Yang Y, Wang S, Sun H, Schöb C. Shrub facilitation promotes selective tree establishment beyond the climatic treeline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134618. [PMID: 31787289 DOI: 10.1016/j.scitotenv.2019.134618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
The alpine treeline is shifting upward due to climate warming. However, the treeline species composition and the pace of its upward migration can be mediated by ecological interactions. In particular, so-called ecosystem engineers, i.e. species that modulate the microscale environmental conditions, at the treeline may play a crucial role. We conducted a three-year seedling transplant experiment at the alpine treeline ecotone in southwest China to study how the shrub Rhododendron rupicola modifies the microscale physical and biotic environments and thus influences the establishment and performance of the two treeline species Larix potaninii and Picea likiangensis. Seedlings were transplanted to the current timberline and treeline, as well as above the current treeline in order to determine the responses of the two tree species to the shrub with respect to the current tree distribution. R. rupicola modified the microenvironment by increasing soil moisture and nutrient contents, buffering soil temperature fluctuations, and by increasing richness and changing the composition of root-associated fungi. As a result, tree seedlings planted under shrubs had significantly higher survival, growth rates and nutrient accumulations than those planted in open ground. Furthermore, seedlings planted at lower elevations performed better than those planted at higher elevations. Beyond the treeline, seedling survival was very low on open ground but strongly facilitated by the shrub. Finally, facilitation effects were species-specific, with Larix benefitting more from the shrub than Picea, while Picea had less mortality than Larix in the absence of the shrub. This study demonstrates that shrubs, through the amelioration of physical and biotic microenvironmental conditions, can act as stepping stones for the establishment of selective tree species beyond the current treeline. This suggests that biotic interactions can strongly modify the treeline species composition and push the treeline beyond its current climatic limits, thereby facilitating the upward shift with ongoing climate warming.
Collapse
Affiliation(s)
- Jianguo Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Universitätstrasse 2, Zurich 8092, Switzerland.
| | - Yang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Songwei Wang
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Christian Schöb
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Universitätstrasse 2, Zurich 8092, Switzerland.
| |
Collapse
|
15
|
Abstract
Elevational and polar treelines have been studied for more than two centuries. The aim of the present article is to highlight in retrospect the scope of treeline research, scientific approaches and hypotheses on treeline causation, its spatial structures and temporal change. Systematic treeline research dates back to the end of the 19th century. The abundance of global, regional, and local studies has provided a complex picture of the great variety and heterogeneity of both altitudinal and polar treelines. Modern treeline research started in the 1930s, with experimental field and laboratory studies on the trees’ physiological response to the treeline environment. During the following decades, researchers’ interest increasingly focused on the altitudinal and polar treeline dynamics to climate warming since the Little Ice Age. Since the 1970s interest in treeline dynamics again increased and has considerably intensified from the 1990s to today. At the same time, remote sensing techniques and GIS application have essentially supported previous analyses of treeline spatial patterns and temporal variation. Simultaneously, the modelling of treeline has been rapidly increasing, often related to the current treeline shift and and its implications for biodiversity, and the ecosystem function and services of high-elevation forests. It appears, that many seemingly ‘new ideas’ already originated many decades ago and just confirm what has been known for a long time. Suggestions for further research are outlined.
Collapse
|
16
|
Post-Fire Management Impact on Natural Forest Regeneration through Altered Microsite Conditions. FORESTS 2019. [DOI: 10.3390/f10111014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High severity stand-replacing wildfires can deeply affect forest ecosystems whose composition includes plant species lacking fire-related traits and specific adaptations. Land managers and policymakers need to be aware of the importance of properly managing these ecosystems, adopting post-disturbance interventions designed to reach management goals, and restoring the required ecosystem services. Recent research frequently found that post-fire salvage logging negatively affects natural regeneration dynamics, thereby altering successional pathways due to a detrimental interaction with the preceding disturbance. In this study, we compared the effects of salvage logging and other post-disturbance interventions (adopting different deadwood management strategies) to test their impact on microclimatic conditions, which potentially affect tree regeneration establishment and survival. After one of the largest and most severe wildfires in the Western Alps that affected stand-replacing behavior (100% tree mortality), a mountain forest dominated by Pinus sylvestris L., three post-fire interventions were adopted (SL-Salvage Logging, logging of all snags; CR-Cut and Release, cutting snags and releasing all deadwood on the ground; NI-No Intervention, all snags left standing). The differences among interventions concerning microclimatic conditions (albedo, surface roughness, solar radiation, soil moisture, soil temperature) were analyzed at different spatial scales (site, microsite). The management interventions influenced the presence and density of safe sites for regeneration. Salvage logging contributed to the harsh post-fire microsite environment by increasing soil temperature and reducing soil moisture. The presence of deadwood, instead, played a facilitative role in ameliorating microclimatic conditions for seedlings. The CR intervention had the highest soil moisture and the lowest soil temperature, which could be crucial for seedling survival in the first post-fire years. Due to its negative impact on microclimatic conditions affecting the availability of preferential microsites for regeneration recruitment, salvage logging should not be considered as the only intervention to be applied in post-fire environments. In the absence of threats or hazards requiring specific management actions (e.g., public safety, physical hazards for facilities), in the investigated ecosystems, no intervention, leaving all deadwood on site, could result in better microclimatic conditions for seedling establishment. A preferred strategy to speed-up natural processes and further increase safe sites for regeneration could be felling standing dead trees whilst releasing deadwood (at least partially) on the ground.
Collapse
|
17
|
Lu X, Liang E, Wang Y, Babst F, Leavitt SW, Julio Camarero J. Past the climate optimum: Recruitment is declining at the world's highest juniper shrublines on the Tibetan Plateau. Ecology 2019; 100:e02557. [DOI: 10.1002/ecy.2557] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/22/2018] [Accepted: 10/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Alpine Ecology Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences Beijing 100101China
| | - Yafeng Wang
- College of Biology and the Environment Nanjing Forestry University Nanjing 210037China
| | - Flurin Babst
- Dendro Sciences Group Forest Dynamics Unit Swiss Federal Research Institute WSL Zürcherstrasse 111 8903 Birmensdorf Switzerland
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences ul. Lubicz 46 31‐512 Krakow Poland
- Laboratory of Tree‐Ring Research University of Arizona 1215 East Lowell Street Tucson Arizona 85721 USA
| | - Steven W. Leavitt
- Laboratory of Tree‐Ring Research University of Arizona 1215 East Lowell Street Tucson Arizona 85721 USA
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE‐CSIC) Avenida Montañana 1005 50059 Zaragoza Spain
| |
Collapse
|
18
|
Hansen WD, Turner MG. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Winslow D. Hansen
- Department of Integrative Biology; University of Wisconsin-Madison; Madison Wisconsin 53706 USA
| | - Monica G. Turner
- Department of Integrative Biology; University of Wisconsin-Madison; Madison Wisconsin 53706 USA
| |
Collapse
|
19
|
Sigdel SR, Wang Y, Camarero JJ, Zhu H, Liang E, Peñuelas J. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. GLOBAL CHANGE BIOLOGY 2018; 24:5549-5559. [PMID: 30153361 DOI: 10.1111/gcb.14428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
Among forest ecosystems, the alpine treeline ecotone can be considered to be a simplified model to study global ecology and climate change. Alpine treelines are expected to shift upwards in response to global warming given that tree recruitment and growth are assumed to be mainly limited by low temperatures. However, little is known whether precipitation and temperature interact to drive long-term Himalayan treeline dynamics. Tree growth is affected by spring rainfall in the central Himalayan treelines, being good locations for testing if, in addition to temperature, precipitation mediates treeline dynamics. To test this hypothesis, we reconstructed spatiotemporal variations in treeline dynamics in 20 plots located at six alpine treeline sites, dominated by two tree species (birch, fir), and situated along an east-west precipitation gradient in the central Himalayas. Our reconstructions evidenced that treelines shifted upward in response to recent climate warming, but their shift rates were primarily mediated by spring precipitation. The rate of upward shift was higher in the wettest eastern Himalayas, suggesting that its ascent rate was facilitated by spring precipitation. The drying tendency in association with the recent warming trends observed in the central Himalayas, however, will likely hinder an upslope advancement of alpine treelines and promote downward treeline shifts if moisture availability crosses a critical minimum threshold. Our study highlights the complexity of plant responses to climate and the need to consider multiple climate factors when analyzing treeline dynamics.
Collapse
Affiliation(s)
- Shalik Ram Sigdel
- Key laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafeng Wang
- Key laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Colleges of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jesus Julio Camarero
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Haifeng Zhu
- Key laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Eryuan Liang
- Key laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 2018; 562:263-267. [PMID: 30283137 DOI: 10.1038/s41586-018-0582-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/16/2018] [Indexed: 01/22/2023]
Abstract
Climate warming will influence photosynthesis via thermal effects and by altering soil moisture1-11. Both effects may be important for the vast areas of global forests that fluctuate between periods when cool temperatures limit photosynthesis and periods when soil moisture may be limiting to carbon gain4-6,9-11. Here we show that the effects of climate warming flip from positive to negative as southern boreal forests transition from rainy to modestly dry periods during the growing season. In a three-year open-air warming experiment with juveniles of 11 temperate and boreal tree species, an increase of 3.4 °C in temperature increased light-saturated net photosynthesis and leaf diffusive conductance on average on the one-third of days with the wettest soils. In all 11 species, leaf diffusive conductance and, as a result, light-saturated net photosynthesis decreased during dry spells, and did so more sharply in warmed plants than in plants at ambient temperatures. Consequently, across the 11 species, warming reduced light-saturated net photosynthesis on the two-thirds of days with driest soils. Thus, low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.
Collapse
Affiliation(s)
- Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA. .,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
| | - Kerrie M Sendall
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.,Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Roy L Rich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.,Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
21
|
Davis EL, Gedalof Z. Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains. GLOBAL CHANGE BIOLOGY 2018; 24:4489-4504. [PMID: 29856111 DOI: 10.1111/gcb.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Treeline advance has occurred throughout the twentieth century in mountainous regions around the world; however, local variation and temporal lags in responses to climate warming indicate that the upper limits of some treelines are not necessarily in climatic equilibrium. These observations suggest that factors other than climate are constraining tree establishment beyond existing treelines. Using a seed addition experiment, we tested the effects of seed availability, predation and microsite limitation on the establishment of two subalpine tree species (Picea engelmannii and Abies lasiocarpa) across four treelines in the Canadian Rocky Mountains. The effect of vegetation removal on seedling growth was also determined, and microclimate conditions were monitored. Establishment limitations observed in the field were placed in context with the effects of soil properties observed in a parallel experiment. The seed addition experiment revealed reduced establishment with increasing elevation, suggesting that although establishment within the treeline ecotone is at least partially seed limited, other constraints are more important beyond the current treeline. The effects of herbivory and microsite availability significantly reduced seedling establishment but were less influential beyond the treeline. Microclimate monitoring revealed that establishment was negatively related to growing season temperatures and positively related to the duration of winter snow cover, counter to the conventional expectation that establishment is limited by low temperatures. Overall, it appears that seedling establishment beyond treeline is predominantly constrained by a combination of high soil surface temperatures during the growing season, reduced winter snowpack and unfavourable soil properties. Our study supports the assertion that seedling establishment in alpine treeline ecotones is simultaneously limited by various climatic and nonclimatic drivers. Together, these factors may limit future treeline advance in the Canadian Rocky Mountains and should be considered when assessing the potential for treeline advance in alpine systems elsewhere.
Collapse
Affiliation(s)
- Emma L Davis
- Department of Geography, University of Guelph, Guelph, ON, Canada
| | - Ze'ev Gedalof
- Department of Geography, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Winkler DE, Butz RJ, Germino MJ, Reinhardt K, Kueppers LM. Snowmelt Timing Regulates Community Composition, Phenology, and Physiological Performance of Alpine Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1140. [PMID: 30108605 PMCID: PMC6079221 DOI: 10.3389/fpls.2018.01140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/13/2018] [Indexed: 05/30/2023]
Abstract
The spatial patterning of alpine plant communities is strongly influenced by the variation in physical factors such as temperature and moisture, which are strongly affected by snow depth and snowmelt patterns. Earlier snowmelt timing and greater soil-moisture limitations may favor wide-ranging species adapted to a broader set of ecohydrological conditions than alpine-restricted species. We asked how plant community composition, phenology, plant water relations, and photosynthetic gas exchange of alpine-restricted and wide-ranging species differ in their responses to a ca. 40-day snowmelt gradient in the Colorado Rocky Mountains (Lewisia pygmaea, Sibbaldia procumbens, and Hymenoxys grandiflora were alpine-restricted and Artemisia scopulorum, Carex rupestris, and Geum rossii were wide-ranging species). As hypothesized, species richness and foliar cover increased with earlier snowmelt, due to a greater abundance of wide-ranging species present in earlier melting plots. Flowering initiation occurred earlier with earlier snowmelt for 12 out of 19 species analyzed, while flowering duration was shortened with later snowmelt for six species (all but one were wide-ranging species). We observed >50% declines in net photosynthesis from July to September as soil moisture and plant water potentials declined. Early-season stomatal conductance was higher in wide-ranging species, indicating a more competitive strategy for water acquisition when soil moisture is high. Even so, there were no associated differences in photosynthesis or transpiration, suggesting no strong differences between these groups in physiology. Our findings reveal that plant species with different ranges (alpine-restricted vs. wide-ranging) could have differential phenological and physiological responses to snowmelt timing and associated soil moisture dry-down, and that alpine-restricted species' performance is more sensitive to snowmelt. As a result, alpine-restricted species may serve as better indicator species than their wide-ranging heterospecifics. Overall, alpine community composition and peak % cover are strongly structured by spatio-temporal patterns in snowmelt timing. Thus, near-term, community-wide changes (or variation) in phenology and physiology in response to shifts in snowmelt timing or rates of soil dry down are likely to be contingent on the legacy of past climate on community structure.
Collapse
Affiliation(s)
- Daniel E. Winkler
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
- United States Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Ramona J. Butz
- Department of Forestry & Wildland Resources, Humboldt State University, Arcata, CA, United States
- Pacific Southwest Region, United States Department of Agriculture Forest Service, Eureka, CA, United States
| | - Matthew J. Germino
- United States Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, United States
| | - Keith Reinhardt
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Lara M. Kueppers
- Energy & Resource Group, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
23
|
Frei ER, Bianchi E, Bernareggi G, Bebi P, Dawes MA, Brown CD, Trant AJ, Mamet SD, Rixen C. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Sci Rep 2018; 8:10894. [PMID: 30022032 PMCID: PMC6052039 DOI: 10.1038/s41598-018-28808-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
Treeline responses to climate change ultimately depend on successful seedling recruitment, which requires dispersal of viable seeds and establishment of individual propagules in novel environments. In this study, we evaluated the effects of several abiotic and biotic drivers of early tree seedling recruitment across an alpine treeline ecotone. In two consecutive years, we sowed seeds of low- and high-elevation provenances of Larix decidua (European larch) and Picea abies (Norway spruce) below, at, and above the current treeline into intact vegetation and into open microsites with artificially removed surface vegetation, as well as into plots protected from seed predators and herbivores. Seedling emergence and early establishment in treatment and in control plots were monitored over two years. Tree seedling emergence occurred at and several hundred metres above the current treeline when viable seeds and suitable microsites for germination were available. However, dense vegetation cover at lower elevations and winter mortality at higher elevations particularly limited early recruitment. Post-dispersal predation, species, and provenance also affected emergence and early establishment. This study demonstrates the importance of understanding multiple abiotic and biotic drivers of early seedling recruitment that should be incorporated into predictions of treeline dynamics under climate change.
Collapse
Affiliation(s)
- Esther R Frei
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland. .,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Eva Bianchi
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.,Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 22, 8092, Zurich, Switzerland
| | - Giulietta Bernareggi
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.,Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Peter Bebi
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - Melissa A Dawes
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Carissa D Brown
- Department of Geography, Memorial University, 230 Elizabeth Avenue, St John's, NL, A1B 3X9, Canada
| | - Andrew J Trant
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Steven D Mamet
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| |
Collapse
|
24
|
Lett S, Dorrepaal E. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13137] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Signe Lett
- Department of Ecology and Environmental ScienceClimate Impacts Research CentreUmeå University Abisko Sweden
- Terrestrial Ecology SectionDepartment of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Ellen Dorrepaal
- Department of Ecology and Environmental ScienceClimate Impacts Research CentreUmeå University Abisko Sweden
| |
Collapse
|
25
|
Andrus RA, Harvey BJ, Rodman KC, Hart SJ, Veblen TT. Moisture availability limits subalpine tree establishment. Ecology 2018; 99:567-575. [PMID: 29469981 DOI: 10.1002/ecy.2134] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 11/11/2022]
Abstract
In the absence of broad-scale disturbance, many temperate coniferous forests experience successful seedling establishment only when abundant seed production coincides with favorable climate. Identifying the frequency of past establishment events and the climate conditions favorable for seedling establishment is essential to understanding how climate warming could affect the frequency of future tree establishment events and therefore future forest composition or even persistence of a forest cover. In the southern Rocky Mountains, USA, research on the sensitivity of establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa)-two widely distributed, co-occurring conifers in North America-to climate variability has focused on the alpine treeline ecotone, leaving uncertainty about the sensitivity of these species across much of their elevation distribution. We compared annual germination dates for >450 Engelmann spruce and >500 subalpine fir seedlings collected across a complex topographic-moisture gradient to climate variability in the Colorado Front Range. We found that Engelmann spruce and subalpine fir established episodically with strong synchrony in establishment events across the study area. Broad-scale establishment events occurred in years of high soil moisture availability, which were characterized by above-average snowpack and/or cool and wet summer climatic conditions. In the recent half of the study period (1975-2010), a decrease in the number of fir and spruce establishment events across their distribution coincided with declining snowpack and a multi-decadal trend of rising summer temperature and increasing moisture deficits. Counter to expected and observed increases in tree establishment with climate warming in maritime subalpine forests, our results show that recruitment declines will likely occur across the core of moisture-limited subalpine tree ranges as warming drives increased moisture deficits.
Collapse
Affiliation(s)
- Robert A Andrus
- Department of Geography, University of Colorado, Boulder, Colorado, USA
| | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Kyle C Rodman
- Department of Geography, University of Colorado, Boulder, Colorado, USA
| | - Sarah J Hart
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
26
|
Smithers BV, North MP, Millar CI, Latimer AM. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests. GLOBAL CHANGE BIOLOGY 2018; 24:e442-e457. [PMID: 28850759 DOI: 10.1111/gcb.13881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal and establishment may result in future communities with very different specific composition.
Collapse
Affiliation(s)
- Brian V Smithers
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Malcolm P North
- Department of Plant Sciences, University of California, Davis, CA, USA
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, USA
| | - Constance I Millar
- USDA Forest Service, Pacific Southwest Research Station, Albany, CA, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
27
|
Conlisk E, Castanha C, Germino MJ, Veblen TT, Smith JM, Moyes AB, Kueppers LM. Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts. GLOBAL CHANGE BIOLOGY 2018; 24:197-211. [PMID: 28746786 DOI: 10.1111/gcb.13840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species' range could enhance recruitment and facilitate upslope range shifts with climate change.
Collapse
Affiliation(s)
- Erin Conlisk
- Energy and Resources Group, University of California, Berkeley, CA, USA
| | - Cristina Castanha
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, CA, USA
- Sierra Nevada Research Institute, University of California, Merced, CA, USA
| | - Matthew J Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, CO, USA
| | - Jeremy M Smith
- Department of Geography, University of Colorado, Boulder, CO, USA
| | - Andrew B Moyes
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, CA, USA
- Sierra Nevada Research Institute, University of California, Merced, CA, USA
| | - Lara M Kueppers
- Energy and Resources Group, University of California, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division, Berkeley, CA, USA
- Sierra Nevada Research Institute, University of California, Merced, CA, USA
| |
Collapse
|
28
|
Effects of Climate Change on the Climatic Niches of Warm-Adapted Evergreen Plants: Expansion or Contraction? FORESTS 2017. [DOI: 10.3390/f8120500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains. FORESTS 2017. [DOI: 10.3390/f8110423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Sensitivity of Korean fir ( Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Kueppers LM, Conlisk E, Castanha C, Moyes AB, Germino MJ, de Valpine P, Torn MS, Mitton JB. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. GLOBAL CHANGE BIOLOGY 2017; 23:2383-2395. [PMID: 27976819 DOI: 10.1111/gcb.13561] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.
Collapse
Affiliation(s)
- Lara M Kueppers
- Sierra Nevada Research Institute, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 74-316C, Berkeley, CA, 94720, USA
| | - Erin Conlisk
- Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA, 94720, USA
| | - Cristina Castanha
- Sierra Nevada Research Institute, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 74-316C, Berkeley, CA, 94720, USA
| | - Andrew B Moyes
- Sierra Nevada Research Institute, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 74-316C, Berkeley, CA, 94720, USA
| | - Matthew J Germino
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, 83706, USA
| | - Perry de Valpine
- Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA
| | - Margaret S Torn
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, 74-316C, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA, 94720, USA
| | - Jeffry B Mitton
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
32
|
|
33
|
McCulloh KA, Petitmermet J, Stefanski A, Rice KE, Rich RL, Montgomery RA, Reich PB. Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming. GLOBAL CHANGE BIOLOGY 2016; 22:4124-4133. [PMID: 27122300 DOI: 10.1111/gcb.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/27/2016] [Indexed: 05/26/2023]
Abstract
Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architecture of six species growing in ambient T and ambient +3.4 °C T plots in two experimentally warmed forest sites in Minnesota. These sites are at the temperate-boreal ecotone, and we measured three species from each forest type. We hypothesized that relative to boreal species, temperate species near their northern range border would increase xylem conduit diameters when grown under elevated T. We also predicted a continuum of responses among wood types, with conduit diameter increases correlating with increases in the complexity of wood structure. Finally, we predicted that increases in conduit diameter and specific hydraulic conductivity would positively affect photosynthetic rates and growth. Our results generally supported our hypotheses, and conduit diameter increased under elevated T across all species, although this pattern was driven predominantly by three species. Two of these species were temperate angiosperms, but one was a boreal conifer, contrary to predictions. We observed positive relationships between the change in specific hydraulic conductivity and both photosynthetic rate (P = 0.080) and growth (P = 0.012). Our results indicate that species differ in their ability to adjust hydraulically to increases in T. Specifically, species with more complex xylem anatomy, particularly those individuals growing near the cooler edge of their range, appeared to be better able to increase conduit diameters and specific hydraulic conductivity, which permitted increases in photosynthesis and growth. Our data support results that indicate individual's ability to physiologically adjust is related to their location within their species range, and highlight that some wood types may adjust more easily than others.
Collapse
Affiliation(s)
| | - Joshua Petitmermet
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
| | - Karen E Rice
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
| | - Roy L Rich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Rebecca A Montgomery
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2753, Australia
| |
Collapse
|
34
|
Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change. Oecologia 2016; 181:1233-42. [PMID: 27071667 DOI: 10.1007/s00442-016-3619-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
35
|
Loranger H, Zotz G, Bader MY. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions. AOB PLANTS 2016; 8:plw053. [PMID: 27402618 PMCID: PMC4988811 DOI: 10.1093/aobpla/plw053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/03/2016] [Indexed: 05/09/2023]
Abstract
On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics.
Collapse
Affiliation(s)
- Hannah Loranger
- Functional Ecology of Plants, Institute of Biology and Environmental Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Gerhard Zotz
- Functional Ecology of Plants, Institute of Biology and Environmental Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Maaike Y Bader
- Ecological Plant Geography, Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
| |
Collapse
|