1
|
Balliau T, Ashenafi M, Blein-Nicolas M, Turc O, Zivy M, Marchadier E. A Moderate Water Deficit Induces Profound Changes in the Proteome of Developing Maize Ovaries. Biomolecules 2024; 14:1239. [PMID: 39456174 PMCID: PMC11506675 DOI: 10.3390/biom14101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Water deficit is a major cause of yield loss for maize (Zea mays), leading to ovary abortion when applied at flowering time. To help understand the mechanisms involved in this phenomenon, the proteome response to water deficit has been analysed in developing ovaries at the silk emergence stage and five days later. Differential analysis, abundance pattern clustering and co-expression networks were performed in order to draw a general picture of the proteome changes all along ovary development and under the effect of water deficit. The results show that even mild water deficit has a major impact on ovary proteome, but this impact is very different from a response to stress. A part of the changes can be related to a slowdown of ovary development, while another part cannot. In particular, ovaries submitted to water deficit show an increase in proteins involved in protein biosynthesis and in vesicle transport together with a decrease in proteins involved in amino acid metabolism and proteolysis. According to the functions of increased proteins, the changes may be linked to auxin, brassinosteroids and jasmonate signalling but not abscisic acid.
Collapse
Affiliation(s)
- Thierry Balliau
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Mariamawit Ashenafi
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Mélisande Blein-Nicolas
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Olivier Turc
- LEPSE, INRAE, Montpellier SupAgro, Université Montpellier, 34293 Montpellier, France;
| | - Michel Zivy
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| | - Elodie Marchadier
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, 91190 Gif-sur-Yvette, France; (T.B.); (M.A.); (M.B.-N.); (M.Z.)
| |
Collapse
|
2
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
5
|
Li Y, Huang S, Meng Q, Li Z, Fritschi FB, Wang P. Pre-silking water deficit in maize induced kernel loss through impaired silk growth and ovary carbohydrate dynamics. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10141. [PMID: 38586117 PMCID: PMC10998497 DOI: 10.1002/pei3.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Both carbon limitation and developmentally driven kernel failure occur in the apical region of maize (Zea mays L.) ears. Failed kernel development in the basal and middle regions of the ear often is neglected because their spaces usually are occupied by adjacent ovaries at harvest. We tested the spatial distribution of kernel losses and potential underlying reasons, from perspectives of silk elongation and carbohydrate dynamics, when maize experienced water deficit during silk elongation. Kernel loss was distributed along the length of the ear regardless of water availability, with the highest kernel set in the middle region and a gradual reduction toward the apical and basal ends. Water deficit limited silk elongation in a manner inverse to the temporal pattern of silk initiation, more strongly in the apical and basal regions of the ear than in the middle region. The limited recovery of silk elongation, especially at the apical and basal regions following rescue irrigation was probably due to water potentials below the threshold for elongation and lower growth rates of the associated ovaries. While sugar concentrations increased or did not respond to water deficit in ovaries and silks, the calculated sugar flux into the developing ovaries was impaired and diverged among ovaries at different positions under water deficit. Water deficit resulted in 58% kernel loss, 68% of which was attributable to arrested silks within husks caused by lower water potentials and 32% to ovaries with emerged silks possibly due to impaired carbohydrate metabolism.
Collapse
Affiliation(s)
- Yebei Li
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Shoubing Huang
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qingfeng Meng
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zongxin Li
- Shandong Academy of Agricultural ScienceJinanChina
| | - Felix B. Fritschi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Pu Wang
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
6
|
Cagnola JI, D'Andrea KE, Rotili DH, Mercau JL, Ploschuk EL, Maddonni GA, Otegui ME, Casal JJ. Eco-physiology of maize crops under combined stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1856-1872. [PMID: 38113327 DOI: 10.1111/tpj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The yield of maize (Zea mays L.) crops depends on their ability to intercept sunlight throughout the growing cycle, transform this energy into biomass and allocate it to the kernels. Abiotic stresses affect these eco-physiological determinants, reducing crop grain yield below the potential of each environment. Here we analyse the impact of combined abiotic stresses, such as water restriction and nitrogen deficiency or water restriction and elevated temperatures. Crop yield depends on the product of kernel yield per plant and the number of plants per unit soil area, but increasing plant population density imposes a crowding stress that reduces yield per plant, even within the range that maximises crop yield per unit soil area. Therefore, we also analyse the impact of abiotic stresses under different plant densities. We show that the magnitude of the detrimental effects of two combined stresses on field-grown plants can be lower, similar or higher than the sum of the individual stresses. These patterns depend on the timing and intensity of each one of the combined stresses and on the effects of one of the stresses on the status of the resource whose limitation causes the other. The analysis of the eco-physiological determinants of crop yield is useful to guide and prioritise the rapidly progressing studies aimed at understanding the molecular mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Juan I Cagnola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Karina E D'Andrea
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Rotili
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge L Mercau
- INTA, Agencia de Extensión San Luis, San Luis, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo A Maddonni
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - María E Otegui
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Pergamino, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Producción Vegetal, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Wang Y, Lv X, Sheng D, Hou X, Mandal S, Liu X, Zhang P, Shen S, Wang P, Krishna Jagadish SV, Huang S. Heat-dependent postpollination limitations on maize pollen tube growth and kernel sterility. PLANT, CELL & ENVIRONMENT 2023; 46:3822-3838. [PMID: 37623372 DOI: 10.1111/pce.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Heat stress has a negative impact on pollen development in maize (Zea mays L.) but the postpollination events that determine kernel sterility are less well characterised. The impact of short-term (hours) heat exposure during postpollination was therefore assessed in silks and ovaries. The temperatures inside the kernels housed within the husks was significantly lower than the imposed heat stress. This protected the ovaries and possibly the later phase of pollen tube growth from the adverse effects of heat stress. Failure of maize kernel fertilization was observed within 6 h of heat stress exposure postpollination. This was accompanied by a significant restriction of early pollen tube growth rather than pollen germination. Limitations on early pollen tube growth were therefore a major factor contributing to heat stress-induced kernel sterility. Exposure to heat stress altered the sugar composition of silks, suggesting that hexose supply contributed to the limitations on pollen tube growth. Moreover, the activities of sucrose metabolising enzymes, the expression of sucrose degradation and trehalose biosynthesis genes were decreased following heat stress. Significant increases in reactive oxygen species, abscisic acid and auxin levels accompanied by altered expression of phytohormone-related genes may also be important in the heat-induced suppression of pollen tube growth.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dechang Sheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xinfang Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shreya Mandal
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Xiaoli Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Li Y, Zhang P, Sheng W, Zhang Z, Rose RJ, Song Y. Securing maize reproductive success under drought stress by harnessing CO 2 fertilization for greater productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221095. [PMID: 37860252 PMCID: PMC10582713 DOI: 10.3389/fpls.2023.1221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Securing maize grain yield is crucial to meet food and energy needs for the future growing population, especially under frequent drought events and elevated CO2 (eCO2) due to climate change. To maximize the kernel setting rate under drought stress is a key strategy in battling against the negative impacts. Firstly, we summarize the major limitations to leaf source and kernel sink in maize under drought stress, and identified that loss in grain yield is mainly attributed to reduced kernel set. Reproductive drought tolerance can be realized by collective contribution with a greater assimilate import into ear, more available sugars for ovary and silk use, and higher capacity to remobilize assimilate reserve. As such, utilization of CO2 fertilization by improved photosynthesis and greater reserve remobilization is a key strategy for coping with drought stress under climate change condition. We propose that optimizing planting methods and mining natural genetic variation still need to be done continuously, meanwhile, by virtue of advanced genetic engineering and plant phenomics tools, the breeding program of higher photosynthetic efficiency maize varieties adapted to eCO2 can be accelerated. Consequently, stabilizing maize production under drought stress can be achieved by securing reproductive success by harnessing CO2 fertilization.
Collapse
Affiliation(s)
- Yangyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengpeng Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenjing Sheng
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zixiang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Zhang P, Huang J, Ma Y, Wang X, Kang M, Song Y. Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0091. [PMID: 37780969 PMCID: PMC10538623 DOI: 10.34133/plantphenomics.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023]
Abstract
Observable morphological traits are widely employed in plant phenotyping for breeding use, which are often the external phenotypes driven by a chain of functional actions in plants. Identifying and phenotyping inherently functional traits for crop improvement toward high yields or adaptation to harsh environments remains a major challenge. Prediction of whole-plant performance in functional-structural plant models (FSPMs) is driven by plant growth algorithms based on organ scale wrapped up with micro-environments. In particular, the models are flexible for scaling down or up through specific functions at the organ nexus, allowing the prediction of crop system behaviors from the genome to the field. As such, by virtue of FSPMs, model parameters that determine organogenesis, development, biomass production, allocation, and morphogenesis from a molecular to the whole plant level can be profiled systematically and made readily available for phenotyping. FSPMs can provide rich functional traits representing biological regulatory mechanisms at various scales in a dynamic system, e.g., Rubisco carboxylation rate, mesophyll conductance, specific leaf nitrogen, radiation use efficiency, and source-sink ratio apart from morphological traits. High-throughput phenotyping such traits is also discussed, which provides an unprecedented opportunity to evolve FSPMs. This will accelerate the co-evolution of FSPMs and plant phenomics, and thus improving breeding efficiency. To expand the great promise of FSPMs in crop science, FSPMs still need more effort in multiscale, mechanistic, reproductive organ, and root system modeling. In summary, this study demonstrates that FSPMs are invaluable tools in guiding functional trait phenotyping at various scales and can thus provide abundant functional targets for phenotyping toward crop improvement.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jingyao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuntao Ma
- College of Land Science and Technology, China Agricultural University, Beijing 100094, China
| | - Xiujuan Wang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengzhen Kang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4350, Australia
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4350, Australia
| |
Collapse
|
11
|
Messina CD, Gho C, Hammer GL, Tang T, Cooper M. Two decades of harnessing standing genetic variation for physiological traits to improve drought tolerance in maize. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4847-4861. [PMID: 37354091 PMCID: PMC10474595 DOI: 10.1093/jxb/erad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
We review approaches to maize breeding for improved drought tolerance during flowering and grain filling in the central and western US corn belt and place our findings in the context of results from public breeding. Here we show that after two decades of dedicated breeding efforts, the rate of crop improvement under drought increased from 6.2 g m-2 year-1 to 7.5 g m-2 year-1, closing the genetic gain gap with respect to the 8.6 g m-2 year-1 observed under water-sufficient conditions. The improvement relative to the long-term genetic gain was possible by harnessing favourable alleles for physiological traits available in the reference population of genotypes. Experimentation in managed stress environments that maximized the genetic correlation with target environments was key for breeders to identify and select for these alleles. We also show that the embedding of physiological understanding within genomic selection methods via crop growth models can hasten genetic gain under drought. We estimate a prediction accuracy differential (Δr) above current prediction approaches of ~30% (Δr=0.11, r=0.38), which increases with increasing complexity of the trait environment system as estimated by Shannon information theory. We propose this framework to inform breeding strategies for drought stress across geographies and crops.
Collapse
Affiliation(s)
- Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carla Gho
- School of Agriculture & Food Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Graeme L Hammer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Tom Tang
- Corteva Agrisciences, Johnston, IA, USA
| | - Mark Cooper
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Lian X, Zheng Z, Zhao G, Zhang T, Xu M, Huang K, Chen N, Li J, Piao S. Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. Natl Sci Rev 2023; 10:nwad108. [PMID: 37389136 PMCID: PMC10306363 DOI: 10.1093/nsr/nwad108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 07/01/2023] Open
Abstract
Despite the mounting attention being paid to vegetation growth and their driving forces for water-limited ecosystems, the relative contributions of atmospheric and soil moisture dryness stress on vegetation growth are an ongoing debate. Here we comprehensively compare the impacts of high vapor pressure deficit (VPD) and low soil water content (SWC) on vegetation growth in Eurasian drylands during 1982-2014. The analysis indicates a gradual decoupling between atmospheric dryness and soil dryness over this period, as the former has expanded faster than the latter. Moreover, the VPD-SWC relation and VPD-greenness relation are both non-linear, while the SWC-greenness relation is near-linear. The loosened coupling between VPD and SWC, the non-linear correlations among VPD-SWC-greenness and the expanded area extent in which SWC acts as the dominant stress factor all provide compelling evidence that SWC is a more influential stressor than VPD on vegetation growth in Eurasian drylands. In addition, a set of 11 Earth system models projected a continuously growing constraint of SWC stress on vegetation growth towards 2100. Our results are vital to dryland ecosystems management and drought mitigation in Eurasia.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | | | - Xu Lian
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Zhoutao Zheng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang Zhao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Minjie Xu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Ke Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1350, Denmark
| | - Ning Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ji Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- Department of Geography, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Cooper M, Messina CD. Breeding crops for drought-affected environments and improved climate resilience. THE PLANT CELL 2023; 35:162-186. [PMID: 36370076 PMCID: PMC9806606 DOI: 10.1093/plcell/koac321] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 05/12/2023]
Abstract
Breeding climate-resilient crops with improved levels of abiotic and biotic stress resistance as a response to climate change presents both opportunities and challenges. Applying the framework of the "breeder's equation," which is used to predict the response to selection for a breeding program cycle, we review methodologies and strategies that have been used to successfully breed crops with improved levels of drought resistance, where the target population of environments (TPEs) is a spatially and temporally heterogeneous mixture of drought-affected and favorable (water-sufficient) environments. Long-term improvement of temperate maize for the US corn belt is used as a case study and compared with progress for other crops and geographies. Integration of trait information across scales, from genomes to ecosystems, is needed to accurately predict yield outcomes for genotypes within the current and future TPEs. This will require transdisciplinary teams to explore, identify, and exploit novel opportunities to accelerate breeding program outcomes; both improved germplasm resources and improved products (cultivars, hybrids, clones, and populations) that outperform and replace the products in use by farmers, in combination with modified agronomic management strategies suited to their local environments.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
14
|
Dhaliwal DS, Williams MM. Evidence of sweet corn yield losses from rising temperatures. Sci Rep 2022; 12:18218. [PMID: 36309594 PMCID: PMC9617927 DOI: 10.1038/s41598-022-23237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/27/2022] [Indexed: 12/31/2022] Open
Abstract
Crop production is sensitive to anomalous weather conditions, but vegetable crops can be highly sensitive to environmental changes. Using sweet corn data collected on 16,040 fields over a 27-year period, we: (a) estimate yield sensitivities to changes in growing season temperature and total precipitation, (b) estimate critical thresholds in non-linear temperature effects on sweet corn yield across diverse environments, and (c) quantify yield losses from surpassing the upper temperature threshold during anthesis in sweet corn. Our results show growing-season temperatures exceeding 30 [Formula: see text] were detrimental to crop yield. Each additional degree day spent above 30 [Formula: see text] during anthesis reduced crop yields by 0.5% and 2% in irrigated and rainfed fields, respectively. This study shows evidence for sweet corn yield losses across broad spatial domains in the wake of climate change and underscores the urgency to accelerate crop adaptation strategies to sustain production of this highly popular crop.
Collapse
Affiliation(s)
- Daljeet S. Dhaliwal
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Martin M. Williams
- grid.508983.fGlobal Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL USA
| |
Collapse
|
15
|
Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. Int J Mol Sci 2022; 23:ijms23158410. [PMID: 35955541 PMCID: PMC9368988 DOI: 10.3390/ijms23158410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Variation in flowering plays a major role in maize photoperiod adaptation during long-term domestication. It is of high value to investigate the genetic basis of maize flowering under a wide range of environmental conditions in order to overcome photoperiod sensitivity or enhance stress tolerance. A recombinant inbred line (RIL) population derived from a cross between Huangzaosi and Mo17, composed of 121 lines and genotyped by 8329 specifically developed markers, was field evaluated in two consecutive years under two planting densities (67,500 and 120,000 plants ha−1) and two water treatments (normal irrigation and drought stress at the flowering stage). The days to silking (DTS), days to anthesis (DTA), and anthesis to silking interval (ASI) were all evaluated. Within the RIL population, DTS and DTA expanded as planting density and water deficit increased. For DTA, DTS, ASI, and ASI-delay, a total of 22, 17, 21, and 11 QTLs were identified, respectively. More than two significant QTLs were identified in each of the nine chromosomal intervals. Under diverse conditions and locations, six QTLs (quantitative trait locus) for DTS and DTA were discovered in Chr. 8: 118.13–125.31 Mb. Three chromosome regions, Chr. 3: 196.14–199.89 Mb, Chr. 8: 169.02–172.46 Mb, and Chr. 9: 128.12–137.26 Mb, all had QTLs for ASI-delay under normal and stress conditions, suggesting their possible roles in stress tolerance enhancement. These QTL hotspots will promote early-maturing or multiple abiotic stress-tolerant maize breeding, as well as shed light on the development of maize varieties with a broad range of adaptations.
Collapse
|
16
|
Chen XM, Li FY, Dong S, Liu XF, Li BB, Xiao ZD, Deng T, Wang YB, Shen S, Zhou SL. Stubby or Slender? Ear Architecture Is Related to Drought Resistance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:901186. [PMID: 35769293 PMCID: PMC9235860 DOI: 10.3389/fpls.2022.901186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Ear architecture is determined by two stable heritable traits, kernel row number (KRN) and kernel number per row (KNPR), but its relationship with drought resistance is still vague. To this end, we obtained 16 and 11 hybrids with slender (less KRN but more KNPR) and stubby (more KRN but less KNPR) ears by intentionally crossbreeding, respectively. These hybrids were exposed to a seven-day water deficit (WD) since silk emergence coupled with synchronous (SP) and continuous pollination (CP) to alter the pollination time gaps on ears. The results showed that the emerged silks in CP were 9.1 and 9.0% less than in the SP treatment in the stubby and slender ears, respectively, suggesting the suppression of asynchronous pollination on silk emergence. The stubby ears performed higher silking rate and yield compared with the slender ears with or without drought stress. To eliminate the inherent difference in sink capacities, we selected four hybrids for each ear type with similar silk and kernel numbers for further analyses. Interestingly, the stubby ears were less affected in silking rate and thus performed higher yield under drought compared with the slender ears. The finding suggests that ear architecture matters in the determination of drought resistance that deserves more attention in breeding.
Collapse
Affiliation(s)
- Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng-Yuan Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuai Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin-Fang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Bin-Bin Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zu-Dong Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Tao Deng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan-Bo Wang
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
17
|
Diepenbrock CH, Tang T, Jines M, Technow F, Lira S, Podlich D, Cooper M, Messina C. Can we harness digital technologies and physiology to hasten genetic gain in US maize breeding? PLANT PHYSIOLOGY 2022; 188:1141-1157. [PMID: 34791474 PMCID: PMC8825268 DOI: 10.1093/plphys/kiab527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/01/2021] [Indexed: 05/26/2023]
Abstract
Plant physiology can offer invaluable insights to accelerate genetic gain. However, translating physiological understanding into breeding decisions has been an ongoing and complex endeavor. Here we demonstrate an approach to leverage physiology and genomics to hasten crop improvement. A half-diallel maize (Zea mays) experiment resulting from crossing 9 elite inbreds was conducted at 17 locations in the USA corn belt and 6 locations at managed stress environments between 2017 and 2019 covering a range of water environments from 377 to 760 mm of evapotranspiration and family mean yields from 542 to 1,874 g m-2. Results from analyses of 35 families and 2,367 hybrids using crop growth models linked to whole-genome prediction (CGM-WGP) demonstrated that CGM-WGP offered a predictive accuracy advantage compared to BayesA for untested genotypes evaluated in untested environments (r = 0.43 versus r = 0.27). In contrast to WGP, CGMs can deal effectively with time-dependent interactions between a physiological process and the environment. To facilitate the selection/identification of traits for modeling yield, an algorithmic approach was introduced. The method was able to identify 4 out of 12 candidate traits known to explain yield variation in maize. The estimation of allelic and physiological values for each genotype using the CGM created in silico phenotypes (e.g. root elongation) and physiological hypotheses that could be tested within the breeding program in an iterative manner. Overall, the approach and results suggest a promising future to fully harness digital technologies, gap analysis, and physiological knowledge to hasten genetic gain by improving predictive skill and definition of breeding goals.
Collapse
Affiliation(s)
| | - Tom Tang
- Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA
| | - Michael Jines
- Research & Development, Corteva Agriscience, Windfall, Indiana 46076, USA
| | - Frank Technow
- Research & Development, Corteva Agriscience, Tavistock, ON N4S 7W1, Canada
| | - Sara Lira
- Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA
| | - Dean Podlich
- Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos Messina
- Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA
| |
Collapse
|
18
|
Hilty J, Muller B, Pantin F, Leuzinger S. Plant growth: the What, the How, and the Why. THE NEW PHYTOLOGIST 2021; 232:25-41. [PMID: 34245021 DOI: 10.1111/nph.17610] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/19/2021] [Indexed: 05/28/2023]
Abstract
Growth is a widely used term in plant science and ecology, but it can have different meanings depending on the context and the spatiotemporal scale of analysis. At the meristem level, growth is associated with the production of cells and initiation of new organs. At the organ or plant scale and over short time periods, growth is often used synonymously with tissue expansion, while over longer time periods the increase in biomass is a common metric. At even larger temporal and spatial scales, growth is mostly described as net primary production. Here, we first address the question 'what is growth?'. We propose a general framework to distinguish between the different facets of growth, and the corresponding physiological processes, environmental drivers and mathematical formalisms. Based on these different definitions, we then review how plant growth can be measured and analysed at different organisational, spatial and temporal scales. We conclude by discussing why gaining a better understanding of the different facets of plant growth is essential to disentangle genetic and environmental effects on the phenotype, and to uncover the causalities around source or sink limitations of plant growth.
Collapse
Affiliation(s)
- Jonas Hilty
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Hammer GL, Cooper M, Reynolds MP. Plant production in water-limited environments. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5097-5101. [PMID: 34245562 DOI: 10.1093/jxb/erab273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Graeme L Hammer
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD 4072, Australia
| | - Mark Cooper
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD 4072, Australia
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
20
|
Transmitting silks of maize have a complex and dynamic microbiome. Sci Rep 2021; 11:13215. [PMID: 34168223 PMCID: PMC8225909 DOI: 10.1038/s41598-021-92648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7–11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15–26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7–25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
Collapse
|
21
|
López J, Way DA, Sadok W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. GLOBAL CHANGE BIOLOGY 2021; 27:1704-1720. [PMID: 33683792 PMCID: PMC8251766 DOI: 10.1111/gcb.15548] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/25/2023]
Abstract
Earth is currently undergoing a global increase in atmospheric vapor pressure deficit (VPD), a trend which is expected to continue as climate warms. This phenomenon has been associated with productivity decreases in ecosystems and yield penalties in crops, with these losses attributed to photosynthetic limitations arising from decreased stomatal conductance. Such VPD increases, however, have occurred over decades, which raises the possibility that stomatal acclimation to VPD plays an important role in determining plant productivity under high VPD. Furthermore, evidence points to more far-ranging and complex effects of elevated VPD on plant physiology, extending to the anatomical, biochemical, and developmental levels, which could vary substantially across species. Because these complex effects are typically not considered in modeling frameworks, we conducted a quantitative literature review documenting temperature-independent VPD effects on 112 species and 59 traits and physiological variables, in order to develop an integrated and mechanistic physiological framework. We found that VPD increase reduced yield and primary productivity, an effect that was partially mediated by stomatal acclimation, and also linked with changes in leaf anatomy, nutrient, and hormonal status. The productivity decrease was also associated with negative effects on reproductive development, and changes in architecture and growth rates that could decrease the evaporative surface or minimize embolism risk. Cross-species quantitative relationships were found between levels of VPD increase and trait responses, and we found differences across plant groups, indicating that future VPD impacts will depend on community assembly and crop functional diversity. Our analysis confirms predictions arising from the hydraulic corollary to Darcy's law, outlines a systemic physiological framework of plant responses to rising VPD, and provides recommendations for future research to better understand and mitigate VPD-mediated climate change effects on ecosystems and agro-systems.
Collapse
Affiliation(s)
- José López
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Danielle A. Way
- Department of BiologyUniversity of Western OntarioLondonONCanada
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraACTAustralia
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
- Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Walid Sadok
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
22
|
Fagny M, Kuijjer ML, Stam M, Joets J, Turc O, Rozière J, Pateyron S, Venon A, Vitte C. Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks. Front Genet 2021; 11:606285. [PMID: 33505431 PMCID: PMC7834273 DOI: 10.3389/fgene.2020.606285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Enhancers are key players in the spatio-temporal coordination of gene expression during numerous crucial processes, including tissue differentiation across development. Characterizing the transcription factors (TFs) and genes they connect, and the molecular functions underpinned is important to better characterize developmental processes. In plants, the recent molecular characterization of enhancers revealed their capacity to activate the expression of several target genes. Nevertheless, identifying these target genes at a genome-wide level is challenging, particularly for large-genome species, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to plant regulatory networks remains poorly understood. Here, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage (V2-IST) and husks (bracts) at flowering. Using systems biology, we integrate genomic, epigenomic, and transcriptomic data to model the regulatory relationships between TFs and their potential target genes, and identify regulatory modules specific to husk and V2-IST. We show that leaves at the V2-IST stage are characterized by the response to hormones and macromolecules biogenesis and assembly, which are regulated by the BBR/BPC and AP2/ERF TF families, respectively. In contrast, husks are characterized by cell wall modification and response to abiotic stresses, which are, respectively, orchestrated by the C2C2/DOF and AP2/EREB families. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped part of the regulatory network in each tissue, and that MITEs have provided potential new TF binding sites involved in husk tissue-specificity.
Collapse
Affiliation(s)
- Maud Fagny
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Marieke Lydia Kuijjer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Maike Stam
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Johann Joets
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Olivier Turc
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Julien Rozière
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Shen S, Liang XG, Zhang L, Zhao X, Liu YP, Lin S, Gao Z, Wang P, Wang ZM, Zhou SL. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PLANT, CELL & ENVIRONMENT 2020; 43:903-919. [PMID: 31851373 DOI: 10.1111/pce.13704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- School of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhi-Min Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
24
|
Chen TW, Cabrera-Bosquet L, Alvarez Prado S, Perez R, Artzet S, Pradal C, Coupel-Ledru A, Fournier C, Tardieu F. Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2523-2534. [PMID: 30137451 PMCID: PMC6487589 DOI: 10.1093/jxb/ery309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 05/22/2023]
Abstract
Multi-genotype canopies are frequent in phenotyping experiments and are of increasing interest in agriculture. Radiation interception efficiency (RIE) and radiation use efficiency (RUE) have low heritabilities in such canopies. We propose a revised Monteith equation that identifies environmental and genetic components of RIE and RUE. An environmental term, a component of RIE, characterizes the effect of the presence or absence of neighbours on light interception. The ability of a given plant to compete with its neighbours is then identified, which accounts for the genetic variability of RIE of plants having similar leaf areas. This method was used in three experiments in a phenotyping platform with 765 plants of 255 maize hybrids. As expected, the heritability of the environmental term was near zero, whereas that of the competitiveness term increased with phenological stage, resulting in the identification of quantitative trait loci. In the same way, RUE was dissected as an effect of intercepted light and a genetic term. This approach was used for predicting the behaviour of individual genotypes in virtual multi-genotype canopies. A large effect of competitiveness was observed in multi-genotype but not in single-genotype canopies, resulting in a bias for genotype comparisons in breeding fields.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Université de Montpellier, INRA, LEPSE, Montpellier, France
| | | | | | - Raphaël Perez
- Université de Montpellier, INRA, LEPSE, Montpellier, France
| | - Simon Artzet
- Université de Montpellier, INRA, LEPSE, Montpellier, France
| | | | - Aude Coupel-Ledru
- Université de Montpellier, INRA, LEPSE, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | | | | |
Collapse
|
25
|
Parent B, Millet EJ, Tardieu F. The use of thermal time in plant studies has a sound theoretical basis provided that confounding effects are avoided. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2359-2370. [PMID: 31091318 DOI: 10.1093/jxb/ery402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
The use of thermal time is essential in plant studies and crop growth modeling because correcting time for temperature allows working in fluctuating conditions as if temperature was constant. However, thermal time is often seen as a loose concept because of a multitude of thermal functions and case-specific parameter values. Our hypothesis is that these different formalisms and parameterization could emerge from common principles and a common response of plant development to temperature, but with several counfounding factors which are not taken into account. We first show that these calculations of thermal time are based on sound common principles and mathematical formalisms. We test, via a modelling exercise of nine case studies using maize plants grown in three field sites, how a given "ground truth" response of plant development rate to temperature can be affected if an experimenter either considers or ignores confounding factors. We also show that apparent differences in temperature responses between phenological stages of the growth cycle, between day and night, or between plant genotypes may be due to the confounding effects of evaporative demand, the range of temperatures, and the time interval at which measurements are taken. On the basis of our findings, we propose that the critical point in the use of a given formalism of thermal time calculation is to ensure that the chosen model is compatible with the temporal definition, temperature range, and environmental scenario in the considered dataset.
Collapse
Affiliation(s)
- Boris Parent
- LEPSE, Université Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Emilie J Millet
- LEPSE, Université Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - François Tardieu
- LEPSE, Université Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
26
|
Wang M, Qu H, Zhang H, Liu S, Li Y, Zhang C. Hormone and RNA-seq analyses reveal the mechanisms underlying differences in seed vigour at different maize ear positions. PLANT MOLECULAR BIOLOGY 2019; 99:461-476. [PMID: 30710225 DOI: 10.1007/s11103-019-00830-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
ABA/GA4 ratio, stress resistance, carbon and nitrogen metabolism, and chromatin structure play important roles in vigour differences of seeds located at different maize ear positions. Seed vigour, which ensures rapid and uniform field emergence across diverse environments, differs at different maize ear positions. However, little is known regarding the associated mechanisms. In this study, we determined that seed vigour, stress resistance, and carbon and nitrogen metabolism were higher in seeds from middle and bottom section of the ear, while the ABA/GA4 ratio in the embryos was significantly lower. Compared with the seeds subjected to repeated pollination during silking, less variation in seed vigour and the ABA/GA4 ratio in the embryos was observed in seeds at different ear positions subjected to single pollination after complete silking. This indicated that single pollination can reduce, but not eliminate, the differences in seed vigour at different ear positions. RNA-seq analysis indicated that the seed vigour differences at the different locations of the maize ears of the single pollinated treatment were related to carbon and nitrogen metabolism. In contrast, the differences in seed vigour under repeated pollination were related to chromatin structure. The present study contributes to our understanding of the mechanisms underlying differences in seed vigour at different positions on the maize ear.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Haibin Qu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Huidi Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Shuai Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Yan Li
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China.
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
27
|
Suonan J, Classen AT, Sanders NJ, He J. Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere 2019. [DOI: 10.1002/ecs2.2543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ji Suonan
- Department of Ecology College of Urban and Environmental Sciences Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University 5 Yiheyuan Road Beijing 100871 China
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences No. 16 Lincui Road Beijing 100101 China
- The Center for Macroecology, Evolution, and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen DK‐2100 Denmark
| | - Aimée T. Classen
- The Center for Macroecology, Evolution, and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen DK‐2100 Denmark
- Rubenstein School of Environment & Natural Resources University of Vermont Burlington Vermont 05405 USA
- The Gund Institute for Environment University of Vermont Burlington Vermont 05405 USA
| | - Nathan J. Sanders
- The Center for Macroecology, Evolution, and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen DK‐2100 Denmark
- Rubenstein School of Environment & Natural Resources University of Vermont Burlington Vermont 05405 USA
- The Gund Institute for Environment University of Vermont Burlington Vermont 05405 USA
| | - Jin‐Sheng He
- Department of Ecology College of Urban and Environmental Sciences Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University 5 Yiheyuan Road Beijing 100871 China
- State Key Laboratory of Grassland Agro‐Ecosystems College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou 730000 China
| |
Collapse
|
28
|
Thompson MEH, Raizada MN. Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road. Pathogens 2018; 7:E81. [PMID: 30314351 PMCID: PMC6313692 DOI: 10.3390/pathogens7040081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/16/2022] Open
Abstract
Silks are the long threads at the tips of maize ears onto which pollen land and sperm nuclei travel long distances to fertilize egg cells, giving rise to embryos and seeds; however fungal pathogens also use this route to invade developing grain, causing damaging ear rots with dangerous mycotoxins. This review highlights the importance of silks as the direct highways by which globally important fungal pathogens enter maize kernels. First, the most important silk-entering fungal pathogens in maize are reviewed, including Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, and their mycotoxins. Next, we compare the different modes used by each fungal pathogen to invade the silks, including susceptible time intervals and the effects of pollination. Innate silk defences and current strategies to protect silks from ear rot pathogens are reviewed, and future protective strategies and silk-based research are proposed. There is a particular gap in knowledge of how to improve silk health and defences around the time of pollination, and a need for protective silk sprays or other technologies. It is hoped that this review will stimulate innovations in breeding, inputs, and techniques to help growers protect silks, which are expected to become more vulnerable to pathogens due to climate change.
Collapse
Affiliation(s)
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
29
|
Turc O, Tardieu F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3245-3254. [PMID: 29546424 DOI: 10.1093/jxb/ery078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is also a trait selected for by evolutionary processes. The youngest reproductive organs must be prone to abortion so older organs can finish their development in case of limited resources. Water deficit increases natural abortion via two developmentally driven processes, namely a signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically encountered in dryland agriculture, these developmental mechanisms account for 90% of drought-associated abortion and are irreversible 3 d after silk emergence. Consistently, transcripts and enzyme activities suggest that the molecular events associated with abortion affect expansive growth in silks whereas ovaries maintain a favourable carbon status. Abortion due to carbon starvation is only observed for severe drought scenarios occurring after silking. Both kinetic and genetic evidence indicates that vegetative and reproductive structures share a partly common hydraulic control of expansive growth. Hence, the control of expansive growth of reproductive structures probably has a prominent effect on abortion for mild water deficits occurring at flowering time, while carbon starvation dominates in severe post-flowering drought scenarios.
Collapse
Affiliation(s)
- Olivier Turc
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - François Tardieu
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
30
|
Tardieu F, Simonneau T, Muller B. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:733-759. [PMID: 29553801 DOI: 10.1146/annurev-arplant-042817-040218] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought tolerance involves mechanisms operating at different spatial and temporal scales, from rapid stomatal closure to maintenance of crop yield. We review how short-term mechanisms are controlled for stabilizing shoot water potential and how long-term processes have been constrained by evolution or breeding to fit into acclimation strategies for specific drought scenarios. These short- or long-term feedback processes participate in trade-offs between carbon accumulation and the risk of deleterious soil water depletion. Corresponding traits and alleles may therefore have positive or negative effects on crop yield depending on drought scenarios. We propose an approach that analyzes the genetic architecture of traits in phenotyping platforms and of yield in tens of field experiments. A combination of modeling and genomic prediction is then used to estimate the comparative interests of combinations of alleles depending on drought scenarios. Hence, drought tolerance is understood probabilistically by estimating the benefit and risk of each combination of alleles.
Collapse
Affiliation(s)
- François Tardieu
- INRA, Université Montpellier, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, F-34060 Montpellier, France;
| | - Thierry Simonneau
- INRA, Université Montpellier, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, F-34060 Montpellier, France;
| | - Bertrand Muller
- INRA, Université Montpellier, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, F-34060 Montpellier, France;
| |
Collapse
|
31
|
Zhou J, Applegate C, Alonso AD, Reynolds D, Orford S, Mackiewicz M, Griffiths S, Penfield S, Pullen N. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat. PLANT METHODS 2017; 13:117. [PMID: 29299051 PMCID: PMC5740932 DOI: 10.1186/s13007-017-0266-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. RESULTS Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. CONCLUSIONS Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.
Collapse
Affiliation(s)
- Ji Zhou
- Earlham Institute, Norwich Research Park, Norwich, UK
- John Innes Centre, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | | | - Simon Orford
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Nick Pullen
- John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
32
|
Brichet N, Fournier C, Turc O, Strauss O, Artzet S, Pradal C, Welcker C, Tardieu F, Cabrera-Bosquet L. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. PLANT METHODS 2017; 13:96. [PMID: 29176999 PMCID: PMC5688816 DOI: 10.1186/s13007-017-0246-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/25/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND In maize, silks are hundreds of filaments that simultaneously emerge from the ear for collecting pollen over a period of 1-7 days, which largely determines grain number especially under water deficit. Silk growth is a major trait for drought tolerance in maize, but its phenotyping is difficult at throughputs needed for genetic analyses. RESULTS We have developed a reproducible pipeline that follows ear and silk growths every day for hundreds of plants, based on an ear detection algorithm that drives a robotized camera for obtaining detailed images of ears and silks. We first select, among 12 whole-plant side views, those best suited for detecting ear position. Images are segmented, the stem pixels are labelled and the ear position is identified based on changes in width along the stem. A mobile camera is then automatically positioned in real time at 30 cm from the ear, for a detailed picture in which silks are identified based on texture and colour. This allows analysis of the time course of ear and silk growths of thousands of plants. The pipeline was tested on a panel of 60 maize hybrids in the PHENOARCH phenotyping platform. Over 360 plants, ear position was correctly estimated in 86% of cases, before it could be visually assessed. Silk growth rate, estimated on all plants, decreased with time consistent with literature. The pipeline allowed clear identification of the effects of genotypes and water deficit on the rate and duration of silk growth. CONCLUSIONS The pipeline presented here, which combines computer vision, machine learning and robotics, provides a powerful tool for large-scale genetic analyses of the control of reproductive growth to changes in environmental conditions in a non-invasive and automatized way. It is available as Open Source software in the OpenAlea platform.
Collapse
Affiliation(s)
- Nicolas Brichet
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Christian Fournier
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
| | - Olivier Turc
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Olivier Strauss
- LIRMM, Department of Robotics, Univ Montpellier, 34392 Montpellier, France
| | - Simon Artzet
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
| | - Christophe Pradal
- Inria, Virtual Plants, Montpellier, France
- CIRAD, UMR AGAP, 34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Inria, Montpellier SupAgro, Montpellier, France
| | - Claude Welcker
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - François Tardieu
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
33
|
Tardieu F, Parent B. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms. PLANT, CELL & ENVIRONMENT 2017; 40:846-857. [PMID: 27569520 DOI: 10.1111/pce.12822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 05/19/2023]
Abstract
Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level.
Collapse
Affiliation(s)
- François Tardieu
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, F-34060, France
| | - Boris Parent
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, F-34060, France
| |
Collapse
|
34
|
Oury V, Caldeira CF, Prodhomme D, Pichon JP, Gibon Y, Tardieu F, Turc O. Is Change in Ovary Carbon Status a Cause or a Consequence of Maize Ovary Abortion in Water Deficit during Flowering? PLANT PHYSIOLOGY 2016; 171:997-1008. [PMID: 27208256 PMCID: PMC4902574 DOI: 10.1104/pp.15.01130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/15/2016] [Indexed: 05/19/2023]
Abstract
Flower or grain abortion causes large yield losses under water deficit. In maize (Zea mays), it is often attributed to a carbon limitation via the disruption of sucrose cleavage by cell wall invertases in developing ovaries. We have tested this hypothesis versus another linked to the expansive growth of ovaries and silks. We have measured, in silks and ovaries of well-watered or moderately droughted plants, the transcript abundances of genes involved in either tissue expansion or sugar metabolism, together with the concentrations and amounts of sugars, and with the activities of major enzymes of carbon metabolism. Photosynthesis and indicators of sugar export, measured during water deprivation, suggested sugar export maintained by the leaf. The first molecular changes occurred in silks rather than in ovaries and involved genes affecting expansive growth rather than sugar metabolism. Changes in the concentrations and amounts of sugars and in the activities of enzymes of sugar metabolism occurred in apical ovaries that eventually aborted, but probably after the switch to abortion of these ovaries. Hence, we propose that, under moderate water deficits corresponding to most European drought scenarios, changes in carbon metabolism during flowering time are a consequence rather than a cause of the beginning of ovary abortion. A carbon-driven ovary abortion may occur later in the cycle in the case of carbon shortage or under very severe water deficits. These findings support the view that, until the end of silking, expansive growth of reproductive organs is the primary event leading to abortion, rather than a disruption of carbon metabolism.
Collapse
Affiliation(s)
- Vincent Oury
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Cecilio F Caldeira
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Duyên Prodhomme
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Jean-Philippe Pichon
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Yves Gibon
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - François Tardieu
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| | - Olivier Turc
- INRA, UMR 759 LEPSE, 34060 Montpellier, France (V.O., C.F.C., F.T., O.T.);INRA, UMR Biologie du Fruit et Pathologie, 33883 Villenave d'Ornon, France (D.P., Y.G.);INRA, Plateforme Métabolome Bordeaux, 33883 Villenave d'Ornon, France (D.P.); andBiogemma, Centre de Rercherche de Chappes, 63720 Chappes, France (J.-P.P.)
| |
Collapse
|