1
|
Vergara IH, Geber MA, Moeller DA, Eckhart VM. Population histories of variable reproductive success and low winter precipitation correlate with risk-averse seed germination in a mediterranean-climate winter annual. AMERICAN JOURNAL OF BOTANY 2024; 111:e16412. [PMID: 39328075 DOI: 10.1002/ajb2.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/28/2024]
Abstract
PREMISE Seed germination involves risk; post-germination conditions might not allow survival and reproduction. Variable, stressful environments favor seeds with germination that avoids risk (e.g., germination in conditions predicting success), spreads risk (e.g., dormancy), or escapes risk (e.g., rapid germination). Germination studies often investigate trait correlations with climate features linked to variation in post-germination reproductive success. Rarely are long-term records of population reproductive success available. METHODS Supported by demographic and climate monitoring, we analyzed germination in the California winter-annual Clarkia xantiana subsp. xantiana. Sowing seeds of 10 populations across controlled levels of water potential and temperature, we estimated temperature-specific base water potential for 20% germination, germination time weighted by water potential above base (hydrotime), and a dormancy index (frequency of viable, ungerminated seeds). Mixed-effects models analyzed responses to (1) temperature, (2) discrete variation in reproductive success (presence or absence of years with zero seed production by a population), and (3) climate covariates, mean winter precipitation and coefficient of variation (CV) of spring precipitation. For six populations, records enabled analysis with a continuous metric of variable reproduction, the CV of per-capita reproductive success. RESULTS Populations with more variable reproductive success had higher base water potential and dormancy. Higher base water potential and faster germination occurred at warmer experimental temperatures and in seeds of populations with wetter winters. CONCLUSIONS Geographic variation in seed germination in this species suggests local adaptation to demographic risk and rainfall. High base water potential and dormancy may concentrate germination in years likely to allow reproduction, while spreading risk among years.
Collapse
Affiliation(s)
- Isabella H Vergara
- Grinnell College, Grinnell, IA, USA
- Donald Danforth Plant Science Center, Olivette, MO, USA
| | | | | | | |
Collapse
|
2
|
Aycan M, Nahar L, Baslam M, Mitsui T. Transgenerational plasticity in salinity tolerance of rice: unraveling non-genetic phenotypic modifications and environmental influences. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5037-5053. [PMID: 38727615 DOI: 10.1093/jxb/erae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the transgenerational plasticity in salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether non-genetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than the parentally non-stressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Lutfun Nahar
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- GrowSmart, Seoul 03129, Republic of Korea
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche labellisée CNRST (Centre AgroBio-tech-URL-CNRST-05), Université Cadi Ayyad, Marrakech, 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Université Cadi Ayyad, Marrakech, 40000, Morocco
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
3
|
Siegmund GF, Moeller DA, Eckhart VM, Geber MA. Bet Hedging Is Not Sufficient to Explain Germination Patterns of a Winter Annual Plant. Am Nat 2023; 202:767-784. [PMID: 38033178 DOI: 10.1086/726785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.
Collapse
|
4
|
Auge G, Hankofer V, Groth M, Antoniou-Kourounioti R, Ratikainen I, Lampei C. Plant environmental memory: implications, mechanisms and opportunities for plant scientists and beyond. AOB PLANTS 2023; 15:plad032. [PMID: 37415723 PMCID: PMC10321398 DOI: 10.1093/aobpla/plad032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.
Collapse
Affiliation(s)
| | - Valentin Hankofer
- Institute of Biochemical Plant Pathology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, University of Glasgow, Sir James Black Building, University Ave, Glasgow G12 8QQ, UK
| | - Irja Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Christian Lampei
- Department of Biology (FB17), Plant Ecology and Geobotany Group, University of Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
5
|
Chen K, Chen Z, Huang Y, Jiang Z. Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China. Ecol Evol 2023; 13:e9986. [PMID: 37082323 PMCID: PMC10111168 DOI: 10.1002/ece3.9986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Seed dormancy contributes greatly to successful establishment and community stability and shows large variation over a continuous status scale in mountain ecosystems. Although empirical studies have shown that seed dormancy status (SDS) is shaped by elevation and phylogenetic history in mountain ecosystems, few studies have quantified their combined effects on SDS. Here, we collected mature seeds from 51 populations of 11 Impatiens species (Balsaminaceae) along an elevational gradient in the Gaoligong Mountains of southwest China and estimated SDS using mean dormancy percentage of fresh seeds germinated at three constant temperatures (15, 20, and 25°C). We downloaded 19 bioclimatic variables from WorldClim v.2.1 for each Impatiens population and used internal transcribed spacer (ITS), atpB-rbcL, and trnL-F molecular sequences from the GenBank nucleotide database to construct a phylogenetic tree of the 11 species of Impatiens. Logistic regression model analysis was performed to quantify the effects of phylogeny and environment on SDS. Results identified a significant phylogenetic SDS signal in the Impatiens species. Furthermore, elevation and phylogeny accounted for 63.629% of the total variation in SDS among the Impatiens populations. The best logistic model indicated that temperature was the main factor influencing variation in SDS among the Impatiens species, and model residuals were significantly correlated with phylogeny, but not with elevation. Our results indicated that seed dormancy is phylogenetically conserved, and climate drives elevational patterns of SDS variation in mountain ecosystems. This study provides new insights into the response of seed plant diversity to climate change.
Collapse
Affiliation(s)
- Kai Chen
- Construction Projects about the Key Laboratory of Entomogenous Fungi Resources Conservation and Green Development in Gaoligong MountainsBaoshan UniversityBaoshanYunnan678000China
- Research Institute of Gaoligong MountainsBaoshan UniversityBaoshanYunnan678000China
- School of Resources and the EnvironmentBaoshan UniversityBaoshanYunnan678000China
| | - Zi‐Hong Chen
- Construction Projects about the Key Laboratory of Entomogenous Fungi Resources Conservation and Green Development in Gaoligong MountainsBaoshan UniversityBaoshanYunnan678000China
- Research Institute of Gaoligong MountainsBaoshan UniversityBaoshanYunnan678000China
| | - Yuan‐Yuan Huang
- School of Resources and the EnvironmentBaoshan UniversityBaoshanYunnan678000China
| | - Zhong‐Hua Jiang
- School of Resources and the EnvironmentBaoshan UniversityBaoshanYunnan678000China
| |
Collapse
|
6
|
Gya R, Geange SR, Lynn JS, Töpper JP, Wallevik Ø, Zernichow C, Vandvik V. A test of local adaptation to drought in germination and seedling traits in populations of two alpine forbs across a 2000 mm/year precipitation gradient. Ecol Evol 2023; 13:e9772. [PMID: 36778839 PMCID: PMC9905427 DOI: 10.1002/ece3.9772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Seed regeneration is a critical stage in the life histories of plants, affecting species' abilities to maintain local populations, evolve, and disperse to new sites. In this study, we test for local adaptations to drought in germination and seedling growth of two alpine forbs with contrasting habitat preferences: the alpine generalist Veronica alpina and the snowbed specialist Sibbaldia procumbens. We sampled seeds of each species from four populations spanning a precipitation gradient from 1200 to 3400 mm/year in western Norway. In a growth chamber experiment, we germinated seeds from each population at 10 different water potentials under controlled light and temperature conditions. Drought led to lower germination percentage in both species, and additionally, slower germination, and more investment in roots for V. alpina. These responses varied along the precipitation gradient. Seeds from the driest populations had higher germination percentage, shorter time to germination, and higher investments in the roots under drought conditions than the seeds from the wettest populations - suggesting local adaption to drought. The snowbed specialist, S. procumbens, had lower germination percentages under drought, but otherwise did not respond to drought in ways that indicate physiological or morphological adaptions to drought. S. procumbens germination also did not vary systematically with precipitation of the source site, but heavier-seeded populations germinated to higher rates and tolerated drought better. Our study is the first to test drought effects on seed regeneration in alpine plants populations from high-precipitation regions. We found evidence that germination and seedling traits may show adaptation to drought even in populations from wet habitats. Our results also indicate that alpine generalists might be more adapted to drought and show more local adaptations in drought responses than snowbed specialists.
Collapse
Affiliation(s)
- Ragnhild Gya
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | - Sonya Rita Geange
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | - Joshua Scott Lynn
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | | | - Øystein Wallevik
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Vigdis Vandvik
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| |
Collapse
|
7
|
Colzi I, Gonnelli C, Vergata C, Golia G, Coppi A, Castellani MB, Giovino A, Buti M, Sabato T, Capuana M, Aprile A, De Bellis L, Cicatelli A, Guarino F, Castiglione S, Ioannou AG, Fotopoulos V, Martinelli F. Transgenerational effects of chromium stress at the phenotypic and molecular level in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130092. [PMID: 36303345 DOI: 10.1016/j.jhazmat.2022.130092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In this study, we describe the results obtained in a study of the transgenerational phenotypic effects of chromium (Cr) stress on the model plant species Arabidopsis thaliana. The F1 generation derived from parents grown under chronic and medium chronic stress showed significantly higher levels of the maximal effective concentration (EC50) compared with F1 plants generated from unstressed parents. Moreover, F1 plants from Cr-stressed parents showed a higher germination rate when grown in the presence of Cr. F1 plants derived from parents cultivated under chronic Cr stress displayed reduced hydrogen peroxide levels under Cr stress compared to controls. At lower Cr stress levels, F1 plants were observed to activate promptly more genes involved in Cr stress responses than F0 plants, implying a memory effect linked to transgenerational priming. At higher Cr levels, and at later stages, F1 plants modulated significantly fewer genes than F0 plants, implying a memory effect leading to Cr stress adaptation. Several bHLH transcription factors were induced by Cr stress in F1 but not in F0 plants, including bHLH100, ORG2 and ORG3. F1 plants optimized gene expression towards pathways linked to iron starvation response. A model of the transcriptional regulation of transgenerational memory to Cr stress is presented here, and could be applied for other heavy metal stresses.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, University of Florence, Italy.
| | | | | | | | - Andrea Coppi
- Department of Biology, University of Florence, Italy.
| | | | - Antonio Giovino
- CREA Consiglio per la ricerca in Agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Difesa e Certificazione, Bagheria, Italy.
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.
| | | | - Maurizio Capuana
- Institute of Biosciences and Bioresources, National Research Council, Italy.
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology, University of Salerno, Italy.
| | | | | | - Andreas G Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | | |
Collapse
|
8
|
Morgan BL, Donohue K. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. ANNALS OF BOTANY 2022; 130:883-899. [PMID: 36201313 PMCID: PMC9758305 DOI: 10.1093/aob/mcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations. METHODS Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations. KEY RESULTS We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination. CONCLUSIONS Parental methylation state influences seed germination more strongly than does the progeny's own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.
Collapse
Affiliation(s)
- Britany L Morgan
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kathleen Donohue
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Biology Department, Duke University, Durham, NC 27705, USA
| |
Collapse
|
9
|
Matesanz S, Ramos-Muñoz M, Rubio Teso ML, Iriondo JM. Effects of parental drought on offspring fitness vary among populations of a crop wild relative. Proc Biol Sci 2022; 289:20220065. [PMID: 36000234 PMCID: PMC9399706 DOI: 10.1098/rspb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Transgenerational plasticity is a form of non-genetic inheritance that can reduce or enhance offspring fitness depending on parental stress. Yet, the adaptive value of such parental environmental effects and whether their expression varies among populations remain largely unknown. We used self-fertilized lines from climatically distinct populations of the crop wild relative Lupinus angustifolius. In the parental generation, full-siblings were grown in two contrasting watering environments. Then, to robustly separate the within-generation and transgenerational response to drought, we reciprocally assigned the offspring of parents to the same experimental treatments. We measured key functional traits and assessed lifetime reproductive fitness. Offspring of drought-stressed parents produced less reproductive biomass, but a similar number of lighter seeds, in dry soil compared to offspring of genetically identical, well-watered parents, an effect not mediated by differences in seed provisioning. Importantly, while the offspring of parents grown in the favourable environment responded to drought by slightly increasing individual seed mass, the pattern of plasticity of the offspring of drought-grown parents showed the opposite direction, and the negative effects of parental drought on seed mass were more pronounced in populations from cooler and moist habitats. Overall, our results show that parental effects may override immediate adaptive responses to drought and provide evidence of population-level variation in the expression of transgenerational plasticity.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Luisa Rubio Teso
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
10
|
Faske TM, Agneray AC, Jahner JP, Sheta LM, Leger EA, Parchman TL. Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evol Appl 2021; 14:2881-2900. [PMID: 34950235 PMCID: PMC8674890 DOI: 10.1111/eva.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023] Open
Abstract
The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.
Collapse
Affiliation(s)
- Trevor M. Faske
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Alison C. Agneray
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | | | - Lana M. Sheta
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - Elizabeth A. Leger
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
11
|
Alvarez M, Bleich A, Donohue K. Genetic differences in the temporal and environmental stability of transgenerational environmental effects. Evolution 2021; 75:2773-2790. [PMID: 34586633 DOI: 10.1111/evo.14367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Environments influence the expression of phenotypes of individuals, their progeny, and even their grandprogeny. The duration of environmental effects and how they are modified by subsequent environments are predicted to be targets of natural selection in variable environments. However, little is known about the genetic basis of the temporal persistence of environmental effects and their stability of expression across subsequent environments, or even the extent to which natural genotypes differ in these attributes of environmental effects. We factorially manipulated the thermal environment experienced in three successive generations, to quantify the temporal persistence and environmental stability of temperature effects in contrasting genotypes of Arabidopsis thaliana. We found that genotypes differed in the manner in which environmental effects dissipated across successive generations, the manner in which responses to ancestral environments were stably expressed in present environments, the manner in which ancestral environments altered responses to present environments, and in the manner in which ancestral environments altered fitness in present conditions. Genetic variation exists in nature for these trait-specific environmental responses, suggesting that the temporal persistence and stability of environmental effects in variable environments have the potential to evolve in response to natural selection imposed by different environments and sequences of environments.
Collapse
Affiliation(s)
| | - Andrew Bleich
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - Kathleen Donohue
- Department of Biology, Duke University, Durham, North Carolina, 27708
| |
Collapse
|
12
|
Notarnicola RF, Nicotra AB, Kruuk LEB, Arnold PA. Tolerance of Warmer Temperatures Does Not Confer Resilience to Heatwaves in an Alpine Herb. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is generating both sustained trends in average temperatures and higher frequency and intensity of extreme events. This poses a serious threat to biodiversity, especially in vulnerable environments, like alpine systems. Phenotypic plasticity is considered to be an adaptive mechanism to cope with climate change in situ, yet studies of the plastic responses of alpine plants to high temperature stress are scarce. Future weather extremes will occur against a background of warmer temperatures, but we do not know whether acclimation to warmer average temperatures confers tolerance to extreme heatwaves. Nor do we know whether populations on an elevational gradient differ in their tolerance or plasticity in response to warming and heatwave events. We investigated the responses of a suite of functional traits of an endemic Australian alpine herb, Wahlenbergia ceracea, to combinations of predicted future (warmer) temperatures and (relative) heatwaves. We also tested whether responses differed between high- vs. low-elevation populations. When grown under warmer temperatures, W. ceracea plants showed signs of acclimation by means of higher thermal tolerance (Tcrit, T50, and Tmax). They also invested more in flower production, despite showing a concurrent reduction in photosynthetic efficiency (Fv/Fm) and suppression of seed production. Heatwaves reduced both photosynthetic efficiency and longevity. However, we found no evidence that acclimation to warmer temperatures conferred tolerance of the photosynthetic machinery to heatwaves. Instead, when exposed to heatwaves following warmer growth temperatures, plants had lower photosynthetic efficiency and underwent a severe reduction in seed production. High- and low-elevation populations and families exhibited limited genetic variation in trait means and plasticity in response to temperature. We conclude that W. ceracea shows some capacity to acclimate to warming conditions but there is no evidence that tolerance of warmer temperatures confers any resilience to heatwaves.
Collapse
|
13
|
Shryock DF, Washburn LK, DeFalco LA, Esque TC. Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. Mol Ecol 2021; 30:698-717. [PMID: 33007116 DOI: 10.1111/mec.15672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Local adaptation features critically in shaping species responses to changing environments, complicating efforts to revegetate degraded areas. Rapid climate change poses an additional challenge that could reduce fitness of even locally sourced seeds in restoration. Predictive restoration strategies that apply seeds with favourable adaptations to future climate may promote long-term resilience. Landscape genomics is increasingly used to assess spatial patterns in local adaption and may represent a cost-efficient approach for identifying future-adapted genotypes. To demonstrate such an approach, we genotyped 760 plants from 64 Mojave Desert populations of the desert annual Plantago ovata. Genome scans on 5,960 SNPs identified 184 potentially adaptive loci related to climate and satellite vegetation metrics. Causal modelling indicated that variation in potentially adaptive loci was not confounded by isolation by distance or isolation by habitat resistance. A generalized dissimilarity model (GDM) attributed spatial turnover in potentially adaptive loci to temperature, precipitation and NDVI amplitude, a measure of vegetation green-up potential. By integrating a species distribution model (SDM), we find evidence that summer maximum temperature may both constrain the range of P. ovata and drive adaptive divergence in populations exposed to higher temperatures. Within the species' current range, warm-adapted genotypes are predicted to experience a fivefold expansion in climate niche by midcentury and could harbour key adaptations to cope with future climate. We recommend eight seed transfer zones and project each zone into its relative position in future climate. Prioritizing seed collection efforts on genotypes with expanding future habitat represents a promising strategy for restoration practitioners to address rapidly changing climates.
Collapse
Affiliation(s)
- Daniel F Shryock
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | | | - Lesley A DeFalco
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | - Todd C Esque
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| |
Collapse
|
14
|
Metz J, Lampei C, Bäumler L, Bocherens H, Dittberner H, Henneberg L, de Meaux J, Tielbörger K. Rapid adaptive evolution to drought in a subset of plant traits in a large-scale climate change experiment. Ecol Lett 2020; 23:1643-1653. [PMID: 32851791 DOI: 10.1111/ele.13596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Rapid evolution of traits and of plasticity may enable adaptation to climate change, yet solid experimental evidence under natural conditions is scarce. Here, we imposed rainfall manipulations (+30%, control, -30%) for 10 years on entire natural plant communities in two Eastern Mediterranean sites. Additional sites along a natural rainfall gradient and selection analyses in a greenhouse assessed whether potential responses were adaptive. In both sites, our annual target species Biscutella didyma consistently evolved earlier phenology and higher reproductive allocation under drought. Multiple arguments suggest that this response was adaptive: it aligned with theory, corresponding trait shifts along the natural rainfall gradient, and selection analyses under differential watering in the greenhouse. However, another seven candidate traits did not evolve, and there was little support for evolution of plasticity. Our results provide compelling evidence for rapid adaptive evolution under climate change. Yet, several non-evolving traits may indicate potential constraints to full adaptation.
Collapse
Affiliation(s)
- Johannes Metz
- Plant Ecology & Nature Conservation, Institute of Biology & Chemistry, University of Hildesheim, Hildesheim, Germany.,Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Christian Lampei
- Biodiversity and Ecosystem Research, Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Laura Bäumler
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, and Department of Geosciences, Biogeology, University of Tübingen, Tübingen, Germany
| | - Hannes Dittberner
- Plant Molecular Ecology, Institute of Botany, University of Cologne, Cologne, Germany
| | - Lorenz Henneberg
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Juliette de Meaux
- Plant Molecular Ecology, Institute of Botany, University of Cologne, Cologne, Germany
| | - Katja Tielbörger
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
De Long JR, Heinen R, Jongen R, Hannula SE, Huberty M, Kielak AM, Steinauer K, Bezemer TM. How plant–soil feedbacks influence the next generation of plants. Ecol Res 2020. [DOI: 10.1111/1440-1703.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan R. De Long
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Wageningen UR Greenhouse Horticulture Bleiswijk The Netherlands
| | - Robin Heinen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
- Lehrstuhl fur Terrestrische Okologie, Landnutzung und Umwelt Technische Universitat Munchen, Wissenschaftszentrum Weihenstephan fur Ernahrung Freising Germany
| | - Renske Jongen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Martine Huberty
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
| | - Anna M. Kielak
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Katja Steinauer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
| |
Collapse
|
16
|
Yan Y, Stoddard FL, Neugart S, Oravec M, Urban O, Sadras VO, Aphalo PJ. The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153145. [PMID: 32145578 DOI: 10.1016/j.jplph.2020.153145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. METHODS We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. KEY RESULTS The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora: parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). CONCLUSIONS The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.
Collapse
Affiliation(s)
- Yan Yan
- Viikki Plant Science Centre (ViPS), Department of Biosciences, 00014, University of Helsinki, Finland.
| | - Frederick L Stoddard
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS) and Helsinki Sustainability Centre, 00014, University of Helsinki, Finland
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Michal Oravec
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Victor O Sadras
- South Australian Research and Development Institute, Adelaide, Australia; The University of Adelaide, School of Agriculture, Food and Wine, Australia
| | - Pedro J Aphalo
- Viikki Plant Science Centre (ViPS), Department of Biosciences, 00014, University of Helsinki, Finland
| |
Collapse
|
17
|
Renzi JP, Duchoslav M, Brus J, Hradilová I, Pechanec V, Václavek T, Machalová J, Hron K, Verdier J, Smýkal P. Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E503. [PMID: 32295289 PMCID: PMC7238229 DOI: 10.3390/plants9040503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4-100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.
Collapse
Affiliation(s)
- Juan Pablo Renzi
- Instituto Nacional de Tecnología Agropecuaria, Hilario Ascasubi 8142, Argentina;
| | - Martin Duchoslav
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Jan Brus
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Iveta Hradilová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Vilém Pechanec
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Tadeáš Václavek
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jitka Machalová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jerome Verdier
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d’Angers, SFR 4207 QUASAV, 49070 Beaucouzé, France;
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| |
Collapse
|
18
|
Gremer JR, Chiono A, Suglia E, Bontrager M, Okafor L, Schmitt J. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. AMERICAN JOURNAL OF BOTANY 2020; 107:350-363. [PMID: 32056208 DOI: 10.1002/ajb2.1425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. METHODS Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. RESULTS Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low-elevation populations germinated in the fall without chilling, whereas high-elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate-change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high-elevation populations. CONCLUSIONS The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.
Collapse
Affiliation(s)
- Jennifer R Gremer
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Alec Chiono
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Department of Biology, University of San Francisco, 2310 Fulton Street, San Francisco, CA, 94117, USA
| | - Elena Suglia
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Population Biology Graduate Group, University of California-Davis, Davis, CA, 95616, USA
| | - Megan Bontrager
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Lauren Okafor
- Department of Biology, Howard University, 415 College St. NW, Washington, D.C., 20059, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
19
|
Dewan S, De Frenne P, Leroux O, Nijs I, Vander Mijnsbrugge K, Verheyen K. Phenology and growth of Fagus sylvatica and Quercus robur seedlings in response to temperature variation in the parental versus offspring generation. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:113-122. [PMID: 30739399 DOI: 10.1111/plb.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics. We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1-5 years) from isolated mother trees and planted the seedlings in a common garden. Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period. Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.
Collapse
Affiliation(s)
- S Dewan
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| | - P De Frenne
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| | - O Leroux
- Department of Biology, Ghent University, Ghent, Belgium
| | - I Nijs
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | | | - K Verheyen
- Forest & Nature Lab, Ghent University, Gontrode, Belgium
| |
Collapse
|
20
|
Lampei C, Wunder J, Wilhalm T, Schmid KJ. Microclimate predicts frost hardiness of alpine Arabidopsis thaliana populations better than elevation. Ecol Evol 2019; 9:13017-13029. [PMID: 31871626 PMCID: PMC6912909 DOI: 10.1002/ece3.5659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/17/2023] Open
Abstract
In mountain regions, topological differences on the microscale can strongly affect microclimate and may counteract the average effects of elevation, such as decreasing temperatures. While these interactions are well understood, their effect on plant adaptation is understudied. We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 13 sites along altitudinal gradients in the Southern Alps during three winters on an experimental field station on the Swabian Jura and compared levels of frost damage with the observed number of frost days and the lowest temperature in eight collection sites. We found that frost hardiness increased with elevation in a log-linear fashion. This is consistent with adaptation to a higher frequency of frost conditions, but also indicates a decreasing rate of change in frost hardiness with increasing elevation. Moreover, the number of frost days measured with temperature loggers at the collection sites correlated much better with frost hardiness than the elevation of collection sites, suggesting that populations were adapted to their local microclimate. Notably, the variance in frost days across sites increased exponentially with elevation. Together, our results suggest that strong microclimate heterogeneity of high alpine environments can preserve functional genetic diversity among small populations. Synthesis: Here, we tested how plant populations differed in their adaptation to frost exposure along an elevation gradient and whether microsite temperatures improve the prediction of frost hardiness. We found that local temperatures, particularly the number of frost days, are a better predictor of the frost hardiness of plants than elevation. This reflects a substantial variance in frost frequency between sites at similar high elevations. We conclude that high mountain regions harbor microsites that differ in their local microclimate and thereby can preserve a high functional genetic diversity among them. Therefore, high mountain regions have the potential to function as a refugium in times of global change.
Collapse
Affiliation(s)
- Christian Lampei
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
- Institute of Landscapes EcologyUniversity of MünsterMünsterGermany
| | - Jörg Wunder
- Max Planck Institute for Plant Breeding ResearchKölnGermany
| | | | - Karl J. Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| |
Collapse
|
21
|
Lampei C. Multiple simultaneous treatments change plant response from adaptive parental effects to within-generation plasticity, in Arabidopsis thaliana. OIKOS 2018. [DOI: 10.1111/oik.05627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christian Lampei
- Inst. of Plant Breeding, Seed Science and Population Genetics; Univ. of Hohenheim; Stuttgart Germany
- Inst. of Landscapes Ecology; Univ. of Münster; Heisenbergstr. 2 DE-48149 Münster Germany
| |
Collapse
|
22
|
Münzbergová Z, Latzel V, Šurinová M, Hadincová V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. OIKOS 2018. [DOI: 10.1111/oik.05591] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zuzana Münzbergová
- Dept of Botany, Faculty of Science, Charles Univ; Prague Czech Republic
- Inst. of Botany, The Czech Academy of Sciences; Průhonice Czech Republic
| | - Vít Latzel
- Inst. of Botany, The Czech Academy of Sciences; Průhonice Czech Republic
| | - Maria Šurinová
- Dept of Botany, Faculty of Science, Charles Univ; Prague Czech Republic
- Inst. of Botany, The Czech Academy of Sciences; Průhonice Czech Republic
| | | |
Collapse
|
23
|
Sandner TM, van Braak JL, Matthies D. Transgenerational plasticity in Silene vulgaris in response to three types of stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:751-758. [PMID: 29570927 DOI: 10.1111/plb.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
The environment experienced by plants can influence the phenotype of their offspring. Such transgenerational plasticity can be adaptive when it results in higher fitness of the offspring under conditions correlated with those experienced by the mother plant. However, it has rarely been tested if such anticipatory parental effects may be induced with different environments. We grew clonal replicates of Silene vulgaris under control conditions and three types of stress (nutrient deficiency, copper addition and drought), which are known from natural populations of the species. We then subjected offspring from differently treated mother plants to each of the different stress treatments to analyse the influence of maternal and offspring environment on performance and several functional traits. Current stress treatments strongly influenced biomass and functional traits of the plants, mostly in line with responses predicted by the theory of functional equilibrium. Plant performance was also influenced by maternal stress treatments, and some effects independent of initial size differences remained until harvest. In particular, stressed mothers produced offspring of higher fitness than control plants. However, there was no evidence for treatment-specific adaptive transgenerational plasticity, as offspring from a mother plant that had grown in a specific environment did not grow better in that environment than other plants. Our results indicate that the maternal environment may affect offspring traits and performance, but also that this transgenerational plasticity is not necessarily adaptive.
Collapse
Affiliation(s)
- T M Sandner
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - J L van Braak
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - D Matthies
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
24
|
Metz J, Freundt H, Jeltsch F. Stable germination behavior but partly changing seed–seed interactions along a steep rainfall gradient. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Rendina González AP, Preite V, Verhoeven KJF, Latzel V. Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens. FRONTIERS IN PLANT SCIENCE 2018; 9:1677. [PMID: 30524458 PMCID: PMC6256281 DOI: 10.3389/fpls.2018.01677] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/29/2018] [Indexed: 05/15/2023]
Abstract
Transgenerational effects (TGE) can modify phenotypes of offspring generations playing thus a potentially important role in ecology and evolution of many plant species. These effects have been studied mostly across generations of sexually reproducing species. A substantial proportion of plant species are however reproducing asexually, for instance via clonal growth. TGE are thought to be enabled by heritable epigenetic modification of DNA, although unambiguous evidence is still scarce. On the clonal herb white clover (Trifolium repens), we tested the generality of clonal TGE across five genotypes and five parental environments including soil contamination and above-ground competition. Moreover, by genome wide-methylation variation analysis we explored the role of drought, one of the parental environments that triggered the strongest TGE. We tested the induction of epigenetic changes in offspring generations using several intensities and durations of drought stress. We found that TGE of different environments were highly genotype specific and all tested environments triggered TGE at least in some genotypes. In addition, parental drought stresses triggered epigenetic change in T. repens and most of the induced epigenetic change was maintained across several clonal offspring generations. We conclude that TGE are common and genotype specific in clonal plant T. repens and potentially under epigenetic control.
Collapse
Affiliation(s)
| | - Veronica Preite
- Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Bochum, Germany
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Vít Latzel
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czechia
| |
Collapse
|
26
|
Groot MP, Kubisch A, Ouborg NJ, Pagel J, Schmid KJ, Vergeer P, Lampei C. Transgenerational effects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin. THE NEW PHYTOLOGIST 2017; 215:1221-1234. [PMID: 28590553 DOI: 10.1111/nph.14642] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 05/28/2023]
Abstract
Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean.
Collapse
Affiliation(s)
- Maartje P Groot
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Alexander Kubisch
- Landscape and Plant Ecology, University of Hohenheim, August-Hartmann-Str. 3, 70599, Stuttgart, Germany
- Theoretical Ecology Group, Department of Animal Ecology and Tropical Biology, University of Würzburg, Emil-Fischerstr. 32, 97074, Würzburg, Germany
| | - N Joop Ouborg
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Jörn Pagel
- Landscape and Plant Ecology, University of Hohenheim, August-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Philippine Vergeer
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, the Netherlands
- Plant Ecology and Nature Conservation Group, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| |
Collapse
|
27
|
Münzbergová Z, Hadincová V. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol Evol 2017; 7:5236-5247. [PMID: 28770062 PMCID: PMC5528211 DOI: 10.1002/ece3.3105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/02/2017] [Indexed: 01/19/2023] Open
Abstract
In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra. Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers that simulate the temperature and precipitation of origin of the populations (maternal phase). Each population was represented in each growth chamber. After 6 months, single young ramets of these plants were reshuffled among the growth chambers and let to grow for additional 2 months (offspring phase). The results show that transgenerational effects (i.e., maternal phase conditions) significantly modify species response to novel climates, and the direction and intensity of the response depend on the climate of origin of the plants. For traits related to recourse acquisition, the conditions of maternal phase, either alone or in interaction mainly with climate of origin, had stronger effect than the conditions of cultivation. Overall, the maternal climate interacted more intensively with the climate of origin than with the offspring climate. The direction of the effect of the maternal climate was of different directions and intensities depending on plant origin and trait studied. The data demonstrated strong significant effects of conditions during maternal phase on species response to novel climates. These transgenerational affects were, however, not adaptive. Still, transgenerational plasticity may be an important driver of species response to novel conditions across clonal generations. These effects thus need to be carefully considered in future studies exploring species response to novel climates. This will also have strong effects on species performance under increasingly variable climates expected to occur with the climate change.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of BotanyFaculty of ScienceCharles UniversityPragueCzech Republic
- Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
| | - Věroslava Hadincová
- Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
| |
Collapse
|