1
|
Szymkowiak J, Foest J, Hacket-Pain A, Journé V, Ascoli D, Bogdziewicz M. Tail-dependence of masting synchrony results in continent-wide seed scarcity. Ecol Lett 2024; 27:e14474. [PMID: 38994849 DOI: 10.1111/ele.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.
Collapse
Affiliation(s)
- Jakub Szymkowiak
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Valentin Journé
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Michaud TJ, Pearse IS, Kauserud H, Andrew CJ, Kennedy PG. Mast seeding in European beech (Fagus sylvatica L.) is associated with reduced fungal sporocarp production and community diversity. Ecol Lett 2024; 27:e14460. [PMID: 38877759 DOI: 10.1111/ele.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Mast seeding is a well-documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29-year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvatica L.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought-tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem 'rhythm' to forest processes that is synchronized above- and belowground.
Collapse
Affiliation(s)
- Talia J Michaud
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | | | | | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Foest JJ, Bogdziewicz M, Pesendorfer MB, Ascoli D, Cutini A, Nussbaumer A, Verstraeten A, Beudert B, Chianucci F, Mezzavilla F, Gratzer G, Kunstler G, Meesenburg H, Wagner M, Mund M, Cools N, Vacek S, Schmidt W, Vacek Z, Hacket-Pain A. Widespread breakdown in masting in European beech due to rising summer temperatures. GLOBAL CHANGE BIOLOGY 2024; 30:e17307. [PMID: 38709196 DOI: 10.1111/gcb.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Collapse
Affiliation(s)
- Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Mario B Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Cutini
- CREA - Research Centre for Forestry and Wood, Arezzo, Italy
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arne Verstraeten
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | | | | | - Georg Gratzer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georges Kunstler
- Université Grenoble Alpes, INRAE, LESSEM, Saint-Martin-d'Hères, France
| | - Henning Meesenburg
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Markus Wagner
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Gotha, Germany
| | - Nathalie Cools
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Kazasidis O, Geduhn A, Jacob J. High-resolution early warning system for human Puumala hantavirus infection risk in Germany. Sci Rep 2024; 14:9602. [PMID: 38671000 PMCID: PMC11053085 DOI: 10.1038/s41598-024-60144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The fluctuation of human infections by the Puumala orthohantavirus (PUUV) in Germany has been linked to weather and phenology parameters that drive the population growth of its host species. We quantified the annual PUUV-outbreaks at the district level by binarizing the reported infections in the period 2006-2021. With these labels we trained a model based on a support vector machine classifier for predicting local outbreaks and incidence well in advance. The feature selection for the optimal model was performed by a heuristic method and identified five monthly weather variables from the previous two years plus the beech flowering intensity of the previous year. The predictive power of the optimal model was assessed by a leave-one-out cross-validation in 16 years that led to an 82.8% accuracy for the outbreak and a 0.457 coefficient of determination for the incidence. Prediction risk maps for the entire endemic area in Germany will be annually available on a freely-accessible permanent online platform of the German Environment Agency. The model correctly identified 2022 as a year with low outbreak risk, whereas its prediction for large-scale high outbreak risk in 2023 was not confirmed.
Collapse
Affiliation(s)
- Orestis Kazasidis
- Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161, Münster, Germany.
| | - Anke Geduhn
- Laboratory for Health Pests and Their Control, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Jens Jacob
- Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161, Münster, Germany
| |
Collapse
|
5
|
Puchi PF, Dalmonech D, Vangi E, Battipaglia G, Tognetti R, Collalti A. Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula. Sci Rep 2024; 14:6526. [PMID: 38499662 PMCID: PMC11350120 DOI: 10.1038/s41598-024-57293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Tree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and δ13C-derived intrinsic water-use-efficiency (iWUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability. Additionally, fist-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential tree dieback risks during extreme drought events. Results reveal a negative link between BAI and vapour pressure deficit (VPD), especially in southern latitudes. After the 2003 drought, BAI decreased at the northern site, with an increase in δ13C and iWUE, indicating conservative water-use. Conversely, the southern sites showed increased BAI and iWUE, likely influenced by rising CO2 and improved water availability. In contrast, the central site sustained higher transpiration rates due to higher soil water holding capacity (SWHC). Despite varied responses, most sites exhibited reduced resilience to future extreme events, indicated by increased AR1. Temperature significantly affected beech iWUE and BAI in northern Italy, while VPD strongly influenced the southern latitudes. The observed increase in BAI and iWUE in southern regions might be attributed to an acclimation response.
Collapse
Affiliation(s)
- Paulina F Puchi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy.
- Institute of Bioeconomy, Italian National Research Council (CNR-IBE), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Daniela Dalmonech
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Elia Vangi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'L. Vanvitelli', Caserta, Italy
| | - Roberto Tognetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | - Alessio Collalti
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
6
|
Journé V, Szymkowiak J, Foest J, Hacket-Pain A, Kelly D, Bogdziewicz M. Summer solstice orchestrates the subcontinental-scale synchrony of mast seeding. NATURE PLANTS 2024; 10:367-373. [PMID: 38459130 DOI: 10.1038/s41477-024-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent.
Collapse
Affiliation(s)
- Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
7
|
Maag N, Korner-Nievergelt F, Szymkowiak J, Hałas N, Maziarz M, Neubauer G, Luepold SB, Carlotti S, Schaub M, Flade M, Scherrer D, Grendelmeier A, Riess M, Stelbrink P, Pasinelli G. Wood warbler population dynamics in response to mast seeding regimes in Europe. Ecology 2024; 105:e4227. [PMID: 38038276 DOI: 10.1002/ecy.4227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Mast seeding is the episodic, massive production of plant seeds synchronized over large areas. The resulting superabundance of seeds represents a resource pulse that can profoundly affect animal populations across trophic levels. Following years of high seed production, the abundance of both seed consumers and their predators increase. Higher predator abundance leads to increased predation pressure across the trophic web, impacting nonseed consumers such as the wood warbler Phylloscopus sibilatrix through increased nest predation after tree mast years. Over the past 30 years, the frequency of tree seed masts has increased, while wood warbler populations have declined in several regions of Europe. We hypothesized that increasing mast frequencies may have contributed to the observed population declines by creating suboptimal breeding conditions in years after masting. We measured reproductive output in four study areas in central Europe, which was between 0.61 and 1.24 fledglings lower in the years following masting than nonmasting. For each study area, we used matrix population models to predict population trends based on the estimated reproductive output and the local mast frequencies. We then compared the predicted with the observed population trends to assess if the frequency of mast years had contributed to the population dynamics. In Wielkopolska National Park (PL) and Hessen (DE), masting occurred on average only every 4 years and populations were stable or nearly so, whereas in Jura (CH) and Białowieża National Park (PL), masting occurred every 2 and 2.5 years, respectively, and populations were declining. The simple matrix population models predicted the relative difference among local population trends over the past 10-20 years well, suggesting that the masting frequency may partly explain regional variation in population trends. Simulations suggest that further increases in mast frequency will lead to further declines in wood warbler populations. We show that changes in a natural process, such as mast seeding, may contribute to the decline in animal populations through cascading effects.
Collapse
Affiliation(s)
- Nino Maag
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Forest Biology Center, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Hałas
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marta Maziarz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Martin Flade
- Schorfheide-Chorin Biosphere Reserve, Angermünde, Germany
| | - Daniel Scherrer
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Michael Riess
- Department of Biology, University of Marburg, Marburg, Germany
| | - Pablo Stelbrink
- Department of Biology, University of Marburg, Marburg, Germany
| | - Gilberto Pasinelli
- Swiss Ornithological Institute, Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Mazza G, Monteverdi MC, Altieri S, Battipaglia G. Climate-driven growth dynamics and trend reversal of Fagus sylvatica L. and Quercus cerris L. in a low-elevation beech forest in Central Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168250. [PMID: 37926261 DOI: 10.1016/j.scitotenv.2023.168250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In highly climate-change-sensitive regions, such as the Mediterranean, increasing knowledge of climate-driven growth dynamics is required for habitat conservation and forecasting species adaptability under future climate change. In this study, we test a high spectrum of climatic signals, not only monthly and seasonal but also on a multi-year scale and include the single tree analysis to answer this issue, focusing on a low-elevation thermophilic old-growth beech forest surrounding the Bracciano Lake in Central Italy. Through a dendroecological and isotope analysis, we evaluate both short- and long-term sensitivity of F. sylvatica and the coexisting better-drought-adapted species Q. cerris to climatic and hydrological variability in terms of growth reduction and δ13C responses. After the 1990s, beech trees showed a climate-driven decrease in growth compared to oak, especially after 2003 (-20 % of basal area increment), with a significant growth trend reversal between the species. For F. sylvatica, the significant correlations with precipitation decreased, whereas for Q. cerris, they increased, with a higher number of trees positively influenced. However, the temperature highlighted more clearly the contrasting climate-growth correlation pattern between the two species. In F. sylvatica after the '90s, the negative effect of temperatures has significantly intensified, as shown by past summer values up to four years previously, involving about half of the trees. Surprisingly, the water-level fluctuations showed a highly significant influence on tree-ring growth in both species. Nevertheless, it reduced after the '90s. Finally, Q. cerris trees showed a significantly higher ability to recover their growth levels after extreme droughts (+55 %). The growth trend reversal and the shift in iWUE of the last years may point to potential changes in the future species composition, raising the need for climate-adaptive silviculture (e.g., selective thinning) to reduce growth decline, enhance resilience and favour the natural regeneration of the target species for habitat conservation.
Collapse
Affiliation(s)
| | | | - Simona Altieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
9
|
Verschuren L, De Mil T, De Frenne P, Haneca K, Van Acker J, Vandekerkhove K, Van den Bulcke J. Heading for a fall: The fate of old wind-thrown beech trees (Fagus sylvatica) is detectable in their growth pattern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166148. [PMID: 37574075 DOI: 10.1016/j.scitotenv.2023.166148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Common beech (Fagus sylvatica) is one of the most important deciduous tree species in European forests. However, climate-change-induced drought may threaten its dominant position. The Sonian Forest close to Brussels (Belgium) is home to some of the largest beech trees in the world. This UNESCO world heritage site is famous for its high density of very large beech trees as a result of its climatic suitability, fertile soil conditions, and past management. Here we utilized tree-ring data from increment cores to investigate the growth of these old and monumental beech trees, evaluating their growth trends, response to past climate, and the effect of mast years on 39 living and 16 recently wind-thrown trees. Our analysis reveals that the sampled trees were generally sensitive to spring and summer droughts but recovered quickly after such an extreme climatic event. The growth trend of living trees has remained high and only shows a slight, statistically insignificant, decline over the past 50 years. Although the overall growth rate remains strong (BAI 50 cm2/year), the past five decades have shown strong inter-annual growth variations due to frequent and more intense droughts combined with an increased frequency of mast years. We also found notable differences in growth patterns between the living trees and those that had recently been wind-thrown. While there were no significant differences between living and wind-thrown trees in response to droughts, heatwaves, or mast years when examining year-to-year growth changes, the wind-thrown trees did exhibit considerably lower overall growth rates and a significant downward trend in growth (BAI -0.57 cm2/year). This difference in growth trends has been apparent since at least the 1980s. Overall, the findings of this study can provide valuable insights for understanding the long-term dynamics of lowland beech forests and their responses to climate change.
Collapse
Affiliation(s)
- Louis Verschuren
- UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Centre for X-ray Tomography, Ghent University, 9000 Ghent, Belgium; Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Melle, Belgium.
| | - Tom De Mil
- Forest is life, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech. University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Melle, Belgium.
| | - Kristof Haneca
- Flanders Heritage Agency, Herman Teirlinckgebouw, Havenlaan 88 bus 5, 1000 Brussel, Belgium.
| | - Joris Van Acker
- UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Centre for X-ray Tomography, Ghent University, 9000 Ghent, Belgium.
| | - Kris Vandekerkhove
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, Gaverstraat 4 and 35, 9500 Geraardsbergen, Belgium.
| | - Jan Van den Bulcke
- UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Centre for X-ray Tomography, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Qiu T, Aravena MC, Ascoli D, Bergeron Y, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Calderon SD, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Courbaud B, Cutini A, Das AJ, Delpierre N, Delzon S, Dietze M, Dormont L, Espelta JM, Fahey TJ, Farfan-Rios W, Franklin JF, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Holik J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kitzberger T, Knops JMH, Kunstler G, Kurokawa H, Lageard JGA, LaMontagne JM, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, Marell A, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Naoe S, Noguchi M, Oguro M, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Podgorski T, Poulsen J, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Samonil P, Sanguinetti JD, Scher CL, Seget B, Sharma S, Shibata M, Silman M, Steele MA, Stephenson NL, Straub JN, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Zywiec M, Clark JS. Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients. NATURE PLANTS 2023:10.1038/s41477-023-01446-5. [PMID: 37386149 DOI: 10.1038/s41477-023-01446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.
Collapse
Affiliation(s)
- Tong Qiu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA.
| | - Marie-Claire Aravena
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, La Pintana, Santiago, Chile
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, Torino, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Boivin
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Thomas Caignard
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Maxime Cailleret
- NRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Rafael Calama
- Centro de Investigacion Forestal (INIA-CSIC), Madrid, Spain
| | - Sergio Donoso Calderon
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, La Pintana, Santiago, Chile
| | - J Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jerome Chave
- Laboratoire Evolution et Diversite Biologique, Toulouse, France
| | | | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Andrea Cutini
- Research Centre for Forestry and Wood, Arezzo, Italy
| | - Adrian J Das
- U.S. Geological Survey Western Ecological Research Center, Three Rivers, CA, USA
| | - Nicolas Delpierre
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, Orsay, France
| | - Sylvain Delzon
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, MA, USA
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | | | - William Farfan-Rios
- Washington University in Saint Louis, Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, USA
| | | | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Flagstaff, AZ, USA
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, CA, USA
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Wien, Austria
| | | | | | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Research Triangle Park, NC, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | - Jan Holik
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Thomas Kitzberger
- Department of Ecology, Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad Nacional del Comahue), Bariloche, Argentina
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan, Ibaraki
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | | | - Francois Lefevre
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Theodor Leininger
- USDA, Forest Service, Southern Research Station, Stoneville, MS, USA
| | | | - James A Lutz
- Department of Wildland Resources, and the Ecology Center, Utah State University, Logan, UT, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | - Emily Moran
- School of Natural Sciences, UC Merced, Merced, CA, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, Torino, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shoji Naoe
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Mahoko Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Michio Oguro
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan, Ibaraki
| | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, NM, USA
| | - Ian S Pearse
- U.S. Geological Survey Fort Collins Science Center, Fort Collins, CO, USA
| | - Ignacio M Perez-Ramos
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Seville, Andalucia, Spain
| | - Lukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Podgorski
- Mammal Research Institute, Polish Academy of Sciences, Bialowieza, Poland
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Kyle C Rodman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Pavel Samonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Javier D Sanguinetti
- Bilogo Dpto. Conservacin y Manejo, Parque Nacional Lanin Elordi y Perito Moreno, San Marten de los Andes, Neuqun, Argentina
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan, Ibaraki
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | | | - Nathan L Stephenson
- U.S. Geological Survey Western Ecological Research Center, Three Rivers, CA, USA
| | - Jacob N Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, NY, USA
| | - Samantha Sutton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Andreas P Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, PR, USA
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Marini G, Arnoldi D, Rizzoli A, Tagliapietra V. Estimating rodent population abundance using early climatic predictors. EUR J WILDLIFE RES 2023. [DOI: 10.1007/s10344-023-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
12
|
Bogdziewicz M, Journé V, Hacket-Pain A, Szymkowiak J. Mechanisms driving interspecific variation in regional synchrony of trees reproduction. Ecol Lett 2023; 26:754-764. [PMID: 36888560 DOI: 10.1111/ele.14187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland.,Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Institut National de Recherche pour Agriculture, Alimentation et Environnement (IN-RAE), Université Grenoble Alpes, St. Martin-d'Hères, France
| | - Valentin Journé
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Jakub Szymkowiak
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland.,Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Identification of DNA Methylation Changes in European Beech Seeds during Desiccation and Storage. Int J Mol Sci 2023; 24:ijms24043557. [PMID: 36834975 PMCID: PMC9968092 DOI: 10.3390/ijms24043557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing and deterioration of seeds is a major problem for the maintenance of seed quality and viability during long-term storage. Prediction of early stages of seed deterioration in order to point out the plantlets' regeneration time is a major challenge of successful storage. In preserved seeds, damages accumulate within cells at the rate mainly related to their moisture content and temperature of storage. Current research reveals global alterations in DNA methylation in lipid-rich intermediate seeds during desiccation and storage at various regimes covering nonoptimal and optimal conditions. We show for the first time that monitoring of 5-methylcytosine (m5C) level in seeds can be used as a truly universal viability marker regardless of postharvest category of seeds and their composition. For seeds stored up to three years, in varied conditions, moisture content, temperature, and time of storage had significant influence on seedling emergence and DNA methylation (p < 0.05). Similarities among lipid-rich intermediate and orthodox seeds regarding different reactions of embryonic axes and cotyledons to desiccation are newly revealed. Along with previous studies on seeds dramatically different in desiccation tolerance (recalcitrant vs. orthodox), results regarding lipid-rich seeds positioned in-between (intermediate) prove that maintaining global DNA methylation status is crucial for maintaining seed viability.
Collapse
|
14
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Wilson M, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Shaw JD, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. TREE PHYSIOLOGY 2022; 42:71-85. [PMID: 34302167 DOI: 10.1093/treephys/tpab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011-2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011-2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Communications and Cyber Technologies, University of Arizona, Tucson, AZ 85721, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
15
|
Vacchiano G, Pesendorfer MB, Conedera M, Gratzer G, Rossi L, Ascoli D. Natural disturbances and masting: from mechanisms to fitness consequences. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200384. [PMID: 34657468 PMCID: PMC8520777 DOI: 10.1098/rstb.2020.0384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
The timing of seed production and release is highly relevant for successful plant reproduction. Ecological disturbances, if synchronized with reproductive effort, can increase the chances of seeds and seedlings to germinate and establish. This can be especially true under variable and synchronous seed production (masting). Several observational studies have reported worldwide evidence for co-occurrence of disturbances and seed bumper crops in forests. Here, we review the evidence for interaction between disturbances and masting in global plant communities; we highlight feedbacks between these two ecological processes and posit an evolutionary pathway leading to the selection of traits that allow trees to synchronize seed crops with disturbances. Finally, we highlight relevant questions to be tested on the functional and evolutionary relationship between disturbances and masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Mario B. Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marco Conedera
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Cadenazzo, Switzerland
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lorenzo Rossi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Davide Ascoli
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
16
|
Pesendorfer MB, Bowman R, Gratzer G, Pruett S, Tringali A, Fitzpatrick JW. Fire history and weather interact to determine extent and synchrony of mast-seeding in rhizomatous scrub oaks of Florida. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200381. [PMID: 34657464 PMCID: PMC8520774 DOI: 10.1098/rstb.2020.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/12/2022] Open
Abstract
In disturbance-prone ecosystems, fitness consequences of plant reproductive strategies are often determined by the relative timing of seed production and disturbance events, but the role of disturbances as proximate drivers of seed production has been overlooked. We use long-term data on seed production in Quercus chapmanii, Q. geminata and Q. inopina, rhizomatous oaks found in south central Florida's oak scrub, to investigate the role of fire history and its interaction with weather in shaping acorn production and its synchrony. Acorn production increased with the time since last fire, combined with additive or interactive effects of spring precipitation (+) or drought (-). Furthermore, multiple matrix regression models revealed that ramet pairs with shared fire history were more synchronous in seed production than ones that burned in different years. Long-term trends suggest that increasingly drier spring weather, in interaction with fire frequency, may drive a decline of seed production. Such declines could affect the community of acorn-reliant vertebrates in the Florida scrub, including endangered Florida scrub-jays (Aphelocoma coerulescens). These results illustrate that fire can function as a proximate driver of seed production in mast-seeding species, highlighting the increasingly recognized importance of interactions among reproductive strategies and disturbance regimes in structuring plant populations and communities. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Mario B. Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, A-1180 Vienna, Austria
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
- Smithsonian Migratory Bird Center, National Zoological Park, Washington, DC 20008, USA
| | - Reed Bowman
- Archbold Biological Station, Venus, FL 33960, USA
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, A-1180 Vienna, Austria
| | | | | | - John W. Fitzpatrick
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
- Archbold Biological Station, Venus, FL 33960, USA
| |
Collapse
|
17
|
LaMontagne JM, Redmond MD, Wion AP, Greene DF. An assessment of temporal variability in mast seeding of North American Pinaceae. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200373. [PMID: 34657469 PMCID: PMC8520784 DOI: 10.1098/rstb.2020.0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Our overall objective is to synthesize mast-seeding data on North American Pinaceae to detect characteristic features of reproduction (i.e. development cycle length, serotiny, dispersal agents), and test for patterns in temporal variation based on weather variables. We use a large dataset (n = 286 time series; mean length = 18.9 years) on crop sizes in four conifer genera (Abies, Picea, Pinus, Tsuga) collected between 1960 and 2014. Temporal variability in mast seeding (CVp) for 2 year genera (Abies, Picea, Tsuga) was higher than for Pinus (3 year), and serotinous species had lower CVp than non-serotinous species; there were no relationships of CVp with elevation or latitude. There was no difference in family-wide CVp across four tree regions of North America. Across all genera, July temperature differences between bud initiation and the prior year (ΔT) was more strongly associated with reproduction than absolute temperature. Both CVp and ΔT remained steady over time, while absolute temperature increased by 0.09°C per decade. Our use of the ΔT model included a modification for Pinus, which initiates cone primordia 2 years before seedfall, as opposed to 1 year. These findings have implications for how mast-seeding patterns may change with future increases in temperature, and the adaptive benefits of mast seeding. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Jalene M. LaMontagne
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Avenue, Chicago, IL 60614, USA
| | - Miranda D. Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Andreas P. Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - David F. Greene
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| |
Collapse
|
18
|
Ascoli D, Hacket-Pain A, Pearse IS, Vacchiano G, Corti S, Davini P. Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200380. [PMID: 34657463 PMCID: PMC8520781 DOI: 10.1098/rstb.2020.0380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Davide Ascoli
- Department DISAFA, University of Torino (IT), Torino TO, Italy
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool (UK), UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | | | - Susanna Corti
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Bologna, Italy
| | - Paolo Davini
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Torino, Italy
| |
Collapse
|
19
|
Hacket-Pain A, Bogdziewicz M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200379. [PMID: 34657461 PMCID: PMC8520772 DOI: 10.1098/rstb.2020.0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61‐614 Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint‐Martin‐d'Hères, 38400 France
| |
Collapse
|
20
|
Nakamura T, Ishida A, Kawai K, Minagi K, Saiki S, Yazaki K, Yoshimura J. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. GLOBAL CHANGE BIOLOGY 2021; 27:5094-5108. [PMID: 34170598 PMCID: PMC8518126 DOI: 10.1111/gcb.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Ongoing global warming increases the frequency and severity of tropical typhoons and prolonged drought, leading to forest degradation. Simultaneous and/or successive masting events and climatic extremes may thus occur frequently in the near future. If these climatic extremes occur immediately after mass seed reproduction, their effects on individual trees are expected to be very severe because mass reproduction decreases carbohydrate reserves. While the effects of either a single climate extreme or masting alone on tree resilience/growth have received past research attention, understanding the cumulative effects of such multiple events remains challenging and is crucial for predicting future forest changes. Here, we report tree hazards compound by two successive climate extremes, a tropical typhoon and prolonged drought, after mass reproduction in an endemic tree species (Distylium lepidotum Nakai) on oceanic islands. Across individual trees, the starch stored within the sapwood of branchlets significantly decreased with reproductive efforts (fruit mass/shoot mass ratio). Typhoon damage significantly decreased not only the total leaf area of apical shoots but also the maximum photosynthetic rates. During the 5-month period after the typhoon, the mortality of large branchlets (8-10-mm diameter) increased with decreasing stored starch when the typhoon hit. During the prolonged summer drought in the next year, the recovery of total leaf area, stored starch, and hydraulic conductivity was negatively correlated with the stored starch at the typhoon. These data indicate that the level of stored starch within branchlets is the driving factor determining tree regrowth or dieback, and the restoration of carbohydrates after mass reproduction is synergistically delayed by such climate extremes. Stored carbohydrates are the major cumulative factor affecting individual tree resilience, resulting in their historical effects. Because of highly variable carbohydrate levels among individual trees, the resultant impacts of such successive events on forest dieback will be fundamentally different among trees.
Collapse
Affiliation(s)
- Tomomi Nakamura
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Atsushi Ishida
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Kiyosada Kawai
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
- Japan International Research Center for Agricultural SciencesTsukubaIbarakiJapan
| | - Kanji Minagi
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Shin‐Taro Saiki
- Forestry and Forest Products Research InstituteTsukubaIbarakiJapan
| | - Kenichi Yazaki
- Hokkaido Research Center, Forestry and Forest Products Research InstituteSapporoHokkaidoJapan
| | - Jin Yoshimura
- Institute of Tropical MedicineNagasaki UniversityNagasakiNagasakiJapan
- Faculty of ScienceTokyo Metropolitan UniversityHachiojiTokyoJapan
- The University MuseumThe University of TokyoBunkyoTokyoJapan
| |
Collapse
|
21
|
Oddou-Muratorio S, Petit-Cailleux C, Journé V, Lingrand M, Magdalou JA, Hurson C, Garrigue J, Davi H, Magnanou E. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. ANNALS OF BOTANY 2021; 128:193-204. [PMID: 33928352 PMCID: PMC8324029 DOI: 10.1093/aob/mcab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Abiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics. This study investigated the relationships among individual crown defoliation, growth and reproduction in a drought-prone population of European beech, Fagus sylvatica. METHODS We used a spatially explicit mating model and marker-based parentage analyses to estimate effective female and male fecundities of 432 reproductive trees, which were also monitored for basal area increment and crown defoliation over 9 years. KEY RESULTS Female and male fecundities varied markedly between individuals, more than did growth. Both female fecundity and growth decreased with increasing crown defoliation and competition, and increased with size. Moreover, the negative effect of defoliation on female fecundity was size-dependent, with a slower decline in female fecundity with increasing defoliation for the large individuals. Finally, a trade-off between growth and female fecundity was observed in response to defoliation: some large trees maintained significant female fecundity at the expense of reduced growth in response to defoliation, while some other defoliated trees maintained high growth at the expense of reduced female fecundity. CONCLUSIONS Our results suggest that, while decreasing their growth, some large defoliated trees still contribute to reproduction through seed production and pollination. This non-coordinated decline of growth and fecundity at individual level in response to stress may compromise the evolution of stress-resistance traits at population level, and increase forest tree vulnerability.
Collapse
Affiliation(s)
| | | | | | - Matthieu Lingrand
- URFM, INRAE, Avignon, France
- ECOBIOP, INRAE, St-Pée-sur-Nivelle, France
| | | | | | - Joseph Garrigue
- Réserve Naturelle Nationale de la forêt de la Massane, France
| | | | - Elodie Magnanou
- Réserve Naturelle Nationale de la forêt de la Massane, France
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls/Mer, France
| |
Collapse
|
22
|
Heterogeneous selection on exploration behavior within and among West European populations of a passerine bird. Proc Natl Acad Sci U S A 2021; 118:2024994118. [PMID: 34234017 DOI: 10.1073/pnas.2024994118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous selection is often proposed as a key mechanism maintaining repeatable behavioral variation ("animal personality") in wild populations. Previous studies largely focused on temporal variation in selection within single populations. The relative importance of spatial versus temporal variation remains unexplored, despite these processes having distinct effects on local adaptation. Using data from >3,500 great tits (Parus major) and 35 nest box plots situated within five West-European populations monitored over 4 to 18 y, we show that selection on exploration behavior varies primarily spatially, across populations, and study plots within populations. Exploration was, simultaneously, selectively neutral in the average population and year. These findings imply that spatial variation in selection may represent a primary mechanism maintaining animal personalities, likely promoting the evolution of local adaptation, phenotype-dependent dispersal, and nonrandom settlement. Selection also varied within populations among years, which may counteract local adaptation. Our study underlines the importance of combining multiple spatiotemporal scales in the study of behavioral adaptation.
Collapse
|
23
|
Bogdziewicz M, Hacket-Pain A, Ascoli D, Szymkowiak J. Environmental variation drives continental-scale synchrony of European beech reproduction. Ecology 2021; 102:e03384. [PMID: 33950521 DOI: 10.1002/ecy.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Italy
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
24
|
Fujiki D. A model to predict the occurrence of Asiatic black bears at the municipal level using mast production data. URSUS 2021. [DOI: 10.2192/ursus-d-19-0008.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke Fujiki
- Institute of Natural and Environment Science, University of Hyogo, 940 Sawano, Aogaki-cho, Tamba, Hyogo 669-3842, Japan
| |
Collapse
|
25
|
Bogdziewicz M, Hacket-Pain A, Kelly D, Thomas PA, Lageard J, Tanentzap AJ. Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. GLOBAL CHANGE BIOLOGY 2021; 27:1952-1961. [PMID: 33604979 DOI: 10.1111/gcb.15560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Climate change is altering patterns of seed production worldwide with consequences for population recruitment and migration potential. For the many species that regenerate through synchronized, quasiperiodic reproductive events termed masting, these changes include decreases in the synchrony and interannual variation in seed production. This breakdown in the occurrence of masting features harms reproduction by decreasing the efficiency of pollination and increasing seed predation. Changes in masting are often paralleled by warming temperatures, but the underlying proximate mechanisms are unknown. We used a unique 39-year study of 139 European beech (Fagus sylvatica) trees that experienced masting breakdown to track the seed developmental cycle and pinpoint phases where weather effects on seed production have changed over time. A cold followed by warm summer led to large coordinated flowering efforts among plants. However, trees failed to respond to the weather signal as summers warmed and the frequency of reproductive cues changed fivefold. Less synchronous flowering resulted in less efficient pollination that further decreased the synchrony of seed maturation. As global temperatures are expected to increase this century, perennial plants that fine-tune their reproductive schedules based on temperature cues may suffer regeneration failures.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight RC, Poole AM, Jameson PE. Molecular control of the floral transition in the mast seeding plant Celmisia lyallii (Asteraceae). Mol Ecol 2021; 30:1846-1863. [PMID: 33624370 DOI: 10.1111/mec.15859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Mast flowering (or masting) is synchronous, highly variable flowering among years in populations of perennial plants. Despite having widespread consequences for seed consumers, endangered fauna and human health, masting is hard to predict. While observational studies show links to various weather patterns in different plant species, the mechanism(s) underpinning the regulation of masting is still not fully explained. We studied floral induction in Celmisia lyallii (Asteraceae), a mast flowering herbaceous alpine perennial, comparing gene expression in flowering and nonflowering plants. We performed translocation experiments to induce the floral transition in C. lyallii plants followed by both global and targeted expression analysis of flowering-pathway genes. Differential expression analysis showed elevated expression of ClSOC1 and ClmiR172 (promoters of flowering) in leaves of plants that subsequently flowered, in contrast to elevated expression of ClAFT and ClTOE1 (repressors of flowering) in leaves of plants that did not flower. The warm summer conditions that promoted flowering led to differential regulation of age and hormonal pathway genes, including ClmiR172 and ClGA20ox2, known to repress the expression of floral repressors and permit flowering. Upregulated expression of epigenetic modifiers of floral promoters also suggests that plants may maintain a novel "summer memory" across years to induce flowering. These results provide a basic mechanistic understanding of floral induction in masting plants and evidence of their ability to imprint various environmental cues to synchronize flowering, allowing us to better predict masting events under climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
27
|
Bogdziewicz M, Pesendorfer M, Crone EE, Pérez-Izquierdo C, Bonal R. Flowering synchrony drives reproductive success in a wind-pollinated tree. Ecol Lett 2020; 23:1820-1826. [PMID: 32981190 DOI: 10.1111/ele.13609] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022]
Abstract
Synchronised and quasi-periodic production of seeds by plant populations, known as masting, is implicated in many ecological processes, but how it arises remains poorly understood. Flowering and pollination dynamics are hypothesised to provide the mechanistic link for the observed relationship between weather and population-level seed production. We report the first experimental test of the phenological synchrony hypotheses as a driver of pollen limitation in mast seeding oaks (Quercus ilex). Higher flowering synchrony yielded greater pollination efficiency, which resulted in 2-fold greater seed set in highly synchronised oaks compared to asynchronous individuals. Pollen addition removed the negative effect of asynchronous flowering on seed set. Because phenological synchrony operates through environmental variation, this result suggests that oak masting is synchronised by exogenous rather than endogenous factors. It also points to a mechanism by which changes in flowering phenology can affect plant reproduction of mast-seeding plants, with subsequent implications for community dynamics.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mario Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | - Raul Bonal
- INDEHESA, Forest Research Group, University of Extremadura, Plasencia, Spain
| |
Collapse
|
28
|
Pearse IS, LaMontagne JM, Lordon M, Hipp AL, Koenig WD. Biogeography and phylogeny of masting: do global patterns fit functional hypotheses? THE NEW PHYTOLOGIST 2020; 227:1557-1567. [PMID: 32315447 DOI: 10.1111/nph.16617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Interannual variability of seed crops (CVp) has profound consequences for plant populations and food webs, where high CVp is termed 'masting'. Here we ask: is global variation in CVp better predicted by plant or habitat differences consistent with adaptive economies of scale, in which flower and seed benefits increase disproportionately during mast years; or by passive mechanisms, in which seed production responds to variation in resource availability associated with climate variability? To address this question, we compiled a dataset for phylogenetic comparative analysis of long-term fruit/seed production for plants comprising 920 time series spanning 311 plant species. Factors associated with both adaptive benefits of CVp (wind pollination and seed dispersal) and climatic variability (variability of summer precipitation) were among the best predictors of global variation in CVp. We observed a hump-shaped relationship between CVp and latitude and intermediate phylogenetic and geographic signals in CVp. CVp is patterned nonrandomly across the globe and over the plant tree of life, where high CVp is associated with species benefiting from economies of scale of seed or flower production and with species that experience variable rainfall over summer months when seeds usually mature.
Collapse
Affiliation(s)
- Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave #C, Ft Collins, CO, 80526, USA
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL, 60614, USA
| | - Michael Lordon
- Department of Biological Sciences, DePaul University, Chicago, IL, 60614, USA
| | | | - Walter D Koenig
- Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
- Hastings Reservation, University of California Berkeley, Carmel Valley, CA, 93924, USA
| |
Collapse
|
29
|
Bogdziewicz M, Fernández‐Martínez M, Espelta JM, Ogaya R, Penuelas J. Is forest fecundity resistant to drought? Results from an 18-yr rainfall-reduction experiment. THE NEW PHYTOLOGIST 2020; 227:1073-1080. [PMID: 32329082 PMCID: PMC7496795 DOI: 10.1111/nph.16597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Recruitment is a primary determinant of the long-term dynamics of plant populations in changing environments. However, little information is known about the effects of anthropogenic environmental changes on reproductive ecology of trees. We evaluated the impact of experimentally induced 18 yr of drought on reproduction of three contrasting forest trees: Quercus ilex, Phillyrea latifolia and Arbutus unedo. Rainfall reduction did not decrease tree fecundity. Drought, however, affected the allocation of resources in Q. ilex and A. unedo but not the more drought tolerant P. latifolia. Larger crop production by Q. ilex and A. unedo was associated with a stronger decrease in growth in the rainfall-reduction plots compared with the control plots, suggesting that these species were able to maintain their fecundity by shifting their allocation of resources away from growth. Our results indicated resistance to change in tree fecundity in Mediterranean-type forest subjected to an average 15% decrease in the amount of soil moisture, suggesting that these ecosystems may adapt to a progressive increase in arid conditions. However, the species-specific reductions in growth may indirectly affect future fecundity and ultimately shift community composition, even without immediate direct effects of drought on tree fecundity.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University61‐614PoznańPoland
- CREAFCerdanyola delVallès08193CataloniaSpain
| | | | | | - Romà Ogaya
- CREAFCerdanyola delVallès08193CataloniaSpain
| | - Josep Penuelas
- CREAFCerdanyola delVallès08193CataloniaSpain
- Global Ecology UnitCSICCerdanyola del Vallès 08193CataloniaSpain
| |
Collapse
|
30
|
Faber M, Krüger DH, Auste B, Stark K, Hofmann J, Weiss S. Molecular and epidemiological characteristics of human Puumala and Dobrava-Belgrade hantavirus infections, Germany, 2001 to 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 31411134 PMCID: PMC6693291 DOI: 10.2807/1560-7917.es.2019.24.32.1800675] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction Two hantavirus species, Puumala (PUUV) and Dobrava-Belgrade (DOBV) virus (genotype Kurkino), are endemic in Germany. Recent PUUV outbreaks raised questions concerning increasing frequency of outbreaks and expansion of PUUV endemic areas. Aims To describe the epidemiology of human PUUV and DOBV infections in Germany. Methods We conducted an observational retrospective study analysing national hantavirus surveillance data notified to the national public health institute and hantavirus nucleotide sequences from patients collected at the national consultation laboratory between 2001 and 2017. Matching molecular sequences with surveillance data, we conducted epidemiological, phylogenetic and phylogeographic analyses. Results In total, 12,148 cases of symptomatic hantavirus infection were notified 2001–17 (mean annual incidence: 0.87/100,000; range: 0.09–3.51). PUUV infections showed a highly variable space-time disease incidence pattern, causing large outbreaks every 2–3 years with peaks in early summer and up to 3,000 annually reported cases. Sex-specific differences in disease presentation were observed. Of 202 PUUV nucleotide sequences obtained from cases, 189 (93.6%) fall into well-supported phylogenetic clusters corresponding to different endemic areas in Germany. DOBV infections caused few, mostly sporadic cases in autumn and winter in the north and east of Germany. Conclusions The frequency of PUUV outbreaks increased between 2001 and 2017 but our data does not support the suggested expansion of endemic areas. The epidemiology of PUUV and DOBV-Kurkino infections differs in several aspects. Moreover, the latter are relatively rare and combining efforts and data of several countries to identify risk factors and develop specific recommendations for prevention could be worthwhile.
Collapse
Affiliation(s)
- Mirko Faber
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Detlev H Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Brita Auste
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Klaus Stark
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Jörg Hofmann
- These authors contributed equally and share last authorship.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Sabrina Weiss
- These authors contributed equally and share last authorship.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| |
Collapse
|
31
|
Bogdziewicz M, Kelly D, Tanentzap AJ, Thomas PA, Lageard JGA, Hacket-Pain A. Climate Change Strengthens Selection for Mast Seeding in European Beech. Curr Biol 2020; 30:3477-3483.e2. [PMID: 32649915 DOI: 10.1016/j.cub.2020.06.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Climate change is altering patterns of seed production worldwide [1-4], but the potential for evolutionary responses to these changes is poorly understood. Masting (synchronous, annually variable seed production by plant populations) is selectively beneficial through economies of scale that decrease the cost of reproduction per surviving offspring [5-7]. Masting is particularly widespread in temperate trees [8, 9] impacting food webs, macronutrient cycling, carbon storage, and human disease risk [10-12], so understanding its response to climate change is important. Here, we analyze inter-individual variability in plant reproductive patterns and two economies of scale-predator satiation and pollination efficiency-and document how natural selection acting upon them favors masting. Four decades of observations for European beech (Fagus sylvatica) show that predator satiation and pollination efficiency select for individuals with higher inter-annual variability of reproduction and higher reproductive synchrony between individuals. This result confirms the long-standing theory that masting, a population-level phenomenon, is generated by selection on individuals. Furthermore, recent climate-driven increases in mean seed production have increased selection pressure from seed predators but not from pollination efficiency. Natural selection is thus acting to restore the fitness benefits of masting, which have previously decreased under a warming climate [13]. However, selection will likely take far longer (centuries) than climate warming (decades), so in the short-term, tree reproduction will be reduced because masting has become less effective at satiating seed predators. Over the long-term, evolutionary responses to climate change could potentially increase inter-annual variability of seed production of masting species.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umutlowska 89, 61-614 Poznan, Poland; CREAF, Universitat de Autonoma Barcelona, Cerdanyola del Valles, 08193 Catalonia, Spain.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| |
Collapse
|
32
|
LaMontagne JM, Pearse IS, Greene DF, Koenig WD. Mast seeding patterns are asynchronous at a continental scale. NATURE PLANTS 2020; 6:460-465. [PMID: 32341539 DOI: 10.1038/s41477-020-0647-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Resource pulses are rare events with a short duration and high magnitude that drive the dynamics of both plant and animal populations and communities1. Mast seeding is perhaps the most common type of resource pulse that occurs in terrestrial ecosystems2, is characterized by the synchronous and highly variable production of seed crops by a population of perennial plants3,4, is widespread both taxonomically and geographically5, and is often associated with nutrient scarcity6. The rare production of abundant seed crops (mast events) that are orders of magnitude greater than crops during low seed years leads to high reproductive success in seed consumers and has cascading impacts in ecosystems2,7. Although it has been suggested that mast seeding is potentially synchronized at continental scales8, studies are largely constrained to local areas covering tens to hundreds of kilometres. Furthermore, summer temperature, which acts as a cue for mast seeding9, shows patterns at continental scales manifested as a juxtaposition of positive and negative anomalies that have been linked to irruptive movements of boreal seed-eating birds10,11. Here, we show a breakdown in synchrony of mast seeding patterns across space, leading to asynchrony at the continental scale. In an analysis of synchrony for a transcontinental North America tree species spanning distances of greater than 5,200 km, we found that mast seeding patterns were significantly asynchronous at distances of greater than 2,000 km apart (all P < 0.05). Other studies have shown declines in synchrony across distance, but not asynchrony. Spatiotemporal variation in summer temperatures at the continental scale drives patterns of synchrony in mast seeding, and we anticipate that this affects the spatial dynamics of numerous seed-eating communities, from insects to small mammals to the large-scale migration patterns of boreal seed-eating birds.
Collapse
Affiliation(s)
| | - Ian S Pearse
- Illinois Natural History Survey, Champaign, IL, USA
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | - David F Greene
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| | - Walter D Koenig
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Zuckerberg B, Strong C, LaMontagne JM, St. George S, Betancourt JL, Koenig WD. Climate Dipoles as Continental Drivers of Plant and Animal Populations. Trends Ecol Evol 2020; 35:440-453. [DOI: 10.1016/j.tree.2020.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
|
34
|
Mund M, Herbst M, Knohl A, Matthäus B, Schumacher J, Schall P, Siebicke L, Tamrakar R, Ammer C. It is not just a 'trade-off': indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest. THE NEW PHYTOLOGIST 2020; 226:111-125. [PMID: 31901219 DOI: 10.1111/nph.16408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2 = 0.85), and negatively to precipitation in May (R2 = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.
Collapse
Affiliation(s)
- Martina Mund
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Mathias Herbst
- German Meteorological Service, Centre for Agrometeorological Research, Bundesallee 33, D-38116, Braunschweig, Germany
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| | - Bertrand Matthäus
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Schützenberg 12, D-32756, Detmold, Germany
| | - Jens Schumacher
- Institute of Mathematics, University of Jena, Ernst-Abbe-Platz 2, D-07743, Jena, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Lukas Siebicke
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
| | - Rijan Tamrakar
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| |
Collapse
|
35
|
Extreme summer heat and drought lead to early fruit abortion in European beech. Sci Rep 2020; 10:5334. [PMID: 32210278 PMCID: PMC7093476 DOI: 10.1038/s41598-020-62073-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Years with high fruit production, known as mast years, are the usual reproduction strategy of European beech. Harsh weather conditions such as frost during flowering can lead to pollination failure in spring. It has been assumed that mast is controlled by flowering, and that after successful pollination, high amounts of fruits and seeds would be produced. However, the extremely hot and dry European summer of 2018 showed that despite successful pollination, beechnuts did not develop or were only abundant in a few forest stands. An in-depth analysis of three forest sites of European beech from the Swiss Long-Term Forest Ecosystem Research Programme over the last 15–19 years revealed for the first time that extreme summer heat and drought can act as an “environmental veto”, leading to early fruit abortion. Within the forest stands in years with fruit abortion, summer mean temperatures were 1.5 °C higher and precipitation sums were 45% lower than the long-term average. Extreme summer heat and drought, together with frost during flowering, are therefore disrupting events of the assumed biennial fruiting cycle in European beech.
Collapse
|
36
|
Pesendorfer MB, Bogdziewicz M, Szymkowiak J, Borowski Z, Kantorowicz W, Espelta JM, Fernández‐Martínez M. Investigating the relationship between climate, stand age, and temporal trends in masting behavior of European forest trees. GLOBAL CHANGE BIOLOGY 2020; 26:1654-1667. [PMID: 31950581 PMCID: PMC7079002 DOI: 10.1111/gcb.14945] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/24/2019] [Indexed: 06/01/2023]
Abstract
Masting-temporally variable seed production with high spatial synchrony-is a pervasive strategy in wind-pollinated trees that is hypothesized to be vulnerable to climate change due to its correlation with variability in abiotic conditions. Recent work suggests that aging may also have strong effects on seed production patterns of trees, but this potential confounding factor has not been considered in previous times series analysis of climate change effects. Using a 54 year dataset for seven dominant species in 17 forests across Poland, we used the proportion of seed-producing trees (PST) to contrast the predictions of the climate change and aging hypotheses in Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Quercus petraea, and Quercus robur. Our results show that in all species, PST increased over time and that this change correlated most strongly with stand age, while the standardized precipitation-evapotranspiration index, a measure of drought, contributed to temporal trends in PST of F. sylvatica and Q. robur. Temporal variability of PST also increased over time in all species except P. sylvestris, while trends in temporal autocorrelation and among-stand synchrony reflect species-specific masting strategies. Our results suggest a pivotal role of plant ontogeny in driving not only the extent but also variability and synchrony of reproduction in temperate forest trees. In a time of increasing forest regrowth in Europe, we therefore call for increased attention to demographic effects such as aging on plant reproductive behavior, particularly in studies examining global change effects using long-term time series data.
Collapse
Affiliation(s)
- Mario B. Pesendorfer
- Institute of Forest EcologyDepartment of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
- Cornell Lab of OrnithologyIthacaNYUSA
- Smithsonian Migratory Bird CenterNational Zoological ParkWashingtonDCUSA
| | | | - Jakub Szymkowiak
- Population Ecology LabFaculty of BiologyAdam Mickiewicz UniversityPoznańPoland
| | | | - Władysław Kantorowicz
- Department of Silviculture and Genetics of Forest TreesForest Research InstituteRaszynPoland
| | | | | |
Collapse
|
37
|
Bogdziewicz M, Ascoli D, Hacket‐Pain A, Koenig WD, Pearse I, Pesendorfer M, Satake A, Thomas P, Vacchiano G, Wohlgemuth T, Tanentzap A. From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol Lett 2020; 23:210-220. [PMID: 31858712 PMCID: PMC6973031 DOI: 10.1111/ele.13442] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University in PoznańUmutlowska 8961‐614PoznańPoland
| | - Davide Ascoli
- Department of Agricultural, Forest and Food SciencesUniversity of Turin10095 GrugliascoTorinoItaly
| | - Andrew Hacket‐Pain
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Ian Pearse
- Fort Collins Science Center U.S. Geological SurveyFort CollinsCOUSA
| | - Mario Pesendorfer
- Lab of OrnithologyCornell UniversityIthacaNY14850USA
- Institute of Forest EcologyDepartment of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu University819‐0395FukuokaJapan
| | - Peter Thomas
- School of Life SciencesKeele UniversityStaffordshireST5 5BGUK
| | | | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLForest Dynamics, Zürcherstrasse 111CH‐8903BirmensdorfSwitzerland
| | - Andrew Tanentzap
- Department of Plant SciencesUniversity of CambridgeDowning StCambridgeCB2 3EAUK
| |
Collapse
|
38
|
Bogdziewicz M, Kelly D, Thomas PA, Lageard JGA, Hacket-Pain A. Climate warming disrupts mast seeding and its fitness benefits in European beech. NATURE PLANTS 2020; 6:88-94. [PMID: 32042155 DOI: 10.1038/s41477-020-0592-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Many plants benefit from synchronous year-to-year variation in seed production, called masting. Masting benefits plants because it increases the efficiency of pollination and satiates predators, which reduces seed loss. Here, using a 39-year-long dataset, we show that climate warming over recent decades has increased seed production of European beech but decreased the year-to-year variability of seed production and the reproductive synchrony among individuals. Consequently, the benefit that the plants gained from masting has declined. While climate warming was associated with increased reproductive effort, we demonstrate that less effective pollination and greater losses of seeds to predators offset any benefits to the plants. This shows that an apparently simple benefit of climate warming unravels because of complex ecological interactions. Our results indicate that in masting systems, the main beneficiaries of climate-driven increases in seed production are seed predators, not plants.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
39
|
Merganičová K, Merganič J, Lehtonen A, Vacchiano G, Sever MZO, Augustynczik ALD, Grote R, Kyselová I, Mäkelä A, Yousefpour R, Krejza J, Collalti A, Reyer CPO. Forest carbon allocation modelling under climate change. TREE PHYSIOLOGY 2019; 39:1937-1960. [PMID: 31748793 PMCID: PMC6995853 DOI: 10.1093/treephys/tpz105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 05/19/2023]
Abstract
Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
Collapse
Affiliation(s)
- Katarína Merganičová
- Czech University of Life Sciences, Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
- Technical University Zvolen, Forestry Faculty, T. G. Masaryka 24, 96053 Zvolen, Slovakia
| | - Ján Merganič
- Technical University Zvolen, Forestry Faculty, T. G. Masaryka 24, 96053 Zvolen, Slovakia
| | - Aleksi Lehtonen
- The Finnish Forest Research Institute - Luke, PO Box 18 (Jokiniemenkuja 1), FI-01301 Vantaa, Finland
| | - Giorgio Vacchiano
- Università degli Studi di Milano, DISAA. Via Celoria 2, 20132 Milano, Italy
| | - Maša Zorana Ostrogović Sever
- Croatian Forest Research Institute, Department for forest management and forestry economics, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| | | | - Rüdiger Grote
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Ina Kyselová
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Annikki Mäkelä
- University of Helsinki, Department of Forest Science, Latokartanonkaari 7, P.O. Box 27, 00014 Helsinki, Finland
| | - Rasoul Yousefpour
- University of Freiburg, Tennenbacher Str. 4 (2. OG), D-79106 Freiburg, Germany
| | - Jan Krejza
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Alessio Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), 87036 Rende, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Christopher P O Reyer
- Potsdam Institute for Climate Impact Research, Telegraphenberg, PO Box 601203, D-14473 Potsdam, Germany
| |
Collapse
|
40
|
Using Annual Resolution Pollen Analysis to Synchronize Varve and Tree-Ring Records. QUATERNARY 2019. [DOI: 10.3390/quat2030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fossil wood and varved lake sediments allow proxy analysis with exceptionally high, (sub-)annual resolution. Both archives provide dating through ring and layer counting, yet with different accuracy. In wood, counting errors are small and can be eliminated through cross-dating because tree-rings show regionally synchronous patterns. In varved sediments, counting errors are larger and cross-dating is hampered by missing regional patterns in varve parameters. Here, we test whether annual pollen analysis is suited to synchronize varve records. To that end, annual pollen deposition was estimated in three short cores from two lakes in north-eastern Germany for the period 1980–2017 CE. Analysis has focused on Fagus sylvatica and Picea abies, which show the strongest annual variations in flowering (mast). For both tree taxa, annual flowering variations recorded by forest and pollen monitoring are well represented in varved lake sediments, hence indeed allow us to synchronize the records. Some pollen mast events were not recognized, which may relate to sampling uncertainties, redeposition or regional variations in flowering. In Fagus sylvatica, intense flowering limits wood growth in the same year. Peaks in pollen deposition hence correlate with minima in tree-ring width, which provides a link between varved lake sediments and fossil wood.
Collapse
|
41
|
Bogdziewicz M, Żywiec M, Espelta JM, Fernández-Martinez M, Calama R, Ledwoń M, McIntire E, Crone EE. Environmental Veto Synchronizes Mast Seeding in Four Contrasting Tree Species. Am Nat 2019; 194:246-259. [PMID: 31318289 DOI: 10.1086/704111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Synchronized and variable reproduction by perennial plants, called mast seeding, is a major reproductive strategy of trees. The need to accumulate sufficient resources after depletion following fruiting (resource budget), the efficiency of mass flowering for outcross pollination (pollen coupling), or the external factors preventing reproduction (environmental veto) could all synchronize masting. We used seed production data for four species (Quercus ilex, Quercus humilis, Sorbus aucuparia, and Pinus albicaulis) to parametrize resource budget models of masting. Based on species life-history characteristics, we hypothesized that pollen coupling should synchronize reproduction in S. aucuparia and P. albicaulis, while in Q. ilex and Q. humilis, environmental veto should be a major factor. Pollen coupling was stronger in S. aucuparia and P. albicaulis than in oaks, while veto was more frequent in the latter. Yet in all species, costs of reproduction were too small to impose a replenishment period. A synchronous environmental veto, in the presence of environmental stochasticity, was sufficient to produce observed variability and synchrony in reproduction. In the past, vetoes like frost events that prevent reproduction have been perceived as negative for plants. In fact, they could be selectively favored as a way to create mast seeding.
Collapse
|
42
|
Dorado-Liñán I, Piovesan G, Martínez-Sancho E, Gea-Izquierdo G, Zang C, Cañellas I, Castagneri D, Di Filippo A, Gutiérrez E, Ewald J, Fernández-de-Uña L, Hornstein D, Jantsch MC, Levanič T, Mellert KH, Vacchiano G, Zlatanov T, Menzel A. Geographical adaptation prevails over species-specific determinism in trees' vulnerability to climate change at Mediterranean rear-edge forests. GLOBAL CHANGE BIOLOGY 2019; 25:1296-1314. [PMID: 30548989 DOI: 10.1111/gcb.14544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short-term extreme events and gradual environmental changes are quite uncertain across the species' limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short- and long-term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species' vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species-specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species-specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine-scale limitations of the climate data generated by global climate models.
Collapse
Affiliation(s)
- Isabel Dorado-Liñán
- Forest Research Centre (INIA-CIFOR), Madrid, Spain
- Forest Genetics and Ecophysiology Research Group, Technical University of Madrid, Madrid, Spain
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | - Gianluca Piovesan
- DendrologyLab, DAFNE, Università degli Studi della Tuscia, Viterbo, Italy
| | - Elisabet Martínez-Sancho
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Departamento de Ecología, Universidad de Barcelona, Barcelona, Spain
| | | | - Christian Zang
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Land Surface-Atmosphere Interactions, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | | | | | - Alfredo Di Filippo
- DendrologyLab, DAFNE, Università degli Studi della Tuscia, Viterbo, Italy
| | - Emilia Gutiérrez
- Departamento de Ecología, Universidad de Barcelona, Barcelona, Spain
| | - Joerg Ewald
- Faculty of Forestry, University of Applied Sciences Weihenstephan Triesdorf, Freising, Germany
| | | | - Daniel Hornstein
- Faculty of Forestry, University of Applied Sciences Weihenstephan Triesdorf, Freising, Germany
| | | | - Tom Levanič
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Karl H Mellert
- Forest Nutrition and Water Resources, University of Technology, Munich, Freising, Germany
| | | | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
43
|
Moreira X, Abdala-Roberts L, Pérez-Ramos IM, Knops JMH, Pesendorfer MB, Koenig WD, Mooney KA. Weather cues associated with masting behavior dampen the negative autocorrelation between past and current reproduction in oaks. AMERICAN JOURNAL OF BOTANY 2019; 106:51-60. [PMID: 30633821 DOI: 10.1002/ajb2.1210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY The influence of weather conditions on masting and the ecological advantages of this reproductive behavior have been the subject of much interest. Weather conditions act as cues influencing reproduction of individual plants, and similar responses expressed across many individuals lead to population-level synchrony in reproductive output. In turn, synchrony leads to benefits from economies of scale such as enhanced pollination success and seed predator satiation. However, there may also be individual-level benefits from reproductive responses to weather cues, which may explain the origin of masting in the absence of economies of scale. In a previous study, we found support for a mechanism whereby individual responses to weather cues attenuate the negative autocorrelation between past and current annual seed production-a pattern typically attributed to resource limitation and reproductive tradeoffs among years. METHODS Here we provide a follow-up and more robust evaluation of this hypothesis in 12 species of oaks (Quercus spp.), testing for a negative autocorrelation (tradeoff) between past and current reproduction and whether responses to weather cues associated with masting reduce the strength of this negative autocorrelation. KEY RESULTS Our results showed a strong negative autocorrelation for 11 of the species, and that species-specific reproductive responses to weather cues dampened this negative autocorrelation in 10 of them. CONCLUSIONS This dampening effect presumably reflects a reduction in resource limitation or increased resource use associated with weather conditions, and suggests that responses to weather cues conferring these advantages should be selected for based on individual benefits.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimna, 97000, Mérida, Yucatán, Mexico
| | - Ignacio M Pérez-Ramos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080, Sevilla, Andalucía, Spain
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, 215123, China
| | - Mario B Pesendorfer
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, New York, 14850, USA
| | - Walter D Koenig
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, New York, 14850, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA, 92697
| |
Collapse
|
44
|
Hacket-Pain AJ, Ascoli D, Vacchiano G, Biondi F, Cavin L, Conedera M, Drobyshev I, Liñán ID, Friend AD, Grabner M, Hartl C, Kreyling J, Lebourgeois F, Levanič T, Menzel A, van der Maaten E, van der Maaten-Theunissen M, Muffler L, Motta R, Roibu CC, Popa I, Scharnweber T, Weigel R, Wilmking M, Zang CS. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol Lett 2018; 21:1833-1844. [PMID: 30230201 PMCID: PMC6446945 DOI: 10.1111/ele.13158] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 01/17/2023]
Abstract
Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.
Collapse
Affiliation(s)
- Andrew J Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Davide Ascoli
- Dipartimento di Agraria, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Giorgio Vacchiano
- DISAA, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, 89509, USA
| | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Marco Conedera
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, a Ramél 18, CH-6953, Cadenazzo, Switzerland
| | - Igor Drobyshev
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, 230 53, Alnarp, Sweden.,Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, 445 boulevard de l' Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Isabel Dorado Liñán
- Forest Research Centre, (INIA-CIFOR), Ctra. La Coruñna km. 7.5, 28040, Madrid, Spain
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Michael Grabner
- University of Natural Resources and Life Science - BOKU, Vienna, Austria
| | - Claudia Hartl
- Department of Geography, Johannes Gutenberg-University, Johann-Joachim-Becher-Weg 21, 55128, Mainz, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - François Lebourgeois
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 14 rue Girardet, 54000, Nancy, France
| | - Tom Levanič
- Slovenian Forestry Institute, Večna pot 2, SI-1000, Ljubljana, Slovenia
| | - Annette Menzel
- TUM School of Life Sciences, Professorship of Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2 a, 85748, Garching, Germany
| | - Ernst van der Maaten
- Forest Growth and Woody Biomass Production, TU Dresden, Pienner Str. 8, 01737, Tharandt, Germany
| | | | - Lena Muffler
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Renzo Motta
- DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco (TO), Italy
| | | | - Ionel Popa
- National Research and Development Institute in Forestry, Marin Drăcea, Calea Bucovinei 73bis, Campulung Moldovenesc, Romania
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Robert Weigel
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Christian S Zang
- TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|
45
|
Tanentzap AJ, Monks A. Making the mast of a rainy day: environmental constraints can synchronize mass seeding across populations. THE NEW PHYTOLOGIST 2018; 219:6-8. [PMID: 29863769 DOI: 10.1111/nph.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
46
|
Brugger K, Walter M, Chitimia-Dobler L, Dobler G, Rubel F. Forecasting next season's Ixodes ricinus nymphal density: the example of southern Germany 2018. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:281-288. [PMID: 29846854 PMCID: PMC6097749 DOI: 10.1007/s10493-018-0267-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/18/2018] [Indexed: 05/13/2023]
Abstract
The castor bean tick, Ixodes ricinus (L.) (Ixodida: Ixodidae), is the principal vector of pathogens causing tick-borne encephalitis or Lyme borreliosis in Europe. It is therefore of general interest to make an estimate of the density of I. ricinus for the whole year at the beginning of the tick season. There are two necessary conditions for making a successful prediction: a long homogeneous time series of observed tick density and a clear biological relationship between environmental predictors and tick density. A 9-year time series covering the period 2009-2017 of nymphal I. ricinus flagged at monthly intervals in southern Germany has been used. With the hypothesis that I. ricinus density is triggered by the fructification of the European beech 2 years before, the mean annual temperature of the previous year, and the current mean winter temperature (December-February), a forecast of the annual nymphal tick density has been made. Therefore, a Poisson regression model was generated resulting in an explained variance of 93.4% and an error of [Formula: see text] ticks per [Formula: see text] (annual [Formula: see text] collected ticks/[Formula: see text]). An independent verification of the forecast for the year 2017 resulted in 187 predicted versus 180 observed nymphs per [Formula: see text]. For the year 2018 a relatively high number of 443 questing I. ricinus nymphs per [Formula: see text] is forecasted, i.e., a "good" tick year.
Collapse
Affiliation(s)
- Katharina Brugger
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Melanie Walter
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
- German Center of Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
- German Center of Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70593, Stuttgart, Germany
| | - Franz Rubel
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
47
|
Bogdziewicz M, Steele MA, Marino S, Crone EE. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants. THE NEW PHYTOLOGIST 2018; 219:98-108. [PMID: 29577320 DOI: 10.1111/nph.15108] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Shealyn Marino
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, 163 Packard Ave, Medford, MA, 02155, USA
| |
Collapse
|
48
|
|
49
|
Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat Commun 2017; 8:2205. [PMID: 29263383 PMCID: PMC5738406 DOI: 10.1038/s41467-017-02348-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.
Collapse
|