1
|
Paiva DC, Roddy AB. Flower longevity and size are coordinated with ecophysiological traits in a tropical montane ecosystem. THE NEW PHYTOLOGIST 2024; 244:344-350. [PMID: 39103979 DOI: 10.1111/nph.20027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Dario C Paiva
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Sherer TN, Heiling JM, Koski MH. Floral thermal biology in relation to pollen thermal performance in an early spring flowering plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:811-820. [PMID: 38838092 DOI: 10.1111/plb.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
The floral microenvironment impacts gametophyte viability and plant-pollinator interactions. Plants employ mechanisms to modify floral temperature, including thermogenesis, absorption of solar radiation, and evaporative cooling. Whether floral thermoregulation impacts reproductive fitness, and how floral morphological variation mediates thermoregulatory capacity are poorly understood. We measured temperature of the floral microenvironment in the field and tested for thermogenesis in the lab in early spring flowering Hexastylis arifolia (Aristolochiaceae). We evaluated whether thermoregulatory capacity was associated with floral morphological variation. Finally, we experimentally determined the thermal optimum and tolerance of pollen to assess whether thermoregulation may ameliorate thermal stress to pollen. Pollen germination was optimal near 21 °C, with a 50% tolerance breadth of ~18 °C. In laboratory conditions, flowers exhibited thermogenesis of 1.5-4.8 °C for short intervals within a conserved timeframe (08:00-09:00 h). In the field, temperature inside the floral tube often deviated from ambient - floral interiors were up to 4 °C above ambient when it was cold, but some fell nearly 10 °C below ambient during peak heat. Flowers with smaller openings were cooler and more thermally stable than those with larger openings during peak heat. Thermoregulation maintained a floral microenvironment within the thermal tolerance breadth of pollen. Results suggest that H. arifolia flowers have a stronger capacity to cool than to warm, and that narrower floral openings create a distinct floral microenvironment, enhancing floral cooling effects. While deviation of floral temperature from ambient conditions maintains a suitable environment for pollen and suggests an adaptive role of thermoregulation, we discuss adaptive and nonadaptive mechanisms underlying floral warming and cooling.
Collapse
Affiliation(s)
- T N Sherer
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - J M Heiling
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Biology, Western Carolina University, Cullowhee, NC, USA
| | - M H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
3
|
Haverroth EJ, Rimer IM, Oliveira LA, de Lima LGA, Cesarino I, Martins SCV, McAdam SAM, Cardoso AA. Gradients in embolism resistance within stems driven by secondary growth in herbs. PLANT, CELL & ENVIRONMENT 2024; 47:2986-2998. [PMID: 38644584 DOI: 10.1111/pce.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Leydson G A de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Ke Y, Zhang YB, Zhang FP, Yang D, Wang Q, Peng XR, Huang XY, Sher J, Zhang JL. Monocots and eudicots have more conservative flower water use strategies than basal angiosperms. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:621-632. [PMID: 38477557 DOI: 10.1111/plb.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Water balance is crucial for the growth and flowering of plants. However, the mechanisms by which flowers maintain water balance are poorly understood across different angiosperm branches. Here, we investigated 29 floral hydraulic and economic traits in 24 species from ANA grade, magnoliids, monocots, and eudicots. Our main objective was to compare differences in flower water use strategies between basal angiosperms (ANA grade and magnoliids) and derived group (monocots and eudicots). We found that basal angiosperms had richer petal stomatal density, higher pedicel hydraulic diameter, and flower mass per area, but lower pedicel vessel wall reinforcement and epidermal cell thickness compared to monocots and eudicots. We also observed significant trade-offs and coordination among different floral traits. Floral traits associated with reproduction, such as floral longevity and size, were strongly linked with physiological and anatomical traits. Our results systematically reveal the variation in flower economic and hydraulic traits from different angiosperm branches, deepening understanding of flower water use strategies among these plant taxa. We conclude that basal angiosperms maintain water balance with high water supply, whereas monocots and eudicots maintain a more conservative water balance.
Collapse
Affiliation(s)
- Y Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y-B Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - F-P Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - D Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Q Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - X-R Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - X-Y Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - J Sher
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - J-L Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
5
|
Aun MA, Farnese F, Loram-Lourenço L, de Abreu IMPG, Silva BRA, Freitas JCE, Filho VMA, Silva FG, Franco AC, Hammond WM, Cochard H, Menezes-Silva PE. Evidence of combined flower thermal and drought vulnerabilities portends reproductive failure under hotter-drought conditions. PLANT, CELL & ENVIRONMENT 2024; 47:1971-1986. [PMID: 38372066 DOI: 10.1111/pce.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; ΨTLP) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs. Importantly, the higher ΨTLP of flowers also resulted in narrow turgor safety margins (TSM). Moreover, compared to leaves, the cuticle of flowers had an overall higher thermal vulnerability, which also resulted in low leakage safety margins (LSM). As a result, the combination of low TSMs and LSMs may have negative impacts on reproduction success since they strongly influenced the time to turgor loss under simulated hotter-drought conditions. Overall, our results improve the knowledge of unexplored aspects of flower structure and function and highlight likely threats to successful plant reproduction in a warmer and drier world.
Collapse
Affiliation(s)
- Marina Alves Aun
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Fernanda Farnese
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Lucas Loram-Lourenço
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | | | | | | | | | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Augusto Cesar Franco
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - William M Hammond
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | |
Collapse
|
6
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Bourbia I, Brodribb TJ. Stomatal response to VPD is not triggered by changes in soil-leaf hydraulic conductance in Arabidopsis or Callitris. THE NEW PHYTOLOGIST 2024; 242:444-452. [PMID: 38396304 DOI: 10.1111/nph.19607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| |
Collapse
|
8
|
Hartill GE, Blackman CJ, Halliwell B, Jones RC, Holland BR, Brodribb TJ. Cold temperature and aridity shape the evolution of drought tolerance traits in Tasmanian species of Eucalyptus. TREE PHYSIOLOGY 2023; 43:1493-1500. [PMID: 37208009 PMCID: PMC10493950 DOI: 10.1093/treephys/tpad065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Perennial plant species from water-limiting environments (including climates of extreme drought, heat and freezing temperatures) have evolved traits that allow them to tolerate these conditions. As such, traits that are associated with water stress may show evidence of adaptation to climate when compared among closely related species inhabiting contrasting climatic conditions. In this study, we tested whether key hydraulic traits linked to drought stress, including the vulnerability of leaves to embolism (P50 leaf) and the minimum diffusive conductance of shoots (gmin), were associated with climatic characteristics of 14 Tasmanian eucalypt species from sites that vary in precipitation and temperature. Across species, greater cavitation resistance (more negative P50 leaf) was associated with increasing aridity and decreasing minimum temperature. By contrast, gmin showed strong associations with aridity only. Among these Tasmanian eucalypts, evidence suggests that trait variation is influenced by both cold and dry conditions, highlighting the need to consider both aspects when exploring adaptive trait-climate relationships.
Collapse
Affiliation(s)
- Gabrielle E Hartill
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Churchill Avenue, Sandy Bay, TAS, Australia
| | - Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Churchill Avenue, Sandy Bay, TAS, Australia
| | - Benjamin Halliwell
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Churchill Avenue, Sandy Bay, TAS, Australia
| | - Rebecca C Jones
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Churchill Avenue, Sandy Bay, TAS, Australia
| | - Barbara R Holland
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Churchill Avenue, Sandy Bay, TAS, Australia
| | - Timothy J Brodribb
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Churchill Avenue, Sandy Bay, TAS, Australia
| |
Collapse
|
9
|
Ke Y, Zhang FP, Zhang YB, Li W, Wang Q, Yang D, Zhang JL, Cao KF. Convergent relationships between flower economics and hydraulic traits across aquatic and terrestrial herbaceous plants. PLANT DIVERSITY 2023; 45:601-610. [PMID: 37936818 PMCID: PMC10625894 DOI: 10.1016/j.pld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 11/09/2023]
Abstract
Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance. Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood. Here, we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions. To test this hypothesis, we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden. We found that although there were a few significant differences, most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants. Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70% relative water content. Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point. In addition, there was a trade-off between hydraulic efficiency and the construction cost of a flower across species. Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern. These results suggest a convergent flower economics design across terrestrial and aquatic plants, providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Ping Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- School of Biological and Chemical Sciences, Puer University, Puer, Yunnan 665000, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Daxuedong Road 100, Nanning, Guangxi 530004, China
| |
Collapse
|
10
|
Roddy AB, Guilliams CM, Fine PVA, Mambelli S, Dawson TE, Simonin KA. Flowers are leakier than leaves but cheaper to build. THE NEW PHYTOLOGIST 2023; 239:2076-2082. [PMID: 37366068 DOI: 10.1111/nph.19104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, 33199, FL, USA
| | | | - Paul V A Fine
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Stefania Mambelli
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Kevin A Simonin
- Department of Biology, San Francisco State University, San Francisco, 94132, CA, USA
| |
Collapse
|
11
|
Carins-Murphy MR, Cochard H, Deans RM, Gracie AJ, Brodribb TJ. Combined heat and water stress leads to local xylem failure and tissue damage in pyrethrum flowers. PLANT PHYSIOLOGY 2023; 193:356-370. [PMID: 37325893 PMCID: PMC10469517 DOI: 10.1093/plphys/kiad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Flowers are critical for angiosperm reproduction and the production of food, fiber, and pharmaceuticals, yet for unknown reasons, they appear particularly sensitive to combined heat and drought stress. A possible explanation for this may be the co-occurrence of leaky cuticles in flower petals and a vascular system that has a low capacity to supply water and is prone to failure under water stress. These characteristics may render reproductive structures more susceptible than leaves to runaway cavitation-an uncontrolled feedback cycle between rising water stress and declining water transport efficiency that can rapidly lead to lethal tissue desiccation. We provide modeling and empirical evidence to demonstrate that flower damage in the perennial crop pyrethrum (Tanacetum cinerariifolium), in the form of irreversible desiccation, corresponds with runaway cavitation in the flowering stem after a combination of heat and water stress. We show that tissue damage is linked to greater evaporative demand during high temperatures rather than direct thermal stress. High floral transpiration dramatically reduced the soil water deficit at which runaway cavitation was triggered in pyrethrum flowering stems. Identifying runaway cavitation as a mechanism leading to heat damage and reproductive losses in pyrethrum provides different avenues for process-based modeling to understand the impact of climate change on cultivated and natural plant systems. This framework allows future investigation of the relative susceptibility of diverse plant species to reproductive failure under hot and dry conditions.
Collapse
Affiliation(s)
- Madeline R Carins-Murphy
- School of Natural Sciences, Discipline of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand 63000, France
| | - Ross M Deans
- Department of Viticulture & Enology, University of California, Davis, California 95616, USA
| | - Alistair J Gracie
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, Discipline of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
12
|
An YD, Roddy AB, Zhang TH, Jiang GF. Hydraulic differences between flowers and leaves are driven primarily by pressure-volume traits and water loss. FRONTIERS IN PLANT SCIENCE 2023; 14:1130724. [PMID: 37324689 PMCID: PMC10264769 DOI: 10.3389/fpls.2023.1130724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Flowers are critical for successful reproduction and have been a major axis of diversification among angiosperms. As the frequency and severity of droughts are increasing globally, maintaining water balance of flowers is crucial for food security and other ecosystem services that rely on flowering. Yet remarkably little is known about the hydraulic strategies of flowers. We characterized hydraulic strategies of leaves and flowers of ten species by combining anatomical observations using light and scanning electron microscopy with measurements of hydraulic physiology (minimum diffusive conductance (g min) and pressure-volume (PV) curves parameters). We predicted that flowers would exhibit higher g min and higher hydraulic capacitance than leaves, which would be associated with differences in intervessel pit traits because of their different hydraulic strategies. We found that, compared to leaves, flowers exhibited: 1) higher g min, which was associated with higher hydraulic capacitance (C T); 2) lower variation in intervessel pit traits and differences in pit membrane area and pit aperture shape; and 3) independent coordination between intervessel pit traits and other anatomical and physiological traits; 4) independent evolution of most traits in flowers and leaves, resulting in 5) large differences in the regions of multivariate trait space occupied by flowers and leaves. Furthermore, across organs intervessel pit trait variation was orthogonal to variation in other anatomical and physiological traits, suggesting that pit traits represent an independent axis of variation that have as yet been unquantified in flowers. These results suggest that flowers, employ a drought-avoidant strategy of maintaining high capacitance that compensates for their higher g min to prevent excessive declines in water potentials. This drought-avoidant strategy may have relaxed selection on intervessel pit traits and allowed them to vary independently from other anatomical and physiological traits. Furthermore, the independent evolution of floral and foliar anatomical and physiological traits highlights their modular development despite being borne from the same apical meristem.
Collapse
Affiliation(s)
- Yi-Dong An
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Adam B. Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Tian-Hao Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
14
|
Correia TS, Lara TS, dos Santos JA, Sousa LDS, Santana MDF. Arbuscular Mycorrhizal Fungi Promote Physiological and Biochemical Advantages in Handroanthus serratifolius Seedlings Submitted to Different Water Deficits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2731. [PMID: 36297755 PMCID: PMC9609855 DOI: 10.3390/plants11202731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Climate change causes increasingly longer periods of drought, often causing the death of plants, especially when they are in the early stages of development. Studying the benefits provided by arbuscular mycorrhizal (AM) fungi to plants in different water regimes is an efficient and sustainable strategy to face climate change. Thus, this study investigated the influence of AM fungi on Handroanthus serratifolius seedlings under different water regimes, based on biochemical, and nutritional growth parameters. The experiment was carried out in H. serratifolius seedlings cultivated with mycorrhizas (+AMF) and without mycorrhizas (-AMF) in three water regimes; a severe water deficit (SD), a moderate water deficit (MD), and a well-watered (WW) condition. AM fungi provided greater osmoregulation under water deficit conditions through the accumulation of soluble sugars, total free amino acids, and proline, as well as by reducing sugar. The increase in the absorption of phosphorus and nitrate was observed only in the presence of fungi in the well-watered regimen. A higher percentage of colonization was found in plants submitted to the well-watered regimen. Ultimately, AM fungi promoted biochemical, nutritional, and growth benefits for H. serratifolius seedlings under the water deficit and well-hydrated conditions, proving that AMF can be used to increase the tolerance of H. serratifolius plants, and help them to survive climate change.
Collapse
|
15
|
Bourbia I, Lucani C, Brodribb TJ. Constant hydraulic supply enables optical monitoring of transpiration in a grass, a herb, and a conifer. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5625-5633. [PMID: 35727898 PMCID: PMC9467656 DOI: 10.1093/jxb/erac241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant transpiration is an inevitable consequence of photosynthesis and has a huge impact on the terrestrial carbon and water cycle, yet accurate and continuous monitoring of its dynamics is still challenging. Under well-watered conditions, canopy transpiration (Ec) could potentially be continuously calculated from stem water potential (Ψstem), but only if the root to stem hydraulic conductance (Kr-s) remains constant and plant capacitance is relatively small. We tested whether such an approach is viable by investigating whether Kr-s remains constant under a wide range of daytime transpiration rates in non-water-stressed plants. Optical dendrometers were used to continuously monitor tissue shrinkage, an accurate proxy of Ψstem, while Ec was manipulated in three species with contrasting morphological, anatomical, and phylogenetic identities: Tanacetum cinerariifolium, Zea mays, and Callitris rhomboidea. In all species, we found Kr-s to remain constant across a wide range of Ec, meaning that the dynamics of Ψstem could be used to monitor Ec. This was evidenced by the close agreement between measured Ec and that predicted from optically measured Ψstem. These results suggest that optical dendrometers enable both plant hydration and Ec to be monitored non-invasively and continuously in a range of woody and herbaceous species. This technique presents new opportunities to monitor transpiration under laboratory and field conditions in a diversity of woody, herbaceous, and grassy species.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, Tas, Australia
| | - Christopher Lucani
- School of Natural Sciences, University of Tasmania, Hobart, Tas, Australia
| | | |
Collapse
|
16
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
17
|
Cardoso AA, Kane CN, Rimer IM, McAdam SAM. Seeing is believing: what visualising bubbles in the xylem has revealed about plant hydraulic function. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:759-772. [PMID: 35718950 DOI: 10.1071/fp21326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K ) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ian M Rimer
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
18
|
Britton TG, Brodribb TJ, Richards SA, Ridley C, Hovenden MJ. Canopy damage during a natural drought depends on species identity, physiology and stand composition. THE NEW PHYTOLOGIST 2022; 233:2058-2070. [PMID: 34850394 DOI: 10.1111/nph.17888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Vulnerability to xylem cavitation is a strong predictor of drought-induced damage in forest communities. However, biotic features of the community itself can influence water availability at the individual tree-level, thereby modifying patterns of drought damage. Using an experimental forest in Tasmania, Australia, we determined the vulnerability to cavitation (leaf P50 ) of four tree species and assessed the drought-induced canopy damage of 2944 6-yr-old trees after an extreme natural drought episode. We examined how individual damage was related to their size and the density and species identity of neighbouring trees. The two co-occurring dominant tree species, Eucalyptus delegatensis and Eucalyptus regnans, were the most vulnerable to drought-induced xylem cavitation and both species suffered significantly greater damage than neighbouring, subdominant species Pomaderris apetala and Acacia dealbata. While the two eucalypts had similar leaf P50 values, E. delegatensis suffered significantly greater damage, which was strongly related to the density of neighbouring P. apetala. Damage in E. regnans was less impacted by neighbouring plants and smaller trees of both eucalypts sustained significantly more damage than larger trees. Our findings demonstrate that natural drought damage is influenced by individual plant physiology as well as the composition, physiology and density of the surrounding stand.
Collapse
Affiliation(s)
- Travis G Britton
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Chantelle Ridley
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Mark J Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tas., 7001, Australia
| |
Collapse
|
19
|
Harrison Day BL, Carins-Murphy MR, Brodribb TJ. Reproductive water supply is prioritized during drought in tomato. PLANT, CELL & ENVIRONMENT 2022; 45:69-79. [PMID: 34705293 DOI: 10.1111/pce.14206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Reproductive success largely defines the fitness of plant species. Understanding how heat and drought affect plant reproduction is thus key to predicting future plant fitness under rising global temperatures. Recent work suggests reproductive tissues are highly vulnerable to water stress in perennial plants where reproductive sacrifice could preserve plant survival. However, most crop species are annuals where such a strategy would theoretically reduce fitness. We examined the reproductive strategy of tomato (Solanum lycopersicum var. Rheinlands Ruhm) to determine whether water supply to fruits is prioritized above vegetative tissues during drought. Using optical methods, we mapped xylem cavitation and tissue shrinkage in vegetative and reproductive organs during dehydration to determine the priority of water flow under acute water stress. Stems and peduncles of tomato showed significantly greater xylem cavitation resistance than leaves. This maintenance of intact water supply enabled tomato fruit to continue to expand during acute water stress, utilizing xylem water made available by tissue collapse and early cavitation of leaves. Here, tomato plants prioritize water supply to reproductive tissues, maintaining fruit development under drought conditions. These results emphasize the critical role of water transport in shaping life history and suggest a broad relevance of hydraulic prioritization in plant ecology.
Collapse
Affiliation(s)
| | | | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Johnson KM, Lucani C, Brodribb TJ. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. THE NEW PHYTOLOGIST 2022; 233:207-218. [PMID: 34625973 DOI: 10.1111/nph.17786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants in vivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage in vivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored in vivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher Lucani
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
21
|
Bourbia I, Pritzkow C, Brodribb TJ. Herb and conifer roots show similar high sensitivity to water deficit. PLANT PHYSIOLOGY 2021; 186:1908-1918. [PMID: 34618104 PMCID: PMC8331161 DOI: 10.1093/plphys/kiab207] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/24/2021] [Indexed: 05/11/2023]
Abstract
Root systems play a major role in supplying the canopy with water, enabling photosynthesis and growth. Yet, much of the dynamic response of root hydraulics and its influence on gas exchange during soil drying and recovery remains uncertain. We examined the decline and recovery of the whole root hydraulic conductance (Kr) and canopy diffusive conductance (gc) during exposure to moderate water stress in two species with contrasting root systems: Tanacetum cinerariifolium (herbaceous Asteraceae) and Callitris rhomboidea (woody conifer). Optical dendrometers were used to record stem water potential at high temporal resolution and enabled non-invasive measurements of Kr calculated from the rapid relaxation kinetics of water potential in hydrating roots. We observed parallel declines in Kr and gc to <20% of unstressed levels during the early stages of water stress in both species. The recovery of Kr after rewatering differed between species. T. cinerariifolium recovered quickly, with 60% of Kr recovered within 2 h, while C. rhomboidea was much slower to return to its original Kr. Recovery of gc followed a similar trend to Kr in both species, with C. rhomboidea slower to recover. Our findings suggest that the pronounced sensitivity of Kr to drought is a common feature among different plant species, but recovery may vary depending on root type and water stress severity. Kr dynamics are proposed to modulate gc response during and following drought.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Carola Pritzkow
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- Author for communication:
| |
Collapse
|
22
|
Zhang FP, Zhang JL, Brodribb TJ, Hu H. Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora. PLANT DIVERSITY 2021; 43:324-330. [PMID: 34485775 PMCID: PMC8390921 DOI: 10.1016/j.pld.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
- College of Traditional Chinese Medicine, Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
- Corresponding author.
| | - Timothy J. Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
| |
Collapse
|
23
|
Zhang FP, Huang JL, Fu XW, Huang W, Zhang SB. Peduncle vulnerability to embolism is related to conduit dimensions of the critically endangered slipper orchids in Southwest China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Thonglim A, Delzon S, Larter M, Karami O, Rahimi A, Offringa R, Keurentjes JJB, Balazadeh S, Smets E, Lens F. Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of Arabidopsis thaliana accessions. ANNALS OF BOTANY 2021; 128:171-182. [PMID: 33216143 PMCID: PMC8324034 DOI: 10.1093/aob/mcaa196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations. METHODS Vulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy. KEY RESULTS The data show significant differences in stem P50, varying 2-fold from -1.58 MPa in the Cape Verde Island accession to -3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance. CONCLUSIONS The woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.
Collapse
Affiliation(s)
- Ajaree Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | | | - Maximilian Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | - Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Salma Balazadeh
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| |
Collapse
|
25
|
Kuppler J, Kotowska MM. A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit. GLOBAL CHANGE BIOLOGY 2021; 27:3095-3108. [PMID: 33774883 DOI: 10.1111/gcb.15621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Alterations in water availability and drought events as predicted by climate change scenarios will increasingly impact natural communities with effects already emerging at present. Water deficit leads to increasing physiological stress in plants, likely affecting floral development and causing changes in floral morphology, nectar and pollen production or scent. Understanding how these floral traits are altered by water deficit is necessary to predict changes in plant-pollinator interactions and how communities are impacted in the future. Here we employ a meta-analysis approach to synthesize the current evidence of experimental water deficit on floral traits and plant-pollinator interactions. Furthermore, we explore experimental factors potentially increasing heterogeneity between studies and provide ideas how to enhance comparability between studies. In the end, we highlight future directions and knowledge gaps for floral traits and plant-pollinator interactions under water deficit. Our analysis showed consistent decreases in floral size, number of flowers and nectar volume to reduced water availability. Other floral traits such as the start of flowering or herkogamy showed no consistent pattern. This indicates that effects of reduced water availability differ between specific traits that are potentially involved in different functions such as pollinator attraction or efficiency. We found no general decreasing visitation rates with water deficit for flower-visitor interactions. Furthermore, the comparison of available studies suggests that increased reporting of plant stress severity and including more hydraulic and physiological measurements will improve the comparability across experiments and aid a more mechanistic understanding of plant-pollinator interactions under altered environmental conditions. Overall, our results show that water deficit has the potential to strongly affect plant-pollinator interactions via changes in specific floral traits. Linking these changes to pollination services and pollinator performance is one crucial step for understanding how changing water availability and drought events under climate change will alter plant and pollinator communities.
Collapse
Affiliation(s)
- Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Martyna M Kotowska
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Yang S, Zhu H, Huang L, Zhang G, Wang L, Jiang X, Zhong Q. Transcriptome-wide and expression analysis of the NAC gene family in pepino ( Solanum muricatum) during drought stress. PeerJ 2021; 9:e10966. [PMID: 33850643 PMCID: PMC8015785 DOI: 10.7717/peerj.10966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Solanum muricatum (Pepino) is an increasingly popular solanaceous crop and is tolerant of drought conditions. In this study, 71 NAC transcription factor family genes of S. muricatum were selected to provide a theoretical basis for subsequent in-depth study of their regulatory roles in the response to biological and abiotic stresses, and were subjected to whole-genome analysis. The NAC sequences obtained by transcriptome sequencing were subjected to bioinformatics prediction and analysis. Three concentration gradient drought stresses were applied to the plants, and the target gene sequences were analyzed by qPCR to determine their expression under drought stress. The results showed that the S. muricatum NAC family contains 71 genes, 47 of which have conserved domains. The protein sequence length, molecular weight, hydrophilicity, aliphatic index and isoelectric point of these transcription factors were predicted and analyzed. Phylogenetic analysis showed that the S. muricatum NAC gene family is divided into seven subfamilies. Some NAC genes of S. muricatum are closely related to the NAC genes of Solanaceae crops such as tomato, pepper and potato. The seedlings of S. muricatum were grown under different gradients of drought stress conditions and qPCR was used to analyze the NAC expression in roots, stems, leaves and flowers. The results showed that 13 genes did not respond to drought stress while 58 NAC genes of S. muricatum that responded to drought stress had obvious tissue expression specificity. The overall expression levels in the root were found to be high. The number of genes at extremely significant expression levels was very large, with significant polarization. Seven NAC genes with significant responses were selected to analyze their expression trend in the different drought stress gradients. It was found that genes with the same expression trend also had the same or part of the same conserved domain. Seven SmNACs that may play an important role in drought stress were selected for NAC amino acid sequence alignment of Solanaceae crops. Four had strong similarity to other Solanaceae NAC amino acid sequences, and SmNAC has high homology with the Solanum pennellii. The NAC transcription factor family genes of S. muricatum showed strong structural conservation. Under drought stress, the expression of NAC transcription factor family genes of S. muricatum changed significantly, which actively responded to and participated in the regulation process of drought stress, thereby laying foundations for subsequent in-depth research of the specific functions of NAC transcription factor family genes of S. muricatum.
Collapse
Affiliation(s)
- Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | | | - Liping Huang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Guangnan Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Lihui Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Xiaoting Jiang
- Qinghai Higher Vocational & Technical Institute, Ledu, P.R. China, Xining, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| |
Collapse
|