1
|
Battillo DJ, Remchak MME, Shah AM, Malin SK. Impact of Insulin-Induced Relative Hypoglycemia on Vascular Insulin Sensitivity and Central Hemodynamics in Prediabetes. J Clin Endocrinol Metab 2024:dgae152. [PMID: 38491968 DOI: 10.1210/clinem/dgae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
CONTEXT Relative hypoglycemia (RH) is linked to sympathetic responses that can alter vascular function in individuals with type 2 diabetes. However, less is known about the role of RH on hemodynamics or metabolic insulin sensitivity in prediabetes. OBJECTIVE Determine if RH alters peripheral endothelial function or central hemodynamics to a greater extent in those with prediabetes (PD) versus normoglycemia (NG). METHODS Seventy adults with obesity were classified using ADA criteria as PD (n=34 (28F); HbA1c=6.02±0.1%) or NG (n=36 (30F); HbA1c=5.4±0.0%). Brachial artery endothelial function, skeletal muscle capillary perfusion, and aortic waveforms were assessed at 0 and 120min of a euglycemic clamp (40 mU/m2/min, 90 mg/dl). Plasma nitrate/nitrite and endothelin-1 (ET-1) were measured as surrogates of nitric oxide-mediated vasodilation and vasoconstriction, respectively. RH was defined as the drop in glucose (%) from fasting to clamp steady state. RESULTS There were no differences in age, weight, or VO2max between groups. PD had higher HbA1c (P<0.01) and a greater drop in glucose in response to insulin (14 vs. 8%; P=0.03). Further, heart rate (HR) increased in NG compared to PD (P<0.01), while forward wave (Pf) decreased in PD (P=0.04). Insulin also tended to reduce arterial stiffness (cfPWV) in NG versus PD (P=0.07), despite similar increases in pre-occlusion diameter (P=0.02), blood flow (P=0.02), and lower augmentation index (AIx75) (P≤0.05). CONCLUSION Compared with NG, insulin-induced RH corresponded with a blunted rise in HR and drop in Pf during insulin infusion in adults with PD, independent of changes in peripheral endothelial function.
Collapse
Affiliation(s)
- Daniel J Battillo
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
| | | | - Ankit M Shah
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Division of Endocrinology, Metabolism & Nutrition; Rutgers University, New Brunswick, NJ
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ
| |
Collapse
|
2
|
Kobayashi R, Sakazaki M, Nagai Y, Okamoto T, Hashimoto Y, Sato K, Seki S, Hata U, Esaki K, Tanigawa R, Mitsuoka A, Funaki A, Niki Y, Hashiguchi T, Negoro H. Habitual isomaltulose intake reduces arterial stiffness associated with postprandial hyperglycemia in middle-aged and elderly people: a randomized controlled trial. Heart Vessels 2024; 39:123-134. [PMID: 37777673 DOI: 10.1007/s00380-023-02316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Endothelin-1 (ET-1), produced by vascular endothelial cells, plays a pivotal role in the regulation of vascular tone. Isomaltulose, a naturally occurring sweetener and structural isomer of sucrose, reduces postprandial hyperglycemia, but its effect on arteriosclerosis due to hyperglycemia is unknown. The effects of 12 weeks of isomaltulose administration on ET-1 levels, a peptide that regulates arterial stiffness, blood pressure, and vascular tone, were tested before and after an oral glucose tolerance test. Fifty-four healthy middle-aged and older adults (30 men and 24 women) were divided into two groups: (1) a 25 g isomaltulose jelly drink intake group (Group I, 27 participants, mean age 55 ± 1 years) and (2) a sucrose jelly drink intake group (Group S, 27 participants, mean age 55 ± 1 years), each consuming isomaltulose or sucrose daily for 12 weeks, and a randomized, controlled study was conducted. Participants visited the laboratory before the intervention and 4, 8, and 12 weeks after the intervention to measure carotid-femoral (cf) and brachial-ankle (ba) pulse wave velocity (PWV), systolic blood pressure (BP), plasma glucose (PG), insulin, and ET-1 levels before and 60 and 120 min after a 75-g OGTT. baPWV, and ET-1 levels before intervention were significantly increased after 75-g OGTT compared to before 75-g OGTT in both groups (p < 0.05). The post-intervention baPWV, and ET-1 levels were significantly increased after 75-g OGTT in Group S compared to before 75-g OGTT (p < 0.05), whereas no significant changes were observed in Group I. These results suggest that consumption of isomaltulose, which has a lower GI than sucrose, is more effective in preventing the increases in systemic arterial stiffness associated with postprandial hyperglycemia in healthy middle-aged and older adults.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Natural & Environmental Science, Teikyo University of Science, 2-2-1 Senju, Sakuragi, Adachi-ku, Tokyo, 120-0045, Japan.
| | - Miki Sakazaki
- Life Energy Business Development Unit, Mitsui DM Group R&D Center, Mitsui DM Sugar Co., Ltd., 2-28-7 Kamiochiai, Shinjuku-ku, Tokyo, 161-0034, Japan
| | - Yukie Nagai
- Life Energy Business Development Unit, Mitsui DM Group R&D Center, Mitsui DM Sugar Co., Ltd., 2-28-7 Kamiochiai, Shinjuku-ku, Tokyo, 161-0034, Japan
| | - Takanobu Okamoto
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Yuto Hashimoto
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Kaori Sato
- Health and Physical Education Program, International Christian University, 3-10-2, Osawa, Mitaka-shi, Tokyo, 181-0015, Japan
| | - Shotaro Seki
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Urara Hata
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Kazuki Esaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Ryuya Tanigawa
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Amane Mitsuoka
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan
| | - Akiko Funaki
- Department of Judo Therapy, Teikyo University of Science, 2525 Yatsusawa, Uenohara-shi, Yamanashi, 409-0193, Japan
| | - Yasuhiro Niki
- Department of Sport Management, Shobi University, 1-1-1 Toyodacho, Kawagoe-shi, Saitama, 350-1110, Japan
| | - Takeo Hashiguchi
- Department of School Education, Teikyo University of Science, 2-2-1 Senju, Sakuragi, Adachi-ku, Tokyo, 120-0045, Japan
| | - Hideyuki Negoro
- Department of Medicine, Nara Medical University, 840 Shijo, Kashihara-shi, Nara, 634-8521, Japan
| |
Collapse
|
3
|
Schoen AN, Weinrauch AM, Bouyoucos IA, Anderson WG. An adapted liver perfusion in a shark species, Squalus suckleyi: investigation of energy mobilization. Am J Physiol Regul Integr Comp Physiol 2023; 325:R534-R545. [PMID: 37602384 DOI: 10.1152/ajpregu.00132.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The liver is an essential energy storage organ in vertebrates. In teleosts and elasmobranchs, previous studies examining hepatic energy balance have used isolated hepatocytes. Although these studies have been informative, the high-fat content in the elasmobranch liver limits isolation of hepatocytes and therefore the utility of this method to understand hepatic metabolic processes. In the present study, we developed an in situ liver perfusion in the North Pacific spiny dogfish Squalus suckleyi. Perfusions were conducted by cannulating the hepatic portal vein (inflowing cannulation) and the sinus venosus through the heart (outflowing cannulation). Changes in major elasmobranch metabolites (glucose and 3-hydroxybutarate [3-HB]) were determined by the arterial (inflow)-venous (outflow) difference in metabolite concentration. Liver preparations were considered viable due to consistent oxygen consumption over 3 h and the maintenance of predictable vasoconstriction following administration of homologous 10-7 M angiotensin II (ANG II). Removal and reintroduction from the perfusate of metabolites showed endogenous 3-HB production in the isolated perfused livers but did not affect glucose balance. However, the arterial-venous difference of both metabolites did not change following perfusion with heterologous insulin and homologous glucagon, which may be due to the glucose intolerant nature of elasmobranchs. Ultimately, we show the viability of this perfusion for the investigation of hepatic energy mobilization in sharks.NEW & NOTEWORTHY We describe a viable liver perfusion in a shark species for the first time as determined by oxygen consumption and hormone-mediated changes in hemodynamics (angiotensin II, ANG II). In addition, removal of major energy metabolites confirms hepatic ketone [3-hydroxybutyrate (3-HB)] production by an elasmobranch liver. Perfusion with heterologous insulin and homologous glucagon did not cause changes in glucose balance, however, possibly demonstrating differences in glucose metabolism in this taxon as compared with more derived vertebrates.
Collapse
Affiliation(s)
- Alexandra N Schoen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
4
|
Moldovan M, Păpurică AM, Muntean M, Bungărdean RM, Gheban D, Moldovan B, Katona G, David L, Filip GA. Effects of Gold Nanoparticles Phytoreduced with Rutin in an Early Rat Model of Diabetic Retinopathy and Cataracts. Metabolites 2023; 13:955. [PMID: 37623898 PMCID: PMC10456405 DOI: 10.3390/metabo13080955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Diabetic retinopathy (DR) and cataracts (CA) have an early onset in diabetes mellitus (DM) due to the redox imbalance and inflammation triggered by hyperglycaemia. Plant-based therapies are characterised by low tissue bioavailability. The study aimed to investigate the effect of gold nanoparticles phytoreduced with Rutin (AuNPsR), as a possible solution. Insulin, Rutin, and AuNPsR were administered to an early, six-week rat model of DR and CA. Oxidative stress (MDA, CAT, SOD) was assessed in serum and eye homogenates, and inflammatory cytokines (IL-1 beta, IL-6, TNF alpha) were quantified in ocular tissues. Eye fundus of retinal arterioles, transmission electron microscopy (TEM) of lenses, and histopathology of retinas were also performed. DM was linked to constricted retinal arterioles, reduced endogen antioxidants, and eye inflammation. Histologically, retinal wall thickness decreased. TEM showed increased lens opacity and fibre disorganisation. Rutin improved retinal arteriolar diameter, while reducing oxidative stress and inflammation. Retinas were moderately oedematous. Lens structure was preserved on TEM. Insulin restored retinal arteriolar diameter, while increasing MDA, and amplifying TEM lens opacity. The best outcomes were obtained for AuNPsR, as it improved fundus appearance of retinal arterioles, decreased MDA and increased antioxidant capacity. Retinal edema and disorganisation in lens fibres were still present.
Collapse
Affiliation(s)
- Mădălina Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| | - Ana-Maria Păpurică
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| | - Mara Muntean
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Raluca Maria Bungărdean
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 3-5, 400340 Cluj-Napoca, Romania; (R.M.B.); (D.G.)
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 3-5, 400340 Cluj-Napoca, Romania; (R.M.B.); (D.G.)
- Department of Pathology, Emergency Clinical Hospital for Children, Motilor Street, No. 41T-42T, 400370 Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Gabriel Katona
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Luminița David
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| |
Collapse
|
5
|
Links between Metabolic Syndrome and Hypertension: The Relationship with the Current Antidiabetic Drugs. Metabolites 2023; 13:metabo13010087. [PMID: 36677012 PMCID: PMC9863091 DOI: 10.3390/metabo13010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Hypertension poses a significant burden in the general population, being responsible for increasing cardiovascular morbidity and mortality, leading to adverse outcomes. Moreover, the association of hypertension with dyslipidaemia, obesity, and insulin resistance, also known as metabolic syndrome, further increases the overall cardiovascular risk of an individual. The complex pathophysiological overlap between the components of the metabolic syndrome may in part explain how novel antidiabetic drugs express pleiotropic effects. Taking into consideration that a significant proportion of patients do not achieve target blood pressure values or glucose levels, more efforts need to be undertaken to increase awareness among patients and physicians. Novel drugs, such as incretin-based therapies and renal glucose reuptake inhibitors, show promising results in decreasing cardiovascular events in patients with metabolic syndrome. The effects of sodium-glucose co-transporter-2 inhibitors are expressed at different levels, including renoprotection through glucosuria, natriuresis and decreased intraglomerular pressure, metabolic effects such as enhanced insulin sensitivity, cardiac protection through decreased myocardial oxidative stress and, to a lesser extent, decreased blood pressure values. These pleiotropic effects are also observed after treatment with glucagon-like peptide-1 receptor agonists, positively influencing the cardiovascular outcomes of patients with metabolic syndrome. The initial combination of the two classes may be the best choice in patients with type 2 diabetes mellitus and multiple cardiovascular risk factors because of their complementary mechanisms of action. In addition, the novel mineralocorticoid receptor antagonists show significant cardio-renal benefits, as well as anti-inflammatory and anti-fibrotic effects. Overall, the key to better control of hypertension in patients with metabolic syndrome is to consider targeting multiple pathogenic mechanisms, using a combination of the different therapeutic agents, as well as drastic lifestyle changes. This article will briefly summarize the association of hypertension with metabolic syndrome, as well as take into account the influence of antidiabetic drugs on blood pressure control.
Collapse
|
6
|
Mokgalaboni K, Phoswa W. Cross-link between type 2 diabetes mellitus and iron deficiency anemia. A mini-review. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Sinha S, Haque M. Insulin Resistance and Type 2 Diabetes Mellitus: An Ultimatum to Renal Physiology. Cureus 2022; 14:e28944. [PMID: 36111327 PMCID: PMC9462660 DOI: 10.7759/cureus.28944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Insulin resistance (IR) is stated as diminished insulin action regardless of hyperinsulinemia. The usual target organs for insulin activities are the liver, skeletal muscle, and adipose tissue. Hence, the vasculature and kidneys are nonconventional target organs as the impacts of insulin on these are comparatively separate from other conventional target organs. Vasodilation is achieved by raising endothelial nitric oxide (NO) generation by initiating the phosphoinositide 3-kinase (PI3K) pathway. In insulin-nonresponsive conditions, this process is defective, and there is increased production of endothelin-1 through the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which predominates the NO effects, causing vasoconstriction. Renal tubular cells and podocytes have insulin receptors, and their purposeful importance has been studied, which discloses critical acts of insulin signaling in podocyte survivability and tubular action. Diabetic nephropathy (DN) is a prevalent problem in individuals with hypertension, poor glycemic management, hereditary susceptibility, or glomerular hyperfiltration. DN could be a significant contributing factor to end-stage renal disease (ESRD) that results from chronic kidney disease (CKD). IR and diabetes mellitus (DM) are the constituents of syndrome X and are accompanied by CKD progression. IR performs a key part in syndrome X leading to CKD. However, it is indistinct whether IR individually participates in enhancing the threat to CKD advancement rather than CKD complexity. CKD is an extensive public health problem affecting millions of individuals worldwide. The tremendous spread of kidney disease intensifies people’s health impacts related to communicable and noncommunicable diseases. Chronic disease regulator policies do not include CKD at global, local, and/or general levels. Improved knowledge of the character of CKD-associated problems might aid in reforming diagnosis, prevention, and management.
Collapse
|
9
|
Ji W, Gao L, Sun P, Jia J, Li J, Wang X, Fan F, Zhang Y. Association of the triglyceride-glucose index and vascular target organ damage in a Beijing community-based population. Front Cardiovasc Med 2022; 9:948402. [PMID: 35966556 PMCID: PMC9366355 DOI: 10.3389/fcvm.2022.948402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to explore the association between the triglyceride-glucose (TyG) index, a marker of insulin resistance (IR), and vascular target organ damage (TOD) in a Beijing community-based population, China. Methods A total of 6,015 participants from an atherosclerosis cohort survey performed in the Shijingshan District in Beijing, China were included in our analysis. Vascular TOD, such as carotid-femoral pulse wave velocity (cfPWV), brachial-ankle pulse wave velocity (baPWV), and the urine albumin-to-creatinine ratio (UACR) were all evaluated. Results The overall mean age of all the participants was 62.35 years, 3,951 (65.69%) were female, and mean TyG index was 8.81. In univariable regression analyzes, an increased TyG index was associated with higher cfPWV, baPWV, lnUACR, and higher risk of cfPWV ≥ 10 m/s, baPWV ≥ 1,800 cm/s, and UACR ≥ 30 mg/g, respectively. Multivariable regression analyzes showed subjects with the TyG index in top tertile had a significant increase in cfPWV (β = 0.29 m/s; 95% confidence interval [95% CI] 0.19-0.40; p fortrend < 0.001), baPWV (β = 69.28 cm/s; 95% CI 50.97-87.59; p fortrend < 0.001), lnUACR (β = 0.23; 95% CI 0.13-0.34; p fortrend < 0.001), and had a higher risk of cfPWV ≥ 10 m/s (odds ratio [OR] = 1.47; 95% CI 1.17-1.85; p fortrend < 0.001), baPWV ≥ 1,800 cm/s (OR = 1.79; 95% CI 1.48-2.17; p fortrend < 0.001), and UACR ≥ 30 mg/g (OR = 1.71; 95% CI 1.30-2.24; p fortrend < 0.001) after fully adjusting for age, sex, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), estimated glomerular filtration rate (eGFR), self-reported coronary heart disease (CHD) and stroke, antihypertensive drugs, hypoglycemic drugs, and lipid-lowering drugs. Consistent conclusions were obtained in the subgroups without hypoglycemic and lipid-lowering medications or aged younger than 65 years old. Conclusions The TyG index was positively associated with artery stiffness and nephric microvascular damage in a Beijing community-based population in China. This result provides evidence that the TyG index may serve as a simple and effective indicator to reflect vascular TOD.
Collapse
Affiliation(s)
- Wenjun Ji
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Lan Gao
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
- Echocardiography Core Lab, Institute of Cardiovascular Disease at Peking University First Hospital, Beijing, China
| | - Pengfei Sun
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Xingang Wang
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3311228. [PMID: 35469164 PMCID: PMC9034927 DOI: 10.1155/2022/3311228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Vascular endothelial dysfunction is characterized by an imbalance of vasodilation and vasoconstriction, deficiency of nitric oxide (NO) bioavailability and elevated reactive oxygen species (ROS), and proinflammatory factors. This dysfunction is a key to the early pathological development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. Therefore, modulation of the vascular endothelium is considered an important therapeutic strategy to maintain the health of the cardiovascular system. Epidemiological studies have shown that regular consumption of medicinal plants, fruits, and vegetables promotes vascular health, lowering the risk of cardiovascular diseases. This is mainly attributed to the phytochemical compounds contained in these resources. Various databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched to identify studies demonstrating the vascular protective effects of phytochemical compounds. The literature had revealed abundant data on phytochemical compounds protecting and improving the vascular system. Of the numerous compounds reported, curcumin, resveratrol, cyanidin-3-glucoside, berberine, epigallocatechin-3-gallate, and quercetin are discussed in this review to provide recent information on their vascular protective mechanisms in vivo and in vitro. Phytochemical compounds are promising therapeutic agents for vascular dysfunction due to their antioxidative mechanisms. However, future human studies will be necessary to confirm the clinical effects of these vascular protective mechanisms.
Collapse
|
11
|
Banks NF, Rogers EM, Church DD, Ferrando AA, Jenkins NDM. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle 2022; 13:114-127. [PMID: 34951146 PMCID: PMC8818606 DOI: 10.1002/jcsm.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, or the age-related loss of skeletal muscle mass and function, is an increasingly prevalent condition that contributes to reduced quality of life, morbidity, and mortality in older adults. Older adults display blunted anabolic responses to otherwise anabolic stimuli-a phenomenon that has been termed anabolic resistance (AR)-which is likely a casual factor in sarcopenia development. AR is multifaceted, but historically much of the mechanistic focus has been on signalling impairments, and less focus has been placed on the role of the vasculature in postprandial protein kinetics. The vascular endothelium plays an indispensable role in regulating vascular tone and blood flow, and age-related impairments in vascular health may impede nutrient-stimulated vasodilation and subsequently the ability to deliver nutrients (e.g. amino acids) to skeletal muscle. Although the majority of data has been obtained studying younger adults, the relatively limited data on the effect of blood flow on protein kinetics in older adults suggest that vasodilatory function, especially of the microvasculature, strongly influences the muscle protein synthetic response to amino acid feedings. In this narrative review, we examine evidence of AR in older adults following amino acid and mixed meal consumption, examine the evidence linking vascular dysfunction and insulin resistance to age-related AR, review the influence of nitric oxide and endothelin-1 on age-related vascular dysfunction as it relates to AR, briefly review the potential causal role of arterial stiffness in promoting skeletal muscle microvascular dysfunction and AR, and provide a brief overview and future considerations for research examining age-related AR.
Collapse
Affiliation(s)
- Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Church
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Arny A Ferrando
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Effect of alpha-lipoic acid on arterial stiffness parameters in type 2 diabetes mellitus patients with cardiac autonomic neuropathy. Endocr Regul 2021; 55:224-233. [PMID: 34879186 DOI: 10.2478/enr-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective. Significantly underdiagnosed, diabetes-associated cardiac autonomic neuropathy (CAN) causes a wide range of cardiac disorders that may cause life-threatening outcomes. This study investigated the effects of alpha-lipoic acid (ALA) on arterial stiffness and insulin resistance (IR) parameters in type 2 diabetes mellitus (T2D) patients and definite CAN. Methods. A total of 36 patients with T2D and a definite stage of CAN were recruited. This investigation was carried out on two separate arms: traditional hypoglycemic therapy (n=18, control) and ALA (n=18) 600 mg in film-coated tablets/q.d. in addition to traditional hypoglycemic therapy. The duration of the study was three months. Results. In subjects with T2D and definite stage of СAN, treatment with ALA resulted in a significant decrease of glucose, immunoreactive insulin concentration, and Homeostasis Model Assessment (HOMA)-IR (HOMA-IR) parameters; pulse wave velocity (PWV), aorta augmentation index (AIxao) during the active period of the day and decrease of PWV, AIxao, and brachial augmentation index during the passive period of the day compared with the results, obtained in the control group. Therefore, the administration of ALA to patients with T2D for three months promotes the improvement of glucose metabolism and arterial stiffness parameters. Conclusions. In patients with T2D and definite stage of СAN treatment with ALA improved HOMA-IR and arterial stiffness parameters. These findings can be of clinical significance for the complex treatment of diabetes-associated CAN.
Collapse
|
13
|
Differential and Synergistic Effects of Low Birth Weight and Western Diet on Skeletal Muscle Vasculature, Mitochondrial Lipid Metabolism and Insulin Signaling in Male Guinea Pigs. Nutrients 2021; 13:nu13124315. [PMID: 34959870 PMCID: PMC8704817 DOI: 10.3390/nu13124315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar “Western” diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male “lean” offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.
Collapse
|
14
|
Walker AMN, Warmke N, Mercer B, Watt NT, Mughal R, Smith J, Galloway S, Haywood NJ, Soomro T, Griffin KJ, Wheatcroft SB, Yuldasheva NY, Beech DJ, Carmeliet P, Kearney MT, Cubbon RM. Endothelial Insulin Receptors Promote VEGF-A Signaling via ERK1/2 and Sprouting Angiogenesis. Endocrinology 2021; 162:bqab104. [PMID: 34037749 PMCID: PMC8223729 DOI: 10.1210/endocr/bqab104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 02/08/2023]
Abstract
Endothelial insulin receptors (Insr) promote sprouting angiogenesis, although the underpinning cellular and molecular mechanisms are unknown. Comparing mice with whole-body insulin receptor haploinsufficiency (Insr+/-) against littermate controls, we found impaired limb perfusion and muscle capillary density after inducing hind-limb ischemia; this was in spite of increased expression of the proangiogenic growth factor Vegfa. Insr+/- neonatal retinas exhibited reduced tip cell number and branching complexity during developmental angiogenesis, which was also found in separate studies of mice with endothelium-restricted Insr haploinsufficiency. Functional responses to vascular endothelial growth factor A (VEGF-A), including in vitro angiogenesis, were also impaired in aortic rings and pulmonary endothelial cells from Insr+/- mice. Human umbilical vein endothelial cells with shRNA-mediated knockdown of Insr also demonstrated impaired functional angiogenic responses to VEGF-A. VEGF-A signaling to Akt and endothelial nitric oxide synthase was intact, but downstream signaling to extracellular signal-reduced kinase 1/2 (ERK1/2) was impaired, as was VEGF receptor-2 (VEGFR-2) internalization, which is required specifically for signaling to ERK1/2. Hence, endothelial insulin receptors facilitate the functional response to VEGF-A during angiogenic sprouting and are required for appropriate signal transduction from VEGFR-2 to ERK1/2.
Collapse
Affiliation(s)
- Andrew M N Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Ben Mercer
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Romana Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Stacey Galloway
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Taha Soomro
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
- Imperial College Ophthalmology Research Group, Western Eye Hospital, London NW1 5QH, UK
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Rodríguez-Reyes B, Tufiño C, López Mayorga RM, Mera Jiménez E, Bobadilla Lugo RA. Role of pregnancy on insulin-induced vasorelaxation: the influence of angiotensin II receptors. Can J Physiol Pharmacol 2021; 99:1026-1035. [PMID: 33857388 DOI: 10.1139/cjpp-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is a feature of pregnancy and is associated with increased levels of angiotensin II (Ang II) and insulin. Therefore, pregnancy may change insulin-induced vasodilation through changes in Ang II receptors. Insulin-induced vasorelaxation was evaluated in phenylephrine-precontracted aortic rings of pregnant and non-pregnant rats, using a conventional isolated organ preparation. Experiments were performed in thoracic or abdominal aorta rings with or without endothelium in the presence and absence of NG-nitro-L-arginine methyl ester (L-NAME) (10-5 M), losartan (10-7 M), or PD123319 (10-7 M). AT1 and AT2 receptor expressions were detected by immunohistochemistry. Insulin-induced vasodilation was endothelium- and nitric oxide-dependent and decreased in the thoracic aorta but increased in the abdominal segment of pregnant rats. The insulin's vasorelaxant effect was increased by losartan mainly on the thoracic aorta. PD123319 decreased insulin-induced vasorelaxation mainly in the pregnant rat abdominal aorta. AT1 receptor expression was decreased while AT2 receptor expression was increased by pregnancy. In conclusion, pregnancy changes insulin-induced vasorelaxation. Moreover, insulin vasodilation is tonically inhibited by AT1 receptors, while AT2 receptors appear to have an insulin-sensitizing effect. The role of pregnancy and Ang II receptors differ depending on the aorta segment. These results shed light on the role of pregnancy and Ang II receptors on the regulation of insulin-mediated vasodilation.
Collapse
Affiliation(s)
- Betzabel Rodríguez-Reyes
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Cecilia Tufiño
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Ruth M López Mayorga
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Elvia Mera Jiménez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Rosa Amalia Bobadilla Lugo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| |
Collapse
|
16
|
Heiston EM, Gilbertson NM, Eichner NZM, Malin SK. A Low-Calorie Diet with or without Exercise Reduces Postprandial Aortic Waveform in Females with Obesity. Med Sci Sports Exerc 2021; 53:796-803. [PMID: 32925495 DOI: 10.1249/mss.0000000000002515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Arterial stiffness is considered a predictor of cardiovascular disease. Females have higher values of arterial stiffness than males, suggesting a greater risk of heart-related complications. Although a low-calorie diet (LCD) reduces fasting arterial stiffness, in part through weight loss, it is unknown if interval exercise (INT) adds to the benefit of LCD on fasting and postprandial arterial stiffness in females with obesity. METHODS Twenty-five females (47 ± 2.6 yr, 37.6 ± 1.3 kg·m-2) were randomized to 13 d of LCD (n = 12; mixed meals of ~1200 kcal·d-1) or LCD + INT (n = 13; 60 min·d-1 of supervised 3-min intervals at 90% HRpeak and 50% HRpeak). Arterial stiffness (augmentation index [AIx] and carotid-femoral pulse wave velocity [cfPWV]) and blood biochemistries were measured during a 75-g oral glucose tolerance test before and after the intervention to determine fasting and postprandial arterial stiffness as well as insulin sensitivity (simple index of insulin sensitivity [SIIS]) and inflammation (C-reactive protein, interleukin 8, and tumor necrosis factor alpha). RESULTS Although LCD + INT increased V˙O2peak and HDL compared with LCD (P = 0.04 and P < 0.01, respectively), both interventions decreased body fat, LDL, total cholesterol, and triglycerides (all P < 0.01) and increased SIIS (P = 0.03). Despite no effect on fasting AIx (P = 0.27), LCD and LCD + INT decreased AIx60min (-7.4% ± 4.3% vs -7.0% ± 5.0%, P = 0.04) and tAUC120min (-663 ± 263 vs -457 ± 406, P = 0.03). There were no changes in fasting cfPWV (P = 0.91) or cfPWV120min (P = 0.62). Increased SIIS and decreased interleukin 8 were associated with reduced fasting AIx (r = -0.44, P = 0.03, and r = 0.40, P = 0.055), whereas decreased C-reactive protein correlated with reduced postprandial AIx60min (r = 0.43, P = 0.04). CONCLUSION Independent of exercise, 13 d of LCD reduces postprandial AIx in females with obesity. Insulin sensitivity and inflammation correlated with improved arterial stiffness, suggesting unique mechanisms regulate fasted versus postprandial arterial stiffness.
Collapse
Affiliation(s)
- Emily M Heiston
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | | | | | | |
Collapse
|
17
|
Wittwer J, Bradley D. Clusterin and Its Role in Insulin Resistance and the Cardiometabolic Syndrome. Front Immunol 2021; 12:612496. [PMID: 33717095 PMCID: PMC7946829 DOI: 10.3389/fimmu.2021.612496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The cardiometabolic syndrome involves a clustering of metabolic and cardiovascular factors which increase the risk of patients developing both Type 2 Diabetes Mellitus and cardio/cerebrovascular disease. Although the mechanistic underpinnings of this link remain uncertain, key factors include insulin resistance, excess visceral adiposity, atherogenic dyslipidemia, and endothelial dysfunction. Of these, a state of resistance to insulin action in overweight/obese patients appears to be central to the pathophysiologic process. Given the increasing prevalence of obesity-related Type 2 Diabetes, coupled with the fact that cardiovascular disease is the number one cause of mortality in this patient population, a more thorough understanding of the cardiometabolic syndrome and potential options to mitigate its risk is imperative. Inherent in the pathogenesis of insulin resistance is an underlying state of chronic inflammation, at least partly in response to excess adiposity. Within obese adipose tissue, an immunomodulatory shift occurs, involving a preponderance of pro-inflammatory immune cells and cytokines/adipokines, along with antigen presentation by adipocytes. Therefore, various adipokines differentially expressed by obese adipocytes may have a significant effect on cardiometabolism. Clusterin is a molecular chaperone that is widely produced by many tissues throughout the body, but is also preferentially overexpressed by obese compared lean adipocytes and relates strongly to multiple components of the cardiometabolic syndrome. Herein, we summarize the known and potential roles of circulating and adipocyte-specific clusterin in cardiometabolism and discuss potential further investigations to determine if clusterin is a viable target to attenuate both metabolic and cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer Wittwer
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| | - David Bradley
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Liu R, Guan S, Gao Z, Wang J, Xu J, Hao Z, Zhang Y, Yang S, Guo Z, Yang J, Shao H, Chang B. Pathological Hyperinsulinemia and Hyperglycemia in the Impaired Glucose Tolerance Stage Mediate Endothelial Dysfunction Through miR-21, PTEN/AKT/eNOS, and MARK/ET-1 Pathways. Front Endocrinol (Lausanne) 2021; 12:644159. [PMID: 33967958 PMCID: PMC8104127 DOI: 10.3389/fendo.2021.644159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is an important prediabetic stage characterized by elevated concentrations of glucose and insulin in the blood. The pathological hyperglycemia and hyperinsulinemia in IGT may regulate the expression of microRNA-21 (miR-21) and affect the downstream insulin signaling pathways, leading to endothelial cell dysfunction and early renal damage. METHODS The individual and combined effects of insulin and glucose were investigated using human glomerular endothelial cells (HGECs). The expression levels of miR-21, and PTEN/AKT/eNOS and MAPK/ET-1 pathway proteins in the treated cells were measured. The levels of nitric oxide (NO) and endothelin-1 (ET-1) secreted by the cells were also measured. The role of miR-21 in mediating the regulatory effects of insulin and glucose was assessed by overexpression/inhibition of this miRNA using mimics/inhibitor. RESULTS High (>16.7 mmol/L) concentration of glucose upregulated the expression of miR-21, leading to the activation and inhibition of the PTEN/AKT/eNOS and MAPK/ET-1 pathways, and upregulation of NO and downregulation of ET-1 secretion, respectively. High (>25 ng/mL) concentration of insulin downregulated the expression of miR-21, and lead to the activation of the MAPK/ET-1 and inhibition of the PTEN/AKT/eNOS pathway, thereby upregulating the expression of ET-1 and downregulating the secretion of NO. MiR-21 was observed to play a key role by directly controlling the activation of the insulin signaling pathways when the cells were cotreated with different concentrations of insulin and glucose. The expression of miR-21 was found to be dependent on the relative concentration of insulin and glucose. Under simulated conditions of the IGT stage (8.3 mmol/L glucose + 50 ng/mL insulin), the inhibitory effect of high insulin concentration on miR-21 expression in the cells attenuated the activation by high glucose concentration, resulting in the downregulation of miR-21, upregulation of ET-1 and downregulation of NO secretion. CONCLUSION Taken together, these results indicate that high insulin and glucose concentrations regulate the secretory function of glomerular endothelial cells in opposite ways by regulating the expression of miRNA-21. Pathological concentrations of insulin and glucose in the IGT stage may lead to a decrease in miR-21 expression, thereby disordering the secretion of vasoactive factors, resulting in renal tubule ischemia.
Collapse
Affiliation(s)
- Ran Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Shilin Guan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhaohu Hao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shaohua Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hailin Shao
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| |
Collapse
|
19
|
Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int J Mol Sci 2020; 21:ijms21249427. [PMID: 33322275 PMCID: PMC7763005 DOI: 10.3390/ijms21249427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Nutritional environment in the perinatal period has a great influence on health and diseases in adulthood. In rodents, litter size reduction reproduces the effects of postnatal overnutrition in infants and reveals that postnatal overfeeding (PNOF) not only permanently increases body weight but also affects the cardiovascular function in the short- and long-term. In addition to increased adiposity, the metabolic status of PNOF rodents is altered, with increased plasma insulin and leptin levels, associated with resistance to these hormones, changed profiles and levels of circulating lipids. PNOF animals present elevated arterial blood pressure with altered vascular responsiveness to vasoactive substances. The hearts of overfed rodents exhibit hypertrophy and elevated collagen content. PNOF also induces a disturbance of cardiac mitochondrial respiration and produces an imbalance between oxidants and antioxidants. A modification of the expression of crucial genes and epigenetic alterations is reported in hearts of PNOF animals. In vivo, a decreased ventricular contractile function is observed during adulthood in PNOF hearts. All these alterations ultimately lead to an increased sensitivity to cardiac pathologic challenges such as ischemia-reperfusion injury. Nevertheless, caloric restriction and physical exercise were shown to improve PNOF-induced cardiac dysfunction and metabolic abnormalities, drawing a path to the potential therapeutic correction of early nutritional programming.
Collapse
|
20
|
Au JS, Beaudry KM, Pancevski K, Hughson RL, Devries MC. The impact of preconditioning exercise on the vascular response to an oral glucose challenge. Appl Physiol Nutr Metab 2020; 46:443-451. [PMID: 33113337 DOI: 10.1139/apnm-2020-0559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exercise elicits direct benefits to insulin sensitivity but may also indirectly improve glucose uptake by hemodynamic conditioning of the vasculature. The purpose of this study was to examine the modifying effect of 3 different types of exercise on the vascular response to an oral glucose challenge. Twenty healthy adults (9 women, 11 men; aged 23 ± 3 years) completed a standard oral glucose tolerance test (OGTT) at rest, as well as 1.5 hours after moderate continuous cycling exercise (30 min; 65% peak oxygen consumption), high-intensity interval cycling exercise (10 × 1 min at 90% peak heart rate), and lower-load higher-repetition resistance exercise (25-35 repetitions/set, 3 sets). Brachial and superficial femoral artery blood flow, conductance, and oscillatory shear index were measured throughout the OGTT. Regardless of rested state or exercise preconditioning, the OGTT induced reductions in brachial artery blood flow and conductance (p < 0.001), and transient increases in brachial and superficial femoral artery oscillatory shear index and retrograde blood flow (p < 0.01). Continuous cycling and resistance exercise were followed with a small degree of protection against prolonged periods of oscillatory flow. Our findings imply transient peripheral vasoconstriction and decreased limb blood flow during a standard OGTT, for which prior exercise was unable to prevent in healthy adults. Novelty: We investigated the impact of continuous, interval, and resistance exercise on the hemodynamic response to an OGTT. Our findings suggest decreased upper-limb blood flow during an OGTT is not prevented by prior exercise in healthy adults.
Collapse
Affiliation(s)
- Jason S Au
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kayleigh M Beaudry
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kristian Pancevski
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Michaela C Devries
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Friedman A, Siewe N. Mathematical Model of Chronic Dermal Wounds in Diabetes and Obesity. Bull Math Biol 2020; 82:137. [PMID: 33057956 DOI: 10.1007/s11538-020-00815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Chronic dermal-wound patients frequently suffer from diabetes type 2 and obesity; without treatment or early intervention, these patients are at risk of amputation. In this paper, we identified four factors that impair wound healing in these populations: excessive production of glycation, excessive production of leukotrient, decreased production of stromal derived factor (SDF-1), and insulin resistance. We developed a mathematical model of wound healing that includes these factors. The model consists of a system of partial differential equations, and it demonstrates how these four factors impair the closure of the wound, by reducing the oxygen flow into the wound area and by blocking the transition from pro-inflammatory macrophages to anti-inflammatory macrophages. The model is used to assess treatment by insulin injection and by oxygen infusion.
Collapse
Affiliation(s)
- Avner Friedman
- Mathematical Biosciences Institute and Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nourridine Siewe
- School of Mathematical Sciences, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA.
| |
Collapse
|
22
|
Promsan S, Lungkaphin A. The roles of melatonin on kidney injury in obese and diabetic conditions. Biofactors 2020; 46:531-549. [PMID: 32449276 DOI: 10.1002/biof.1637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Obesity is a common and complex health problem worldwide and can induce the development of Type 2 diabetes. Chronic kidney disease (CKD) is a complication occurring as a result of obesity and diabetic conditions that lead to an increased mortality rate. There are several mechanisms and pathways contributing to kidney injury in obese and diabetic conditions. The expansion of adipocytes triggers proinflammatory cytokines release into blood circulation and bind with the receptors at the cell membranes of renal tissues leading to kidney injury. Obesity-mediated inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction are the important causes and progression of CKD. Melatonin (N-acetyl-5-methoxytryptamine) is a neuronal hormone that is synthesized by the pineal gland and plays an essential role in regulating several physiological functions in the human body. Moreover, melatonin has pleiotropic effects such as antioxidant, anti-inflammation, antiapoptosis. In this review, the relationship between obesity, diabetic condition, and kidney injury and the renoprotective effect of melatonin in obese and diabetic conditions from in vitro and in vivo studies have been summarized and discussed.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Melatonin/metabolism
- Melatonin/pharmacology
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Oxidative Stress/drug effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
Collapse
Affiliation(s)
- Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University Chiang Mai, Thailand
| |
Collapse
|
23
|
Li J, Jiang B, O Santos H, Santos D, Singh A, Wang L. Effects of walnut intake on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 34:2921-2931. [PMID: 32510725 DOI: 10.1002/ptr.6740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
The impact of walnuts on blood pressure (BP) is not a well-established fact. Although several studies have assessed the effects of walnut consumption on BP, results are conflicting. Thus, we examined the effects of walnut doses and length of supplementation on BP. Biomedical databases were searched for published trials that compared walnut-enhanced diet to control diet. Eighteen trials met eligibility criteria (n = 1,799). Overall, walnut consumption neither did alter SBP (weighted mean difference [WMD]: 0.08 mmHg; 95% CI: -0.69, 0.85) nor DBP (WMD: 0.08 CI: -0.26, 0.42). In subgroup analyses, walnut ingestion ≤40 g was statistically correlated with reduction in SBP (WMD: -0.53 mmHg, 95% CI: -0.79, -0.26) and DBP (WMD: -0.191 mmHg, 95% CI: -0.384, -0.034). Moreover, the length of intervention ≥8 weeks was linked to a significant reduction in SBP (WMD: -1.18 mmHg, 95% CI: -1.30, -1.06). Following dose-response evaluation, walnut intake significantly changed SBP (p = .015) and DBP (p = .026) through a nonlinear fashion at walnut dose up to 40 g/d. Nevertheless, these statistical results cannot be translated into clinical practice, once the changes expressed as WMD are slight taking into consideration the absolute values of BP categories. In conclusion, this meta-analysis does not support walnut consumption as a BP-lowering strategy.
Collapse
Affiliation(s)
- Jiayang Li
- Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bo Jiang
- Department of Vascular Surgery, First Hospital of China Medical University Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Heitor O Santos
- School of Medicine, University of Uberlandia (UFU), Uberlandia, Brazil
| | - Dinamene Santos
- East Sussex Healthcare NHS Trust, Conquest Hospital, St Leonards-On-Sea, UK
| | - Ambrish Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Lei Wang
- Department of Vascular Surgery, First Hospital of China Medical University Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| |
Collapse
|
24
|
Lipid profile and left ventricular geometry pattern in obese children. Lipids Health Dis 2020; 19:109. [PMID: 32456629 PMCID: PMC7251900 DOI: 10.1186/s12944-020-01285-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/12/2020] [Indexed: 01/19/2023] Open
Abstract
Background Left ventricular hypertrophy (LVH) is an important risk factor for cardiovascular and all-cause mortality. Previous studies reported conflicting results concerning the relationship between serum lipid levels and left ventricular geometry pattern. We sought to explore the relationship between standard serum lipid profile measures with left ventricular geometry pattern in obese children. Patients and methods In this cross-sectional study, a total of 70 obese children were examined. Fasting blood samples were taken to measure total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TGs), glucose, and insulin. Based on these values TG/HDL ratio, BMI and HOMA index were calculated. We also measured the average 24-h ambulatory systolic blood pressure (SBP) and two-dimensional (2/D) transthoracic echocardiography was performed to determine left ventricular mass index (LVMI) and relative wall thickness (RWT). Multiple regression analyses were conducted to explore relationships between study variables and the LVMI or RWT as outcome variables. The final model with LVMI included TG/HDL ratio, BMI, 24 h-average SBP, age and sex, while for the RWT we included BMI, insulin, age and sex. Results Our study included 70 children (65.71% boys and 34.29% girls) median age (14 years, IQR = 12–16)." We demonstrated independent and positive association of TG/HDL ratio, BMI and 24 h-average SBP with LVMI (effect = 3.65, SE = 1.32, p < 0.01; effect = 34.90, SE = 6.84, p < 0.01; effect = 0.32, SE = 0.12, p < 0.01, respectively). On the other hand, in model with RWT as outcome variable, only BMI and insulin were significantly linked (BMI: effect = 13.07, SE = 5.02, p = 0.01 Insulin: effect = 2.80, SE = 0.97). Conclusion Increased TG/HDL ratio in obese children is associated with the development of eccentric left ventricular hypertrophy while increased BMI and insulin were associated with concentric left ventricular hypertophy.
Collapse
|
25
|
Overfeeding During Lactation in Rats is Associated with Cardiovascular Insulin Resistance in the Short-Term. Nutrients 2020; 12:nu12020549. [PMID: 32093229 PMCID: PMC7071409 DOI: 10.3390/nu12020549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Childhood obesity is associated with metabolic and cardiovascular comorbidities. The development of these alterations may have its origin in early life stages such as the lactation period through metabolic programming. Insulin resistance is a common complication in obese patients and may be responsible for the cardiovascular alterations associated with this condition. This study analyzed the development of cardiovascular insulin resistance in a rat model of childhood overweight induced by overfeeding during the lactation period. On birth day, litters were divided into twelve (L12) or three pups per mother (L3). Overfed rats showed a lower increase in myocardial contractility in response to insulin perfusion and a reduced insulin-induced vasodilation, suggesting a state of cardiovascular insulin resistance. Vascular insulin resistance was due to decreased activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, whereas cardiac insulin resistance was associated with mitogen-activated protein kinase (MAPK) hyperactivity. Early overfeeding was also associated with a proinflammatory and pro-oxidant state; endothelial dysfunction; decreased release of nitrites and nitrates; and decreased gene expression of insulin receptor (IR), glucose transporter-4 (GLUT-4), and endothelial nitric oxide synthase (eNOS) in response to insulin. In conclusion, overweight induced by lactational overnutrition in rat pups is associated with cardiovascular insulin resistance that could be related to the cardiovascular alterations associated with this condition.
Collapse
|
26
|
Efficacy of Isomaltulose Compared to Sucrose in Modulating Endothelial Function in Overweight Adults. Nutrients 2020; 12:nu12010141. [PMID: 31947853 PMCID: PMC7019610 DOI: 10.3390/nu12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia is linked to impaired arterial endothelial function (EF), an early sign of cardiovascular disease. We compared the efficacy of low-glycemic index isomaltulose (Palatinose™) with that of sucrose in modulating EF, as assessed by flow-mediated dilation (FMD). In this double-blinded cross-over study, 80 overweight mildly hypertensive subjects were randomized to receive 50 g of either isomaltulose or sucrose. On two non-consecutive days, brachial artery ultrasound FMD scans were obtained prior to and hourly (T0-T3) after carbohydrate load. Blood was drawn immediately after scanning. Glucose and insulin levels were analyzed. Overall, the FMD decrease was attenuated by isomaltulose compared to sucrose (ΔFMD = -0.003% and -0.151%; p > 0.05 for the interaction treatment x period). At T2, FMD was significantly higher after isomaltulose administration compared to that after sucrose administration (FMD = 5.9 ± 2.9% and 5.4 ± 2.6%, p = 0.047). Pearson correlations between FMD and blood glucose showed a trend for a negative association at T0 and T2 independently of the carbohydrate (r-range = -0.20 to -0.23, p < 0.1). Sub-analysis suggested a lower FMD in insulin-resistant (IR) compared to insulin-sensitive subjects. Isomaltulose attenuated the postprandial decline of FMD, particularly in IR persons. These data support the potential of isomaltulose to preserve the endothelial function postprandially and consequently play a favorable role in cardiovascular health.
Collapse
|
27
|
Than WH, Chan GCK, Ng JKC, Szeto CC. The role of obesity on chronic kidney disease development, progression, and cardiovascular complications. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020. [DOI: 10.1016/j.abst.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Bai Y, Bao X, Jiang G, Ge D, He W, Zhao D, Zhang Y, Dong R, Hua J, Yang N, Mo F, Gao S. Jiang Tang Xiao Ke Granule Protects Hepatic Tissue of Diabetic Mice Through Modulation of Insulin and Ras Signaling - A Bioinformatics Analysis of MicroRNAs and mRNAs Network. Front Pharmacol 2020; 11:173. [PMID: 32210802 PMCID: PMC7067923 DOI: 10.3389/fphar.2020.00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the impact of JTXK granule on the miRNA expression profiles in hepatic tissue of diabetic mice, and to explore the molecular targets and associated signaling pathways of JTXK granule in its anti-diabetic effect. METHODS Eight mice were randomly selected as normal group fed with chow diet. Then high fat diet was used to induce diabetic model, and the mice were subsequently divided into JTXK-treated group (J group, n = 6) and model group (M group, n = 6). After 8 weeks' intervention we examined the fasting blood glucose and observed the histopathologic changes in hepatic tissue between these two groups. Next we screened the differentially expressed miRNAs between the two groups using microRNA sequencing analysis. Finally, miRNA target gene prediction, GO and KEGG analysis were applied to explore the function of DEMs. RESULTS The blood glucose level in J group was significantly lower than M group (P < 0.05). The results from H&E staining showed that the arrangement and structure of hepatocytes from J group were basically normal with fewer ballooning degeneration and less inflammatory cell infiltration. Furthermore, a total of 33 significantly differentiated miRNAs were detected in comparison between the two groups (| log2(fold change) | >0.3, P < 0.05). MiRNA-mRNA analysis showed that mmu-miR-30a-5p, mmu-miR-23b-5p, mmu-miR-199a-5p, mmu-miR-425-5p, and mmu-miR-214-3p are closely related to inflammatory response, histological changes and insulin signal transduction in liver. In addition, KEGG analysis showed that the DEMs were closely related to Ras and insulin signaling pathway. CONCLUSION JTXK granule exerts anti-diabetic effect in hepatic tissue of diabetic mice by modulating miRNAs and mRNAs network.
Collapse
Affiliation(s)
- Ying Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyu Ge
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weipeng He
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- College of City Management, Beijing Open University, Beijing, China
| | - Ruijuan Dong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Hua
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Yang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Fangfang Mo
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Fangfang Mo,
| | - Sihua Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Sihua Gao,
| |
Collapse
|
29
|
Padilla J, Woodford ML, Lastra-Gonzalez G, Martinez-Diaz V, Fujie S, Yang Y, Lising AMC, Ramirez-Perez FI, Aroor AR, Morales-Quinones M, Ghiarone T, Whaley-Connell A, Martinez-Lemus LA, Hill MA, Manrique-Acevedo C. Sexual Dimorphism in Obesity-Associated Endothelial ENaC Activity and Stiffening in Mice. Endocrinology 2019; 160:2918-2928. [PMID: 31617909 PMCID: PMC6853665 DOI: 10.1210/en.2019-00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Guido Lastra-Gonzalez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Vanesa Martinez-Diaz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Shumpei Fujie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Alexandre M C Lising
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Annayya R Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Adam Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Correspondence: Camila Manrique-Acevedo, MD, Department of Medicine, University of Missouri, D109 Diabetes Center UHC, One Hospital Drive, Columbia, Missouri 65212. E-mail:
| |
Collapse
|
30
|
Zagayko A, Briukhanova T, Lytkin D, Kravchenko A, Fylymonenko V. Prospects for Using the Natural Antioxidant Compounds in the Obesity Treatment. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.83421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Yuan W, Ma C, Zhou Y, Wang M, Zeng G, Huang Q. Negative regulation of eNOS-NO signaling by over-SUMOylation of PPARγ contributes to insulin resistance and dysfunction of vascular endothelium in rats. Vascul Pharmacol 2019; 122-123:106597. [PMID: 31479752 DOI: 10.1016/j.vph.2019.106597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
SUMOylation of peroxisome proliferator-activated receptor gamma (PPAR γ) plays important regulatory role in its transcriptional activity. Our recent studies in vitro found that over-SUMOylation of PPARγ, like high glucose and high fat (HG/HF), induced endothelial insulin resistance (IR). However, whether such an event occurs in rats remains unclear. Therefore, our study aimed at investigating whether PPARγ over-SUMOylation could mimic high sucrose/fat diet (HFD) to induce endothelial IR and dysfunction and explored its underlying mechanisms. Normal chow-fed rats were intravenously infected with adenoviruses carrying the wild type cDNAs encoding PPARγ, SUMO1 and PIAS1 (protein inhibitor of activated STAT1). HFD-fed rats were regarded as a positive control. Body physical and biochemical parameters, glucose tolerance and vessel function were detected. The expression and SUMOylation levels of PPARγ were measured by western blotting and co-immunoprecipitation. Our results showed that like HFD, PPARγ over-SUMOylation induced endothelial IR and dysfunction via a negative regulation of eNOS-NO pathway. More importantly, we found that PPARγ over-SUMOylation induced endogenous SUMOylation cascade and exacerbated endothelial IR and dysfunction.The findings will deepen the understanding on PPARγ SUMOylation-regulating insulin signaling network and offer a potential target for prevention and cure of diabetic vascular complications.
Collapse
Affiliation(s)
- Wanwan Yuan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cong Ma
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yumeng Zhou
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Mengxi Wang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
32
|
Baranowska-Bik A, Bik W. Vascular Dysfunction and Insulin Resistance in Aging. Curr Vasc Pharmacol 2019; 17:465-475. [DOI: 10.2174/1570161117666181129113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
:
Insulin was discovered in 1922 by Banting and Best. Since that time, extensive research on
the mechanisms of insulin activity and action has continued. Currently, it is known that the role of insulin
is much greater than simply regulating carbohydrate metabolism. Insulin in physiological concentration
is also necessary to maintain normal vascular function.
:
Insulin resistance is defined as a pathological condition characterized by reduced sensitivity of skeletal
muscles, liver, and adipose tissue, to insulin and its downstream metabolic effects under normal serum
glucose concentrations. There are also selective forms of insulin resistance with unique features, including
vascular insulin resistance. Insulin resistance, both classical and vascular, contributes to vascular
impairment resulting in increased risk of cardiovascular disease. Furthermore, in the elderly population,
additional factors including redistribution of fat concentrations, low-grade inflammation, and decreased
self-repair capacity [or cell senescence] amplify the vascular abnormalities related to insulin resistance.
Collapse
Affiliation(s)
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
33
|
Lan D, Shen X, Yuan W, Zhou Y, Huang Q. Sumoylation of PPARγ contributes to vascular endothelium insulin resistance through stabilizing the PPARγ-NcoR complex. J Cell Physiol 2019; 234:19663-19674. [PMID: 30982983 DOI: 10.1002/jcp.28567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Sumoylation of peroxisome proliferator-activated receptor γ (PPARγ) affects its stabilization, sublocalization, and transcriptional activity. However, it remains largely unknown whether PPARγ sumoylation inhibits the transactivation effect, leading to endothelium insulin resistance (IR). To test this possibility, human umbilical vascular endothelial cells (HUVECs) with a 90% confluence were randomly allocated to two batches. One batch was first pretreated with or without vitamin E for 24 hr and the other infected with adenoviruses containing either PIAS1-shRNA (protein inhibitor of activated STAT1-short hairpin RNA) or scramble shRNA. Cells were suffered from high glucose and palmitic acid (PA) exposure for further 48 hr. The levels of PPARγ, p-IKK, IKK, and NcoR (nuclear corepressors) were measured by western blot analysis. The interaction of IKK and PIAS1, as well as the PPARγ sumoylation, were examined by coimmunoprecipitation. The results showed that the exposure of high glucose and PA induced reactive oxygen species (ROS) production and IKK activation in HUVECs, promoting the interaction of IKK and PIAS1 and the sumoylation of PPARγ. However, vitamin E and PIAS1-shRNA partially decreased ROS production and IKK activation induced by high glucose and PA exposure. These data indicate that ROS-IKK-PIAS1 pathway mediates PPARγ sumoylation, leading to endothelium IR via stabilizing PPARγ-NcoR complex. These findings benefit understanding of regulatory networks of insulin signaling, which might provide a potential target to prevent and cure IR-related diseases.
Collapse
Affiliation(s)
- Dongyi Lan
- The First Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaodan Shen
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wanwan Yuan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yumeng Zhou
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
34
|
Inhibiting Protein Tyrosine Phosphatase 1B to Improve Regenerative Functions of Endothelial Cells. J Cardiovasc Pharmacol 2019; 71:59-64. [PMID: 28817487 DOI: 10.1097/fjc.0000000000000530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin receptor- and vascular endothelial growth factor receptor-dependent signalings in endothelial cells. Genetic or pharmacological inhibition of PTP1B has been shown to enhance endothelial cell proliferation and migration and increase nitric oxide production. In vivo, inhibiting PTP1B can reverse endothelial dysfunction, promote angiogenesis, and accelerate wound healing. Intense research is currently continuing in an effort to discover novel selective PTP1B inhibitors, primarily for treating insulin resistance. We propose that these drugs may also represent a new horizon for boosting the regenerative capacities of endothelial cells.
Collapse
|
35
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
36
|
Brands MW. Role of Insulin-Mediated Antinatriuresis in Sodium Homeostasis and Hypertension. Hypertension 2018; 72:1255-1262. [DOI: 10.1161/hypertensionaha.118.11728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael W. Brands
- From the Department of Physiology, Medical College of Georgia, Augusta, GA
| |
Collapse
|
37
|
Kong Y, Gao Y, Lan D, Zhang Y, Zhan R, Liu M, Zhu Z, Zeng G, Huang Q. Trans-repression of NFκB pathway mediated by PPARγ improves vascular endothelium insulin resistance. J Cell Mol Med 2018; 23:216-226. [PMID: 30398029 PMCID: PMC6307800 DOI: 10.1111/jcmm.13913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ying Kong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gao
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Dongyi Lan
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Rixin Zhan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Meiqi Liu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhouan Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Resveratrol Counteracts Insulin Resistance-Potential Role of the Circulation. Nutrients 2018; 10:nu10091160. [PMID: 30149556 PMCID: PMC6165300 DOI: 10.3390/nu10091160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
Pre-clinical data and human trials indicate that resveratrol supplementation may help to counteract diabetes. Several mechanisms of action have been proposed to explain its metabolic benefits, including activation of sirtuins and estrogen receptors (ER) to promote glucose transporter type-4 (GLUT4) translocation and increase glucose uptake. Resveratrol can also enhance vasodilator function, yet the possibility that this action might help to alleviate insulin resistance in type-2 diabetes mellitus has received little attention. In this brief review we propose that, by restoring impaired endothelium-dependent vasodilatation in insulin resistant individuals resveratrol increases blood perfusion of skeletal muscle, thereby facilitating glucose delivery and utilization with resultant improvement of insulin sensitivity. Thus, circulatory improvements by vasoactive nutrients such as resveratrol may play a role in preventing or alleviating insulin resistance.
Collapse
|
39
|
Lalić K, Nedeljković M, Jotić A, Babić R, Rajković N, Popović L, Lukić L, Miličić T, Singh Lukač S, Stošić L, Maćešić M, Rasulić I, Gajović JS, Lalić NM. Endothelial dysfunction of coronary arteries in subjects without diabetes: An association with both insulin resistance and impaired insulin secretion response. Diabetes Res Clin Pract 2018. [PMID: 29526680 DOI: 10.1016/j.diabres.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIMS This study was aimed to compare insulin sensitivity and secretion response, lipoprotein and plasminogen activator inhibitor 1 (PAI-1) levels between the subjects with and without coronary artery endothelial dysfunction (ED). METHODS ED was detected by intracoronary injection of acetylcholine (ACh) in 47 nondiabetes subjects without stenotic coronary arteries, selected from 316 consecutive patients with coronary angiography performed for suspected coronary artery disease. The subjects were divided into two groups: presence of ACh-induced coronary spasm (group ED+, N = 30) and absence of ACh-induced coronary spasm (group ED-, N = 17). Insulin sensitivity (Si) was evaluated by frequently sampled intravenous glucose tolerance test (FSIGTT) with minimal model analysis and by HOMA-IR, insulin secretion by acute insulin response (AIR) (calculated from the first 8 min of FSIGTT) and by disposition index (DI) (Si × AIR). Lipids and PAI-1 levels were determined enzymatically, and LDL particle size by gradient gel electrophoresis. RESULTS Si was significantly lower (4.22 ± 0.62 vs 6.98 ± 1.47 min-1/mU/l × 104; p < 0.05) while HOMA-IR was significantly higher in ED + group vs ED- group (2.8 ± 0.3 vs 1.7 ± 0.2; p < 0.05). Simultaneously, AIR and DI was significantly lower in ED + vs ED- groups (p < 0.05 and p < 0.01, respectively). Investigated groups did not differ in fasting lipid levels but ED+ group had significantly smaller LDL particles (p < 0.01) and higher PAI-1 levels (p < 0.05). Regression analysis shown that DI was a strong independent predictor of appearance of ED, together with PAI-1 and LDL particle size. CONCLUSIONS Both insulin resistance and impairment in insulin secretion response strongly correlate with coronary ED in subjects without diabetes.
Collapse
Affiliation(s)
- Katarina Lalić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Milan Nedeljković
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Cardiology, Clinical Center of Serbia, Koste Todorovića 8, 11000 Belgrade, Serbia.
| | - Alekasandra Jotić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Rade Babić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Cardiology, Clinical Center of Serbia, Koste Todorovića 8, 11000 Belgrade, Serbia.
| | - Nataša Rajković
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Ljiljana Popović
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Ljiljana Lukić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Tanja Miličić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Sandra Singh Lukač
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Ljubica Stošić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Marija Maćešić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Iva Rasulić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Jelena Stanarčić Gajović
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| | - Nebojša M Lalić
- Faculty of Medicine University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr. Subotića 13, 11000 Belgrade, Serbia.
| |
Collapse
|
40
|
Kasselman LJ, Vernice NA, DeLeon J, Reiss AB. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 2018. [DOI: 10.1016/j.atherosclerosis.2018.02.036] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Abstract
PURPOSE OF REVIEW In this article, we examine the nature of the complex relationship between insulin and cardiovascular disease. With metabolic abnormalities comes increased risk for cardiovascular complications. We discuss the key factors implicated in development and progression of cardiovascular disease, its relationship to insulin therapy, and what can be learned from large, recent cardiovascular outcome studies. RECENT FINDINGS Preclinical studies suggest that insulin has positive effects of facilitating glucose entry into cells and maintaining euglycemia and negative effects of favoring obesity and atherogenesis under certain conditions. Confounding this relationship is that cardiovascular morbidity is linked closely to duration and control of diabetes, and insulin is often used in patients with diabetes of longer duration. However, more recent clinical studies examining the cardiovascular safety of insulin therapy have been reassuring. Diabetes and cardiovascular outcomes are closely linked. Many studies have implicated insulin resistance and hyperinsulinemia as a major factor for poor cardiovascular outcomes. Additional studies link the anabolic effects of therapeutic insulin to weight gain, along with hypoglycemia, which may further aggravate cardiovascular risk in this population. Though good glycemic control has been shown to improve microvascular risks in type 1 and type 2 diabetes, what are the known cardiovascular effects of insulin therapy? The ORIGIN trial suggests at least a neutral effect of the basal insulin glargine on cardiovascular outcomes. Recent studies have demonstrated that ultra-long-acting insulin analogs like insulin degludec are non-inferior to insulin glargine with regard to cardiovascular outcomes.
Collapse
Affiliation(s)
- Sahana Pai Dongerkery
- MedStar Union Memorial Hospital, 201 East University Parkway, 33rd Street Professional Building, Baltimore, MD, 21218, USA
| | - Pamela R Schroeder
- MedStar Union Memorial Hospital, 201 East University Parkway, 33rd Street Professional Building, Baltimore, MD, 21218, USA
| | - Mansur E Shomali
- MedStar Union Memorial Hospital, 201 East University Parkway, 33rd Street Professional Building, Baltimore, MD, 21218, USA.
| |
Collapse
|
42
|
Roberto S, Crisafulli A. Consequences of Type 1 and 2 Diabetes Mellitus on the Cardiovascular Regulation During Exercise: A Brief Review. Curr Diabetes Rev 2017; 13:560-565. [PMID: 27306960 PMCID: PMC5684785 DOI: 10.2174/1573399812666160614123226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/26/2023]
Abstract
INTRODUCTION One challenging problem in patients suffering from Diabetes Mellitus (DM) is the elevate incidence of cardiovascular events. Exercise has been proved useful in reducing cardiovascular risks in these patients. However, both type 1 and 2 DM significantly affect the cardiovascular response during exercise. Therefore, on one side exercise is considered to be a valid therapeutic tool for DM, whereas on the other side during exercise these patients may experience troubles in the cardiovascular regulation. BACKGROUND Several impairments at central and at peripheral level have been reported during exercise in both types of DM. For example, sympathetic dysfunctions have been demonstrated in type 1 and 2 DM. Furthermore, impairments in hemodynamics have been often reported. The purpose of the present paper is to briefly review the latest data on the role played by type 1 and 2 DM in the cardiovascular regulation during dynamic exercise. CONCLUSION Hemodynamic dysfunctions may develop in both type 1 and 2 DM during exercise. However, these cardiovascular dys-regulations are different between the two kinds of diabetes.
Collapse
Affiliation(s)
| | - Antonio Crisafulli
- Address correspondence to this author at the Department of Medical
Sciences, Sports Physiology Lab., University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy; Tel: +390706758937; Fax: +390706758917;
E-mail:
| |
Collapse
|
43
|
Manrique-Acevedo C, Ramirez-Perez FI, Padilla J, Vieira-Potter VJ, Aroor AR, Barron BJ, Chen D, Haertling D, Declue C, Sowers JR, Martinez-Lemus LA. Absence of Endothelial ERα Results in Arterial Remodeling and Decreased Stiffness in Western Diet-Fed Male Mice. Endocrinology 2017; 158:1875-1885. [PMID: 28430983 PMCID: PMC5460939 DOI: 10.1210/en.2016-1831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 01/16/2023]
Abstract
The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
- Department of Child Health, University of Missouri, Columbia, Missouri 65212
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Brady J Barron
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dongqing Chen
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
| | - Dominic Haertling
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Cory Declue
- School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - James R Sowers
- Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
44
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
45
|
Escudero CA, Herlitz K, Troncoso F, Guevara K, Acurio J, Aguayo C, Godoy AS, González M. Pro-angiogenic Role of Insulin: From Physiology to Pathology. Front Physiol 2017; 8:204. [PMID: 28424632 PMCID: PMC5380736 DOI: 10.3389/fphys.2017.00204] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
The underlying molecular mechanisms involve in the regulation of the angiogenic process by insulin are not well understood. In this review article, we aim to describe the role of insulin and insulin receptor activation on the control of angiogenesis and how these mechanisms can be deregulated in human diseases. Functional expression of insulin receptors and their signaling pathways has been described on endothelial cells and pericytes, both of the main cells involved in vessel formation and maturation. Consequently, insulin has been shown to regulate endothelial cell migration, proliferation, and in vitro tubular structure formation through binding to its receptors and activation of intracellular phosphorylation cascades. Furthermore, insulin-mediated pro-angiogenic state is potentiated by generation of vascular growth factors, such as the vascular endothelial growth factor, produced by endothelial cells. Additionally, diseases such as insulin resistance, obesity, diabetes, and cancer may be associated with the deregulation of insulin-mediated angiogenesis. Despite this knowledge, the underlying molecular mechanisms need to be elucidated in order to provide new insights into the role of insulin on angiogenesis.
Collapse
Affiliation(s)
- Carlos A Escudero
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile.,Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile
| | - Kurt Herlitz
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Felipe Troncoso
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Katherine Guevara
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Jesenia Acurio
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile
| | - Alejandro S Godoy
- Department of Physiology, Pontificia Universidad Católica de ChileSantiago, Chile.,Department of Urology, Roswell Park Cancer InstituteBuffalo, NY, USA
| | - Marcelo González
- Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile.,Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad of ConcepciónConcepción, Chile
| |
Collapse
|
46
|
Dass N, Kilakkathi S, Obi B, Moosreiner A, Krishnaswami S, Widlansky ME, Kidambi S. Effect of gender and adiposity on in vivo vascular function in young African Americans. ACTA ACUST UNITED AC 2017; 11:246-257. [PMID: 28411075 DOI: 10.1016/j.jash.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/15/2017] [Accepted: 03/02/2017] [Indexed: 01/29/2023]
Abstract
The relationship between obesity and high blood pressure is not as strong among African Americans (AA) as compared to Caucasians. We designed the current study to determine the effect of adiposity on vascular endothelial function (a harbinger of hypertension) among young healthy AA without additional cardiovascular disease risk factors. A total of 108 AA subjects (46 women) between the ages of 18 and 45 years were recruited. All the subjects were normotensive, nonsmokers, and normoglycemic. Anthropometric and cardiovascular disease risk factor measurements (lipid, insulin resistance, and inflammatory markers) were obtained. Vascular endothelial function was measured by brachial artery flow-mediated dilation (FMD). Adiposity distribution was measured by using magnetic resonance imaging scan. There were no gender differences in age and levels of blood pressure, lipids, insulin resistance, and inflammatory markers. Women had higher total body fat percentage and higher peripheral adiposity compared to men. We observed that total and central adiposity did not correlate significantly with brachial artery FMD in women (r = -0.12 and r = 0.23, respectively; P = NS). However, in men, waist circumference was positively associated with FMD (r = 0.3, P ≤ .05). Hyperemic flow was negatively correlated significantly with total and central adiposity in men (r = -0.34 and r = -0.48, respectively; P < .05), but not in women (r = -0.26 and r = 0.03, respectively; P = NS). Our study suggests that increased adiposity may pose greater risk to AA men compared to AA women by adversely affecting resistance vessel function (as measured by hyperemic flow). Larger studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Namrata Dass
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sindhu Kilakkathi
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brittaney Obi
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrea Moosreiner
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shanthi Krishnaswami
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Srividya Kidambi
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
47
|
Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci Rep 2017; 7:44650. [PMID: 28291256 PMCID: PMC5349590 DOI: 10.1038/srep44650] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring.
Collapse
|
48
|
Ganz T, Wainstein J, Gilad S, Limor R, Boaz M, Stern N. Serum asymmetric dimethylarginine and arginine levels predict microvascular and macrovascular complications in type 2 diabetes mellitus. Diabetes Metab Res Rev 2017; 33. [PMID: 27393712 DOI: 10.1002/dmrr.2836] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Increased oxidative stress in diabetes increases nitric oxide (NO) oxidation and low l-arginine (Arg) could further reduce NO and impair vascular function, thereby accelerating, in the long run, vascular complications. We therefore measured Arg and asymmetric dimethylarginine (ADMA) levels in patients with type 2 diabetes mellitus (T2DM) and healthy controls. Additionally, we observed the diabetic individuals over time to see if Arg and asymmetric dimethylarginine predicted T2DM complications. METHODS We examined baseline serum Arg and ADMA levels in a cohort of 105 participants with type 2 diabetes and compared them with an age- and weight-matched nondiabetic group of 137 individuals who served as a reference population. Additionally, we assessed whether Arg and/or ADMA predicted macrovascular and microvascular complications over 6 years of follow-up. RESULTS Serum Arg was lower in individuals with T2DM than in controls (64 ± 28 vs 75 ± 31 μmol/L; P = .009) and inversely related to hemoglobin A1c (r = -0.2; P = .002). Over follow-up, we observed that participants with T2DM in the lowest quartile of Arg had increased risk for the subsequent evolution of nephropathy, peripheral neuropathy, and composite microvascular complications (odds ratio [OR] = 5.5; 95% confidence interval [CI] -1.9 to 16; P = .002). The highest ADMA quartile was associated with increased risk for both microvascular (OR = 4.5; 95% CI -1.4 to 14.1; P = .009) and 6.5-year incident macrovascular complications (OR = 8.3; 95% CI 1.9-35.5; P = .004). CONCLUSION l-Arginine levels are lower in individuals with T2DM than in matched controls. Both low Arg and high ADMA, independent of each other and adjusted for classical risk factors, predict the incidence of microvascular complications.
Collapse
Affiliation(s)
- Tali Ganz
- Diabetes Unit, Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Julio Wainstein
- Diabetes Unit, Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Suzan Gilad
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Rona Limor
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Mona Boaz
- Department of Nutrition Sciences, Ariel University, Ariel, Israel
- Epidemilogy and Research Unit, Wolfson Medical Center, Holon, Israel
| | - Naftali Stern
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
49
|
Padilla J, Olver TD, Thyfault JP, Fadel PJ. Role of habitual physical activity in modulating vascular actions of insulin. Exp Physiol 2016; 100:759-71. [PMID: 26130183 DOI: 10.1113/ep085107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights the importance of increased vascular insulin sensitivity for maintaining glycaemic control and cardiovascular health. What advances does it highlight? We discuss the role of habitual physical activity in modulating vascular actions of insulin. Type 2 diabetes and cardiovascular disease commonly coexist. Current evidence suggests that impaired insulin signalling in the vasculature may be a common link between metabolic and cardiovascular diseases, including glycaemic dysregulation and atherosclerosis. Herein, we highlight the importance of the actions of insulin on the vasculature for glycaemic control and arterial health. In addition, we summarize and discuss findings from our group and others demonstrating that increased physical activity may be an effective approach to enhancing vascular insulin sensitivity. Furthermore, in light of the existing literature, we formulate the hypothesis that increased shear stress may be a prime mechanism through which habitual physical activity improves insulin signalling in the vasculature. Ultimately, we propose that targeting vascular insulin resistance may represent a viable strategy for improving glycaemic control and reducing cardiovascular risk in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
| | - Paul J Fadel
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
50
|
Hwang MH, Lee S. Insulin resistance: vascular function and exercise. Integr Med Res 2016; 5:198-203. [PMID: 28462118 PMCID: PMC5390417 DOI: 10.1016/j.imr.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance associated with metabolic syndrome and Type 2 diabetes mellitus is an epidemic metabolic disorder, which increases the risk of cardiovascular complications. Impaired vascular endothelial function is an early marker for atherosclerosis, which causes cardiovascular complications. Both experimental and clinical studies indicate that endothelial dysfunction in vasculatures occurs with insulin resistance. The associated physiological mechanisms are not fully appreciated yet, however, it seems that augmented oxidative stress, a physiological imbalance between oxidants and antioxidants, in vascular cells is a possible mechanism involved in various vascular beds with insulin resistance and hyperglycemia. Regardless of the inclusion of resistance exercise, aerobic exercise seems to be beneficial for vascular endothelial function in both large conduit and small resistance vessels in both clinical and experimental studies with insulin resistance. In clinical cases, aerobic exercise over 8 weeks with higher intensity seems more beneficial than the cases with shorter duration and lower intensity. However, more studies are needed in the future to elucidate the physiological mechanisms by which vascular endothelial function is impaired in insulin resistance and improved with aerobic exercise.
Collapse
Affiliation(s)
- Moon-Hyon Hwang
- Division of Health and Exercise Science, Incheon National University, Incheon, Korea.,Sport Science Institute, Incheon National University, Incheon, Korea
| | - Sewon Lee
- Sport Science Institute, Incheon National University, Incheon, Korea.,Division of Sport Science, Incheon National University, Incheon, Korea
| |
Collapse
|