1
|
Ma Y, Chen M, Huang K, Chang W. The impact of cysteine on lifespan in three model organisms: A systematic review and meta-analysis. Aging Cell 2025; 24:e14392. [PMID: 39478327 PMCID: PMC11822635 DOI: 10.1111/acel.14392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 02/14/2025] Open
Abstract
Cysteine is an amino acid present in thiol proteins and often dictates their secondary structures. Although considered nonessential, cysteine may be essential for patients with certain metabolic diseases and can reduce the requirement for dietary methionine. Cysteine and some of its derivatives, such as N-acetylcysteine, are considered antioxidants and widely used in animal aging studies. To provide insights into the potential anti-aging effects of cysteine, we systematically reviewed and performed a meta-analysis to investigate the impact of cysteine supplementation on lifespan using three model organisms: mice, nematodes, and fruit flies. A total of 13 mouse studies, 13 C. elegans studies, and 5 Drosophila studies were included in the analysis. The findings revealed that cysteine supplementation significantly reduced the risk of mortality in mice and C. elegans. Subgroup analysis showed consistent results across different starting times and administration methods and revealed adverse effects of high doses on worms and a lack of effect in nondisease mouse models. Similar to mice, the effects of cysteine supplementation on Drosophila were not statistically significant, except in transgenic flies. The study identified certain limitations, including the quality of the included studies and the potential for publication bias. We also discussed uncertainties in the underlying molecular mechanisms and the clinical application of dietary cysteine.
Collapse
Affiliation(s)
- Yue Ma
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| | - Mengqi Chen
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| | - Kaiyao Huang
- Key Laboratory of Algal BiologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanHubeiChina
| | - Wakam Chang
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| |
Collapse
|
2
|
Wang Q, An J, Zhou W, Zhang Y, Huang J, Liao G, Wang M, Xia L, Le A, Zhu J. S-adenosyl-L-methionine supplementation alleviates aortic dissection by decreasing inflammatory infiltration. Nutr Metab (Lond) 2024; 21:67. [PMID: 39160585 PMCID: PMC11331618 DOI: 10.1186/s12986-024-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024] Open
Abstract
Methionine, an indispensable amino acid crucial for dietary balance, intricately governs metabolic pathways. Disruption in its equilibrium has the potential to heighten homocysteine levels in both plasma and tissues, posing a conceivable risk of inducing inflammation and detriment to the integrity of vascular endothelial cells. The intricate interplay between methionine metabolism, with a specific focus on S-adenosyl-L-methionine (SAM), and the onset of thoracic aortic dissection (TAD) remains enigmatic despite acknowledging the pivotal role of inflammation in this vascular condition. In an established murine model induced by β-aminopropionitrile monofumarate (BAPN), we delved into the repercussions of supplementing with S-adenosyl-L-methionine (SAM) on the progression of TAD. Our observations uncovered a noteworthy improvement in aortic dissection and rupture rates, accompanied by a marked reduction in mortality upon SAM supplementation. Notably, SAM supplementation exhibited a considerable protective effect against BAPN-induced degradation of elastin and the extracellular matrix. Furthermore, SAM supplementation demonstrated a robust inhibitory influence on the infiltration of immune cells, particularly neutrophils and macrophages. It also manifested a notable reduction in the inflammatory polarization of macrophages, evident through diminished accumulation of MHC-IIhigh macrophages and reduced expression of inflammatory cytokines such as IL1β and TNFα in macrophages. Simultaneously, SAM supplementation exerted a suppressive effect on the activation of CD4 + and CD8 + T cells within the aorta. This was evidenced by an elevated proportion of CD44- CD62L + naïve T cells and a concurrent decrease in CD44 + CD62L- effector T cells. In summary, our findings strongly suggest that the supplementation of SAM exhibits remarkable efficacy in alleviating BAPN-induced aortic inflammation, consequently impeding the progression of thoracic aortic dissection.
Collapse
Affiliation(s)
- Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun An
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Wei Zhou
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Yujing Zhang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Jiang Huang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Geping Liao
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Mingzhe Wang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Lingbo Xia
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Hypertension Research Institute, Nanchang, China.
| |
Collapse
|
3
|
Koehler FC, Späth MR, Meyer AM, Müller RU. Fueling the success of transplantation through nutrition: recent insights into nutritional interventions, their interplay with gut microbiota and cellular mechanisms. Curr Opin Organ Transplant 2024; 29:284-293. [PMID: 38861189 DOI: 10.1097/mot.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW The role of nutrition in organ health including solid organ transplantation is broadly accepted, but robust data on nutritional regimens remains scarce calling for further investigation of specific dietary approaches at the different stages of organ transplantation. This review gives an update on the latest insights into nutritional interventions highlighting the potential of specific dietary regimens prior to transplantation aiming for organ protection and the interplay between dietary intake and gut microbiota. RECENT FINDINGS Nutrition holds the potential to optimize patients' health prior to and after surgery, it may enhance patients' ability to cope with the procedure-associated stress and it may accelerate their recovery from surgery. Nutrition helps to reduce morbidity and mortality in addition to preserve graft function. In the case of living organ donation, dietary preconditioning strategies promise novel approaches to limit ischemic organ damage during transplantation and to identify the underlying molecular mechanisms of diet-induced organ protection. Functioning gut microbiota are required to limit systemic inflammation and to generate protective metabolites such as short-chain fatty acids or hydrogen sulfide. SUMMARY Nutritional intervention is a promising therapeutic concept including the pre- and rehabilitation stage in order to improve the recipients' outcome after solid organ transplantation.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anna M Meyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
4
|
Olsen T, Vinknes KJ, Barvíková K, Stolt E, Lee-Ødegård S, Troensegaard H, Johannessen H, Elshorbagy A, Sokolová J, Krijt J, Křížková M, Ditrói T, Nagy P, Øvrebø B, Refsum H, Thoresen M, Retterstøl K, Kožich V. Dietary sulfur amino acid restriction in humans with overweight and obesity: Evidence of an altered plasma and urine sulfurome, and a novel metabolic signature that correlates with loss of fat mass and adipose tissue gene expression. Redox Biol 2024; 73:103192. [PMID: 38776754 PMCID: PMC11163171 DOI: 10.1016/j.redox.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and β-oxidation (FDR = 0.02). CONCLUSION SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway.
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Sindre Lee-Ødegård
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 4959 Nydalen, OUS HF Aker sykehus, 0424 Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Postboks 45980 Nydalen, OUS HF Rikshospitalet, 0424 Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Chamblion street, Qesm Al Attarin, Alexandria 5372066, Egypt; Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford OX1 3QT, UK
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078 Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012 Debrecen, Hungary
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; Department of Food Safety, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213 Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford OX1 3QT, UK
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Postboks 1122 Blindern, 0317 Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine University of Oslo, Postboks 1046 Blindern, 0317 Oslo, Norway; The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Postboks 4959 Nydalen, OUS HF Aker sykehus, 0424 Oslo, Norway
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital, Ke Karlovu 2, 128 00 Prague, Czech Republic.
| |
Collapse
|
5
|
Olsen T, Elshorbagy A, Stolt E, Åsberg A, Zaré HK, Bastani NE, Refsum H, Retterstøl K, Vinknes KJ. Acute effects of oral mesna administration on the full amino acid profile and 3-methylhistidine: secondary results from the CYLOB dose-finding study. Amino Acids 2024; 56:39. [PMID: 38844567 PMCID: PMC11156715 DOI: 10.1007/s00726-024-03398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Plasma total cysteine (tCys) is strongly associated with fat mass in humans. Mesna lowers plasma tCys in a dose-dependent manner, but it is not known whether it interferes with metabolism of other amino acids or protein. In this Phase-1 study, we show that a single dose of mesna administered at 400, 800, 1200 or 1600 mg to 6-7 individuals per dose only slightly affects amino acid profiles, with increases in plasma valine across dose levels. There were no effects of mesna on 3-methylhistidine, a marker of protein breakdown.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Amany Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Hasse K Zaré
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, The Lipid Clinic, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Hong X, Zhang Y, Ni H, Xiao Q, Yin Y, Ren J, Zhao P, Zhang Z, Li X, Li Y, Yang Y. Optimization of Fermented Maize Stover for the Fattening Phase of Geese: Effect on Production Performance and Gut Microflora. Animals (Basel) 2024; 14:433. [PMID: 38338076 PMCID: PMC10854615 DOI: 10.3390/ani14030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
To optimize the utilization of fermented maize stover (FMS) feed during the fattening phase of Xianghai flying geese (XFG), a total of 300 XFG at 125 days of age were randomly assigned to four dietary treatment groups with three replicates of 25 in each set. Group A was fed the basal fattening diet, while the B, C, and D groups were fed the basic fattening diet and diets supplemented with 5%, 10% or 15% FMS, respectively. The findings indicate that the production performance indicators (especially the dressed, eviscerated and breast muscle yield) of Group D closely resembled Group A more than Groups B and C. Intestinal morphometry found that the jejunal villus height and the villus height/crypt depth were significantly increased in Group D compared to Group A. Next, 16S rRNA amplicon sequencing of the extracted DNA revealed that beneficial microbiota (Coprococcus and Victivallis) showed increased abundance in Group D. Cecal flora function analysis further revealed that some amino acid and glycerol biosynthesis were found to be associated with growth performance in geese. These findings suggest that incorporating 15% FMS as a substitute for a portion of the feed during the fattening phase of XFG can effectively sustain their production performance, optimize the gut microbial community and morphometrical traits, provide new insight into using non-conventional feed resources to reduce feed cost and improve economic benefits in the breeding industry.
Collapse
Affiliation(s)
- Xiaoqing Hong
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Hongyu Ni
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Qingxing Xiao
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yijing Yin
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Jing Ren
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Puze Zhao
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Ziyi Zhang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Xiaohui Li
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| |
Collapse
|
7
|
Kang Y, Applegate CC, He F, Oba PM, Vieson MD, Sánchez-Sánchez L, Swanson KS. Yellow Mealworm (Tenebrio molitor) and Lesser Mealworm (Alphitobius diaperinus) Proteins Slowed Weight Gain and Improved Metabolism of Diet-Induced Obesity Mice. J Nutr 2023; 153:2237-2248. [PMID: 37331631 DOI: 10.1016/j.tjnut.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND High-protein diets not only meet amino acid needs but also modulate satiety and energy metabolism. Insect-based proteins are sustainable, high-quality proteins. Mealworms have been studied, but limited information is known about their ability to impact metabolism and obesity. OBJECTIVE We determined the effects of defatted yellow mealworm (Tenebrio molitor)- and whole lesser mealworm (Alphitobius diaperinus)-based proteins on the body weight (BW), serum metabolites, and liver and adipose tissue (AT) histology and gene expression of diet-induced obesity mice. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity and metabolic syndrome. Obese mice were then assigned to treatments (n = 10/group) and fed for 8 wk: HFD: HFD with casein protein; B50: HFD with 50% protein from whole lesser mealworm; B100: HFD with 100% protein from whole lesser mealworm; Y50: HFD with 50% protein from defatted yellow mealworm; Y100: HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (LFD; 10% kcal) were included. Longitudinal food intake, BW, body composition, and glucose response were measured. At time of killing, serum metabolites, tissue histopathology and gene expression, and hepatic triglycerides were analyzed. RESULTS After 8 wk, HFD, B50, and B100 had greater (P < 0.05) weight gain than LFD, whereas Y50 and Y100 did not. Y50, B100, and Y100 had a lower (P < 0.05) BW change rate than HFD. Mealworm-based diets led to increased (P < 0.05) serum high-density lipoprotein (HDL) and reduced (P < 0.05) serum low-density lipoprotein (LDL) concentrations and reduced (P<0.05) LDL/HDL ratio. Mealworm-based diets led to increased (P < 0.05) hepatic expression of genes related to energy balance, immune response, and antioxidants and reduced (P < 0.05) AT expression of genes associated with inflammation and apoptosis. Mealworm-based diets altered (P < 0.05) hepatic and AT expression of glucose and lipid metabolism genes. CONCLUSIONS In addition to serving as an alternative protein source, mealworms may confer health benefits to obese patients.
Collapse
Affiliation(s)
- Yifei Kang
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Catherine C Applegate
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Fei He
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Miranda D Vieson
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
8
|
Amino acid nutrition and metabolism in domestic cats and dogs. J Anim Sci Biotechnol 2023; 14:19. [PMID: 36803865 PMCID: PMC9942351 DOI: 10.1186/s40104-022-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/21/2022] [Indexed: 02/22/2023] Open
Abstract
Domestic cats and dogs are carnivores that have evolved differentially in the nutrition and metabolism of amino acids. This article highlights both proteinogenic and nonproteinogenic amino acids. Dogs inadequately synthesize citrulline (the precursor of arginine) from glutamine, glutamate, and proline in the small intestine. Although most breeds of dogs have potential for adequately converting cysteine into taurine in the liver, a small proportion (1.3%-2.5%) of the Newfoundland dogs fed commercially available balanced diets exhibit a deficiency of taurine possibly due to gene mutations. Certain breeds of dogs (e.g., golden retrievers) are more prone to taurine deficiency possibly due to lower hepatic activities of cysteine dioxygenase and cysteine sulfinate decarboxylase. De novo synthesis of arginine and taurine is very limited in cats. Thus, concentrations of both taurine and arginine in feline milk are the greatest among domestic mammals. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for many amino acids (e.g., arginine, taurine, cysteine, and tyrosine), and are less sensitive to amino acid imbalances and antagonisms. Throughout adulthood, cats and dogs may lose 34% and 21% of their lean body mass, respectively. Adequate intakes of high-quality protein (i.e., 32% and 40% animal protein in diets of aging dogs and cats, respectively; dry matter basis) are recommended to alleviate aging-associated reductions in the mass and function of skeletal muscles and bones. Pet-food grade animal-sourced foodstuffs are excellent sources of both proteinogenic amino acids and taurine for cats and dogs, and can help to optimize their growth, development, and health.
Collapse
|
9
|
Wu G, Xu J, Wang Q, Fang Z, Fang Y, Jiang Y, Zhang X, Cheng X, Sun J, Le G. Methionine-Restricted Diet: A Feasible Strategy Against Chronic or Aging-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5-19. [PMID: 36571820 DOI: 10.1021/acs.jafc.2c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dietary methionine restriction (MR) has been associated with multifaceted health-promoting effects. MR is conducive to prevention of several chronic diseases and cancer, and extension of lifespan. A growing number of studies on new phenotypes and mechanisms of MR have become available in the past five years, especially in angiogenesis, neurodegenerative diseases, intestinal microbiota, and intestinal barrier function. In this review, we summarize the characteristics and advantages of MR, and current knowledge on the physiological responses and effects of MR on chronic diseases and aging-associated pathologies. Potential mechanisms, in which hydrogen sulfide, fibroblast growth factor 21, gut microbiota, short-chain fatty acids, and so on are involved, are discussed. Moreover, directions for epigenetics and gut microbiota in an MR diet are presented in future perspectives. This review comprehensively summarizes the novel roles and interpretations of the mechanisms underlying MR in the prevention of chronic diseases and aging.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingxuan Xu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Ziyang Fang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yucheng Fang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yujie Jiang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohong Zhang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiangrong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266021, China
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Correia-Melo C, Kamrad S, Tengölics R, Messner CB, Trebulle P, Townsend S, Jayasree Varma S, Freiwald A, Heineike BM, Campbell K, Herrera-Dominguez L, Kaur Aulakh S, Szyrwiel L, Yu JSL, Zelezniak A, Demichev V, Mülleder M, Papp B, Alam MT, Ralser M. Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell 2023; 186:63-79.e21. [PMID: 36608659 DOI: 10.1016/j.cell.2022.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.
Collapse
Affiliation(s)
- Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Stephan Kamrad
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roland Tengölics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Pauline Trebulle
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - StJohn Townsend
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Anja Freiwald
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Benjamin M Heineike
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Quantitative Gene Expression Research Group, MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK; Quantitative Gene Expression Research Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW2 2AZ, UK
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lucía Herrera-Dominguez
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Lukasz Szyrwiel
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksej Zelezniak
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Vadim Demichev
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al-Ain, United Arab Emirates
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
11
|
Associations between plasma sulfur amino acids and specific fat depots in two independent cohorts: CODAM and The Maastricht Study. Eur J Nutr 2023; 62:891-904. [PMID: 36322288 PMCID: PMC9941263 DOI: 10.1007/s00394-022-03041-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/20/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE Sulfur amino acids (SAAs) have been associated with obesity and obesity-related metabolic diseases. We investigated whether plasma SAAs (methionine, total cysteine (tCys), total homocysteine, cystathionine and total glutathione) are related to specific fat depots. METHODS We examined cross-sectional subsets from the CODAM cohort (n = 470, 61.3% men, median [IQR]: 67 [61, 71] years) and The Maastricht Study (DMS; n = 371, 53.4% men, 63 [55, 68] years), enriched with (pre)diabetic individuals. SAAs were measured in fasting EDTA plasma with LC-MS/MS. Outcomes comprised BMI, skinfolds, waist circumference (WC), dual-energy X-ray absorptiometry (DXA, DMS), body composition, abdominal subcutaneous and visceral adipose tissues (CODAM: ultrasound, DMS: MRI) and liver fat (estimated, in CODAM, or MRI-derived, in DMS, liver fat percentage and fatty liver disease). Associations were examined with linear or logistic regressions adjusted for relevant confounders with z-standardized primary exposures and outcomes. RESULTS Methionine was associated with all measures of liver fat, e.g., fatty liver disease [CODAM: OR = 1.49 (95% CI 1.19, 1.88); DMS: OR = 1.51 (1.09, 2.14)], but not with other fat depots. tCys was associated with overall obesity, e.g., BMI [CODAM: β = 0.19 (0.09, 0.28); DMS: β = 0.24 (0.14, 0.34)]; peripheral adiposity, e.g., biceps and triceps skinfolds [CODAM: β = 0.15 (0.08, 0.23); DMS: β = 0.20 (0.12, 0.29)]; and central adiposity, e.g., WC [CODAM: β = 0.16 (0.08, 0.25); DMS: β = 0.17 (0.08, 0.27)]. Associations of tCys with VAT and liver fat were inconsistent. Other SAAs were not associated with body fat. CONCLUSION Plasma concentrations of methionine and tCys showed distinct associations with different fat depots, with similar strengths in the two cohorts.
Collapse
|
12
|
Richie JP, Sinha R, Dong Z, Nichenametla SN, Ables GP, Ciccarella A, Sinha I, Calcagnotto AM, Chinchilli VM, Reinhart L, Orentreich D. Dietary Methionine and Total Sulfur Amino Acid Restriction in Healthy Adults. J Nutr Health Aging 2023; 27:111-123. [PMID: 36806866 PMCID: PMC10782544 DOI: 10.1007/s12603-023-1883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Dietary restriction of methionine (Met) and cysteine (Cys) delays the aging process and aging-related diseases, improves glucose and fat metabolism and reduces oxidative stress in numerous laboratory animal models. Little is known regarding the effects of sulfur amino acid restriction in humans. Thus, our objectives were to determine the impact of feeding diets restricted in Met alone (MetR) or in both Met and Cys (total sulfur amino acids, SAAR) to healthy adults on relevant biomarkers of cardiometabolic disease risk. DESIGN A controlled feeding study. SETTING AND PARTICIPANTS We included 20 healthy adults (11 females/9 males) assigned to MetR or SAAR diet groups consisting of three 4-wk feeding periods: Control period; low level restriction period (70% MetR or 50% SAAR); and high level restriction period (90% MetR or 65% SAAR) separated by 3-4-wk washout periods. RESULTS No adverse effects were associated with either diet and level of restriction and compliance was high in all subjects. SAAR was associated with significant reductions in body weight and plasma levels of total cholesterol, LDL, uric acid, leptin, and insulin, BUN, and IGF-1, and increases in body temperature and plasma FGF-21 after 4 weeks (P<0.05). Fewer changes occurred with MetR including significant reductions in BUN, uric acid and 8-isoprostane and an increase in FGF-21 after 4 weeks (P<0.05). In the 65% SAAR group, plasma Met and Cys levels were significantly reduced by 15% and 13% respectively (P<0.05). CONCLUSION These results suggest that many of the short-term beneficial effects of SAAR observed in animal models are translatable to humans and support further clinical development of this intervention.
Collapse
Affiliation(s)
- John P. Richie
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey PA
| | - Zhen Dong
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Sailendra N. Nichenametla
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Gene P. Ables
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| | - Amy Ciccarella
- Center for Clinical Research, Pennsylvania State University, State College, PA
| | - Indu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey PA
| | - Ana M. Calcagnotto
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - Lisa Reinhart
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey PA
| | - David Orentreich
- Current address: Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY
| |
Collapse
|
13
|
Mc Auley MT. Dietary restriction and ageing: Recent evolutionary perspectives. Mech Ageing Dev 2022; 208:111741. [PMID: 36167215 DOI: 10.1016/j.mad.2022.111741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Dietary restriction (DR) represents one of the most robust interventions for extending lifespan. It is not known how DR increases lifespan. The prevailing evolutionary hypothesis suggests the DR response redirects metabolic resources towards somatic maintenance at the expense of investment in reproduction. Consequently, DR acts as a proximate mechanism which promotes a pro-longevity phenotype. This idea is known as resource reallocation. However, growing findings suggest this paradigm could be incomplete. It has been argued that during DR it is not always possible to identify a trade-off between reproduction and lifespan. It is also suggested the relationship between reproduction and somatic maintenance can be uncoupled by the removal or inclusion of specific nutrients. These findings have created an imperative to re-explore the nexus between DR and evolutionary theory. In this review I will address this evolutionary conundrum. My overarching objectives are fourfold: (1) to outline some of the evidence for and against resource reallocation; (2) to examine recent findings which have necessitated a theoretical re-evaluation of the link between life history theory and DR; (3) to present alternatives to the resource reallocation model; (4) to present emerging variables which potentially influence how DR effects evolutionary trade-offs.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, Thornton Science Park, University of Chester, Parkgate Road, Chester CH1 4BJ, UK.
| |
Collapse
|
14
|
Dong Z, Richie JP, Gao X, Al-Shaar L, Nichenametla SN, Shen B, Orentreich D. Cumulative Consumption of Sulfur Amino Acids and Risk of Diabetes: A Prospective Cohort Study. J Nutr 2022; 152:2419-2428. [PMID: 36774108 DOI: 10.1093/jn/nxac172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cross-sectional studies have suggested that consumption of sulfur amino acids (SAAs), including methionine and cysteine, is associated with a higher risk of type 2 diabetes (T2D) in humans and with T2D-related biomarkers in animals. But whether higher long-term SAA intake increases the risk of T2D in humans remains unknown. OBJECTIVES We aimed to investigate the association between long-term dietary SAA intake and risk of T2D. METHODS We analyzed data collected from 2 different cohorts of the Framingham Heart Study, a long-term, prospective, and ongoing study. The Offspring cohort (1991-2014) included participants from fifth through ninth examinations, and the Third-Generation cohort (2002-2011) included participants from first and second examinations. After excluding participants with a clinical history of diabetes, missing dietary data, or implausible total energy intake, 3222 participants in the Offspring cohort and 3205 participants in the Third-Generation cohort were included. Dietary intake was assessed using a validated FFQ. The relations between energy-adjusted total SAA (methionine and cysteine) intake or individual SAA intake (in quintiles) and risk of incident T2D were estimated via Cox proportional hazards models after adjusting for dietary and nondietary risk factors. Associations across the 2 cohorts were determined by direct combination and meta-analysis. RESULTS During the 23 y of follow-up, 472 participants reported a new diagnosis of T2D in the 2 cohorts. In the meta-analysis, the HRs of T2D comparing the highest with the lowest intake of total SAAs, methionine, and cysteine were 1.8 (95% CI: 1.3, 2.5), 1.7 (95% CI: 1.2, 2.3), and 1.4 (95% CI: 1.0, 2.1), respectively. The association of SAA intake with T2D was attenuated after adjusting animal protein intake in sensitivity analyses. CONCLUSIONS Our findings show that excess intake of SAAs is associated with higher risk of T2D. Dietary patterns that are low in SAAs could help in preventing T2D.
Collapse
Affiliation(s)
- Zhen Dong
- Orentreich Foundation for the Advancement of Science, Inc, Cold Spring, NY, USA.
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xiang Gao
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Laila Al-Shaar
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Biyi Shen
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - David Orentreich
- Orentreich Foundation for the Advancement of Science, Inc, Cold Spring, NY, USA
| |
Collapse
|
15
|
Osterholt T, Gloistein C, Todorova P, Becker I, Arenskrieger K, Melka R, Koehler FC, Faust M, Wahlers T, Benzing T, Müller R, Grundmann F, Burst V. Preoperative Short-Term Restriction of Sulfur-Containing Amino Acid Intake for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Double-Blind, Translational Trial. J Am Heart Assoc 2022; 11:e025229. [PMID: 36056721 PMCID: PMC9496445 DOI: 10.1161/jaha.121.025229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Background Acute kidney injury (AKI) is a major risk factor for chronic kidney disease and increased mortality. Until now, no compelling preventive or therapeutic strategies have been identified. Dietary interventions have been proven highly effective in organ protection from ischemia reperfusion injury in mice and restricting dietary intake of sulfur-containing amino acids (SAA) seems to be instrumental in this regard. The UNICORN trial aimed to evaluate the protective impact of restricting SAA intake before cardiac surgery on incidence of AKI. Methods and Results In this single-center, randomized, controlled, double-blind trial, 115 patients were assigned to a SAA-reduced formula diet (LowS group) or a regular formula diet (control group) in a 1:1 ratio for 7 days before scheduled cardiac surgery. The primary end point was incidence of AKI within 72 hours after surgery, secondary end points included increase of serum creatinine at 24, 48, and 72 hours as well as safety parameters. Quantitative variables were analyzed with nonparametric methods, while categorical variables were evaluated by means of Chi-square or Fisher test. SAA intake in the group with SAA reduced formula diet was successfully reduced by 77% (group with SAA reduced formula diet, 7.37[6.40-7.80] mg/kg per day versus control group, 32.33 [28.92-33.60] mg/kg per day, P<0.001) leading to significantly lower serum levels of methionine. No beneficial effects of SAA restriction on the rate of AKI after surgery could be observed (group with SAA reduced formula diet, 23% versus control group, 16%; P=0.38). Likewise, no differences were recorded with respect to secondary end points (AKI during hospitalization, creatinine at 24, 48, 72 hours after surgery) as well as in subgroup analysis focusing on age, sex, body mass index and diabetes. Conclusions SAA restriction was feasible in the clinical setting but was not associated with protective properties in AKI upon cardiac surgery. Registration URL: https://www.clinicaltrials.gov; Unique Identifier: NCT03715868.
Collapse
Affiliation(s)
- Thomas Osterholt
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Claas Gloistein
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Ingrid Becker
- Institute of Medical Statistics and Computational BiologyUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Katja Arenskrieger
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Ramona Melka
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Michael Faust
- Polyclinic for EndocrinologyDiabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Thorsten Wahlers
- Department of Cardiothoracic SurgeryUniversity of Cologne, Faculty of Medicine and University Hospital CologneGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologneGermany
| |
Collapse
|
16
|
Plummer JD, Johnson JE. Intermittent methionine restriction reduces IGF-1 levels and produces similar healthspan benefits to continuous methionine restriction. Aging Cell 2022; 21:e13629. [PMID: 35570387 PMCID: PMC9197402 DOI: 10.1111/acel.13629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 11/27/2022] Open
Abstract
A sustained state of methionine restriction (MR) dramatically extends the healthspan of several model organisms. For example, continuously methionine‐restricted rodents have less age‐related pathology and are up to 45% longer‐lived than controls. Promisingly, MR is feasible for humans, and studies have suggested that methionine‐restricted individuals may receive similar benefits to rodents. However, long‐term adherence to a methionine‐restricted diet is likely to be challenging for many individuals. Prompted by this, and the fact that intermittent variants of other healthspan‐extending interventions (i.e., intermittent fasting and the cyclic ketogenic diet) are just as effective, if not more, than their continuous counterparts, we hypothesized that an intermittent form of MR might produce similar healthspan benefits to continuous MR. Accordingly, we developed two increasingly stringent forms of intermittent MR (IMR) and assessed whether mice maintained on these diets demonstrate the beneficial metabolic changes typically observed for continuous MR. To the best of our knowledge, we show for the first time that IMR produces similar beneficial metabolic effects to continuous MR, including improved glucose homeostasis and protection against diet‐induced obesity and hepatosteatosis. In addition, like continuous MR, IMR confers beneficial changes in the plasma levels of the hormones IGF‐1, FGF‐21, leptin, and adiponectin. Together, our findings demonstrate that the more practicable intermittent form of MR produces similar healthspan benefits to continuous MR, and thus may represent a more appealing alternative to the classical intervention.
Collapse
Affiliation(s)
- Jason D. Plummer
- Department of Biology Orentreich Foundation for the Advancement of Science Cold Spring New York USA
| | - Jay E. Johnson
- Department of Biology Orentreich Foundation for the Advancement of Science Cold Spring New York USA
| |
Collapse
|
17
|
Koehler FC, Fu CY, Späth MR, Hoyer-Allo KJR, Bohl K, Göbel H, Lackmann JW, Grundmann F, Osterholt T, Gloistein C, Steiner JD, Antebi A, Benzing T, Schermer B, Schwarz G, Burst V, Müller RU. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl Res 2022; 244:32-46. [PMID: 35189406 DOI: 10.1016/j.trsl.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Chun-Yu Fu
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Osterholt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Claas Gloistein
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joachim D Steiner
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Ogawa T, Masumura K, Kohara Y, Kanai M, Soga T, Ohya Y, Blackwell TK, Mizunuma M. S-adenosyl-L-homocysteine extends lifespan through methionine restriction effects. Aging Cell 2022; 21:e13604. [PMID: 35388610 PMCID: PMC9124299 DOI: 10.1111/acel.13604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 01/18/2023] Open
Abstract
Methionine restriction (MetR) can extend lifespan and delay the onset of aging-associated pathologies in most model organisms. Previously, we showed that supplementation with the metabolite S-adenosyl-L-homocysteine (SAH) extends lifespan and activates the energy sensor AMP-activated protein kinase (AMPK) in the budding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether SAH can extend metazoan lifespan have remained unknown. Here, we show that SAH supplementation reduces Met levels and recapitulates many physiological and molecular effects of MetR. In yeast, SAH supplementation leads to inhibition of the target of rapamycin complex 1 (TORC1) and activation of autophagy. Furthermore, in Caenorhabditis elegans SAH treatment extends lifespan by activating AMPK and providing benefits of MetR. Therefore, we propose that SAH can be used as an intervention to lower intracellular Met and confer benefits of MetR.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Unit of BiotechnologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan,Hiroshima Research Center for Healthy Aging (HiHA)Hiroshima UniversityHigashi‐HiroshimaJapan,Joslin Diabetes CenterHarvard Stem Cell Institute, and Harvard Medical School Department of GeneticsBostonMassachusettsUSA
| | - Koji Masumura
- Unit of BiotechnologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yuki Kohara
- Unit of BiotechnologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Muneyoshi Kanai
- National Research Institute of BrewingHigashi‐HiroshimaJapan
| | - Tomoyoshi Soga
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Yoshikazu Ohya
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - T. Keith Blackwell
- Joslin Diabetes CenterHarvard Stem Cell Institute, and Harvard Medical School Department of GeneticsBostonMassachusettsUSA
| | - Masaki Mizunuma
- Unit of BiotechnologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan,Hiroshima Research Center for Healthy Aging (HiHA)Hiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
19
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
20
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
21
|
Li L, Gu X, Wang J, Chen Z. Amino Acid Detection with Bare Eyes Based on Two Different Concentrations of Iodides as Sensor Receptors. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Dong Z, Gao X, Chinchilli VM, Sinha R, Muscat J, Winkels R, Richie JP. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur J Nutr 2021; 61:289-298. [PMID: 34327571 DOI: 10.1007/s00394-021-02641-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Sulfur amino acid (SAA) consumption in Western countries is far greater than recommended levels. In preclinical studies, reduced SAA intake enhanced longevity and reduced risk for numerous chronic diseases. The current objective was to examine for associations between the intake of total SAA, including methionine (Met) and cysteine (Cys), and all-cause and disease-specific mortality US adults. METHODS This prospective analysis included 15,083 US adult participants (mean age = 46.7 years) from the Third National Examination and Nutritional Health Survey (NHANES III, 1988-1994) with available mortality status (National Death Registry, 1988-2011). Dietary SAA intake was obtained from 24-h recall data. Associations between quintile (Q) of SAA intake (expressed as absolute intake or protein density) and mortality were assessed using Cox proportional hazard models and expressed as hazard ratio (HR). RESULTS During follow-up (mean = 16.9 years), 4636 deaths occurred. After multivariable adjustment (including demographics and traditional risk factors, such as fat and other micronutrients intake), diabetes-caused mortality rates were nearly threefold higher in the highest compared to lowest SAA intake quintiles [HRQ5-Q1 total SAA, 2.68 (1.46-4.90); HRQ5-Q1 methionine, 2.45 (1.37-4.38); HRQ5-Q1 cysteine, 2.91 (1.57-5.37)] (P < 0.01)]. Higher total SAA protein density was also associated with diabetes-caused mortality [HRQ5-Q1 1.75 (1.31-2.35)]. Associations between SAA intake and all-cause mortality, and mortality caused by other major diseases were not detected. CONCLUSION Results suggest that high-SAA diets are associated with increased risk for diabetes mortality and that lowering intake towards to Recommended Dietary Allowance levels could lead to reductions in lifetime risk.
Collapse
Affiliation(s)
- Zhen Dong
- Department of Public Health Sciences, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code CH69, Hershey, PA, 17033, USA
| | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code CH69, Hershey, PA, 17033, USA
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Joshua Muscat
- Department of Public Health Sciences, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code CH69, Hershey, PA, 17033, USA
| | - Renate Winkels
- Department of Public Health Sciences, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code CH69, Hershey, PA, 17033, USA
| | - John P Richie
- Department of Public Health Sciences, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code CH69, Hershey, PA, 17033, USA.
| |
Collapse
|
23
|
Abstract
Glutathione (GSH) is the most abundant cellular antioxidant. As reactive oxygen species (ROS) are widely believed to promote aging and age-related diseases, and antioxidants can neutralize ROS, it follows that GSH and its precursor, N-acetyl cysteine (NAC), are among the most popular dietary supplements. However, the long- term effects of GSH or NAC on healthy animals have not been thoroughly investigated. We employed C. elegans to demonstrate that chronic administration of GSH or NAC to young or aged animals perturbs global gene expression, inhibits skn-1-mediated transcription, and accelerates aging. In contrast, limiting the consumption of dietary thiols, including those naturally derived from the microbiota, extended lifespan. Pharmacological GSH restriction activates the unfolded protein response and increases proteotoxic stress resistance in worms and human cells. It is thus advantageous for healthy individuals to avoid excessive dietary antioxidants and, instead, rely on intrinsic GSH biosynthesis, which is fine-tuned to match the cellular redox status and to promote homeostatic ROS signaling.
Collapse
|
24
|
Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat Commun 2021; 12:3486. [PMID: 34108489 PMCID: PMC8190293 DOI: 10.1038/s41467-021-23856-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
Collapse
|
25
|
Stolt E, Olsen T, Elshorbagy A, Kožich V, van Greevenbroek M, Øvrebø B, Thoresen M, Refsum H, Retterstøl K, Vinknes KJ. Sulfur amino acid restriction, energy metabolism and obesity: a study protocol of an 8-week randomized controlled dietary intervention with whole foods and amino acid supplements. J Transl Med 2021; 19:153. [PMID: 33858441 PMCID: PMC8051033 DOI: 10.1186/s12967-021-02824-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Background Dietary sulfur amino acid (SAA) restriction is an established animal model for increasing lifespan and improving metabolic health. Data from human studies are limited. In the study outlined in this protocol, we will evaluate if dietary SAA restriction can reduce body weight and improve resting energy expenditure (REE) and parameters related to metabolic health. Method/design Men and women (calculated sample size = 60), aged 18–45 years, with body mass index of 27–35 kg/m2 will be included in a double-blind 8-week dietary intervention study. The participants will be randomized in a 1:1 manner to a diet with either low or high SAA. Both groups will receive an equal base diet consisting of low-SAA plant-based whole foods and an amino acid supplement free of SAA. Contrasting SAA contents will be achieved using capsules with or without methionine and cysteine (SAAhigh, total diet SAA ~ 50–60 mg/kg body weight/day; SAAlow, total diet SAA ~ 15–25 mg/kg body weight/day). The primary outcome is body weight change. Data and material collection will also include body composition (dual X-ray absorptiometry), resting energy expenditure (whole-room indirect calorimetry) and samples of blood, urine, feces and adipose tissue at baseline, at 4 weeks and at study completion. Measures will be taken to promote and monitor diet adherence. Data will be analyzed using linear mixed model regression to account for the repeated measures design and within-subject correlation. Discussion The strength of this study is the randomized double-blind design. A limitation is the restrictive nature of the diet which may lead to poor compliance. If this study reveals a beneficial effect of the SAAlow diet on body composition and metabolic health, it opens up for new strategies for prevention and treatment of overweight, obesity and its associated disorders. Trial registration ClinicalTrials.gov: NCT04701346, Registration date: January 8th, 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02824-3.
Collapse
Affiliation(s)
- Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway.
| | - Amany Elshorbagy
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway.,Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Bente Øvrebø
- Department of Sports Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway.,The Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway
| |
Collapse
|
26
|
Jonsson WO, Margolies NS, Mirek ET, Zhang Q, Linden MA, Hill CM, Link C, Bithi N, Zalma B, Levy JL, Pettit AP, Miller JW, Hine C, Morrison CD, Gettys TW, Miller BF, Hamilton KL, Wek RC, Anthony TG. Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. J Nutr 2021; 151:785-799. [PMID: 33512502 PMCID: PMC8030708 DOI: 10.1093/jn/nxaa396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Zalma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jordan L Levy
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ashley P Pettit
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Thomas W Gettys
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Plummer JD, Postnikoff SD, Tyler JK, Johnson JE. Selenium supplementation inhibits IGF-1 signaling and confers methionine restriction-like healthspan benefits to mice. eLife 2021; 10:62483. [PMID: 33783357 PMCID: PMC8009673 DOI: 10.7554/elife.62483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Methionine restriction (MR) dramatically extends the healthspan of several organisms. Methionine-restricted rodents have less age-related pathology and increased longevity as compared with controls, and recent studies suggest that humans might benefit similarly. Mechanistically, it is likely that the decreased IGF-1 signaling that results from MR underlies the benefits of this regimen. Thus, we hypothesized that interventions that decrease IGF-1 signaling would also produce MR-like healthspan benefits. Selenium supplementation inhibits IGF-1 signaling in rats and has been studied for its putative healthspan benefits. Indeed, we show that feeding mice a diet supplemented with sodium selenite results in an MR-like phenotype, marked by protection against diet-induced obesity, as well as altered plasma levels of IGF-1, FGF-21, adiponectin, and leptin. Selenomethionine supplementation results in a similar, albeit less robust response, and also extends budding yeast lifespan. Our results indicate that selenium supplementation is sufficient to produce MR-like healthspan benefits for yeast and mammals.
Collapse
Affiliation(s)
- Jason D Plummer
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, United States
| | - Spike Dl Postnikoff
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Jay E Johnson
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, United States
| |
Collapse
|
28
|
Olsen T, Øvrebø B, Turner C, Bastani NE, Refsum H, Vinknes KJ. Effects of short-term methionine and cysteine restriction and enrichment with polyunsaturated fatty acids on oral glucose tolerance, plasma amino acids, fatty acids, lactate and pyruvate: results from a pilot study. BMC Res Notes 2021; 14:43. [PMID: 33531059 PMCID: PMC7852127 DOI: 10.1186/s13104-021-05463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Objective In this 7-day pilot study we randomized healthy, normal-weight men and women to either a dietary intervention with methionine and cysteine restriction enriched in PUFA (Met/Cyslow + PUFA, n = 7) or with high contents of methionine, cysteine and SFA (Met/Cyshigh + SFA, n = 7). The objective was to describe the short-term responses in oral glucose tolerance, amino acid profile, total fatty acid profile, pyruvate and lactate following a Met/Cyslow + PUFA diet vs. Met/Cyshigh + SFA. Results The diet groups consisted of five women and two men, aged 20–38 years. After the 7-d intervention median pre- and post-oral glucose tolerance test (OGTT) glucose concentrations were 5 mmol/L and 4 mmol/L respectively in the Met/Cyslow + PUFA group. In the Met/Cyshigh + SFA group, median pre- and post-OGTT glucose concentrations were 4.8 mmol/L and 4.65 mmol/L after the 7-d intervention. The responses in the amino acid profiles were similar in both groups during the intervention with the exception of serine. Fatty acids decreased from baseline to day 7 in both groups. Plasma lactate and pyruvate were similar for both groups with an increase to day 3 before approaching baseline values at day 7. Trial registration ClinicalTrials.gov: NCT02647970, registration date: January 6th 2016.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Medical Biosciences, Domus Medica, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.
| | - Bente Øvrebø
- Department of Nutrition, Institute of Medical Biosciences, Domus Medica, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.,Department of Sport Science and Physical Education, University of Agder, 4604, Kristiansand, Norway
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Nasser E Bastani
- Department of Nutrition, Institute of Medical Biosciences, Domus Medica, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Medical Biosciences, Domus Medica, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Medical Biosciences, Domus Medica, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| |
Collapse
|
29
|
Effects of High and Low Protein Diets on Inflammatory Profiles in People with Morbid Obesity: A 3-Week Intervention Study. Nutrients 2020; 12:nu12123636. [PMID: 33256114 PMCID: PMC7759799 DOI: 10.3390/nu12123636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nutritional interventions in morbidly obese individuals that effectively reverse a pro-inflammatory state and prevent obesity-associated medical complications are highly warranted. Our aim was to evaluate the effect of high (HP) or low (LP) protein diets on circulating immune-inflammatory biomarkers, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a), interleukin-10 (IL-10), monocyte chemoattractant protein-1 (MCP-1), chemerin, omentin, leptin, total adiponectin, high molecular weight adiponectin, and fetuin-A. With this aim, 18 people with morbid obesity were matched into two hypocaloric groups: HP (30E% protein, n = 8) and LP (10E% protein, n = 10) for three weeks. Biomarkers were measured pre and post intervention and linear mixed-effects models were used to investigate differences. Consuming HP or LP diets resulted in reduced CRP (HP: −2.2 ± 1.0 mg/L, LP: −2.3 ± 0.9 mg/L) and chemerin (HP: −17.9 ± 8.6 ng/mL, LP: −20.0 ± 7.4 ng/mL), with no statistically significant differences by diet arm. Participants following the LP diet showed a more pronounced decrease in leptin (−19.2 ± 6.0 ng/mL) and IL-6 (−0.4 ± 0.1 pg/mL) and an increase in total adiponectin (1.6 ± 0.6 µg/mL). Changes were also observed for the remaining biomarkers to a smaller degree by the HP than the LP hypocaloric diet, suggesting that a LP hypocaloric diet modulates a wider range of immune inflammatory biomarkers in morbidly obese individuals.
Collapse
|
30
|
Abstract
Life expectancy in most developed countries has been rising over the past century. In the UK alone, there are about 12 million people over 65 years old and centenarians have increased by 85% in the past 15 years. As a result of the ageing population, which is due mainly to improvements in medical treatments, public health, improved housing and lifestyle choices, there is an associated increase in the prevalence of pathological conditions, such as metabolic disorders, type 2 diabetes, cardiovascular and neurodegenerative diseases, many types of cancer and others. Statistics suggest that nearly 54% of elderly people in the UK live with at least two chronic conditions, revealing the urgency for identifying interventions that can prevent and/or treat such disorders. Non-pharmacological, dietary interventions such as energetic restriction (ER) and methionine restriction (MR) have revealed promising outcomes in increasing longevity and preventing and/or reversing the development of ageing-associated disorders. In this review, we discuss the evidence and mechanisms that are involved in these processes. Fibroblast growth factor 1 and hydrogen sulphide are important molecules involved in the effects of ER and MR in the extension of life span. Their role is also associated with the prevention of metabolic and cognitive disorders, highlighting these interventions as promising modulators for improvement of health span.
Collapse
|
31
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
32
|
Nichenametla SN, Mattocks DAL, Malloy VL. Age-at-onset-dependent effects of sulfur amino acid restriction on markers of growth and stress in male F344 rats. Aging Cell 2020; 19:e13177. [PMID: 32573078 PMCID: PMC7426777 DOI: 10.1111/acel.13177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Trade-offs in life-history traits are clinically and mechanistically important. Sulfur amino acid restriction (SAAR) extends lifespan. But whether this benefit comes at the cost of other traits including stress resistance and growth is unclear. We investigated the effects of SAAR on growth markers (body weight, IGF1, and IGFBP3) and physiological stresses. Male-F344 rats were fed control (0.86% Met) and SAAR (0.17% Met) diets starting at 2, 10, and 20 months. Rats were injected with keyhole-limpet-hemocyanin (KLH) to measure immune responses (anti-KLH-IgM, anti-KLH-IgG, and delayed-type-hypersensitivity [DTH]). Markers of ER stress (FGF21 and adiponectin), detoxification capacity (glutathione [GSH] concentrations, GSH-S-transferase [GST], and cytochrome-P450 -reductase [CPR] activities), and low-grade inflammation (C-reactive protein [CRP]) were also determined. SAAR decreased body weight, liver weight, food intake, plasma IGF1, and IGFBP3; the effect size diminished with increasing age-at-onset. SAAR increased FGF21 and adiponectin, but stress damage markers GRP78 and Xbp1s/us were unchanged, suggesting that ER stress is hormetic. SAAR increased hepatic GST activity despite lower GSH, but CPR activity was unchanged, indicative of enhanced detoxification capacity. Other stress markers were either uncompromised (CRP, anti-KLH-IgM, and DTH) or slightly lower (anti-KLH-IgG). Increases in stress markers were similar across all ages-at-onset, except for adiponectin, which peaked at 2 months. Overall, SAAR did not compromise stress responses and resulted in maximal benefits with young-onset. In survival studies, median lifespan extension with initiation at 52 weeks was 7 weeks (p = .05); less than the 33.5-week extension observed in our previous study with 7-week initiation. Findings support SAAR translational studies and the need to optimize Met dose based on age-at-onset.
Collapse
Affiliation(s)
| | - Dwight A. L. Mattocks
- Animal Science Laboratory Orentreich Foundation for the Advancement of Science NY USA
| | - Virginia L Malloy
- Animal Science Laboratory Orentreich Foundation for the Advancement of Science NY USA
| |
Collapse
|
33
|
Olsen T, Øvrebø B, Haj-Yasein N, Lee S, Svendsen K, Hjorth M, Bastani NE, Norheim F, Drevon CA, Refsum H, Vinknes KJ. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: a double-blind randomized controlled pilot study. J Transl Med 2020; 18:122. [PMID: 32160926 PMCID: PMC7065370 DOI: 10.1186/s12967-020-02288-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dietary restriction of methionine and cysteine is a well-described model that improves metabolic health in rodents. To investigate the translational potential in humans, we evaluated the effects of dietary methionine and cysteine restriction on cardiometabolic risk factors, plasma and urinary amino acid profile, serum fibroblast growth factor 21 (FGF21), and subcutaneous adipose tissue gene expression in women with overweight and obesity in a double-blind randomized controlled pilot study. Methods Twenty women with overweight or obesity were allocated to a diet low (Met/Cys-low, n = 7), medium (Met/Cys-medium, n = 7) or high (Met/Cys-high, n = 6) in methionine and cysteine for 7 days. The diets differed only by methionine and cysteine content. Blood and urine were collected at day 0, 1, 3 and 7 and subcutaneous adipose tissue biopsies were taken at day 0 and 7. Results Plasma methionine and cystathionine and urinary total cysteine decreased, whereas FGF21 increased in the Met/Cys-low vs. Met/Cys-high group. The Met/Cys-low group had increased mRNA expression of lipogenic genes in adipose tissue including DGAT1. When we excluded one participant with high fasting insulin at baseline, the Met/Cys-low group showed increased expression of ACAC, DGAT1, and tendencies for increased expression of FASN and SCD1 compared to the Met/Cys-high group. The participants reported satisfactory compliance and that the diets were moderately easy to follow. Conclusions Our data suggest that dietary methionine and cysteine restriction may have beneficial effects on circulating biomarkers, including FGF21, and influence subcutaneous adipose tissue gene expression. These results will aid in the design and implementation of future large-scale dietary interventions with methionine and cysteine restriction. Trial registration ClinicalTrials.gov Identifier: NCT03629392, registration date: 14/08/2018 https://clinicaltrials.gov/ct2/show/NCT03629392.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway.
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Nadia Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, OUS HF Aker Sykehus, Postboks 4959, Nydalen, 0424, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| |
Collapse
|
34
|
Methionine restriction delays aging-related urogenital diseases in male Fischer 344 rats. GeroScience 2019; 42:287-297. [PMID: 31728897 DOI: 10.1007/s11357-019-00129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Dietary methionine restriction (MR) has been found to enhance longevity across many species. We hypothesized that MR might enhance longevity in part by delaying or inhibiting age-related disease processes. To this end, male Fischer 344 rats were fed control (CF, 0.86% methionine) or MR (0.17% methionine) diets throughout their life until sacrifice at approximately 30 months of age, and histopathology was performed to identify the incidence and progression of two important aging-related pathologies, namely, chronic progressive nephropathy (CPN) and testicular tumorigenesis. Although kidney pathology was observed in 87% CF rats and CPN in 62% of CF animals, no evidence of kidney disease was observed in MR rats. Consistent with the absence of renal pathology, urinary albumin levels were lower in the MR group compared to controls throughout the study, with over a six-fold difference between the groups at 30 months of age. Biomarkers associated with renal disease, namely, clusterin, cystatin C, and β-2 microglobulin, were reduced following 18 months of MR. A reduction in testicular tumor incidence from 88% in CF to 22% in MR rats was also observed. These results suggest that MR may lead to metabolic and cellular changes providing protection against age-related diseases.
Collapse
|
35
|
Ekmekcioglu C. Nutrition and longevity – From mechanisms to uncertainties. Crit Rev Food Sci Nutr 2019; 60:3063-3082. [DOI: 10.1080/10408398.2019.1676698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Ji J, Xu Y, Zheng M, Luo C, Lei H, Qu H, Shu D. Methionine Attenuates Lipopolysaccharide-Induced Inflammatory Responses via DNA Methylation in Macrophages. ACS OMEGA 2019; 4:2331-2336. [PMID: 30775649 PMCID: PMC6374979 DOI: 10.1021/acsomega.8b03571] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 05/28/2023]
Abstract
Methionine (Met) is an essential and multifunctional nutrient in vertebrate diets. It is a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation, which has an important role in the inflammatory responses. However, whether Met exerts anti-inflammatory effects by altering DNA methylation in macrophages is unclear. In this study, Met was found to diminish the activation of the mitogen-activated protein kinase signaling pathway; decrease the production of tumor necrosis factor-α, interleukin-6, and interferon-β; and enhance the levels of intracellular SAM after lipopolysaccharide (LPS) treatment in macrophages. Similarly, SAM inhibited the LPS-induced inflammatory response, consistent with the result of Met treatment. Met-treated macrophages displayed increased global DNA methylation. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine partially blocked the anti-inflammatory effects of Met in macrophages, suggesting a mechanism involving DNA methylation. Collectively, the results indicated that Met inhibits the LPS-induced inflammatory response by altering DNA methylation in RAW 264.7 macrophages. The findings provide new insights into the interplay between nutrition and immunology, and highlight the regulatory effects of amino acids on the host immune system.
Collapse
Affiliation(s)
- Jian Ji
- State
Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory
of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yibin Xu
- State
Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory
of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingzhu Zheng
- Molecular
and Cellular Immunoregulation Section, Laboratory of Immune System
Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chenglong Luo
- State
Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory
of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huangtao Lei
- State
Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory
of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hao Qu
- State
Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory
of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dingming Shu
- State
Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory
of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
37
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Kramer P, Bressan P. Mitochondria Inspire a Lifestyle. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:105-126. [PMID: 30610376 DOI: 10.1007/102_2018_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tucked inside our cells, we animals (and plants, and fungi) carry mitochondria, minuscule descendants of bacteria that invaded our common ancestor 2 billion years ago. This unplanned breakthrough endowed our ancestors with a convenient, portable source of energy, enabling them to progress towards more ambitious forms of life. Mitochondria still manufacture most of our energy; we have evolved to invest it to grow and produce offspring, and to last long enough to make it all happen. Yet because the continuous generation of energy is inevitably linked to that of toxic free radicals, mitochondria give us life and give us death. Stripping away clutter and minutiae, here we present a big-picture perspective of how mitochondria work, how they are passed on virtually only by mothers, and how they shape the lifestyles of species and individuals. We discuss why restricting food prolongs lifespan, why reproducing shortens it, and why moving about protects us from free radicals despite increasing their production. We show that our immune cells use special mitochondria to keep control over our gut microbes. And we lay out how the fabrication of energy and free radicals sets the internal clocks that command our everyday rhythms-waking, eating, sleeping. Mitochondria run the show.
Collapse
Affiliation(s)
- Peter Kramer
- Dipartimento di Psicologia Generale, University of Padova, Padova, Italy
| | - Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Padova, Italy.
| |
Collapse
|
39
|
Olsen T, Øvrebø B, Turner C, Bastani NE, Refsum H, Vinknes KJ. Combining Dietary Sulfur Amino Acid Restriction with Polyunsaturated Fatty Acid Intake in Humans: A Randomized Controlled Pilot Trial. Nutrients 2018; 10:nu10121822. [PMID: 30477080 PMCID: PMC6315936 DOI: 10.3390/nu10121822] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Dietary and plasma total cysteine (tCys) have been associated with adiposity, possibly through interaction with stearoyl–CoA desaturase (SCD), which is an enzyme that is involved in fatty acid and energy metabolism. We evaluated the effect of a dietary intervention with low cysteine and methionine and high polyunsaturated fatty acids (PUFAs) on plasma and urinary sulfur amino acids and SCD activity indices. Fourteen normal-weight healthy subjects were randomized to a seven-day diet low in cysteine and methionine and high in PUFAs (Cys/Metlow + PUFA), or high in saturated fatty acids (SFA), cysteine, and methionine (Cys/Methigh + SFA). Compared with the Cys/Methigh + SFA group, plasma methionine and cystathionine decreased (p-values < 0.05), whereas cystine tended to increase (p = 0.06) in the Cys/Metlow + PUFA group. Plasma total cysteine (tCys) was not significantly different between the groups. Urinary cysteine and taurine decreased in the Cys/Metlow + PUFA group compared with the Cys/Methigh + SFA group (p-values < 0.05). Plasma SCD-activity indices were not different between the groups, but the change in cystine correlated with the SCD-16 index in the Cys/Metlow + PUFA group. A diet low in methionine and cysteine decreased plasma methionine and urinary cysteine and taurine. Plasma tCys was unchanged, suggesting that compensatory mechanisms are activated during methionine and cysteine restriction to maintain plasma tCys.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
- Øvrebø Nutrition, 0550 Oslo, Norway.
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| |
Collapse
|
40
|
Kahleova H, Fleeman R, Hlozkova A, Holubkov R, Barnard ND. A plant-based diet in overweight individuals in a 16-week randomized clinical trial: metabolic benefits of plant protein. Nutr Diabetes 2018; 8:58. [PMID: 30405108 PMCID: PMC6221888 DOI: 10.1038/s41387-018-0067-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background and objectives A plant-based diet is an effective strategy in the treatment of obesity. In this 16-week randomized clinical trial, we tested the effect of a plant-based diet on body composition and insulin resistance. As a part of this trial, we investigated the role of plant protein on these outcomes. Subjects and methods Overweight participants (n = 75) were randomized to follow a plant-based (n = 38) or a control diet (n = 37). Dual X-ray Absorptiometry assessed body composition, Homeostasis Model Assessment (HOMA-IR) assessed insulin resistance, and a linear regression model was used to test the relationship between protein intake, body composition, and insulin resistance. Results The plant-based vegan diet proved to be superior to the control diet in improving body weight, fat mass, and insulin resistance markers. Only the vegan group showed significant reductions in body weight (treatment effect −6.5 [95% CI −8.9 to −4.1] kg; Gxt, p < 0.001), fat mass (treatment effect −4.3 [95% CI −5.4 to −3.2] kg; Gxt, p < 0.001), and HOMA-IR (treatment effect −1.0 [95% CI −1.2 to −0.8]; Gxt, p = 0.004). The decrease in fat mass was associated with an increased intake of plant protein and decreased intake of animal protein (r = -0.30, p = 0.011; and r = +0.39, p = 0.001, respectively). In particular, decreased % leucine intake was associated with a decrease in fat mass (r = +0.40; p < 0.001), in both unadjusted and adjusted models for changes in BMI and energy intake. In addition, decreased % histidine intake was associated with a decrease in insulin resistance (r = +0.38; p = 0.003), also independent of changes in BMI and energy intake. Conclusions These findings provide evidence that plant protein, as a part of a plant-based diet, and the resulting limitation of leucine and histidine intake are associated with improvements in body composition and reductions in both body weight and insulin resistance.
Collapse
Affiliation(s)
- Hana Kahleova
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Ave, N.W. Ste.400, Washington, DC, 20016, USA.
| | - Rebecca Fleeman
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Ave, N.W. Ste.400, Washington, DC, 20016, USA
| | - Adela Hlozkova
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Ave, N.W. Ste.400, Washington, DC, 20016, USA
| | - Richard Holubkov
- School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Neal D Barnard
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Ave, N.W. Ste.400, Washington, DC, 20016, USA.,Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, 20016, USA
| |
Collapse
|
41
|
Le Couteur DG, Simpson SJ. 90th Anniversary Commentary: Caloric Restriction Effects on Aging. J Nutr 2018; 148:1656-1659. [PMID: 30281103 DOI: 10.1093/jn/nxy146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Aging and ANZAC Research Institute, The University of Sydney and Concord Hospital, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Kane AE, Sinclair DA, Mitchell JR, Mitchell SJ. Sex differences in the response to dietary restriction in rodents. CURRENT OPINION IN PHYSIOLOGY 2018; 6:28-34. [PMID: 31231711 DOI: 10.1016/j.cophys.2018.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dietary restriction (DR) remains the most reproducible and consistent laboratory intervention to extend lifespan and improve health in mammals. DR has been primarily characterized in males due to issues of cost, perceived heightened variability amongst females, and the misconception that the reproductive system is the only important difference between sexes in mammals. In reality, existing data point to clear sex differences in mammalian responses to DR. Here we discuss recent advances in our understanding of sex differences in the responses to DR in rodent models.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah J Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|