1
|
Gan Q, Chen L, Xian J, An G, Wei H, Ma Y. Digestive characteristics of Gastrodia elata Blume polysaccharide and related impacts on human gut microbiota in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118064. [PMID: 38521425 DOI: 10.1016/j.jep.2024.118064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume is a traditional Chinese medicine with the effects of improving the deficiency of the body and maintaining health, and polysaccharide (GEP) is one of the effective ingredients to play these activities of G. elata. Traditionally, G. elata is orally administered, so the activities of GEP are associated with digestive and intestinal metabolism. However, the digestive behavior of GEP and its effects on the human gut microbiota are unclear and need to be fully studied. AIM OF THE STUDY This study aimed to investigate the changes in structural characteristics of GEP during digestion and the related impacts of its digestive product on gut microbiota in human fecal fermentation, and to explain the beneficial mechanism of GEP on human health from the perspective of digestive characteristics and "gut" axis. MATERIALS AND METHODS The changes of reducing sugars, free monosaccharides and physicochemical properties of GEP during digestion were investigated by GPC, HPLC, FT-IR, CD, NMR, SEM, and TGA. Moreover, polysaccharide consumption, pH value changes, SCFAs production, and changes in gut microbiota during fermentation were also discussed. RESULTS During digestion of GEP, glucose was partially released causing a decrease in molecular weight, and a change in monosaccharide composition. In addition, the characteristics of GEP before and after digestion, including configuration, morphology, and stability, were different. The digestive product of GEP was polysaccharide (GEP-I), which actively participated in the fecal fermentation process. As the fermentation time increased, the utilization of GEP-I by the microbiota gradually increased. The abundance of probiotics such as Bifidobacterium, Collinsella, Prevotella, and Faecalibacterium was significantly increased, and the abundance of pathogenic Shigella, Dorea, Desulfovibrio, and Blautia was significantly inhibited, thereby suggesting that GEP has the potential to maintain human health through the "gut" axis. In addition, the beneficial health effects of GEP-I have also been observed in the influence of microbial metabolites. During the fermentation of GEP-I, the pH value gradually decreased, and the contents of beneficial metabolites such as acetic acid, propionic acid, and caproic acid significantly increased. CONCLUSION The structure of GEP changed significantly during digestion, and its digestive product had the potential to maintain human health by regulating gut microbiota, which may be one of the active mechanisms of GEP.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jiacheng Xian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guangqin An
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haobo Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
2
|
Zhang M, Qiao H, Yang S, Kwok LY, Zhang H, Zhang W. Human Breast Milk: The Role of Its Microbiota and Metabolites in Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10665-10678. [PMID: 38691667 DOI: 10.1021/acs.jafc.3c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Letourneau J, Carrion VM, Jiang S, Osborne OW, Holmes ZC, Fox A, Epstein P, Tan CY, Kirtley M, Surana NK, David LA. Interplay between particle size and microbial ecology in the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591376. [PMID: 38712077 PMCID: PMC11071529 DOI: 10.1101/2024.04.26.591376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Surprisingly, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that mammalian and human gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion, and that the microbiomes of individuals vary in this capacity. These new insights also suggest FPS in humans to be governed by processes beyond those found in other mammals and emphasize the importance of gut microbiota in shaping their own abiotic environment.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC 27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Olivia W Osborne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Aiden Fox
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Piper Epstein
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Neeraj K Surana
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
4
|
Toubon G, Butel MJ, Rozé JC, Delannoy J, Ancel PY, Aires J, Charles MA. Association between gut microbiota at 3.5 years of age and body mass index at 5 years: results from two French nationwide birth cohorts. Int J Obes (Lond) 2024; 48:503-511. [PMID: 38097759 DOI: 10.1038/s41366-023-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 04/02/2024]
Abstract
BACKGROUND/OBJECTIVES The relationship between gut microbiota and changes in body mass index (BMI) or pediatric overweight in early life remains unclear, and information regarding the preterm population is scarce. This study aimed to investigate how the gut microbiota at 3.5 years of age is associated with (1) later BMI at 5 years, and (2) BMI z-score variations between 2 and 5 years in children from two French nationwide birth cohorts. SUBJECTS/METHODS Bacterial 16S rRNA gene sequencing was performed to profile the gut microbiota at 3.5 years of age in preterm children (n = 143, EPIPAGE 2 cohort) and late preterm/full-term children (n = 369, ELFE cohort). The predicted abundances of metabolic functions were computed using PICRUSt2. Anthropometric measurements were collected at 2 and 5 years of age during medical examinations or retrieved from children's health records. Statistical analyses included multivariable linear and logistic regressions, random forest variable selection, and MiRKAT. RESULTS The Firmicutes to Bacteroidetes (F/B) ratio at 3.5 years was positively associated with the BMI z-score at 5 years. Several genera were positively ([Eubacterium] hallii group, Fusicatenibacter, and [Eubacterium] ventriosum group) or negatively (Eggerthella, Colidextribacter, and Ruminococcaceae CAG-352) associated with the BMI z-scores at 5 years. Some genera were also associated with variations in the BMI z-scores between 2 and 5 years of age. Predicted metabolic functions, including steroid hormone biosynthesis, biotin metabolism, glycosaminoglycan degradation, and amino sugar and nucleotide sugar metabolism, were associated with lower BMI z-scores at 5 years. The unsaturated fatty acids biosynthesis pathway was associated with higher BMI z-scores. CONCLUSIONS These findings indicate that the gut microbiota at 3.5 years is associated with later BMI during childhood, independent of preterm or term birth, suggesting that changes in the gut microbiota that may predispose to adult obesity begin in early childhood.
Collapse
Affiliation(s)
- Gaël Toubon
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Marie-José Butel
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Centre d'investigation clinique 1413, Centre hospitalo-universitaire de Nantes, F-44300, Nantes, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Pierre-Yves Ancel
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France.
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France.
| | - Marie-Aline Charles
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France.
| |
Collapse
|
5
|
Mphephu MM, Olaokun OO, Mavimbela C, Hofmeyer G, Mwale M, Mkolo NM. Metabolomics approach for predicting stomach and colon contents in dead Arctocephalus pusillus pusillus, Arctocephalus tropicalis, Lobodon carcinophaga and Ommatophoca rossii from sub-Antarctic region. PLoS One 2024; 19:e0300319. [PMID: 38557648 PMCID: PMC10984408 DOI: 10.1371/journal.pone.0300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
The dietary habits of seals play a pivotal role in shaping management and administration policies, especially in regions with potential interactions with fisheries. Previous studies have utilized various methods, including traditional approaches, to predict seal diets by retrieving indigestible prey parts, such as calcified structures, from intestines, feces, and stomach contents. Additionally, methods evaluating nitrogen and stable isotopes of carbon have been employed. The metabolomics approach, capable of quantifying small-scale molecules in biofluids, holds promise for specifying dietary exposures and estimating disease risk. This study aimed to assess the diet composition of five seal species-Arctocephalus pusillus pusillus, Lobodon carcinophaga, Ommatophoca rossii, and Arctocephalus tropicalis 1 and 2-by analyzing stomach and colon contents collected from stranded dead seals at various locations. Metabolite concentrations in the seal stomach and colon contents were determined using Nuclear Magnetic Resonance Spectroscopy. Among the colon and stomach contents, 29 known and 8 unknown metabolites were identified. Four metabolites (alanine, fumarate, lactate, and proline) from stomach contents and one metabolite (alanine) from colon contents showed no significant differences between seal species (p>0.05). This suggests that traces of these metabolites in the stomach and colon contents may be produced by the seals' gut microbiome or derived from other animals, possibly indicating reliance on fish caught at sea. Despite this insight, the cause of death for stranded seals remains unclear. The study highlights the need for specific and reliable biomarkers to precisely indicate dietary exposures across seal populations. Additionally, there is a call for the development of relevant metabolite and disease interaction networks to explore disease-related metabolites in seals. Ultimately, the metabolomic method employed in this study reveals potential metabolites in the stomach and colon contents of these seal species.
Collapse
Affiliation(s)
- Mukhethwa Micheal Mphephu
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| | - Oyinlola Oluwunmi Olaokun
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| | - Caswell Mavimbela
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| | - Greg Hofmeyer
- Port Elizabeth Museum at Bayworld, Humewood, Port Elizabeth, South Africa
| | - Monica Mwale
- South African National Biodiversity Institute (SANBI), National Zoological Garden, Pretoria, South Africa
| | - Nqobile Monate Mkolo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa, Pretoria, South Africa
| |
Collapse
|
6
|
Letourneau J, Carrion VM, Zeng J, Jiang S, Osborne OW, Holmes ZC, Fox A, Epstein P, Tan CY, Kirtley M, Surana NK, David LA. Interplay between particle size and microbial ecology in the gut microbiome. THE ISME JOURNAL 2024; 18:wrae168. [PMID: 39214074 PMCID: PMC11406467 DOI: 10.1093/ismejo/wrae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Contrary to our initial hypothesis, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that human and mouse gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion. This finding has important implications for our understanding of energy extraction and subsequent uptake in gastrointestinal tract. FPS may therefore be viewed as an informative functional readout, providing new insights into the metabolic state of the gut microbiome.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC 27710, United States
| | - Jun Zeng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Olivia W Osborne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Aiden Fox
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Piper Epstein
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Neeraj K Surana
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, United States
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, United States
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
7
|
Wu Y, Sun Y, Chen R, Qiao Y, Zhang Q, Li Q, Wang X, Pan Y, Li S, Wang Z. Analysis for lipid nutrient differences in the milk of 13 species from a quantitative non-targeted lipidomics perspective. Food Chem X 2023; 20:101024. [PMID: 38144754 PMCID: PMC10740049 DOI: 10.1016/j.fochx.2023.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Lipids are essential organic components in milk and have been associated with various health benefits for newborns. However, a comprehensive analysis of lipid profiles across multiple species and levels has been lacking. In this study, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to accurately determine the absolute content of lipid molecules. It revealed that ruminants exhibit a higher concentration of short-chain fatty acids compared to non-ruminants. Additionally, we identified ALC (camel), MGH (horse), and DZD (donkey) as species that display similarities to components found in human milk fat. Remarkably, it reveals that porcine milk fat is characterized by long chain lengths, low saturation, and a high proportion of essential fatty acids. PS (22:5_18:2) could potentially serve as a biomarker in porcine milk. These unique characteristics present potential opportunities for the utilization of porcine milk. Overall, our findings provide valuable insights into the lipidomics profiles of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Jin Y, Chen L, Yu Y, Hussain M, Zhong H. Bioactive Components in Fruit Interact with Gut Microbes. BIOLOGY 2023; 12:1333. [PMID: 37887043 PMCID: PMC10604038 DOI: 10.3390/biology12101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Fruits contain many bioactive compounds, including polysaccharides, oligosaccharides, polyphenols, anthocyanins, and flavonoids. All of these bioactives in fruit have potentially beneficial effects on gut microbiota and host health. On the one hand, fruit rich in active ingredients can act as substrates to interact with microorganisms and produce metabolites to regulate the gut microbiota. On the other hand, gut microbes could promote health effects in the host by balancing dysbiosis of gut microbiota. We have extensively analyzed significant information on bioactive components in fruits based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Although the deep mechanism of action of bioactive components in fruits on gut microbiota needs further study, these results also provide supportive information on fruits as a source of dietary active ingredients to provide support for the adjunctive role of fruits in disease prevention and treatment.
Collapse
Affiliation(s)
- Yuanyuan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, Sanya 572011, China;
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| |
Collapse
|
9
|
Ng WZJ, van Hasselt J, Aggarwal B, Manoharan A. Association Between Adult Antibiotic Use, Microbial Dysbiosis and Atopic Conditions - A Systematic Review. J Asthma Allergy 2023; 16:1115-1132. [PMID: 37822520 PMCID: PMC10564082 DOI: 10.2147/jaa.s401755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Background Strong associations between early antibiotic exposure and increased risk of childhood allergies have been established. Antibiotics have the potential to induce microbial dysbiosis that may be linked to allergic conditions. This review examines the limited available evidence on the associations between adult antibiotic use, microbial dysbiosis and atopic conditions. Methods A systematic literature search was conducted using PubMed and Embase for relevant studies, published between 01-01-2000 and 08-17-2022. We searched for associations between antibiotic use, microbial dysbiosis, and allergic conditions in adults, defined as over 13 years of age for the purposes of this review. Results Twenty-one studies were analyzed, with the inclusion of four narrative reviews as scarce relevant literature was found when stricter selection criteria were employed. Relevant studies predominantly focused on asthma. Significant microbial differences were observed in most measures between healthy subjects and subjects with allergic conditions. However, no system-wise and strain-wise associations were evident. Notably, at the phyla level, the Bacillota and Pseudomonadota phyla were associated with asthmatics, while the Actinobacteria phylum was linked to healthy controls. Asthmatics tends to reflect upregulation in the Bacillota and Pseudomonadota phyla in both airway and gut microbiomes. Conclusion No compelling evidence could be found between adult antibiotic exposure, consequent microbial dysbiosis, and allergic conditions in adults. Our review is limited by scarce literature and therefore remains inconclusive. However, potential implications of antibiotic use impacting on allergic conditions justify additional research and heightened pharmacovigilance in this area.
Collapse
Affiliation(s)
- Wan Zhen Janice Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Bhumika Aggarwal
- Regional Respiratory Medical Affairs, GSK Plc, Singapore, Singapore
| | - Anand Manoharan
- Infectious Diseases Medical & Scientific Affairs, GSK, Mumbai, India
| |
Collapse
|
10
|
Marousez L, Ichou F, Lesnik P, Tran LC, De Lamballerie M, Gottrand F, Ley D, Lesage J. Short-chain fatty acids levels in human milk are not affected by holder pasteurization and high hydrostatic pressure processing. Front Pediatr 2023; 11:1120008. [PMID: 37842027 PMCID: PMC10570738 DOI: 10.3389/fped.2023.1120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Sterilized donor milk (DM) is frequently used for feeding preterm infants. To date, the effect of different modes of DM sterilization on short-chain fatty acids (SCFAs) remains unknown. We aimed to quantify SCFAs in DM samples after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. Eight pooled DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). Raw DM was used as control. Six SCFAs were quantified by gas chromatography/mass spectrometry. Compared to raw milk, both HoP and HP treatment did not significantly modulate the concentration of acetate, butyrate, propionate and isovalerate in DM. Valerate and isobutyrate were undetectable in DM samples. In conclusion, both HoP and HP processing preserved milk SCFAs at their initial levels in raw human milk.
Collapse
Affiliation(s)
- Lucie Marousez
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| | - Farid Ichou
- ICAN Omics, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMR-S1166, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- ICAN Omics, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMR-S1166, Sorbonne Université, Paris, France
| | - Léa Chantal Tran
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| | | | - Frédéric Gottrand
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, Lille, France
| | - Delphine Ley
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, Lille, France
| | - Jean Lesage
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| |
Collapse
|
11
|
Wang Y, Zhuo Z, Wang H. Epilepsy, gut microbiota, and circadian rhythm. Front Neurol 2023; 14:1157358. [PMID: 37273718 PMCID: PMC10232836 DOI: 10.3389/fneur.2023.1157358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, relevant studies have found changes in gut microbiota (GM) in patients with epilepsy. In addition, impaired sleep and circadian patterns are common symptoms of epilepsy. Moreover, the types of seizures have a circadian rhythm. Numerous reports have indicated that the GM and its metabolites have circadian rhythms. This review will describe changes in the GM in clinical and animal studies under epilepsy and circadian rhythm disorder, respectively. The aim is to determine the commonalities and specificities of alterations in GM and their impact on disease occurrence in the context of epilepsy and circadian disruption. Although clinical studies are influenced by many factors, the results suggest that there are some commonalities in the changes of GM. Finally, we discuss the links among epilepsy, gut microbiome, and circadian rhythms, as well as future research that needs to be conducted.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| |
Collapse
|
12
|
Sabit H, Kassab A, Alaa D, Mohamed S, Abdel-Ghany S, Mansy M, Said OA, Khalifa MA, Hafiz H, Abushady AM. The Effect of Probiotic Supplementation on the Gut-Brain Axis in Psychiatric Patients. Curr Issues Mol Biol 2023; 45:4080-4099. [PMID: 37232729 DOI: 10.3390/cimb45050260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
The pathophysiology of several psychiatric diseases may entail disturbances in the hypothalamic-pituitary-adrenal (HPA) axis and metabolic pathways. Variations in how these effects present themselves may be connected to individual variances in clinical symptoms and treatment responses, such as the observation that a significant fraction of participants do not respond to current antipsychotic drugs. A bidirectional signaling pathway between the central nervous system and the gastrointestinal tract is known as the microbiota-gut-brain axis. The large and small intestines contain more than 100 trillion microbial cells, contributing to the intestinal ecosystem's incredible complexity. Interactions between the microbiota and intestinal epithelium can alter brain physiology and affect mood and behavior. There has recently been a focus on how these relationships impact mental health. According to evidence, intestinal microbiota may play a role in neurological and mental illnesses. Intestinal metabolites of microbial origin, such as short-chain fatty acids, tryptophan metabolites, and bacterial components that might stimulate the host's immune system, are mentioned in this review. We aim to shed some on the growing role of gut microbiota in inducing/manipulating several psychiatric disorders, which may pave the way for novel microbiota-based therapies.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Areej Kassab
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Donia Alaa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaza Mohamed
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Mohamed Mansy
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A Said
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Mona A Khalifa
- Faculty of Art and Science, Samtah, Jazan University, Jazan 45142, Saudi Arabia
| | - Halah Hafiz
- Clinical Nutrition Department, Factually of Applied Medical Science, Umm Alqura University, Mecca 24382, Saudi Arabia
| | - Asmaa M Abushady
- School of Biotechnology, Nile University, Giza 41516, Egypt
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
13
|
Fan X, Zang T, Liu J, Wu N, Dai J, Bai J, Liu Y. Changes in the gut microbiome in the first two years of life predicted the temperament in toddlers. J Affect Disord 2023; 333:342-352. [PMID: 37086808 DOI: 10.1016/j.jad.2023.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Temperament has been shown to be associated with the change of gut microbiome. There were no longitudinal studies to explore the role of gut microbiome changes in the development of temperament in toddlers. METHODS This study used longitudinal cohort to investigate the associations between changes in gut microbiome and temperament in toddlers in the first two years of life. Linear regression analysis and microbiome multivariate association with linear models were used to investigate the associations between the gut microbiome and toddlers' temperament. RESULTS In total, 41 toddlers were analyzed. This study found both Shannon and Chao-1 indices at birth were negatively correlated with the sadness dimension; the higher the Shannon and Chao-1 indices at 6 months, the lower the surgency/extraversion dimension scores; the higher the Shannon and Chao-1 indices at 2 years of ages, the lower the cuddliness dimension scores. After adjusting for covariates, beta diversity at birth was strongly associated with the negative affectivity dimension; beta diversity at 1 year of age was strongly associated with the activity level dimension; and beta diversity at 2 years of age was strongly associated with the discomfort and soothability dimension. Compared to Bifidobacterium cluster, this study also found Bacteroides cluster was associated with lower negative affectivity and its sub-dimensions frustration and sadness scores in toddlers. LIMITATIONS Generalizability of the results remains to be determined. CONCLUSION Results of this study confirmed the associations between changes in the gut microbiome diversity and composition in the first two years of life and toddlers' temperament.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianzi Zang
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jun Liu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Ni Wu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jiamiao Dai
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
14
|
Batista KS, Soares NL, Dorand VAM, Alves AF, dos Santos Lima M, de Alencar Pereira R, Leite de Souza E, Magnani M, Persuhn DC, de Souza Aquino J. Acerola fruit by-product alleviates lipid, glucose, and inflammatory changes in the enterohepatic axis of rats fed a high-fat diet. Food Chem 2023; 403:134322. [DOI: 10.1016/j.foodchem.2022.134322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022]
|
15
|
Petrova VA, Namazova-Baranova LS, Fedoseenko MV, Rusinova DS. Protective Role of Vaccination against Tuberculosis and Hepatitis B in Prevention of Atopic Dermatitis: Report on Intermediate Results of Prospective Cohort Study. PEDIATRIC PHARMACOLOGY 2023. [DOI: 10.15690/pf.v20i1.2525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Background. Studies have shown that vaccination in the first hours/days after birth shifts the immune response from intrauterine Th2 towards Th1-type activation and reduces the risk of atopic conditions. However, we did not find published data from prospective studies on this topic.Objective. The aim of the study is to define the presence of negative correlation between vaccination against tuberculosis and hepatitis B in the first hours/days of life and atopic dermatitis development in infants.Methods. Continuous prospective study of children cohort born from April to June 2021 and observed in one outpatient’s clinic was carried out. Data from 307 infant’s records (F. 112/y), vaccination record cards (F. 063/y), prenatal and delivery records (F. 113/y-20, section № 3), and neonatal discharge summaries were analyzed for the decreed period. The child vaccination status (by the time of vaccination against tuberculosis and hepatitis B), presence of risk factors for allergic disease development, and presence of atopic dermatitis were evaluated.Results. Atopic dermatitis (AD) was significantly less likely to be diagnosed by the age of 1 year in infants from the group of BCG-M vaccinated at maternity hospital than in those vaccinated later or not vaccinated at all (15.2% versus 66% and 35.7%, respectively; p < 0,01). AD was less likely to develop in children with risk factors for allergic disease who were vaccinated against tuberculosis in the maternity hospital than in those vaccinated later or unvaccinated at all (18, 75 and 62.5%, respectively; p < 0.01). The ratio of children with diagnosed AD by the age of 12 months was significantly less in the group of children vaccinated against hepatitis B in the maternity hospital than in those vaccinated later or unvaccinated at all (17.6, 44.9 and 31.8%, respectively; p < 0.01). These ratios for children with risk of allergic disease development were 24%, 50% and 44.4%, respectively (p = 0.043). It has also been shown that timely vaccination with both vaccines in the early neonatal period significantly reduces the risk of AD in general infant population compared to non-vaccinated individuals or those who had only one vaccine (odds ratio [OR] 0.374; 95% confidence interval [CI] 0.253-0.552; p < 0.01). Whereas the disease development in children with allergic risk is less likely with timely vaccination (20.8% versus 53.3%; OR = 0.252; 95% CI 0.145–0.440; OR = 0.374; 95% CI 0,253–0,552; p < 0,01).Conclusion. The obtained results may indicate possible risk reduction for AD development due to timely preventive vaccination against tuberculosis and hepatitis B, especially in children with allergic risk. The study is currently ongoing.
Collapse
Affiliation(s)
| | - Leyla S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery;
Pirogov Russian National Research Medical University
| | - Marina V. Fedoseenko
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery;
Pirogov Russian National Research Medical University
| | - Dina S. Rusinova
- Pirogov Russian National Research Medical University;
Children’s City Outpatient’s Clinic №133 of Moscow City Health Department
| |
Collapse
|
16
|
Les approches thérapeutiques non invasives de l’obésité : hier, aujourd’hui et demain. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ren W, Yu B, Yu J, Zheng P, Huang Z, Luo J, Mao X, He J, Yan H, Wu J, Chen D, Luo Y. Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2062-2075. [PMID: 35467318 DOI: 10.1007/s11427-021-2068-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Growing evidences show a direct link between diarrhea and disorders of gut microbiota in pigs. However, whether there are microbial markers associated with post-weaning diarrhea remains unknown. In the current study, we compared the microbial community, functions and metabolites between healthy weaned piglets (group H, n=7) and piglets with post-weaning diarrhea (group D, n=7), in order to find out diarrhea associated microbial markers. Each of 7 fecal samples was collected from H and D piglets (weaned at 21 d and sampled at 26 d). The metagenomic and untargeted metabolomic analysis revealed that the microbial composition, function and metabolic profile in D pigs was considerably reshaped, including the reduced abundance and number of Bacteroides, which significantly correlated with the diarrhea status of host. The carbohydrate metabolism, biosynthesis and metabolism, lipid metabolism, amino acid metabolism, and the activity of glycan and carbohydrates digestion related enzymes showed extensively down-regulated in D pigs compared with H pigs. Diarrhea significantly changed the metabolic profiles of fecal microbiota, and most of the altered metabolites were negatively or positively correlated with the change in the abundance of Bacteroides. In conclusion, the lower abundance of Bacteroides and its associated metabolic dysfunction may be regarded as microbial markers of physiological post-weaning diarrhea in piglets.
Collapse
Affiliation(s)
- Wen Ren
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- DSM (China) Animal Nutrition Research Center Co., Ltd, Bazhou, 065799, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinlong Wu
- DSM (China) Animal Nutrition Research Center Co., Ltd, Bazhou, 065799, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-resistant Nutrition of Sichuan Province, and Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Jackson PPJ, Wijeyesekera A, Rastall RA. Determining the metabolic fate of human milk oligosaccharides: it may just be more complex than you think? GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e9. [PMID: 39295778 PMCID: PMC11406381 DOI: 10.1017/gmb.2022.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 09/21/2024]
Abstract
Human milk oligosaccharides (HMOs) are a class of structurally diverse and complex unconjugated glycans present in breast milk, which act as selective substrates for several genera of select microbes and inhibit the colonisation of pathogenic bacteria. Yet, not all infants are breastfed, instead being fed with formula milks which may or may not contain HMOs. Currently, formula milks only possess two HMOs: 2'-fucosyllactose (2'FL) and lacto-N-neotetraose (LNnT), which have been suggested to be similarly effective as human breast milk in supporting age-related growth. However, the in vivo evidence regarding their ability to beneficially reduce respiratory infections along with altering the composition of an infant's microbiota is limited at best. Thus, this review will explore the concept of HMOs and their metabolic fate, and summarise previous in vitro and in vivo clinical data regarding HMOs, with specific regard to 2'FL and LNnT.
Collapse
Affiliation(s)
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
19
|
Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin Exp Pediatr 2022; 65:439-447. [PMID: 34942687 PMCID: PMC9441613 DOI: 10.3345/cep.2021.00955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
During early life, the gut microbial composition rapidly changes by maternal microbiota composition, delivery mode, infant feeding mode, antibiotic usage, and various environmental factors, such as the presence of pets and siblings. An integrative study on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of diet in shaping the human/microbiome relationship. Disruption in the gut microbiota (i.e., gut dysbiosis) has been linked to necrotizing enterocolitis in infancy, as well as some chronic diseases in later, including obesity, diabetes, inflammatory bowel disease, cancer, allergies, and asthma. Therefore, understanding the impact of maternal-to-infant transfer of dysbiotic microbes and then modifying infant early colonization or correcting early-life gut dysbiosis might be a potential strategy to overcome chronic health conditions.
Collapse
Affiliation(s)
- Sujin Jeong
- Division of Gastroenterology and Nutrition of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
20
|
Bridgman SL, Malmuthuge N, Mandal R, Field CJ, Haqq AM, Mandhane PJ, Moraes TJ, Turvey SE, Simons E, Subbarao P, Scott JA, Wishart DS, Kozyrskyj AL. Childhood body mass index and associations with infant gut metabolites and secretory IgA: findings from a prospective cohort study. Int J Obes (Lond) 2022; 46:1712-1719. [PMID: 35840772 DOI: 10.1038/s41366-022-01183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Differences in gut microbiota, metabolites and immune markers have been observed between individuals with and without obesity. Our study determined the temporal association between infant fecal gut metabolites, sIgA and body mass index (BMI) z score of preschool children, independent of pre/postnatal factors. SUBJECTS/METHODS The study includes a subset of 647 infants from the CHILD Cohort Study (recruited between January 1, 2009, and December 31, 2012). Fecal metabolites and sIgA were measured at 3-4 months of age, and age and sex adjusted BMI z scores at 1 and 3 years of age. Associations between the metabolites, IgA, and child BMI z scores at age 1 and 3 years were tested using linear regression adjusted for pre/postnatal factors (breastfeeding, birthweight-for-gestational age, birthmode and IAP, solid food introduction). RESULTS Mean BMI z score for all infants was 0.34 (SD 1.16) at 1 year (N = 647) and 0.71 (SD 1.06) at 3 years (N = 573). High fecal formate in infancy was associated with a significantly lower BMI z score (adjusted mean difference -0.23 (95% CI -0.42, -0.04)) and high butyrate was associated with a higher BMI z score (adjusted mean difference 0.21 (95% CI 0.01, 0.41)) at age 3 years only. The influence of formate and butyrate on BMI z score at age 3 were seen only in those that were not exclusively breastfed at stool sample collection (adjusted mean difference for high formate/EBF- group: -0.33 (95%CI -0.55, -0.10) and 0.25 (95% CI 0.02, 0.47) for high butyrate/EBF- group). No associations were seen between sIgA and BMI z score at age 1 or 3 years in adjusted regression models. CONCLUSION AND RELEVANCE Differences in fecal metabolite levels in early infancy were associated with childhood BMI. This study identifies an important area of future research in understanding the pathogenesis of obesity.
Collapse
Affiliation(s)
- Sarah L Bridgman
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Nilusha Malmuthuge
- Agriculture Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital, Vancouver, BC, Canada
| | - Elinor Simons
- Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Padmaja Subbarao
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Łoniewski I, Skonieczna-Żydecka K, Stachowska L, Fraszczyk-Tousty M, Tousty P, Łoniewska B. Breastfeeding Affects Concentration of Faecal Short Chain Fatty Acids During the First Year of Life: Results of the Systematic Review and Meta-Analysis. Front Nutr 2022; 9:939194. [PMID: 35898706 PMCID: PMC9310010 DOI: 10.3389/fnut.2022.939194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Short chain fatty acids (SCFAs) are important metabolites of the gut microbiota. It has been shown that the microbiota and its metabolic activity in children are highly influenced by the type of diet and age. Our aim was to analyse the concentration of fecal SCFAs over two years of life and to evaluate the influence of feeding method on the content of these compounds in feces. We searched PubMed/MEDLINE/Embase/Ebsco/Cinahl/Web of Science from the database inception to 02/23/2021 without language restriction for observational studies that included an analysis of the concentration of fecal SCFAs in healthy children up to 3 years of age. The primary outcome measures-mean concentrations-were calculated. We performed a random-effects meta-analysis of outcomes for which ≥2 studies provided data. A subgroup analysis was related to the type of feeding (breast milk vs. formula vs. mixed feeding) and the time of analysis (time after birth). The initial search yielded 536 hits. We reviewed 79 full-text articles and finally included 41 studies (n = 2,457 SCFA analyses) in the meta-analysis. We found that concentrations of propionate and butyrate differed significantly in breastfed infants with respect to time after birth. In infants artificially fed up to 1 month of age, the concentration of propionic acid, butyric acid, and all other SCFAs is higher, and acetic acid is lower. At 1–3 months of age, a higher concentration of only propionic acid was observed. At the age of 3–6 months, artificial feeding leads to a higher concentration of butyric acid and the sum of SCFAs. We concluded that the type of feeding influences the content of SCFAs in feces in the first months of life. However, there is a need for long-term evaluation of the impact of the observed differences on health later in life and for standardization of analytical methods and procedures for the study of SCFAs in young children. These data will be of great help to other researchers in analyzing the relationships between fecal SCFAs and various physiologic and pathologic conditions in early life and possibly their impact on health in adulthood.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- *Correspondence: Karolina Skonieczna-Żydecka
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Piotr Tousty
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
22
|
Gridneva Z, George AD, Suwaydi MA, Sindi AS, Jie M, Stinson LF, Geddes DT. Environmental determinants of human milk composition in relation to health outcomes. Acta Paediatr 2022; 111:1121-1126. [PMID: 35067980 DOI: 10.1111/apa.16263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Humans are exposed to environmental factors at every stage of life including infancy. The aim of this mini-review was to present a narrative of environmental factors influencing human milk composition. Current literature shows lactation is a dynamic process and is responsive to multiple environmental challenges including geographical location, lifestyle, persistent pollutants and maternal factors (ethnicity, diet, stress, allergy and adiposity) that may influence human milk composition in a synergistic manner and should be considered in order to improve infant and maternal outcomes on a populations scale. Further interventional studies on larger international cohorts are needed to elucidate these complex relationships. Lactating women should aim for a healthy lifestyle and maintain a healthy body composition prior to and throughout the reproductive period, including during lactation.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Alexandra D. George
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
- Metabolomics Laboratory Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Majed A. Suwaydi
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- Department of Medical Laboratory Technology College of Applied Medical Sciences Jazan University Jazan Saudi Arabia
| | - Azhar S. Sindi
- Division of Obstetrics and Gynaecology School of Medicine The University of Western Australia Crawley Western Australia Australia
- College of Applied Medical Sciences Umm Al‐Qura University Makkah Saudi Arabia
| | - Ma Jie
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
| | - Lisa F. Stinson
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Donna T. Geddes
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| |
Collapse
|
23
|
Stinson LF, Geddes DT. Microbial metabolites: the next frontier in human milk. Trends Microbiol 2022; 30:408-410. [DOI: 10.1016/j.tim.2022.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
|
24
|
Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms 2022; 10:microorganisms10020452. [PMID: 35208906 PMCID: PMC8877435 DOI: 10.3390/microorganisms10020452] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity, a worldwide health concern with a constantly rising prevalence, is a multifactorial chronic disease associated with a wide range of physiological disruptions, including energy imbalance, central appetite and food reward dysregulation, and hormonal alterations and gut dysbiosis. The gut microbiome is a well-recognized factor in the pathophysiology of obesity, and its influence on host physiology has been extensively investigated over the last decade. This review highlights the mechanisms by which gut dysbiosis can contribute to the pathophysiology of obesity. In particular, we discuss gut microbiota’s contribution to host energy homeostatic changes, low-grade inflammation, and regulation of fat deposition and bile acid metabolism via bacterial metabolites, such as short-chain fatty acids, and bacterial components, such as lipopolysaccharides, among others. Finally, therapeutic strategies based on next-generation probiotics aiming to re-shape the intestinal microbiota and reverse metabolic alterations associated with obesity are described.
Collapse
|
25
|
Rubio-Del-Campo A, Gozalbo-Rovira R, Moya-Gonzálvez EM, Alberola J, Rodríguez-Díaz J, Yebra MJ. Infant gut microbiota modulation by human milk disaccharides in humanized microbiome mice. Gut Microbes 2022; 13:1-20. [PMID: 33938391 PMCID: PMC8096338 DOI: 10.1080/19490976.2021.1914377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human milk glycans present a unique diversity of structures that suggest different mechanisms by which they may affect the infant microbiome development. A humanized mouse model generated by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc (3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and host-microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consumption of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quantitative real-time PCR, did not significantly increase. OTUs corresponding to the species Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present in the control after the 3-week intervention, but were shared among the donor and specific disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cytokine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN demonstrated physiological and immunomodulatory roles.
Collapse
Affiliation(s)
- Antonio Rubio-Del-Campo
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Gozalbo-Rovira
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Eva M. Moya-Gonzálvez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain
| | - Juan Alberola
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María J. Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain,CONTACT María J. Yebra Laboratorio De Bacterias Lácticas Y Probióticos, Departamento De Biotecnología De Alimentos, IATA-CSIC, Agustín Escardino 7, 46980Paterna, Spain
| |
Collapse
|
26
|
Chen S, Yang M, Wang R, Fan X, Tang T, Li P, Zhou X, Qi K. Suppression of high-fat-diet-induced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota. Eur J Nutr 2022; 61:2015-2031. [PMID: 34993642 DOI: 10.1007/s00394-021-02769-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate whether the effects of dietary folic acid supplementation on body weight gain are mediated by gut microbiota in obesity. METHODS Male C57 BL/6J conventional (CV) and germ-free (GF) mice both aged three to four weeks were fed a high-fat diet (HD), folic acid-deficient HD (FD-HD), folic acid-supplement HD (FS-HD) and a normal-fat diet (ND) for 25 weeks. Faecal microbiota were analyzed by 16S rRNA high-throughput sequencing, and the mRNA expression of genes was determined by the real-time RT-PCR. Short-chain fatty acids (SCFAs) in faeces and plasma were measured using gas chromatography-mass spectrometry. RESULTS In CV mice, HD-induced body weight gain was inhibited by FS-HD, accompanied by declined energy intake, smaller white adipocyte size, and less whitening of brown adipose tissue. Meanwhile, the HD-induced disturbance in the expression of fat and energy metabolism-associated genes (Fas, Atgl, Hsl, Ppar-α, adiponectin, resistin, Ucp2, etc.) in epididymal fat was diminished, and the dysbiosis in faecal microbiota was lessened, by FS-HD. However, in GF mice with HD feeding, dietary folic acid supplementation had almost no effect on body weight gain and the expression of fat- and energy-associated genes. Faecal or plasma SCFA concentrations in CV and GF mice were not altered by either FD-HD or FS-HD feeding. CONCLUSION Dietary folic acid supplementation differently affected body weight gain and associated genes' expression under HD feeding between CV and GF mice, suggesting that gut bacteria might partially share the responsibility for beneficial effects of dietary folate on obesity.
Collapse
Affiliation(s)
- Si Chen
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xinhui Zhou
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China.
| |
Collapse
|
27
|
Socha-Banasiak A, Pawłowska M, Czkwianianc E, Pierzynowska K. From Intrauterine to Extrauterine Life-The Role of Endogenous and Exogenous Factors in the Regulation of the Intestinal Microbiota Community and Gut Maturation in Early Life. Front Nutr 2022; 8:696966. [PMID: 34977104 PMCID: PMC8718557 DOI: 10.3389/fnut.2021.696966] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiation of the digestive tube and formation of the gut unit as a whole, are regulated by environmental factors through epigenetic modifications which enhance cellular plasticity. The critical period of DNA imprinting lasts from conception until approximately the 1,000th day of human life. During pregnancy, besides agents that may directly promote epigenetic programming (e.g., folate, zinc, and choline supplementation), some factors (e.g., antibiotic use, dietary components) can affect the composition of the mother's microbiota, in turn affecting the fetal microbiome which interacts with the offspring's intestinal epithelial cells. According to available literature that confirms intrauterine microbial colonization, the impact of the microbiome and its metabolites on the genome seems to be key in fetal development, including functional gut maturation and the general health status of the offspring, as well as later on in life. Although the origin of the fetal microbiome is still not well-understood, the bacteria may originate from both the vagina, as the baby is born, as well as from the maternal oral cavity/gut, through the bloodstream. Moreover, the composition of the fetal gut microbiota varies depending on gestational age, which in turn possibly affects the regulation of the immune system at the barrier between mother and fetus, leading to differences in the ability of microorganisms to access and survive in the fetal environment. One of the most important local functions of the gut microbiota during the prenatal period is their exposure to foreign antigens which in turn contributes to immune system and tissue development, including fetal intestinal Innate Lymphoid Cells (ILCs). Additional factors that determine further infant microbiome development include whether the infant is born premature or at term, the method of delivery, maternal antibiotic use, and the composition of the mother's milk, among others. However, the latest findings highlight the fact that a more diverse infant gut microbiome at birth facilitates the proliferation of stem cells by microbial metabolites and accelerates infant development. This phenomenon confirms the unique role of microbiome. This review emphasizes the crucial perinatal and postnatal factors that may influence fetal and neonatal microbiota, and in turn gut maturation.
Collapse
Affiliation(s)
- Anna Socha-Banasiak
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Malwina Pawłowska
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Elżbieta Czkwianianc
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund, Sweden.,Department of Animal Physiology, The Kielanowski Institute of Animal Nutrition and Physiology Polish Academy of Sciences, Jablonna, Poland
| |
Collapse
|
28
|
de Cuevillas B, Milagro FI, Tur JA, Gil-Campos M, de Miguel-Etayo P, Martínez JA, Navas-Carretero S. Fecal microbiota relationships with childhood obesity: A scoping comprehensive review. Obes Rev 2022; 23 Suppl 1:e13394. [PMID: 34913242 DOI: 10.1111/obr.13394] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Childhood obesity is a costly burden in most regions with relevant and adverse long-term health consequences in adult life. Several studies have associated excessive body weight with a specific profile of gut microbiota. Different factors related to fecal microorganism abundance seem to contribute to childhood obesity, such as gestational weight gain, perinatal diet, antibiotic administration to the mother and/or child, birth delivery, and feeding patterns, among others. This review reports and discusses diverse factors that affect the infant intestinal microbiota with putative or possible implications on the increase of the obesity childhood rates as well as microbiota shifts associated with excessive body weight in children.
Collapse
Affiliation(s)
- Begoña de Cuevillas
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, Palma de Mallorca, Spain
| | - Mercedes Gil-Campos
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimónides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Pilar de Miguel-Etayo
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza. Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - J Alfredo Martínez
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Health Research Institute of Navarra, Pamplona, Spain.,Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food. CSIC-UAM, Madrid, Spain
| | - Santiago Navas-Carretero
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology. School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Health Research Institute of Navarra, Pamplona, Spain
| |
Collapse
|
29
|
Romano-Keeler J, Sun J. The First 1000 Days: Assembly of the Neonatal Microbiome and Its Impact on Health Outcomes. NEWBORN (CLARKSVILLE, MD.) 2022; 1:219-226. [PMID: 36237439 PMCID: PMC9555117 DOI: 10.5005/jp-journals-11002-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early life microbial colonization is critical for the development of the immune system, postnatal growth, and long-term health and disease. The dynamic and nascent microbiomes of children are highly individualized and are characterized by low bacterial diversity. Any disruptions in microbial colonization can contribute to shifts in normal microbial colonization that persist past the first 1000 days of life and result in intestinal dysbiosis. Here, we focus on microbiome-host interactions during fetal, newborn, and infant microbiome development. We summarize the roles of bacterial communities in fetal development and adverse health outcomes due to dysbiosis. We also discuss how internal and external factors program the microbiome's metabolic machinery as it evolves into an adult-like microbiome. Finally, we discuss the limits of current studies and future directions. Studies on the early-life microbiome will be critical for a better understanding of childhood health and diseases, as well as restorative methods for the prevention and treatment of diseases in adulthood.
Collapse
Affiliation(s)
- Joann Romano-Keeler
- Division of Neonatology, Department of Pediatrics, University of Illinois, Chicago, Illinois, United States of America
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, Illinois, United States of America; University of Illinois Cancer Center, Chicago, Illinois, United States of America; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
30
|
Tamana SK, Tun HM, Konya T, Chari RS, Field CJ, Guttman DS, Becker AB, Moraes TJ, Turvey SE, Subbarao P, Sears MR, Pei J, Scott JA, Mandhane PJ, Kozyrskyj AL. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021; 13:1-17. [PMID: 34132157 PMCID: PMC8210878 DOI: 10.1080/19490976.2021.1930875] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dysbiosis of gut microbiota has been retrospectively linked to autism spectrum disorders but the temporal association between gut microbiota and early neurodevelopment in healthy infants is largely unknown. We undertook this study to determine associations between gut microbiota at two critical periods during infancy and neurodevelopment in a general population birth cohort.Here, we analyzed data from 405 infants (199 females) from the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study. Neurodevelopmental outcomes were objectively assessed using the Bayley Scale of Infant Development (BSID-III) at 1 and 2 years of age. Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal samples obtained at a mean age of 4 and 12 months.Using clustering methods, we identified three groups of infants based on relative abundance of gut microbiota at 12 months: Proteobacteria-dominant cluster (22.4% higher abundance at 12 months), Firmicutes-dominant cluster (46.0% higher abundance at 12 months) and Bacteroidetes-dominant cluster (31.6% higher abundance at 12 months). Relative to the Proteobacteria-dominant cluster, the Bacteroidetes-dominant cluster was associated with higher scores for cognitive (4.8 points; FDRp = .02), language (4.2 points; FDRp≤0.001), and motor (3.1 points; FDRp = .03) development at age 2 in models adjusted for covariates. When stratified by sex, only male infants with a Bacteroidetes-dominant microbiota had more favorable cognitive (5.9 points, FDRp = .06) and language (7.9 points; FDRp≤0.001) development. Genus Bacteroides abundance in gut microbiota was positively correlated with cognitive and language scores at age 2. Fully adjusted linear mixed model analysis revealed a positive association between Bacteroidetes-dominant cluster and change in cognitive and language performance from 1 to 2 years, predominantly among males. No associations were evident between 4-month microbiota clusters and BSID-II scores. Noteworthy is that enhanced sphingolipid synthesis and metabolism, and antagonism or competition between Bacteroides and Streptococcus were characteristic of a Bacteroidetes-dominant gut microbiota.This study found strong evidence of positive associations between Bacteroidetes gut microbiota in late infancy and subsequent neurodevelopment, most prominently among males but not females.
Collapse
Affiliation(s)
| | - Hein M. Tun
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada,HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Theodore Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Radha S. Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Allan B. Becker
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J. Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, Child & Family Research Institute, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, University of Alberta, Edmonton, AB, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Piush J. Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada,CONTACT Anita L. Kozyrskyj Department of Pediatrics, University of Alberta, 3-527 Edmonton Clinic Health Academy, 11405-87th Ave, Edmonton, ABT6G 1C9, Canada
| |
Collapse
|
31
|
Sugino KY, Ma T, Kerver JM, Paneth N, Comstock SS. Human Milk Feeding Patterns at 6 Months of Age are a Major Determinant of Fecal Bacterial Diversity in Infants. J Hum Lact 2021; 37:703-713. [PMID: 32926654 DOI: 10.1177/0890334420957571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Maternal pre-pregnancy obesity and human milk feeding have been associated with altered infant gut microbiota. RESEARCH AIM Determine the relationships between maternal pre-pregnancy BMI, human milk exposure, and their influence on the infant microbiota simultaneously. METHODS This was a cross-sectional study of infants at 6 months of age (N = 36), a time when many infants are fed a mixed diet of human milk and other foods. Fecal samples and participant information were collected from a subset of dyads enrolled in two related prospective cohorts (ARCHGUT and BABYGUT) in Michigan. Sequencing the V4 region of the 16S gene was used to analyze fecal bacterial samples collected from 6-month-old infants. Participants were grouped into four categories designated by their extent of human milk exposure (100%, 80%, 50%-80%, ≤ 20% human milk in the infant diet) and by maternal pre-pregnancy BMI category (normal, overweight, obese). RESULTS Fewer participants with pre-pregnancy obesity were breastfeeding at 6 months postpartum compared to non-obese participants (35.7% and 81.8%, respectively). In univariate analyses, maternal pre-pregnancy BMI and human milk exposure were both significantly associated with alpha and beta diversity of the infant microbiota. However, in multivariate analyses, human milk exposure accounted for 20% of the variation in alpha diversity, but pre-pregnancy BMI was not significantly associated with any form of microbiota diversity. CONCLUSIONS The proportion of the infant diet that was human milk at 6 months was the major determinant of alpha and beta diversity of the infant. Maternal obesity contributes to the gut microbiota by its association with the extent of human milk feeding.
Collapse
Affiliation(s)
- Kameron Y Sugino
- 3078 Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Tengfei Ma
- 3078 Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Jean M Kerver
- 3078 Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Nigel Paneth
- 3078 Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan.,3078 Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Sarah S Comstock
- 3078 Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Diener C, Qin S, Zhou Y, Patwardhan S, Tang L, Lovejoy JC, Magis AT, Price ND, Hood L, Gibbons SM. Baseline Gut Metagenomic Functional Gene Signature Associated with Variable Weight Loss Responses following a Healthy Lifestyle Intervention in Humans. mSystems 2021; 6:e0096421. [PMID: 34519531 PMCID: PMC8547453 DOI: 10.1128/msystems.00964-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 individuals selected from a larger population enrolled in a commercial wellness program, which included healthy lifestyle coaching. Each individual in the cohort had baseline blood metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA gene sequencing data, and follow-up data on weight change. We generated additional targeted proteomics data on obesity-associated proteins in blood before and after intervention, along with baseline stool metagenomic data, for a subset of 25 individuals who showed the most extreme weight change phenotypes. We built regression models to identify baseline blood, stool, and dietary features associated with weight loss, independent of age, sex, and baseline body mass index (BMI). Many features were independently associated with baseline BMI, but few were independently associated with weight loss. Baseline diet was not associated with weight loss, and only one blood analyte was associated with changes in weight. However, 31 baseline stool metagenomic functional features, including complex polysaccharide and protein degradation genes, stress-response genes, respiration-related genes, and cell wall synthesis genes, along with gut bacterial replication rates, were associated with weight loss responses after controlling for age, sex, and baseline BMI. Together, these results provide a set of compelling hypotheses for how commensal gut microbiota influence weight loss outcomes in humans. IMPORTANCE Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to dietary interventions, but the exact functional determinants underlying this phenomenon remain unclear. In this study, we set out to better understand interactions between baseline BMI, metabolic health, diet, gut microbiome functional profiles, and subsequent weight changes in a human cohort that underwent a healthy lifestyle intervention. Overall, our results suggest that the microbiota may influence host weight loss responses through variable bacterial growth rates, dietary energy harvest efficiency, and immunomodulation.
Collapse
Affiliation(s)
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Li Tang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Jennifer C. Lovejoy
- Institute for Systems Biology, Seattle, Washington, USA
- Lifestyle Medicine Institute, Redlands, California, USA
| | | | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Onegevity (a division of Thorne HealthTech), New York, New York, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- eScience Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Sugino KY, Ma T, Paneth N, Comstock SS. Effect of Environmental Exposures on the Gut Microbiota from Early Infancy to Two Years of Age. Microorganisms 2021; 9:2140. [PMID: 34683461 PMCID: PMC8537618 DOI: 10.3390/microorganisms9102140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota undergoes rapid changes during infancy in response to early-life exposures. We have investigated how the infant gut bacterial community matures over time and how exposures such as human milk and antibiotic treatment alter gut microbiota development. We used the LonGP program to create predictive models to determine the contribution of exposures on infant gut bacterial abundances from one month to two years of age. These models indicate that infant antibiotic use, human milk intake, maternal pre-pregnancy BMI, and sample shipping time were associated with changes in gut microbiome composition. In most infants, Bacteroides, Lachnospiraceae unclassified, Faecalibacterium, Akkermansia, and Phascolarctobacterium abundance increased rapidly after 6 months, while Escherichia, Bifidobacterium, Veillonella, and Streptococcus decreased in abundance over time. Individual, time-varying, random effects explained most of the variation in the LonGP models. Multivariate association with linear models (MaAsLin) displayed partial agreement with LonGP in the predicted trajectories over time and in relation to significant factors such as human milk intake. Multiple factors influence the dynamic changes in bacterial composition of the infant gut. Within-individual differences dominate the temporal variations in the infant gut microbiome, suggesting individual temporal variability is an important feature to consider in studies with a longitudinal sampling design.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Tengfei Ma
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (T.M.); (N.P.)
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (T.M.); (N.P.)
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
34
|
Jeong S. Early Life Events and Development of Gut Microbiota in Infancy. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021. [DOI: 10.4166/kjg.2021.408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- SuJin Jeong
- Division of Gastroenterology and Nutrition of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
35
|
Ma X, Zhang Y, Xu T, Qian M, Yang Z, Zhan X, Han X. Early-Life Intervention Using Exogenous Fecal Microbiota Alleviates Gut Injury and Reduce Inflammation Caused by Weaning Stress in Piglets. Front Microbiol 2021; 12:671683. [PMID: 34177852 PMCID: PMC8222923 DOI: 10.3389/fmicb.2021.671683] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could shape the structure of intestinal microbiota in animals. This study was conducted to explore the changes that happen in the structure and function of microbiota caused by weaning stress, and whether early-life FMT could alleviate weaning stress through modifying intestinal microbiota in weaned piglets. Diarrheal (D) and healthy (H) weaned piglets were observed, and in the same farm, a total of nine litters newborn piglets were randomly allocated to three groups: sucking normally (S), weaned at 21 d (W), and early-life FMT + weaned at 21 d (FW). The results demonstrated that differences of fecal microbiota existed in group D and H. Early-life FMT significantly decreased diarrhea incidence of weaned piglets. Intestinal morphology and integrity were improved in the FW group. Both ZO-1 and occludin (tight junction proteins) of jejunum were greatly enhanced, while the zonulin expression was significantly down-regulated through early-life FMT. The expression of IL-6 and TNF-α (intestinal mucosal inflammatory cytokines) were down-regulated, while IL-10 (anti-inflammatory cytokines) was up-regulated by early-life FMT. In addition, early-life FMT increased the variety of the intestinal microbial population and the relative amounts of some beneficial bacteria such as Spirochaetes, Akkermansia, and Alistipes. Functional alteration of the intestinal microbiota revealed that lipid biosynthesis and aminoacyl-tRNA biosynthesis were enriched in the FW group. These findings suggested that alteration of the microbiota network caused by weaning stress induced diarrhea, and early-life FMT alleviated weaning stress in piglets, which was characterized by decreased diarrhea incidence, improved intestinal morphology, reduced intestinal inflammation, and modified intestinal bacterial composition and function.
Collapse
Affiliation(s)
- Xin Ma
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Tingting Xu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengqi Qian
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhiren Yang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| | - Xiuan Zhan
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xinyan Han
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| |
Collapse
|
36
|
Vander Wyst KB, Ortega-Santos CP, Toffoli SN, Lahti CE, Whisner CM. Diet, adiposity, and the gut microbiota from infancy to adolescence: A systematic review. Obes Rev 2021; 22:e13175. [PMID: 33590719 PMCID: PMC10762698 DOI: 10.1111/obr.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Early life gut microbiota are affected by several factors that make identification of microbial-adiposity relationships challenging. This review evaluates studies that have investigated the gut microbiota composition associated with adiposity in infants, children, and adolescents and provides evidence-based nutrition recommendations that address microbiota-adiposity links. Electronic databases were systematically searched through January 2020. Eligible studies were published in English and analyzed gut microbiota and adiposity among individuals aged birth to 18 years. Abstracts and full-text articles were reviewed by three independent reviewers. Of 45 full-text articles reviewed, 33 were included. No difference in abundance was found for Bacteroidetes (n = 7/15 articles), Firmicutes (n = 10/17), Actinobacteria (n = 8/12), Proteobacteria (n = 8/12), Tenericutes (n = 4/5), and Verrucomicrobia (n = 4/6) with adiposity. Lower abundance of Christensenellaceae (n = 3/5) and Rikenellaceae (n = 6/8) but higher abundance of F. prausnitzii (n = 3/5) and Prevotella (n = 5/7) were associated with adiposity. A lack of consensus exists for gut microbial composition associations with adiposity. A healthy gut microbiota is associated with a diet rich in fruits and vegetables with moderate consumption of animal fat and protein. Future research should use more robust sequencing technologies to identify all bacterial taxa associated with adiposity and evaluate how diet effects these adiposity-associated microbes.
Collapse
Affiliation(s)
- Kiley B Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, Arizona, USA
| | | | - Samantha N Toffoli
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Caroline E Lahti
- College of Liberal Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
37
|
Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. Int J Mol Sci 2021; 22:ijms22094377. [PMID: 33922158 PMCID: PMC8122716 DOI: 10.3390/ijms22094377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.
Collapse
|
38
|
Sindi AS, Geddes DT, Wlodek ME, Muhlhausler BS, Payne MS, Stinson LF. Can we modulate the breastfed infant gut microbiota through maternal diet? FEMS Microbiol Rev 2021; 45:6133472. [PMID: 33571360 DOI: 10.1093/femsre/fuab011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Initial colonisation of the infant gut is robustly influenced by regular ingestion of human milk, a substance that contains microbes, microbial metabolites, immune proteins, and oligosaccharides. Numerous factors have been identified as potential determinants of the human milk and infant gut microbiota, including maternal diet; however, there is limited data on the influence of maternal diet during lactation on either of these. Here, we review the processes thought to contribute to human milk and infant gut bacterial colonisation and provide a basis for considering the role of maternal dietary patterns during lactation in shaping infant gut microbial composition and function. Although only one observational study has directly investigated the influence of maternal diet during lactation on the infant gut microbiome, data from animal studies suggests that modulation of the maternal gut microbiota, via diet or probiotics, may influence the mammary or milk microbiota. Additionally, evidence from human studies suggests that the maternal diet during pregnancy may affect the gut microbiota of the breastfed infant. Together, there is a plausible hypothesis that maternal diet during lactation may influence the infant gut microbiota. If substantiated in further studies, this may present a potential window of opportunity for modulating the infant gut microbiome in early life.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Beverly S Muhlhausler
- CSIRO, Adelaide, South Australia, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
39
|
Vu K, Lou W, Tun HM, Konya TB, Morales-Lizcano N, Chari RS, Field CJ, Guttman DS, Mandal R, Wishart DS, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Lefebvre DL, Sears MR, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. From Birth to Overweight and Atopic Disease: Multiple and Common Pathways of the Infant Gut Microbiome. Gastroenterology 2021; 160:128-144.e10. [PMID: 32946900 DOI: 10.1053/j.gastro.2020.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Few studies, even those with cohort designs, test the mediating effects of infant gut microbes and metabolites on the onset of disease. We undertook such a study. METHODS Using structural equation modeling path analysis, we tested directional relationships between first pregnancy, birth mode, prolonged labor and breastfeeding; infant gut microbiota, metabolites, and IgA; and childhood body mass index and atopy in 1667 infants. RESULTS After both cesarean birth and prolonged labor with a first pregnancy, a higher Enterobacteriaceae/Bacteroidaceae ratio at 3 months was the dominant path to overweight; higher Enterobacteriaceae/Bacteroidaceae ratios and Clostridioides difficile colonization at 12 months were the main pathway to atopic sensitization. Depletion of Bifidobacterium after prolonged labor was a secondary pathway to overweight. Influenced by C difficile colonization at 3 months, metabolites propionate and formate were secondary pathways to child outcomes, with a key finding that formate was at the intersection of several paths. CONCLUSIONS Pathways from cesarean section and first pregnancy to child overweight and atopy share many common mediators of the infant gut microbiome, notably C difficile colonization.
Collapse
Affiliation(s)
- Khanh Vu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hein M Tun
- School of Public Health, University of Hong Kong, Hong Kong
| | - Theodore B Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Radha S Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Edmonton, Alberta, Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, Edmonton, Alberta, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Diana L Lefebvre
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
40
|
Gio-Batta M, Sjöberg F, Jonsson K, Barman M, Lundell AC, Adlerberth I, Hesselmar B, Sandberg AS, Wold AE. Fecal short chain fatty acids in children living on farms and a link between valeric acid and protection from eczema. Sci Rep 2020; 10:22449. [PMID: 33384449 PMCID: PMC7775451 DOI: 10.1038/s41598-020-79737-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Children growing up on farms have low rates of allergy, but the mechanism for this protective effect has not been fully elucidated. Short chain fatty acids (SCFAs) produced by the gut microbiota may play a role in protection from allergy. We measured fecal SCFA levels in samples collected from 28 farming and 37 control children over the first 3 years of life using gas chromatography. Data on diet and other host factors were recorded and allergy was diagnosed at 8 years of age. Among all children, median propionic and butyric acid concentration increased over the first 3 years, and longer SCFAs typically appeared by 1 year of age. Farm children had higher levels of iso-butyric, iso-valeric and valeric acid at 3 years of age than rural controls. In addition, children with elder siblings had higher levels of valeric acid at 3 years of age, and dietary factors also affected SCFA pattern. High levels of valeric acid at 3 years of age were associated with low rate of eczema at 8 years of age. The fecal SCFA pattern in farm children suggests a more rapid maturation of the gut microbiota. Valeric acid or associated microbes may have protective potential against eczema.
Collapse
Affiliation(s)
- Monica Gio-Batta
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden.
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| | - Karin Jonsson
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin Barman
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| | - Bill Hesselmar
- Department of Paediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Agnes E Wold
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden
| |
Collapse
|
41
|
Perinatal free carnitine and short chain acylcarnitine blood concentrations in 12,000 full-term breastfed newborns in relation to their birth weight. Pediatr Neonatol 2020; 61:620-628. [PMID: 32771364 DOI: 10.1016/j.pedneo.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Free carnitine (C0) and short chain acylcarnitine (SCA) blood concentrations play a significant role in fatty acid oxidation process during the first days of life. The aim of this study was to demonstrate C0 and SCA concentrations in Dried Blood Spots (DBS) of full term breastfed infants in relation to their birth weight (BW) perinatally. METHODS Breastfed full term infants (n = 12,000, 6000 males, 6000 females) with BW 2000-4000 g were divided into 4 equal groups: Group A, 2000-2500 g, B 2500-3000 g, C 3000-3500 g and D 3500-4000 g. Blood samples in the form of DBS were collected on the 3rd day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. RESULTS BW-related C0 and SCAs were found as follows: C0 was determined to be statistically significantly higher in group A (BW 2000-2500 g) in both males and females. Lower acetylcarnitine (C2) and hydroxybutyrylcarnitine (C4OH) blood concentrations were detected in group A of both sexes, whereas butyrylcarnitine (C4) concentrations were found to be lower in the same group of males only. Furthermore, high concentrations of C2 and C4OH were shown in group D (BW 3500-4000 g) in both sexes. SCA sum of means ± SD values in males and females of group A were statistically significantly lower as compared to other study groups. CONCLUSION Due to the number of the samples, data from this study could be applied as neonatal screening reference values for full term breastfed newborns in relation to their birth weight.
Collapse
|
42
|
Kumar H, Collado MC, Wopereis H, Salminen S, Knol J, Roeselers G. The Bifidogenic Effect Revisited-Ecology and Health Perspectives of Bifidobacterial Colonization in Early Life. Microorganisms 2020; 8:E1855. [PMID: 33255636 PMCID: PMC7760687 DOI: 10.3390/microorganisms8121855] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Extensive microbial colonization of the infant gastrointestinal tract starts after parturition. There are several parallel mechanisms by which early life microbiome acquisition may proceed, including early exposure to maternal vaginal and fecal microbiota, transmission of skin associated microbes, and ingestion of microorganisms present in breast milk. The crucial role of vertical transmission from the maternal microbial reservoir during vaginal delivery is supported by the shared microbial strains observed among mothers and their babies and the distinctly different gut microbiome composition of caesarean-section born infants. The healthy infant colon is often dominated by members of the keystone genus Bifidobacterium that have evolved complex genetic pathways to metabolize different glycans present in human milk. In exchange for these host-derived nutrients, bifidobacteria's saccharolytic activity results in an anaerobic and acidic gut environment that is protective against enteropathogenic infection. Interference with early-life microbiota acquisition and development could result in adverse health outcomes. Compromised microbiota development, often characterized by decreased abundance of Bifidobacterium species has been reported in infants delivered prematurely, delivered by caesarean section, early life antibiotic exposure and in the case of early life allergies. Various microbiome modulation strategies such as probiotic, prebiotics, synbiotics and postbiotics have been developed that are able to generate a bifidogenic shift and help to restore the microbiota development. This review explores the evolutionary ecology of early-life type Bifidobacterium strains and their symbiotic relationship with humans and discusses examples of compromised microbiota development in which stimulating the abundance and activity of Bifidobacterium has demonstrated beneficial associations with health.
Collapse
Affiliation(s)
- Himanshu Kumar
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, 46980 Valencia, Spain;
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
| | - Harm Wopereis
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
- Laboratory for Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Guus Roeselers
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (H.K.); (H.W.); (J.K.)
| |
Collapse
|
43
|
Dai X, Yuan T, Zhang X, Zhou Q, Bi H, Yu R, Wei W, Wang X. Short-chain fatty acid (SCFA) and medium-chain fatty acid (MCFA) concentrations in human milk consumed by infants born at different gestational ages and the variations in concentration during lactation stages. Food Funct 2020; 11:1869-1880. [PMID: 32068229 DOI: 10.1039/c9fo02595b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed to quantify the short-chain fatty acids (SCFAs) and medium-chain fatty acids (MCFAs) in human milk triacylglycerols (TAGs) and investigate their concentrations in human milk consumed during lactation by infants born at different gestational ages. One hundred and eighty milk samples from the mothers of 30 full-term, 10 early-preterm (≤32 weeks), 10 mild-preterm (32-34 weeks), and 10 near-term (34-37 weeks) infants were collected from the colostrum, transitional, and mature milk. The human milk TAGs were transferred into fatty-acid methyl esters via potassium methoxide in methanol and determined using gas chromatography (GC). The total SCFA (4:0) and MCFA concentrations (6:0 and 8:0) were highest in the mature milk (1.47 ± 0.66 mg g-1 fat from full-term infant milk), approximately 42.18% higher than those in transitional milk. Significantly higher SCFA and MCFA concentrations were found in full-term milk than in preterm milk (p = 0.001). The milk TAGs were analyzed using ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC-Q-TOF-MS), which showed that the SCFAs and MCFAs were mainly esterified with long-chain fatty-acid groups (16:0, 18:1 n-9, and 18:2 n-6) at the glycerol backbone. The infants' daily SCFA intake from human milk was estimated; this was highest from mature milk for full-term infants (∼14 mg d-1) which was significantly different from that of preterm infants from colostrum and transitional milk (p < 0.001). The correlation between dietary SCFAs and MCFAs in human milk and nutrition in newborns, especially in the gut microbiotas of preterm infants, requires further study.
Collapse
Affiliation(s)
- Xinyue Dai
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Unusan N. Essential oils and microbiota: Implications for diet and weight control. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Greger M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am J Lifestyle Med 2020; 14:500-510. [PMID: 32922235 PMCID: PMC7444011 DOI: 10.1177/1559827620912400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What does the best available balance of scientific evidence show is the optimum way to lose weight? Calorie density, water content, protein source, and other components significantly influence the effectiveness of different dietary regimes for weight loss. By "walling off your calories," preferentially deriving your macronutrients from structurally intact plant foods, some calories remain trapped within indigestible cell walls, which then blunts the glycemic impact, activates the ileal brake, and delivers prebiotics to the gut microbiome. This may help explain why the current evidence indicates that a whole food, plant-based diet achieves greater weight loss compared with other dietary interventions that do not restrict calories or mandate exercise. So, the most effective diet for weight loss appears to be the only diet shown to reverse heart disease in the majority of patients. Plant-based diets have also been found to help treat, arrest, and reverse other leading chronic diseases such as type 2 diabetes and hypertension, whereas low-carbohydrate diets have been found to impair artery function and worsen heart disease, the leading killer of men and women in the United States. A diet centered on whole plant foods appears to be a safe, simple, sustainable solution to the obesity epidemic.
Collapse
|
46
|
Stinson LF, Gay MCL, Koleva PT, Eggesbø M, Johnson CC, Wegienka G, du Toit E, Shimojo N, Munblit D, Campbell DE, Prescott SL, Geddes DT, Kozyrskyj AL. Human Milk From Atopic Mothers Has Lower Levels of Short Chain Fatty Acids. Front Immunol 2020; 11:1427. [PMID: 32903327 PMCID: PMC7396598 DOI: 10.3389/fimmu.2020.01427] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Short chain fatty acids (SFCAs) are microbial metabolites produced in the gut upon fermentation of dietary fiber. These metabolites interact with the host immune system and can elicit epigenetic effects. There is evidence to suggest that SCFAs may play a role in the developmental programming of immune disorders and obesity, though evidence in humans remains sparse. Here we have quantified human milk (HM) SCFA levels in an international cohort of atopic and non-atopic mothers (n = 109). Our results demonstrate that human milk contains detectable levels of the SCFAs acetate, butyrate, and formate. Samples from atopic mothers had significantly lower concentrations of acetate and butyrate than those of non-atopic mothers. HM SCFA levels in atopic and non-atopic women also varied based on maternal country of residence (Australia, Japan, Norway, South Africa, USA). Reduced exposure to HM SCFA in early life may program atopy or overweight risk in breastfed infants.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Melvin C L Gay
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Petya T Koleva
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Merete Eggesbø
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine C Johnson
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Ganesa Wegienka
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Elloise du Toit
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Naoki Shimojo
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, Chiba University, Chiba, Japan
| | - Daniel Munblit
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Dianne E Campbell
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Allergy and Immunology, Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Susan L Prescott
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,The ORIGINS Project, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Donna T Geddes
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.,inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Anita L Kozyrskyj
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota. Sci Rep 2020; 10:11845. [PMID: 32678209 PMCID: PMC7366668 DOI: 10.1038/s41598-020-68718-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a mixture of structurally diverse carbohydrates that contribute to shape a healthy gut microbiota composition. The great diversity of the HMOs structures does not allow the attribution of specific prebiotic characteristics to single milk oligosaccharides. We analyze here the utilization of four disaccharides, lacto-N-biose (LNB), galacto-N-biose (GNB), fucosyl-α1,3-GlcNAc (3FN) and fucosyl-α1,6-GlcNAc (6FN), that form part of HMOs and glycoprotein structures, by the infant fecal microbiota. LNB significantly increased the total levels of bifidobacteria and the species Bifidobacterium breve and Bifidobacterium bifidum. The Lactobacillus genus levels were increased by 3FN fermentation and B. breve by GNB and 3FN. There was a significant reduction of Blautia coccoides group with LNB and 3FN. In addition, 6FN significantly reduced the levels of Enterobacteriaceae family members. Significantly higher concentrations of lactate, formate and acetate were produced in cultures containing either LNB or GNB in comparison with control cultures. Additionally, after fermentation of the oligosaccharides by the fecal microbiota, several Bifidobacterium strains were isolated and identified. The results presented here indicated that each, LNB, GNB and 3FN disaccharide, might have a specific beneficial effect in the infant gut microbiota and they are potential prebiotics for application in infant foods.
Collapse
|
48
|
Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev 2020; 53:101340. [PMID: 32668369 DOI: 10.1016/j.smrv.2020.101340] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
From asthma and heart disease to diabetes and obesity, the human microbiome plays a role in the pathogenesis of each chronic health condition plaguing today's society. Recent work has shown that the gut microbiota and its metabolites exhibit diurnal rhythmicity which predominantly respond to the feeding/fasting cycle. Persistent jet lag, an obesogenic diet, and clock gene deficiency can dampen the oscillatory nature of gut bacterial composition, which can subsequently be rescued by time restricted feeding. Contrastingly, gut microbial metabolites influence central and hepatic clock gene expression and sleep duration in the host and regulate body composition through circadian transcription factors. Both sleep fragmentation and short sleep duration are associated with gut dysbiosis which may be due to activation of the HPA-axis. Metabolic disturbances associated with sleep loss may in fact be mediated through the overgrowth of specific gut bacteria. Reciprocally, the end products of bacterial species which grow in response to sleep loss are able to induce fatigue. Furthermore, probiotic supplementation has been found to improve subjective sleep quality. Sleep quality and duration may be an important target for supporting healthy gut microbiota composition, but the cyclic nature of this relationship should not be overlooked.
Collapse
Affiliation(s)
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
49
|
Kapourchali FR, Cresci GAM. Early-Life Gut Microbiome-The Importance of Maternal and Infant Factors in Its Establishment. Nutr Clin Pract 2020; 35:386-405. [PMID: 32329544 DOI: 10.1002/ncp.10490] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The early-life microbiome is gaining appreciation as a major influencer in human development and long-term health. Multiple factors are known to influence the initial colonization, development, and function of the neonatal gut microbiome. In addition, alterations in early-life gut microbial composition is associated with several chronic health conditions such as obesity, asthma, and allergies. In this review, we focus on both maternal and infant factors known to influence early-life gut colonization. Also reviewed is the important role of infant feeding, including evidence-based strategies for maternal and infant supplementation with the goal to protect and/or restore the infant gut microbiome.
Collapse
Affiliation(s)
| | - Gail A M Cresci
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio, USA.,Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Lv Q, Yang A, Shi W, Chen F, Liu Y, Liu Y, Wang D. Calcipotriol and iBRD9 reduce obesity in Nur77 knockout mice by regulating the gut microbiota, improving intestinal mucosal barrier function. Int J Obes (Lond) 2020; 44:1052-1061. [PMID: 32203112 PMCID: PMC7188666 DOI: 10.1038/s41366-020-0564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
Objective The orphan nuclear receptor Nur77 is an important factor regulating metabolism. Nur77 knockout mice become obese with age, but the cause of obesity in these mice has not been fully ascertained. We attempted to explain the cause of obesity in Nur77 knockout mice from the perspective of the gut microbiota and to investigate the inhibitory effect of calcipotriol combined with BRD9 inhibitor (iBRD9) on obesity. Methods Eight-week-old wild-type mice and Nur77 knockout C57BL/6J mice were treated with calcipotriol combined with iBRD9 for 12 weeks. Mouse feces were collected and the gut microbiota was assessed by analyzing 16S rRNA gene sequences. The bacterial abundance difference was analyzed, and the intestinal mucosal tight junction protein, antimicrobial peptide, and inflammatory cytokine mRNA levels of the colon and serum LPS and inflammatory cytokine levels were measured. Results Calcipotriol combined with iBRD9 treatment reduced the body weight and body fat percentage in Nur77 knockout mice. In the gut microbiota of Nur77 knockout mice, the relative abundances of Lachnospiraceae and Prevotellaceae decreased, and Rikenellaceae increased; while Rikenellaceae decreased after treatment (p < 0.05). Correspondingly, the mRNA levels of intestinal mucosal tight junction proteins (occludin (Ocln), claudin3 (Cldn3)) in the colons of Nur77 knockout mice were significantly decreased, and they increased significantly after treatment (p < 0.001). The mRNA levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)) were significantly increased in Nur77 knockout mice, and TNF-α and IL-6 levels were significantly decreased after treatment (p < 0.05, <0.01, or <0.001). The levels of serum LPS, TNF-α, and IL-1β in Nur77 knockout mice were significantly increased (p < 0.05). Serum LPS, TNF-α, and IL-6 levels were significantly decreased after treatment (p < 0.05 or <0.01). Conclusions Calcipotriol combined with iBRD9 can regulate the gut microbiota, improve intestinal mucosal barrier function, reduce LPS absorption into the blood, and alleviate obesity in Nur77 knockout mice.
Collapse
Affiliation(s)
- Qingqing Lv
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aolin Yang
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanying Shi
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Chen
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yixuan Liu
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China
| | - Difei Wang
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|