1
|
Della Guardia L, Shin AC. Obesity-induced tissue alterations resist weight loss: A mechanistic review. Diabetes Obes Metab 2024; 26:3045-3057. [PMID: 38720199 DOI: 10.1111/dom.15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 07/10/2024]
Abstract
Interventions aimed at weight control often have limited effectiveness in combating obesity. This review explores how obesity-induced dysfunction in white (WAT) and brown adipose tissue (BAT), skeletal muscle, and the brain blunt weight loss, leading to retention of stored fat. In obesity, increased adrenergic stimulation and inflammation downregulate β-adrenoreceptors and impair catecholaminergic signalling in adipocytes. This disrupts adrenergic-mediated lipolysis, diminishing lipid oxidation in both white and brown adipocytes, lowering thermogenesis and blunting fat loss. Emerging evidence suggests that WAT fibrosis is associated with worse weight loss outcomes; indeed, limiting collagen and laminin-α4 deposition mitigates WAT accumulation, enhances browning, and protects against high-fat-diet-induced obesity. Obesity compromises mitochondrial oxidative capacity and lipid oxidation in skeletal muscle, impairing its ability to switch between glucose and lipid metabolism in response to varying nutrient levels and exercise. This dysfunctional phenotype in muscle is exacerbated in the presence of obesity-associated sarcopenia. Additionally, obesity suppresses sarcolipin-induced sarcoplasmic reticulum calcium ATPase (SERCA) activation, resulting in reduced oxidative capacity, diminished energy expenditure, and increased adiposity. In the hypothalamus, obesity and overnutrition impair insulin and leptin signalling. This blunts central satiety signals, favouring a shift in energy balance toward energy conservation and body fat retention. Moreover, both obese animals and humans demonstrate impaired dopaminergic signalling and diminished responses to nutrient intake in the striatum, which tend to persist after weight loss. This may result in enduring inclinations toward overeating and a sedentary lifestyle. Collectively, the tissue adaptations described pose significant challenges to effectively achieving and sustaining weight loss in obesity.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Andrew C Shin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Salagre D, Navarro-Alarcón M, Villalón-Mir M, Alcázar-Navarrete B, Gómez-Moreno G, Tamimi F, Agil A. Chronic melatonin treatment improves obesity by inducing uncoupling of skeletal muscle SERCA-SLN mediated by CaMKII/AMPK/PGC1α pathway and mitochondrial biogenesis in female and male Zücker diabetic fatty rats. Biomed Pharmacother 2024; 172:116314. [PMID: 38387135 DOI: 10.1016/j.biopha.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Melatonin acute treatment limits obesity of young Zücker diabetic fatty (ZDF) rats by non-shivering thermogenesis (NST). We recently showed melatonin chronically increases the oxidative status of vastus lateralis (VL) in both obese and lean adult male animals. The identification of VL skeletal muscle-based NST by uncoupling of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)- sarcolipin (SLN) prompted us to investigate whether melatonin is a SERCA-SLN calcium futile cycle uncoupling and mitochondrial biogenesis enhancer. Obese ZDF rats and lean littermates (ZL) of both sexes were subdivided into two subgroups: control (C) and 12 weeks orally melatonin treated (M) (10 mg/kg/day). Compared to the control groups, melatonin decreased the body weight gain and visceral fat in ZDF rats of both sexes. Melatonin treatment in both sex obese rats restored the VL muscle skin temperature and sensitized the thermogenic effect of acute cold exposure. Moreover, melatonin not only raised SLN protein levels in the VL of obese and lean rats of both sexes; also, the SERCA activity. Melatonin treatment increased the SERCA2 expression in obese and lean rats (both sexes), with no effects on SERCA1 expression. Melatonin increased the expression of thermogenic genes and proteins (PGC1-α, PPARγ, and NRF1). Furthermore, melatonin treatment enhanced the expression ratio of P-CaMKII/CaMKII and P-AMPK/AMPK. In addition, it rose mitochondrial biogenesis. These results provided the initial evidence that chronic oral melatonin treatment triggers the CaMKII/AMPK/PGC1α axis by upregulating SERCA2-SLN-mediated NST in ZDF diabetic rats of both sexes. This may further contribute to the body weight control and metabolic benefits of melatonin.
Collapse
Affiliation(s)
- D Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, Granada 18016, Spain
| | - M Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - M Villalón-Mir
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - B Alcázar-Navarrete
- CIBERES, Carlos III Health Institute, Madrid, and Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - G Gómez-Moreno
- Department of Medically Compromised Patients in Dentistry, School of Dentistry, University of Granada, Granada 18011, Spain
| | - F Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - A Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
3
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ma J, Wu Y, Cen L, Wang Z, Jiang K, Lian B, Sun C. Cold-inducible lncRNA266 promotes browning and the thermogenic program in white adipose tissue. EMBO Rep 2023; 24:e55467. [PMID: 37824433 PMCID: PMC10702832 DOI: 10.15252/embr.202255467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Cold-induced nonshivering thermogenesis has contributed to the improvement of several metabolic syndromes caused by obesity. Several long noncoding RNAs (lncRNAs) have been shown to play a role in brown fat biogenesis and thermogenesis. Here we show that the lncRNA lnc266 is induced by cold exposure in inguinal white adipose tissue (iWAT). In vitro functional studies reveal that lnc266 promotes brown adipocyte differentiation and thermogenic gene expression. At room temperature, lnc266 has no effects on white fat browning and systemic energy consumption. However, in a cold environment, lnc266 promotes white fat browning and thermogenic gene expression in obese mice. Moreover, lnc266 increases core body temperature and reduces body weight gain. Mechanistically, lnc266 does not directly regulate Ucp1 expression. Instead, lnc266 sponges miR-16-1-3p and thus abolishes the repression of miR-16-1-3p on Ucp1 expression. As a result, lnc266 promotes preadipocyte differentiation toward brown-like adipocytes and stimulates thermogenic gene expression. Overall, lnc266 is a cold-inducible lncRNA in iWAT, with a key role in white fat browning and the thermogenic program.
Collapse
Affiliation(s)
- Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Lixue Cen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Zhe Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Ketao Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| | - Bolin Lian
- School of Life SciencesNantong UniversityNantongChina
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of MedicineNantong UniversityNantongChina
| |
Collapse
|
5
|
Pandher PK, Rahim Y, Timms KP, Filatov E, Short LI, Gray SL. Reference gene recommendations and PACAP receptor expression in murine sympathetic ganglia of the autonomic nervous system that innervate adipose tissues after chronic cold exposure. J Neuroendocrinol 2023; 35:e13313. [PMID: 37404042 DOI: 10.1111/jne.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an important regulator of the stress response in mammals, influencing both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). PACAP has been reported to influence energy homeostasis, including adaptive thermogenesis, an energy burning process in adipose tissue regulated by the SNS in response to cold stress and overfeeding. While research suggests PACAP acts centrally at the level of the hypothalamus, knowledge of PACAP's role within the sympathetic nerves innervating adipose tissues in response to metabolic stressors is limited. This work shows, for the first time, gene expression of PACAP receptors in stellate ganglia and highlights some differential expression with housing temperature. Additionally, we present our dissection protocol, analysis of tyrosine hydroxylase gene expression as a molecular biomarker for catecholamine producing tissue and recommend three stable reference genes for the normalization of quantitative real time-polymerase chain reaction (qRT-PCR) data when working with this tissue. This study adds to information about neuropeptide receptor expression in peripheral ganglia of the sympathetic nervous system innervating adipose tissue and provides insight into PACAP's role in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Parleen K Pandher
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Yamna Rahim
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Katherine P Timms
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Ekaterina Filatov
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
6
|
Tabisz H, Modlinska A, Kujawski S, Słomko J, Zalewski P. Whole-body cryotherapy as a treatment for chronic medical conditions? Br Med Bull 2023; 146:43-72. [PMID: 37170956 DOI: 10.1093/bmb/ldad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Whole-body cryotherapy (WBC) is a controlled exposure of the whole body to cold to gain health benefits. In recent years, data on potential applications of WBC in multiple clinical settings have emerged. SOURCES OF DATA PubMed, EBSCO and Clinical Key search using keywords including terms 'whole body', 'cryotherapy' and 'cryostimulation'. AREAS OF AGREEMENT WBC could be applied as adjuvant therapy in multiple conditions involving chronic inflammation because of its potent anti-inflammatory effects. Those might include systemic inflammation as in rheumatoid arthritis. In addition, WBC could serve as adjuvant therapy for chronic inflammation in some patients with obesity. AREAS OF CONTROVERSY WBC probably might be applied as an adjuvant treatment in patients with chronic brain disorders including mild cognitive impairment and general anxiety disorder and in patients with depressive episodes and neuroinflammation reduction as in multiple sclerosis. WBC effects in metabolic disorder treatment are yet to be determined. WBC presumably exerts pleiotropic effects and therefore might serve as adjuvant therapy in multi-systemic disorders, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). GROWING POINTS The quality of studies on the effects of WBC in the clinical setting is in general low; hence, randomized controlled trials with adequate sample size and longer follow-up periods are needed. AREAS ARE TIMELY FOR DEVELOPING RESEARCH Further studies should examine the mechanism underlying the clinical efficacy of WBC. Multiple conditions might involve chronic inflammation, which in turn could be a potential target of WBC. Further research on the application of WBC in neurodegenerative disorders, neuropsychiatric disorders and ME/CFS should be conducted.
Collapse
Affiliation(s)
- Hanna Tabisz
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Aleksandra Modlinska
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Joanna Słomko
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Pawel Zalewski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Warsaw Medical University, 1b Banacha Street, Warsaw 02-097, Poland
| |
Collapse
|
7
|
Camerino C. Oxytocin's Regulation of Thermogenesis May Be the Link to Prader-Willi Syndrome. Curr Issues Mol Biol 2023; 45:4923-4935. [PMID: 37367062 DOI: 10.3390/cimb45060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Prader-Willi Syndrome (PWS) is a genetic neurodevelopmental disorder that is caused by either the deletion of the paternal allele of 15q11-q13, maternal uniparental disomy of chromosome 15 or defects in the chromosome 15 imprinting centre and is characterized by cognitive impairment, hyperphagia and low metabolic rate with significant risk of obesity, as well as a variety of other maladaptive behaviours and autistic spectrum disorder (ASD). Many of the features seen in PWS are thought to be due to hypothalamic dysfunction resulting in hormonal abnormalities and impaired social functioning. The preponderance of evidence indicates that the Oxytocin system is dysregulated in PWS individuals and that this neuropeptide pathways may provide promising targets for therapeutic intervention although the process by which this dysregulation occurs in PWS awaits mechanistic investigation. PWS individuals present abnormalities in thermoregulation an impaired detection for temperature change and altered perception of pain indicating an altered autonomic nervous system. Recent studies indicate that Oxytocin is involved in thermoregulation and pain perception. This review will describe the update on PWS and the recent discoveries on Oxytocin regulation of thermogenesis together with the potential link between Oxytocin regulation of thermogenesis and PWS to create a new groundwork for the treatment of this condition.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023; 11:biomedicines11030690. [PMID: 36979669 PMCID: PMC10045924 DOI: 10.3390/biomedicines11030690] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue distribution from a gynoid to an android and an increased prevalence of obesity in women. These unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a significant role for estrogen in the regulation of adipocytes' function. Indeed, preclinical studies proved the involvement of these hormones in adipose tissue development, metabolism, and inflammatory activity. However, the relationship between estrogen and obesity is bidirectional. On the one hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors and key enzymes involved in their synthesis. This narrative review aims to summarize the role of estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
9
|
Abstract
The sodium-glucose cotransporter 2 (SGLT2) inhibitors have become an integral part of clinical practice guidelines to slow the progression of CKD in patients with and without diabetes mellitus. Although initially developed as antihyperglycemic drugs, their effect on the kidney is multifactorial resulting from profuse glycosuria and natriuresis consequent to their primary site of action. Hemodynamic and metabolic changes ensue that mediate kidney-protective effects, including ( 1 ) decreased workload of proximal tubular cells and prevention of aberrant increases in glycolysis, contributing to a decreased risk of AKI; ( 2 ) lowering of intraglomerular pressure by activating tubular glomerular feedback and reductions in BP and tissue sodium content; ( 3 ) initiation of nutrient-sensing pathways reminiscent of starvation activating ketogenesis, increased autophagy, and restoration of carbon flow through the mitochondria without production of reactive oxygen species; ( 4 ) body weight loss without a reduction in basal metabolic rate due to increases in nonshivering thermogenesis; and ( 5 ) favorable changes in quantity and characteristics of perirenal fat leading to decreased release of adipokines, which adversely affect the glomerular capillary and signal increased sympathetic outflow. Additionally, these drugs stimulate phosphate and magnesium reabsorption and increase uric acid excretion. Familiarity with kidney-specific mechanisms of action, potential changes in kidney function, and/or alterations in electrolytes and volume status, which are induced by these widely prescribed drugs, will facilitate usage in the patients for whom they are indicated.
Collapse
Affiliation(s)
- Biff F. Palmer
- Division of Nephrology, Department of Medicine, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah J. Clegg
- Internal Medicine, Texas Tech Health Sciences Center, El Paso, Texas
| |
Collapse
|
10
|
Camerino C. The Long Way of Oxytocin from the Uterus to the Heart in 70 Years from Its Discovery. Int J Mol Sci 2023; 24:ijms24032556. [PMID: 36768879 PMCID: PMC9916674 DOI: 10.3390/ijms24032556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The research program on oxytocin started in 1895, when Oliver and Schafer reported that a substance extracted from the pituitary gland elevates blood pressure when injected intravenously into dogs. Dale later reported that a neurohypophysial substance triggers uterine contraction, lactation, and antidiuresis. Purification of this pituitary gland extracts revealed that the vasopressor and antidiuretic activity could be attributed to vasopressin, while uterotonic and lactation activity could be attributed to oxytocin. In 1950, the amino-acid sequences of vasopressin and oxytocin were determined and chemically synthesized. Vasopressin (CYFQNCPRG-NH2) and oxytocin (CYIQNCPLG-NH2) differ by two amino acids and have a disulfide bridge between the cysteine residues at position one and six conserved in all vasopressin/oxytocin-type peptides. This characterization of oxytocin led to the Nobel Prize awarded in 1955 to Vincent du Vigneaud. Nevertheless, it was only 50 years later when the evidence that mice depleted of oxytocin or its receptor develop late-onset obesity and metabolic syndrome established that oxytocin regulates energy and metabolism. Oxytocin is anorexigenic and regulates the lean/fat mass composition in skeletal muscle. Oxytocin's effect on muscle is mediated by thermogenesis via a pathway initiated in the myocardium. Oxytocin involvement in thermogenesis and muscle contraction is linked to Prader-Willi syndrome in humans, opening exciting therapeutic avenues.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Curcumin Stimulates UCP1-independent Thermogenesis in 3T3-L1 White Adipocytes but Suppresses in C2C12 Muscle Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Heemstra LA, Koch LG, Britton SL, Novak CM. Altered skeletal muscle sarco-endoplasmic reticulum Ca 2+-ATPase calcium transport efficiency after a thermogenic stimulus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R628-R637. [PMID: 36094445 PMCID: PMC9602703 DOI: 10.1152/ajpregu.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023]
Abstract
Exposure to predator threat induces a rapid and robust increase in skeletal muscle thermogenesis in rats. The central nervous system relays threat information to skeletal muscle through activation of the sympathetic nervous system, but muscle mechanisms mediating this thermogenesis remain unidentified. Given the relevance of sarcolipin-mediated futile calcium cycling through the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump to mammalian muscle nonshivering thermogenesis, we hypothesized that this plays a role in contextually induced muscle thermogenesis as well. This was assessed by measuring enzymatic activity of SERCA and sarcoplasmic reticulum Ca2+ transport, where the apparent coupling ratio (Ca2+ uptake rate divided by ATPase activity rate at a standard Ca2+ concentration) was predicted to decrease in association with muscle thermogenesis. Sprague-Dawley rats exposed to predator (ferret) odor (PO) showed a rapid decrease in the apparent coupling ratio in the soleus muscle, indicating SERCA uncoupling compared with control-odor-exposed rats. A rat model of high aerobic fitness and elevated muscle thermogenesis also demonstrated soleus muscle SERCA uncoupling relative to their obesity-prone, low-fitness counterparts. Both the high- and low-aerobic fitness rats showed soleus SERCA uncoupling with exposure to PO. Finally, no increase in sarcolipin expression in soleus muscle was detected with PO exposure. This dataset implicates muscle uncoupling of SERCA Ca2+ transport and ATP hydrolysis, likely through altered SERCA or sarcolipin function outside of translational regulation, as one contributor to the muscle thermogenesis provoked by exposure to predator threat. These data support the involvement of SERCA uncoupling in both muscle thermogenic induction and enhanced aerobic capacity.
Collapse
Affiliation(s)
- Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
13
|
Li R, Zhu Q, Wang X, Wang H. Mulberry leaf polyphenols alleviated high-fat diet-induced obesity in mice. Front Nutr 2022; 9:979058. [PMID: 36185673 PMCID: PMC9521161 DOI: 10.3389/fnut.2022.979058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mulberry leaf is an important medicinal food plant, which is rich in polyphenol compounds. Mulberry leaf polyphenols (MLP) possess significant lipid-lowering and antioxidant effects, and healthcare functions. In this study, the polyphenol content of mulberry leaf ethanol extract was measured using HPLC. The analysis of mulberry leaf extract resulted in the identification of 14 compounds, of which Chlorogenic acid and Quercitrin were the highest. A high-fat diet (HFD)-induced obese mouse model was developed and treated with MLP for 12 weeks to explore their effect on lipid metabolism in HFD-induced obese mice. The results showed that the MLP could inhibit the weight gain and fat cell volume increase in the HFD-induced obese mice in a dose-dependent manner. Further analysis revealed that the MLP decelerated the fatty acid composition in the adipose tissues of HFD-induced obese mice, and significantly increased the polyunsaturated-to-saturated fatty acid (PUFA/SFA) ratio. The real-time quantitative PCR (RT-qPCR) results indicated that the MLP significantly inhibited the down regulation of uncoupling protein (UCP) 1 (UCP1), UCP3, and PR domain zinc finger protein 16 (PRDM16) caused by the HFD. These beneficial effects of MLP on HFD-induced obese mice might be attributed to their ability to change the fatty acid composition of adipose tissue and increase the expression of thermogenesis genes. Overall, the study results suggested that the MLP could serve as potential lipid-lowering and weight-loss functional food and healthcare products.
Collapse
Affiliation(s)
- Rui Li
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qubo Zhu
- Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Haiyan Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- *Correspondence: Haiyan Wang,
| |
Collapse
|
14
|
Zhang Y, Yan T, Wang T, Liu X, Hamada K, Sun D, Sun Y, Yang Y, Wang J, Takahashi S, Wang Q, Krausz KW, Jiang C, Xie C, Yang X, Gonzalez FJ. Crosstalk between CYP2E1 and PPAR α substrates and agonists modulate adipose browning and obesity. Acta Pharm Sin B 2022; 12:2224-2238. [PMID: 35646522 PMCID: PMC9136617 DOI: 10.1016/j.apsb.2022.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
Although the functions of metabolic enzymes and nuclear receptors in controlling physiological homeostasis have been established, their crosstalk in modulating metabolic disease has not been explored. Genetic ablation of the xenobiotic-metabolizing cytochrome P450 enzyme CYP2E1 in mice markedly induced adipose browning and increased energy expenditure to improve obesity. CYP2E1 deficiency activated the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) target genes, including fibroblast growth factor (FGF) 21, that upon release from the liver, enhanced adipose browning and energy expenditure to decrease obesity. Nineteen metabolites were increased in Cyp2e1-null mice as revealed by global untargeted metabolomics, among which four compounds, lysophosphatidylcholine and three polyunsaturated fatty acids were found to be directly metabolized by CYP2E1 and to serve as PPARα agonists, thus explaining how CYP2E1 deficiency causes hepatic PPARα activation through increasing cellular levels of endogenous PPARα agonists. Translationally, a CYP2E1 inhibitor was found to activate the PPARα–FGF21–beige adipose axis and decrease obesity in wild-type mice, but not in liver-specific Ppara-null mice. The present results establish a metabolic crosstalk between PPARα and CYP2E1 that supports the potential for a novel anti-obesity strategy of activating adipose tissue browning by targeting the CYP2E1 to modulate endogenous metabolites beyond its canonical role in xenobiotic-metabolism.
Collapse
|
15
|
Palmer BF, Clegg DJ. Metabolic Flexibility and Its Impact on Health Outcomes. Mayo Clin Proc 2022; 97:761-776. [PMID: 35287953 DOI: 10.1016/j.mayocp.2022.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
A metabolically flexible state exists when there is a rapid switch between glucose and fatty acids during the transition between the fed and fasting state. This flexibility in fuel choice serves to prevent hyperglycemia following a meal and simultaneously ensures an adequate amount of blood glucose is available for delivery to the brain and exclusively glycolytic tissues during fasting. The modern era is characterized by chronic overnutrition in which a mixture of fuels is delivered to the mitochondria in an unabated manner thereby uncoupling the feast and famine situation. The continuous influx of fuel leads to accumulation of reducing equivalents in the mitochondria and an increase in the mitochondrial membrane potential. These changes create a microenvironment fostering the generation of reactive oxygen species and other metabolites leading to deleterious protein modification, cell injury, and ultimately clinical disease. Insulin resistance may also play a primary role in this deleterious effect. The imbalance between mitochondrial energy delivery and use is made worse with a sedentary lifestyle. Maneuvers that restore energy balance across the mitochondria activate pathways that remove or repair damaged molecules and restore the plasticity characteristic of normal energy metabolism. Readily available strategies to maintain energy balance across the mitochondria include exercise, various forms of caloric restriction, administration of sodium-glucose cotransporter-2 inhibitors, cold exposure, and hypobaric hypoxia.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
16
|
Reddy UV, Weber DK, Wang S, Larsen EK, Gopinath T, De Simone A, Robia S, Veglia G. A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca 2+-ATPase. Structure 2022; 30:360-370.e6. [PMID: 34875216 PMCID: PMC8897251 DOI: 10.1016/j.str.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
SERCA is a P-type ATPase embedded in the sarcoplasmic reticulum and plays a central role in muscle relaxation. SERCA's function is regulated by single-pass membrane proteins called regulins. Unlike other regulins, dwarf open reading frame (DWORF) expressed in cardiac muscle has a unique activating effect. Here, we determine the structure and topology of DWORF in lipid bilayers using a combination of oriented sample solid-state NMR spectroscopy and replica-averaged orientationally restrained molecular dynamics. We found that DWORF's structural topology consists of a dynamic N-terminal domain, an amphipathic juxtamembrane helix that crosses the lipid groups at an angle of 64°, and a transmembrane C-terminal helix with an angle of 32°. A kink induced by Pro15, unique to DWORF, separates the two helical domains. A single Pro15Ala mutant significantly decreases the kink and eliminates DWORF's activating effect on SERCA. Overall, our findings directly link DWORF's structural topology to its activating effect on SERCA.
Collapse
Affiliation(s)
- U. Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK,Department of Pharmacy, University of Naples “Federico II”, Naples, 80131, Italy
| | - Seth Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Lee PS, Lu YY, Nagabhushanam K, Ho CT, Mei HC, Pan MH. Calebin-A prevents HFD-induced obesity in mice by promoting thermogenesis and modulating gut microbiota. J Tradit Complement Med 2022; 13:119-127. [PMID: 36970457 PMCID: PMC10037069 DOI: 10.1016/j.jtcme.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/24/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Background and aim Obesity is one of the complications of sedentary lifestyle and high-calorie food intake which become a global problem. Thermogenesis is a novel way to promote anti-obesity by consuming energy as heat rather than storing it as triacylglycerols. Over the last decade, growing evidence has identified the gut microbiota as a potential factor in the pathophysiology of obesity. Calebin A is a non-curcuminoid novel compound derived from the rhizome of medicinal turmeric with putative anti-obesity effects. However, its ability on promoting thermogenesis and modulating gut microbiota remain unclear. Experimental procedure C57BL/6J mice were fed either normal diet or high-fat diet (HFD) supplement with calebin A (0.1 and 0.5%) diet for 12 weeks. The composition of the gut microbiota was assessed by analyzing 16S rRNA gene sequences. Results and conclusion Mice treated with calebin A shows a remarkable alteration in microbiota composition compared with that of normal diet-fed or HFD-fed mice and is characterized by an enrichment of Akkermansia, Butyricicoccus, Ruminiclostridium_9, and unidentified_Ruminococcaceae. We also explored that calebin A reduce the weight and blood sugar of mice that are induced by HFD, and show a dose-dependent reaction. Moreover, calebin A decreases the weight of white, beige, and brown adipose tissue, and also restores liver weight. In cold exposure experiments, calebin A can better maintain rectal temperature through thermogenesis. In summary, calebin A has a good thermogenesis function and is effective in anti-obesity. It can be used as a novel gut microbiota modulator to prevent HFD-induced obesity.
Collapse
Affiliation(s)
- Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Ying Lu
- Department of Natural Science Education, National Taipei University of Education, Taipei, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hui-Ching Mei
- Department of Natural Science Education, National Taipei University of Education, Taipei, Taiwan
- Corresponding author
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Corresponding author. Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
18
|
Xie J, Liu M, Liu H, Jin Z, Guan F, Ge S, Yan J, Zheng M, Cai D, Liu J. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct 2021; 12:12734-12750. [PMID: 34846398 DOI: 10.1039/d1fo02863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stimulation of fat thermogenesis and modulation of the gut microbiota are promising therapeutic strategies against obesity. Zeaxanthin (ZEA), a carotenoid plant pigment, has been shown to prevent various diseases; however, the therapeutic mechanism for obesity remains unclear. Herein, whether ZEA improves obesity by activating the β3-adrenergic receptor (β3-AR) to stimulate white adipose tissue (WAT) thermogenesis and modulating the gut microbiota was investigated. C57BL6/N mice were fed a high-fat diet (HFD) supplemented with ZEA for 22 weeks. ZEA treatment reduced body weight, fat weight, adipocyte hypertrophy, liver weight, and lipid deposition, and improved dyslipidaemia, serum GPT, GOT, leptin, and irisin levels, glucose intolerance, and insulin resistance in HFD-fed mice. Mechanistically, ZEA treatment induced the expression of β3-AR and thermogenic factors, such as PRDM16, PGC-1α, and UCP1, in inguinal WAT (iWAT) and brown adipose tissue. ZEA treatment stimulated iWAT thermogenesis through the synergistic cooperation of key organelles, which manifested as an increased expression of lipid droplet degradation factors (ATGL, CGI-58 and pHSL), mitochondrial biogenesis factors (Sirt1, Nrf2, Tfam, Nampt and Cyt-C), peroxisomal biogenesis factors (Pex16, Pex19 and Pmp70), and β-oxidation factors (Cpt1, Cpt2, Acadm and Acox1). The thermogenic effect of ZEA was abolished by β3-AR antagonist (SR59230A) treatment. Additionally, dietary supplementation with ZEA reversed gut microbiota dysbiosis by regulating the abundance of Firmicutes, Clostridia, Proteobacteria, and Desulfovibrio, which were associated with the thermogenesis- and obesity-associated indices by Spearman's correlation analysis. Functional analysis of the gut microbiota indicated that ZEA treatment significantly enriched the lipid metabolism pathways. These results demonstrate that ZEA is a promising multi-target functional food for the treatment of obesity by activating β3-AR to stimulate iWAT thermogenesis, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Fengtao Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Sitong Ge
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jie Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
19
|
Standardized Hydrangea serrata (Thunb.) Ser. Extract Ameliorates Obesity in db/db Mice. Nutrients 2021; 13:nu13103624. [PMID: 34684625 PMCID: PMC8538090 DOI: 10.3390/nu13103624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
We previously reported the potential anti-obesity effects of the water extract of Hydrangea serrata (Thunb.) Ser. leaves (WHS) in high-fat diet-induced obese mice. As an extension of our previous study, we investigated the anti-adipogenic and anti-obesity effects of WHS and its underlying molecular mechanisms in 3T3-L1 preadipocytes and genetically obese db/db mice. WHS attenuated the gene expression of adipogenic transcription factors, CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1. Moreover, WHS inhibited the mitotic clonal expansion of preadipocytes by inducing G1 cell cycle arrest. Oral administration of WHS alleviated body weight gain and body fat accumulation in vivo. In addition, adipocyte hypertrophy and liver steatosis were ameliorated by WHS treatment. WHS reduced C/EBPα, PPARγ, and SREBP-1 expression and activated AMPKα phosphorylation in both white adipose tissue (WAT) and liver tissue. WHS also mildly upregulated the expression of thermogenic proteins, including uncoupling protein-1, PPARs, PPARγ coactivator-1α, and sirtuin-1, in brown adipose tissue (BAT). Furthermore, WHS altered the gut microbiota composition to resemble that of wild-type mice. Taken together, our findings suggest that WHS could alleviate adiposity by inhibiting adipogenesis in WAT and the liver and modulating the gut microbiota.
Collapse
|
20
|
Brzęk P. Sex differences in nonshivering thermogenesis in the wild. Mol Cell Endocrinol 2021; 536:111402. [PMID: 34302908 DOI: 10.1016/j.mce.2021.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Nonshivering thermogenesis (NST) is a key mechanism that allows mammals to control their body temperature. Sex can frequently affect thermoregulatory requirements; therefore, males and females can be expected to differ significantly in their NST capacity. Several sex-related differences in NST have been described in laboratory animals and humans; however, these parameters are relatively rarely studied in animals living under natural conditions. Here, I briefly review factors that may be responsible for this disparity and point out two situations that should be particularly promising in searching for sex differences in NST under natural conditions: the lactation period and potential mitonuclear conflicts over NST control in species with genetic polymorphism.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| |
Collapse
|
21
|
Palmer BF, Clegg DJ. Starvation Ketosis and the Kidney. Am J Nephrol 2021; 52:467-478. [PMID: 34350876 DOI: 10.1159/000517305] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The remarkable ability of the body to adapt to long-term starvation has been critical for survival of primitive man. An appreciation of these processes can provide the clinician better insight into many clinical conditions characterized by ketoacidosis. SUMMARY The body adapts to long-term fasting by conserving nitrogen, as the brain increasingly utilizes keto acids, sparing the need for glucose. This shift in fuel utilization decreases the need for mobilization of amino acids from the muscle for purposes of gluconeogenesis. Loss of urinary nitrogen is initially in the form of urea when hepatic gluconeogenesis is dominant and later as ammonia reflecting increased glutamine uptake by the kidney. The carbon skeleton of glutamine is utilized for glucose production and regeneration of consumed HCO3-. The replacement of urea with NH4+ provides the osmoles needed for urine flow and waste product excretion. Over time, the urinary loss of nitrogen is minimized as kidney uptake of filtered ketone bodies becomes more complete. Adjustments in urine Na+ serve to minimize kidney K+ wasting and, along with changes in urine pH, minimize the likelihood of uric acid precipitation. There is a sexual dimorphism in response to starvation. Key Message: Ketoacidosis is a major feature of common clinical conditions to include diabetic ketoacidosis, alcoholic ketoacidosis, salicylate intoxication, SGLT2 inhibitor therapy, and calorie sufficient but carbohydrate-restricted diets. Familiarity with the pathophysiology and metabolic consequences of ketogenesis is critical, given the potential for the clinician to encounter one of these conditions.
Collapse
Affiliation(s)
- Biff F Palmer
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, El Paso, Texas, USA
| | | |
Collapse
|
22
|
Camerino C. Oxytocin Involvement in Body Composition Unveils the True Identity of Oxytocin. Int J Mol Sci 2021; 22:ijms22126383. [PMID: 34203705 PMCID: PMC8232088 DOI: 10.3390/ijms22126383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
The origin of the Oxytocin/Vasopressin system dates back about 600 million years. Oxytocin (Oxt) together with Vasopressin (VP) regulate a diversity of physiological functions that are important for osmoregulation, reproduction, metabolism, and social behavior. Oxt/VP-like peptides have been identified in several invertebrate species and they are functionally related across the entire animal kingdom. Functional conservation enables future exploitation of invertebrate models to study Oxt’s functions not related to pregnancy and the basic mechanisms of central Oxt/VP signaling. Specifically, Oxt is well known for its effects on uteri contractility and milk ejection as well as on metabolism and energy homeostasis. Moreover, the striking evidence that Oxt is linked to energy regulation is that Oxt- and Oxytocin receptor (Oxtr)-deficient mice show late onset obesity. Interestingly Oxt−/− or Oxtr−/− mice develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is expressed in a diversity of skeletal muscle phenotypes and regulates thermogenesis and bone mass. Oxt may increases skeletal muscle tonicity and/or increases body temperature. In this review, the author compared the three most recent theories on the effects of Oxt on body composition.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology (Section of Pharmacology), School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
23
|
Adiponectin/SIRT1 Axis Induces White Adipose Browning After Vertical Sleeve Gastrectomy of Obese Rats with Type 2 Diabetes. Obes Surg 2021; 30:1392-1403. [PMID: 31781938 DOI: 10.1007/s11695-019-04295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE White adipose tissue (WAT) browning plays a crucial role in energy metabolism. However, it remains unclear whether WAT browning is involved in the adipose reduction following sleeve gastrectomy (SG). Adiponectin is upregulated after Roux-en-Y gastric bypass surgery. The role of adiponectin in SG was further investigated in the current study. MATERIALS AND METHODS Diabetic Sprague Dawley rats were randomly divided into control, sham + libitum, sham + food restriction, and sleeve groups. Browning markers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor (PPAR) γ, and PPARγ coactivator-1 alpha (PGC-1α), were examined 4 weeks after the operation. RESULTS UCP1, PPARγ, and PGC-1α expression were significantly higher in the sleeve group compared to the other study groups. The adipose tissue of the sleeve group exhibited tissue weight loss and additional morphological browning features. In addition, adiponectin expression in the sleeve group was significantly increased. Adiponectin upregulated the expression of the browning genes and sirtuin 1 (SIRT1) in 3T3-L1 adipocytes. SIRT1 could increase the WAT browning levels, revealing that adiponectin induced the browning process via the upregulation of SIRT1. Furthermore, SIRT1 represented a positive regulatory feedback loop for adiponectin. SIRT1 activated adenosine monophosphate-activated protein kinase (AMPK), which can mediate WAT browning. Inhibition of the AMPK signaling pathway by dorsomorphin decreased UCP1, PPARγ, and PGC-1α expression. However, additional studies are needed to understand the relationship between adiponectin and glucose homeostasis. CONCLUSIONS Sleeve gastrectomy increased adiponectin levels, which in turn upregulated SIRT1. Thus, SIRT1 may function as an endocrine signal to mediate WAT browning.
Collapse
|
24
|
De Nardi M, Bisio A, Della Guardia L, Facheris C, Faelli E, La Torre A, Luzi L, Ruggeri P, Codella R. Partial-Body Cryostimulation Increases Resting Energy Expenditure in Lean and Obese Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084127. [PMID: 33919703 PMCID: PMC8070728 DOI: 10.3390/ijerph18084127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Cryostimulation is currently seen as a potential adjuvant strategy to tackle obesity and dysmetabolism by triggering cold-induced thermogenesis. Although suggestive, the underlying mechanisms are still poorly elucidated. We tested whether single or repeated applications of partial-body cryostimulation (PBC) could influence resting energy expenditure (REE) in exposed individuals. Fifteen middle-aged obese and sixteen control lean women (body mass index 31 ± 1.6 kg/m2 and 22 ± 1.7 kg/m2) underwent a daily PBC (−130 °C × 150 s) for five consecutive days. Resting energy metabolism (REE) was assessed by indirect calorimetry pre- and post-PBC on day 1 and day 5. As concerns REE, the linear mixed model revealed that REE changes were explained by session and time (F1,29 = 5.58; p = 0.02; ƞp2 = 0.16) independent of the group (F1,29 = 2.9; p = 0.09; ƞp2 = 0.09). REE pre-PBC increased from day 1 to day 5 either in leans (by 8.2%, from 1538 ± 111 to 1665 ± 106 kcal/day) or in obese women (by 5.5%, from 1610 ± 110 to 1698 ± 142 vs kcal/day). Respiratory quotient was significantly affected by the time (F1,29 = 51.61; p < 0.000001, ƞp2 = 0.64), as it increased from pre- to post-PBC, suggesting a shift in substrate oxidation. According to these preliminary data, cold-induced thermogenesis could be explored as a strategy to elevate REE in obese subjects. Longitudinal studies could test whether chronic PBC effects may entail favorable metabolic adaptations.
Collapse
Affiliation(s)
- Massimo De Nardi
- Krioplanet Ltd., Treviglio, 24047 Bergamo, Italy; (M.D.N.); (C.F.)
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
| | - Ambra Bisio
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, 16132 Genoa, Italy
| | - Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
| | - Carlo Facheris
- Krioplanet Ltd., Treviglio, 24047 Bergamo, Italy; (M.D.N.); (C.F.)
| | - Emanuela Faelli
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, 16132 Genoa, Italy
| | - Antonio La Torre
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milano, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Università Degli Studi di Genova, 16132 Genoa, Italy; (A.B.); (E.F.); (P.R.)
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, 16132 Genoa, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milano, Italy; (L.D.G.); (A.L.T.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milano, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
25
|
Al-Horani RA, Mohammad MA, Haifawi S, Ihsan M. Changes in myocardial myosin heavy chain isoform composition with exercise and post-exercise cold-water immersion. J Muscle Res Cell Motil 2021; 42:183-191. [PMID: 33826086 DOI: 10.1007/s10974-021-09603-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the changes in myocardial myosin heavy chain (MHC) isoforms, MHC-α and MHC-β composition in young healthy rodents following endurance training, with and without post-exercise cold-water immersion (CWI). Male rats were either trained on a treadmill for 10 weeks with (CWI) or without (Ex) regular CWI after each running session, or left sedentary (CON). Left ventricular mRNA of MHC-α, MHC-β, thyroid receptor α1 (TR-α1) and β (TR-β) were analyzed using rt-PCR and semiquantitative PCR analysis. MHC isoform protein composition was determined using SDS-PAGE electrophoresis. MHC-α isoform protein was predominant in all groups. The relative expression of MHC-β (%MHC-β) protein was not different between groups (CWI 34.7 ± 6.9%; Ex 32 ± 5.3%; CON 35.5 ± 10%; P = 0.7). MHC-β mRNA was reduced in Ex (0.7 ± 0.3-fold) compared to CWI (1.3 ± 0.2-fold; P < 0.001) and CON (1.01 ± 0.2-fold; P = 0.03). TRα1 mRNA was lower in CWI (0.4 ± 0.05-fold) than Ex (1.02 ± 0.3-fold) and CON (1.01 ± 0.2-fold) (P < 0.001 for both). CWI exhibited greater %MHC-β mRNA (56.8 ± 4.1%) than Ex (44.4 ± 7.7%; P = 0.001) and CON (48.5 ± 7.8%; P = 0.03). Neither exercise nor post-exercise CWI demonstrated a distinct effect on myocardial MHC protein isoform composition. However, CWI increased the relative expression of MHC-β mRNA compared with Ex and CON. Although this implicates a potential negative long-term impact of post-exercise CWI, future studies should include measures of cardiac function to better understand the effect of such isoform mRNA shifts following regular use of CWI.
Collapse
Affiliation(s)
| | - Mukhallad A Mohammad
- Department of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saja Haifawi
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
26
|
Reguero M, Gómez de Cedrón M, Reglero G, Quintela JC, Ramírez de Molina A. Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations. Biomolecules 2021; 11:biom11030412. [PMID: 33802173 PMCID: PMC7999034 DOI: 10.3390/biom11030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of the 21st century. In developing countries, the prevalence of obesity continues to rise, and obesity is occurring at younger ages. Obesity and associated metabolic stress disrupt the whole-body physiology. Adipocytes are critical components of the systemic metabolic control, functioning as an endocrine organ. The enlarged adipocytes during obesity recruit macrophages promoting chronic inflammation and insulin resistance. Together with the genetic susceptibility (single nucleotide polymorphisms, SNP) and metabolic alterations at the molecular level, it has been highlighted that key modifiable risk factors, such as those related to lifestyle, contribute to the development of obesity. In this scenario, urgent therapeutic options are needed, including not only pharmacotherapy but also nutrients, bioactive compounds, and natural extracts to reverse the metabolic alterations associated with obesity. Herein, we first summarize the main targetable processes to tackle obesity, including activation of thermogenesis in brown adipose tissue (BAT) and in white adipose tissue (WAT-browning), and the promotion of energy expenditure and/or fatty acid oxidation (FAO) in muscles. Then, we perform a screening of 20 natural extracts (EFSA approved) to determine their potential in the activation of FAO and/or thermogenesis, as well as the increase in respiratory capacity. By means of innovative technologies, such as the study of their effects on cell bioenergetics (Seahorse bioanalyzer), we end up with the selection of four extracts with potential application to ameliorate the deleterious effects of obesity and the chronic associated inflammation.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- NATAC BIOTECH, Electronica 7, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
27
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
28
|
Fan G, Li Y, Ma F, Zhao R, Yang X. Zinc-α2-glycoprotein promotes skeletal muscle lipid metabolism in cold-stressed mice. Endocr J 2021; 68:53-62. [PMID: 32863292 DOI: 10.1507/endocrj.ej20-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the adult body and plays an essential role in maintaining heat production for the entire body. Recently, muscle-derived non-shivering thermogenesis under cold conditions has received much attention. Zinc-α2-glycoprotein (ZAG) is an adipokine that was shown to influence energy metabolism in the adipose tissue. We used ZAG knock-out (ZAG KO) and wild-type (WT) mice to investigate the effect of ZAG on the lipid metabolism of skeletal muscle upon exposure to a low temperature (6°C) for one week. The results show that cold stress significantly increases the level of lipolysis, energy metabolism, and fat browning-related proteins in the gastrocnemius muscle of WT mice. In contrast, ZAG KO mice did not show any corresponding changes. Increased expression of β3-adrenoceptor (β3-AR) and protein kinase A (PKA) might be involved in the ZAG pathway in mice exposed cold stress. Furthermore, expression of lipolysis-related proteins (ATGL and p-HSL) and energy metabolism-related protein (PGC1α, UCP2, UCP3 and COX1) was significantly enhanced in ZAG KO mice after injection of ZAG-recombinant plasmids. These results indicate that ZAG promotes lipid-related metabolism in the skeletal muscle when the animals are exposed to low temperatures. This finding provides a promising target for the development of new therapeutic approaches to improve skeletal muscle energy metabolism.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Fuli Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
29
|
Singh S, Periasamy M, Bal NC. Strain-specific differences in muscle Ca 2+ transport and mitochondrial electron transport chain proteins between FVB/N and C57BL/6J mice. ACTA ACUST UNITED AC 2021; 224:jeb.238634. [PMID: 33268531 DOI: 10.1242/jeb.238634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Genetically engineered mouse models have been used to determine the role of sarcolipin (SLN) in muscle. However, a few studies had difficulty in detecting SLN in FBV/N mice and questioned its relevance to muscle metabolism. It is known that genetic alteration of proteins in different inbred mice strains produces dissimilar functional outcomes. Therefore, here we compared the expression of SLN and key proteins involved in Ca2+ handling and mitochondrial metabolism between FVB/N and C57BL/6J mouse strains. Data suggest that SLN expression is less abundant in the skeletal muscles of FVB/N mice than in the C57BL/6J strain. The expression of Ca2+ transporters in the mitochondrial membranes was also lower in FVB/N than in C57BL/6J mice. Similarly, electron transport chain proteins in the mitochondria were less abundant in FVB/N mice, which may contribute to differences in energy metabolism. Future studies using different mouse strains should take these differences into account when interpreting their data.
Collapse
Affiliation(s)
- Sushant Singh
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA .,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
30
|
Li H, Wang C, Li L, Li L. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity. Life Sci 2021; 269:119024. [PMID: 33450257 DOI: 10.1016/j.lfs.2021.119024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Obesity is a chronic disease derived from disequilibrium between energy intake and energy expenditure and evolving as a challenging epidemiological disease in the 21st century. It is urgently necessary to solve this issue by searching for effective strategies and safe drugs. Skeletal muscle could be a potential therapeutic target for the prevention and treatment of obesity and its associated complications due to non-shivering thermogenesis (NST) function. Skeletal muscle NST is based dominantly on futile sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump cycling that leads to a rise in cytosolic Ca2+, increased adenosine triphosphate (ATP) hydrolysis and heat production. This review will highlight the mechanisms of skeletal muscle NST, including SLN mediated SERCA pump futile cycling, SR-mitochondrial crosstalk and increased mitochondrial biogenesis, and thermogenesis induced by uncoupling proteins 3 (UCP3). We then summarize natural products targeting the pathogenesis of obesity via skeletal muscle NST, offering new insights into pharmacotherapy and potential drug candidates to combat obesity.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| | - Can Wang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, PR China
| |
Collapse
|
31
|
Sanchez-Delgado G, Alcantara JMA, Acosta FM, Martinez-Tellez B, Amaro-Gahete FJ, Merchan-Ramirez E, Löf M, Labayen I, Ravussin E, Ruiz JR. Energy Expenditure and Macronutrient Oxidation in Response to an Individualized Nonshivering Cooling Protocol. Obesity (Silver Spring) 2020; 28:2175-2183. [PMID: 32985119 DOI: 10.1002/oby.22972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to describe the energy expenditure (EE) and macronutrient oxidation response to an individualized nonshivering cold exposure in young healthy adults. METHODS Two different groups of 44 (study 1: 22.1 [SD 2.1] years old, 25.6 [SD 5.2] kg/m2 , 34% men) and 13 young healthy adults (study 2: 25.6 [SD 3.0] years old, 23.6 [SD 2.4] kg/m2 , 54% men) participated in this study. Resting metabolic rate (RMR) and macronutrient oxidation rates were measured by indirect calorimetry under fasting conditions in a warm environment (for 30 minutes) and in mild cold conditions (for 65 minutes, with the individual wearing a water-perfused cooling vest set at an individualized temperature adjusted to the individual's shivering threshold). RESULTS In study 1, EE increased in the initial stage of cold exposure and remained stable for the whole cold exposure (P < 0.001). Mean cold-induced thermogenesis (9.56 ± 7.9 kcal/h) was 13.9% ± 11.6% of the RMR (range: -14.8% to 39.9% of the RMR). Carbohydrate oxidation decreased during the first 30 minutes of the cold exposure and later recovered up to the baseline values (P < 0.01) in parallel to opposite changes in fat oxidation (P < 0.01). Results were replicated in study 2. CONCLUSIONS A 1-hour mild cold exposure individually adjusted to elicit maximum nonshivering thermogenesis induces a very modest increase in EE and a shift of macronutrient oxidation that may underlie a shift in thermogenic tissue activity.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Juan M A Alcantara
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Francisco M Acosta
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Francisco J Amaro-Gahete
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Marie Löf
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Health, Medicine Caring Sciences, Linköping University, Linköping, Sweden
| | - Idoia Labayen
- Institute for Innovation and Sustainable Development in Food Chain, Navarra's Health Research Institute, Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jonatan R Ruiz
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| |
Collapse
|
32
|
Pei Y, Otieno D, Gu I, Lee SO, Parks JS, Schimmel K, Kang HW. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J Nutr Biochem 2020; 88:108532. [PMID: 33130188 DOI: 10.1016/j.jnutbio.2020.108532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Activating nonshivering thermogenesis in brown adipose tissue (BAT) is a promising strategy to prevent obesity. This study investigated whether quercetin supplementation improves obesity in mice by increasing nonshivering thermogenesis in BAT and white adipose tissue (WAT) browning. Compared to high-fat diet (HFD)-fed mice, mice fed a HFD supplemented with 1% quercetin (HFDQ) had reduced body weight and total plasma cholesterol. In HFDQ-fed mice, retroperitoneal WAT (RWAT) weight was decreased, and browning effect and lipolysis were increased. HFDQ-fed mice had increased expression of nonshivering thermogenesis genes in BAT, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α), cell death-inducing DFFA-like effector A (CIDEA), and mitochondrial transcriptional factor A (mtTFA). Quercetin supplementation increased genes and proteins in β3-adrenergic receptor (ADRB3), p38 mitogen-activated protein kinase (MAPK), and AMP-activated protein kinase (AMPK) pathways in HFD-fed mice, which were suppressed by an AMPK inhibitor or an ADRB3 antagonist. Energy expenditure and core body temperature were not changed by quercetin, but physical activity was increased in HFDQ mice during dark periods at room and cold temperatures. Quercetin also decreased the Firmicutes to Bacteroidetes ratio and increased short-chain fatty acid production in the feces of HFD-fed mice. In summary, quercetin supplementation in HFD-fed mice may attenuate obesity. Although the study did not show consistency in data at molecular and pathophysiological levels between BAT function and obesity, it also shows promising health effects of quercetin, accompanied by improved physical activity and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Ya Pei
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Dammah Otieno
- Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Inah Gu
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - John S Parks
- Department of Internal Medicine-Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Keith Schimmel
- Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA.
| |
Collapse
|
33
|
Morris EM, Noland RD, Allen JA, McCoin CS, Xia Q, Koestler DC, Shook RP, Lighton JR, Christianson JA, Thyfault JP. Difference in Housing Temperature-Induced Energy Expenditure Elicits Sex-Specific Diet-Induced Metabolic Adaptations in Mice. Obesity (Silver Spring) 2020; 28:1922-1931. [PMID: 32857478 PMCID: PMC7511436 DOI: 10.1002/oby.22925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to test whether increased energy expenditure (EE), independent of physical activity, reduces acute diet-induced weight gain through tighter coupling of energy intake to energy demand and enhanced metabolic adaptations. METHODS Indirect calorimetry and quantitative magnetic resonance imaging were used to assess energy metabolism and body composition during 7-day high-fat/high-sucrose (HFHS) feeding in male and female mice housed at divergent temperatures (20°C vs. 30°C). RESULTS As previously observed, 30°C housing resulted in lower total EE and energy intake compared with 20°C mice regardless of sex. Interestingly, housing temperature did not impact HFHS-induced weight gain in females, whereas 30°C male mice gained more weight than 20°C males. Energy intake coupling to EE during HFHS feeding was greater in 20°C versus 30°C housing, with females greater at both temperatures. Fat mass gain was greater in 30°C mice compared with 20°C mice, whereas females gained less fat mass than males. Strikingly, female 20°C mice gained considerably more fat-free mass than 30°C mice. Reduced fat mass gain was associated with greater metabolic flexibility to HFHS, whereas fat-free mass gain was associated with diet-induced adaptive thermogenesis. CONCLUSIONS These data reveal that EE and sex interact to impact energy homeostasis and metabolic adaptation to acute HFHS feeding, altering weight gain and body composition change.
Collapse
Affiliation(s)
- E. Matthew Morris
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Roberto D. Noland
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie A. Allen
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Colin S. McCoin
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Qing Xia
- Dept. of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C. Koestler
- Dept. of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robin P. Shook
- Dept. of Pediatrics, Children’s Mercy Hospital, Kansas City, MO
| | | | - Julie A. Christianson
- Dept. of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - John P. Thyfault
- Dept. of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Kansas City VA Medical Center-Research Service, Kansas City, Missouri
| |
Collapse
|
34
|
The New Frontier in Oxytocin Physiology: The Oxytonic Contraction. Int J Mol Sci 2020; 21:ijms21145144. [PMID: 32708109 PMCID: PMC7404128 DOI: 10.3390/ijms21145144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) is a nine amino acid peptide important in energy regulation and is essential to stress-related disorders. Specifically, low Oxt levels are associated with obesity in human subjects and diet-induced or genetically modified animal models. The striking evidence that Oxt is linked to energy regulation is that Oxt- and oxytocin receptor (Oxtr)-deficient mice show a phenotype characterized by late onset obesity. Oxt-/- or Oxtr-/- develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is differentially expressed in skeletal muscle exerting a protective effect toward the slow-twitch muscle after cold stress challenge in mice. We hypothesized that Oxt potentiates the slow-twitch muscle as it does with the uterus, triggering "the oxytonic contractions". Physiologically, this is important to augment muscle strength in fight/flight response and is consistent with the augmented energetic need at time of labor and for the protection of the offspring when Oxt secretion spikes. The normophagic obesity of Oxt-/- or Oxtr-/- mice could have been caused by decreased skeletal muscle tonicity which drove the metabolic phenotype. In this review, we summarized our findings together with the recent literature on this fascinating subjects in a "new oxytonic perspective" over the physicology of Oxt.
Collapse
|
35
|
14-3-3ζ mediates an alternative, non-thermogenic mechanism in male mice to reduce heat loss and improve cold tolerance. Mol Metab 2020; 41:101052. [PMID: 32668300 PMCID: PMC7394917 DOI: 10.1016/j.molmet.2020.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/03/2022] Open
Abstract
Objective Adaptive thermogenesis, which is partly mediated by sympathetic input on brown adipose tissue (BAT), is a mechanism of heat production that confers protection against prolonged cold exposure. Various endogenous stimuli, for example, norepinephrine and FGF-21, can also promote the conversion of inguinal white adipocytes to beige adipocytes, which may represent a secondary cell type that contributes to adaptive thermogenesis. We previously identified an essential role of the molecular scaffold 14-3-3ζ in adipogenesis, but one of the earliest, identified functions of 14-3-3ζ is its regulatory effects on the activity of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of norepinephrine. Herein, we examined whether 14-3-3ζ could influence adaptive thermogenesis via actions on BAT activation or the beiging of white adipocytes. Methods Transgenic mice over-expressing a TAP-tagged human 14-3-3ζ molecule or heterozygous mice without one allele of Ywhaz, the gene encoding 14-3-3ζ, were used to explore the contribution of 14-3-3ζ to acute (3 h) and prolonged (3 days) cold (4 °C) exposure. Metabolic caging experiments, PET-CT imaging, and laser Doppler imaging were used to determine the effect of 14-3-3ζ over-expression on thermogenic and vasoconstrictive mechanisms in response to cold. Results Transgenic over-expression of 14-3-3ζ (TAP) in male mice significantly improved tolerance to acute and prolonged cold. In response to cold, body temperatures in TAP mice did not decrease to the same extent when compared to wildtype (WT) mice, and this was associated with increased UCP1 expression in beige inguinal white tissue (iWAT) and BAT. Of note was the paradoxical finding that cold-induced changes in body temperatures of TAP mice were associated with significantly decreased energy expenditure. The marked improvements in tolerance to prolonged cold were not due to changes in sensitivity to β-adrenergic stimulation or BAT or iWAT oxidative metabolism; instead, over-expression of 14-3-3ζ significantly decreased thermal conductance and heat loss in mice via increased peripheral vasoconstriction. Conclusions Despite being associated with elevations in cold-induced UCP1 expression in brown or beige adipocytes, these findings suggest that 14-3-3ζ regulates an alternative, non-thermogenic mechanism via vasoconstriction to minimize heat loss during cold exposure. 14-3-3ζ over-expression in male mice improves tolerance to acute and prolonged cold. Increasing 14-3-3ζ expression promotes beiging of inguinal white adipose tissue. Cold-induced changes in body temperature can be dissociated from energy expenditure. 14-3-3ζ-dependent decreases in heat loss are associated with vasoconstriction.
Collapse
|
36
|
Acosta FM, Martinez-Tellez B, Blondin DP, Haman F, Rensen PCN, Llamas-Elvira JM, Martinez-Nicolas A, Ruiz JR. Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue 18F-FDG Uptake in Young Sedentary Adults. J Biol Rhythms 2019; 34:533-550. [PMID: 31389278 PMCID: PMC6732824 DOI: 10.1177/0748730419865400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study examines whether the daily rhythm of distal skin temperature (DST) is associated with brown adipose tissue (BAT) metabolism as determined by 18F-fluorodeoxyglucose (18F-FDG) uptake in young adults. Using a wireless thermometer (iButton) worn on the nondominant wrist, DST was measured in 77 subjects (26% male; age 22 ± 2 years; body mass index 25.2 ± 4.8 kg/m2) for 7 consecutive days. The temperatures to which they were habitually exposed over the day were also recorded. The interday stability of DST was calculated from the collected data, along with the intraday variability and relative amplitude; the mean temperature of the 5 and 10 consecutive hours with the maximum and minimum DST values, respectively; and when these hours occurred. Following exposure to cold, BAT volume and mean and peak standardized 18F-FDG uptake (SUVmean and SUVpeak) were determined for each subject via static 18F-FDG positron emission tomography/computed tomography scanning. Relative amplitude and the time at which the 10 consecutive hours of minimum DST values occurred were positively associated with BAT volume, SUVmean, and SUVpeak (p ≤ 0.02), whereas the mean DST of that period was inversely associated with the latter BAT variables (p ≤ 0.01). The interday stability and intraday variability of the DST were also associated (directly and inversely, respectively) with BAT SUVpeak (p ≤ 0.02 for both). All of these associations disappeared, however, when the analyses were adjusted for the ambient temperature to which the subjects were habitually exposed. Thus, the relationship between the daily rhythm of DST and BAT activity estimated by 18F-FDG uptake is masked by environmental and likely behavioral factors. Of note is that those participants exposed to the lowest ambient temperature showed 3 to 5 times more BAT volume and activity compared with subjects who were exposed to a warmer ambient temperature.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Servicio de Medicina Nuclear, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
37
|
Chen X, Zhuo S, Zhu T, Yao P, Yang M, Mei H, Li N, Ma F, Wang JM, Chen S, Ye RD, Li Y, Le Y. Fpr2 Deficiency Alleviates Diet-Induced Insulin Resistance Through Reducing Body Weight Gain and Inhibiting Inflammation Mediated by Macrophage Chemotaxis and M1 Polarization. Diabetes 2019; 68:1130-1142. [PMID: 30862681 PMCID: PMC6905484 DOI: 10.2337/db18-0469] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
Obesity and related inflammation are critical for the pathogenesis of insulin resistance, but the underlying mechanisms are not fully understood. Formyl peptide receptor 2 (FPR2) plays important roles in host immune responses and inflammation-related diseases. We found that Fpr2 expression was elevated in the white adipose tissue of high-fat diet (HFD)-induced obese mice and db/db mice. The systemic deletion of Fpr2 alleviated HFD-induced obesity, insulin resistance, hyperglycemia, hyperlipidemia, and hepatic steatosis. Furthermore, Fpr2 deletion in HFD-fed mice elevated body temperature, reduced fat mass, and inhibited inflammation by reducing macrophage infiltration and M1 polarization in metabolic tissues. Bone marrow transplantations between wild-type and Fpr2-/- mice and myeloid-specific Fpr2 deletion demonstrated that Fpr2-expressing myeloid cells exacerbated HFD-induced obesity, insulin resistance, glucose/lipid metabolic disturbances, and inflammation. Mechanistic studies revealed that Fpr2 deletion in HFD-fed mice enhanced energy expenditure probably through increasing thermogenesis in skeletal muscle; serum amyloid A3 and other factors secreted by adipocytes induced macrophage chemotaxis via Fpr2; and Fpr2 deletion suppressed macrophage chemotaxis and lipopolysaccharide-, palmitate-, and interferon-γ-induced macrophage M1 polarization through blocking their signals. Altogether, our studies demonstrate that myeloid Fpr2 plays critical roles in obesity and related metabolic disorders via regulating muscle energy expenditure, macrophage chemotaxis, and M1 polarization.
Collapse
Affiliation(s)
- Xiaofang Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tengfei Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengle Yao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengmei Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Mei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
38
|
Singh A, Zapata RC, Pezeshki A, Workentine ML, Chelikani PK. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats. FASEB J 2019; 33:6748-6766. [PMID: 30821497 DOI: 10.1096/fj.201801627rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome encompasses obesity, glucose intolerance, hypertension, and dyslipidemia; however, the interactions between diet and host physiology that predispose to metabolic syndrome are incompletely understood. Here, we explored the effects of a high-fat diet (HFD) on energy balance, gut microbiota, and risk factors of metabolic syndrome in spontaneously hypertensive stroke-prone (SHRSP) and Wistar-Kyoto (WKY) rats. We found that the SHRSP rats were hypertensive, hyperphagic, less sensitive to hypophagic effects of exendin-4, and expended more energy with diminished sensitivity to sympathetic blockade compared to WKY rats. Notably, key thermogenic markers in brown and retroperitoneal adipose tissues and skeletal muscle were up-regulated in SHRSP than WKY rats. Although HFD promoted weight gain, adiposity, glucose intolerance, hypertriglyceridemia, hepatic lipidosis, and hyperleptinemia in both SHRSP and WKY rats, the SHRSP rats weighed less but had comparable percent adiposity to WKY rats, which supports the use of HFD-fed SHRSP rats as a unique model for studying the metabolically obese normal weight (MONW) phenotype in humans. Despite distinct strain differences in gut microbiota composition, diet had a preponderant impact on gut flora with some of the taxa being strongly associated with key metabolic parameters. Together, we provide evidence that interactions between host genetics and diet modulate gut microbiota and predispose SHRSP rats to develop metabolic syndrome.-Singh, A., Zapata, R. C., Pezeshki, A., Workentine, M. L., Chelikani, P. K. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew L Workentine
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Association between brown adipose tissue and bone mineral density in humans. Int J Obes (Lond) 2018; 43:1516-1525. [PMID: 30518823 DOI: 10.1038/s41366-018-0261-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) seems to play a role in bone morphogenesis. A negative association has been reported between BAT and bone mineral density (BMD) in women, but not in men. A panel of experts has recently published a set of recommendations for BAT assessment, and thus, to re-address previously reported associations is needed. This study aimed to investigate the association between cold-induced BAT 18F-Fluorodeoxyglucose (18F-FDG) uptake and BMD in young healthy adults. METHODS Ninety-eight healthy adults (68 women; 22 ± 2.2 years old; 24.3 ± 4.5 kg/m2) cold-induced BAT was assessed by means of an 18F-FDG positron emission tomography-computed tomography (PET-CT) scan preceded by a personalized cold stimulation. The cold exposure consisted in 2 h in a mild cold room at 19.5-20 °C wearing a water perfused cooling vest set 4 °C above the individual shivering threshold. Total body and lumbar spine BMD were assessed by a whole-body DXA scan. RESULTS We found no association between BMD and cold-induced BAT volume, mean, and maximal activity (all P > 0.1) in neither young and healthy men nor women. These results remained unchanged when adjusting by height, by body composition, and by objectively assessed physical activity. Sensitivity analyses using the criteria to quantify cold-induced BAT-related parameters applied in previous studies did not change the results. CONCLUSIONS In summary, our study shows that there is no association between cold-induced BAT and BMD in young healthy adults. Moreover, our data support the notion that previously shown associations between BAT and BMD in healthy non-calorically restricted individuals, could be driven by methodological issues related to BAT assessment and/or sample size limitations.
Collapse
|
40
|
Sanchez-Delgado G, Martinez-Tellez B, Garcia-Rivero Y, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Llamas-Elvira JM, Ruiz JR. Brown Adipose Tissue and Skeletal Muscle 18F-FDG Activity After a Personalized Cold Exposure Is Not Associated With Cold-Induced Thermogenesis and Nutrient Oxidation Rates in Young Healthy Adults. Front Physiol 2018; 9:1577. [PMID: 30505277 PMCID: PMC6250802 DOI: 10.3389/fphys.2018.01577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023] Open
Abstract
Cold induced thermogenesis (CIT) in humans results mainly from the combination of both brown adipose tissue (BAT) and skeletal muscle thermogenic activity. The relative contribution of both tissues to CIT and to cold induced nutrient oxidation rates (CI-NUTox) remains, however, to be elucidated. We investigated the association of BAT and skeletal muscle activity after a personalized cold exposure with CIT and CI-NUTox in 57 healthy adults (23.0 ± 2.4 years old; 25.1 ± 4.6 kg/m2; 35 women). BAT and skeletal muscle (paracervical, sternocleidomastoid, scalene, longus colli, trapezius, parathoracic, supraspinatus, subscapular, deltoid, pectoralis major, and triceps brachii) metabolic activity were assessed by means of a 18Fluorodeoxyglucose positron emission tomography-computed tomography scan preceded by a personalized cold exposure. The cold exposure consisted in remaining in a mild cold room for 2 h at 19.5–20°C wearing a water perfused cooling vest set at 3.8°C above the individual shivering threshold. On a separate day, we estimated CIT and CI-NUTox by indirect calorimetry under fasting conditions for 1 h of personalized cold exposure. There was no association of BAT volume or activity with CIT or CI-NUTox (all P > 0.2). Similarly, the skeletal muscle metabolic activity was not associated either with CIT or CI-NUTox (all P > 0.2). The results persisted after controlling for sex, the time of the day, and the date when CIT was assessed. Our results suggest that human BAT activity and skeletal muscle 18F-FDG activity are not associated to CIT in young healthy adults. Inherent limitations of the available radiotracers for BAT detection and muscle activity quantification may explain why we failed to detect a physiologically plausible association.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yolanda Garcia-Rivero
- Nuclear Medicine Department, "Virgen de las Nieves" University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Departament of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Department, "Virgen de las Nieves" University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
41
|
Ruiz JR, Martinez-Tellez B, Sanchez-Delgado G, Osuna-Prieto FJ, Rensen PCN, Boon MR. Role of Human Brown Fat in Obesity, Metabolism and Cardiovascular Disease: Strategies to Turn Up the Heat. Prog Cardiovasc Dis 2018; 61:232-245. [PMID: 29981351 DOI: 10.1016/j.pcad.2018.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
Abstract
Human brown adipose tissue (BAT) was re-discovered in 2009 by several independent groups, who showed that it is present and active in adults, as judged from the profound uptake of the glucose analogue radiotracer 18F-fluorodeoxyglucose in positron-emission tomography and computed tomography scan analysis after cold exposure. A potential clinical implication of activating BAT relates to its high metabolic activity and its potential role in stimulating energy expenditure (i.e. resting energy expenditure, meal-induced thermogenesis, and cold-induced thermogenesis), which makes it an attractive target to reduce adiposity. Moreover, due to its ability to oxidise glucose and lipids, BAT activation may also potentially exert beneficial metabolic and cardiovascular effects through reducing glucose and lipid levels, respectively. This review describes the potential role of human BAT in the prevention and treatment of obesity, metabolism, and cardiovascular disease focusing on its impact on energy expenditure and management of body fat accumulation as well as on glucose and lipid metabolism. This article also summarises the strategies that are currently being studied to activate human BAT.
Collapse
Affiliation(s)
- Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain.
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
42
|
Acosta FM, Martinez-Tellez B, Sanchez-Delgado G, A. Alcantara JM, Acosta-Manzano P, Morales-Artacho AJ, R. Ruiz J. Physiological responses to acute cold exposure in young lean men. PLoS One 2018; 13:e0196543. [PMID: 29734360 PMCID: PMC5937792 DOI: 10.1371/journal.pone.0196543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/14/2018] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort.
Collapse
Affiliation(s)
- Francisco M. Acosta
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan M. A. Alcantara
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Pedro Acosta-Manzano
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Antonio J. Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R. Ruiz
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
43
|
Moreno-Fernández S, Garcés-Rimón M, Uranga JA, Astier J, Landrier JF, Miguel M. Expression enhancement in brown adipose tissue of genes related to thermogenesis and mitochondrial dynamics after administration of pepsin egg white hydrolysate. Food Funct 2018; 9:6599-6607. [DOI: 10.1039/c8fo01754a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pepsin egg white hydrolysate enhanced mitochondria proliferation on brown adipose tissue and thermogenesis. Reduced body weight and adiposity were observed.
Collapse
Affiliation(s)
- S. Moreno-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- Madrid
- Spain
- Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL)
| | - M. Garcés-Rimón
- Grupo de Biotecnología Alimentaria
- Instituto de Investigaciones Biosanitarias
- Universidad Francisco de Vitoria
- Madrid
- Spain
| | - J. A. Uranga
- Facultad de Ciencias de la Salud
- Universidad Rey Juan Carlos
- Madrid
- Spain
- Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL)
| | - J. Astier
- NORT
- Aix-Marseille Université
- INRA
- INSERM
- Marseille
| | | | - M. Miguel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- Madrid
- Spain
- Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación (CIAL)
| |
Collapse
|
44
|
Frank AP, Palmer BF, Clegg DJ. Do estrogens enhance activation of brown and beiging of adipose tissues? Physiol Behav 2017; 187:24-31. [PMID: 28988965 DOI: 10.1016/j.physbeh.2017.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023]
Abstract
Obesity and its associated co-morbidities are worldwide public health concerns. Obesity is characterized by excessive adipose tissue accumulation; however, it is important to recognize that human and rodent adipose tissues are made up of several distinct adipose tissue sub-types. White adipose tissue (WAT) is considered the prototypical fat cell, due to its capacity and capability to store large amounts of lipid. In contrast, brown adipose tissue (BAT) oxidizes substrates to generate heat. BAT contains more mitochondria than WAT and express uncoupling protein-1 (UCP1), which mediates BAT thermogenesis. A third sub-type of adipose tissue, Brown-in-white (BRITE)/beige adipocytes arise from WAT upon adrenergic stimulation and resembles BAT functionally. The energy burning feature of BAT/beige cells, combined with evidence of an inverse-correlation between BAT/beige adipose tissue and obesity have given rise to the hypothesis that obesity may be linked to BAT/beige 'malfunction'. Females have more BAT and perhaps an enhanced capacity to beige their adipose tissue when compared to males. Multiple signal pathways are capable of activating BAT thermogenesis and beiging of WAT; here, we discuss the potential role of estrogens in enhancing and mediating these factors to enhance adipose tissue thermogenesis.
Collapse
Affiliation(s)
- Aaron P Frank
- Biomedical Research Division, Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Deborah J Clegg
- Biomedical Research Division, Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|