1
|
Costa RC, Borges GA, Dini C, Bertolini M, Souza JGS, Mesquita MF, Barão VAR. Clinical efficacy of triclosan-containing toothpaste in peri-implant health: A systematic review and meta-analysis of randomized clinical trials. J Prosthet Dent 2023:S0022-3913(23)00508-5. [PMID: 37723004 DOI: 10.1016/j.prosdent.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023]
Abstract
STATEMENT OF PROBLEM Recent evidence suggests that toothpaste containing 0.3% triclosan (TCS) is more effective than regular toothpaste in improving clinical periodontal conditions. However, a consensus on whether TCS favors a healthy peri-implant environment is limited. PURPOSE The purpose of this systematic review and meta-analysis of randomized clinical trials was to determine the effects of TCS-containing toothpaste on dental implant health based on clinical, immunological, and microbiological parameters, as well as on reported adverse events. MATERIAL AND METHODS Clinical studies comparing peri-implant conditions in participants by using TCS toothpaste versus conventional fluoride toothpaste (control) were extracted from 9 databases. The studies were assessed with the Cochrane risk-of-bias tool for randomized clinical trials (RoB 2). Datasets for bleeding on probing (BOP), probing depth (PD), clinical attachment level (CAL), gingival index (GI), plaque index (PI), osteo-immunoinflammatory mediators, and bacterial load were plotted, and the standard mean difference (SMD) quantitative analysis was applied by using the Rev Man 5.3 software program. Adverse effects reported by the studies were also tabulated. The certainty of evidence was assessed by using the grading of recommendations assessment, development, and evaluation approach. RESULTS Six studies were included in the meta-analyses. BOP was higher in the control group than in the TCS toothpaste group at 3 months (SMD -0.59 [-1.11, -.07] P=.002, I2=77%) and 6 months (SMD -0.59 [-0.83, -0.34] P=.009, I2=79%). PD (SMD -0.04 [-0.08, -0.00] P=.04, I2=0%) was also deeper in the control group versus TCS toothpaste at 6 months (SMD -0.41 [-0.73, -0.10] P=.04, I2=77%). CAL, GI, and PI did not differ between groups (P>.05). Among the osteo-immunoinflammatory mediators, IL-10 levels increased, and IL-1β and osteoprotegerin levels decreased in the TCS toothpaste group (P<.05). Microbiological findings found that TCS toothpaste prevented the growth of periodontal pathogens, specifically in up to approximately 20% of the Prevotella intermedia. Adverse effects were not reported after toothbrushing in either group. However, most studies had "some" or "high" risk of bias, and the certainty of the evidence was considered to be "very low." CONCLUSIONS Most studies were short-term (3 and 6 months) analyses, and the results found that, although TCS-containing toothpaste had positive osteo-immunoinflammatory and microbiologic results, clinical parameters, including CAL, GI, and PI, were not influenced.
Collapse
Affiliation(s)
- Raphael Cavalcante Costa
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Guilherme Almeida Borges
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Caroline Dini
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Martinna Bertolini
- Assistant Professor, Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Joāo Gabriel S Souza
- Professor, Dental Research Division, Guarulhos University (UnG), Guarulhos, SP, Brazil
| | - Marcelo Ferraz Mesquita
- Full Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Associate Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil..
| |
Collapse
|
2
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:metabo12111034. [DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
|
4
|
Farias JOD, Santo JDADE, Amorim IA, Rezende TMB. Triclosan antimicrobial activity against dental-caries-related bacteria. BRAZILIAN JOURNAL OF ORAL SCIENCES 2022. [DOI: 10.20396/bjos.v22i00.8668076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Triclosan (TCS) is a chlorinated diphenyl ether and a possible active agent against microorganisms. Due to its probability of reducing dental plaque accumulation, TCS can be added as a substance for oral hygiene. Aim: To evaluate the efficacy and antimicrobial capacity of TCS against Pseudomonas aeruginosa and Streptococcus mutans. Methods: This work evaluates the percentage of bacteria inhibition of P. aeruginosa (ATCC 27853) and S. mutans (ATCC 25175). TCS concentrations between 2 and 128 μg.mL-1 were tested. Results: An inhibitory potential of TCS was found against S. mutans. No percentage of inhibition was detected against P. aeruginosa (technical and biological triplicate). Conclusion: TCS, an antimicrobial agent used in dentifrices, can reduce S. mutans levels therefore these dentifrices should be indicated for patients with a high risk of caries. However, further study is needed, including antimicrobial analyses against other microbial conditions.
Collapse
|
5
|
Kobusińska ME, Lewandowski KK, Panasiuk A, Łęczyński L, Urbaniak M, Ossowski T, Niemirycz E. Precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans in Arctic and Antarctic marine sediments: Environmental concern in the face of climate change. CHEMOSPHERE 2020; 260:127605. [PMID: 32688319 DOI: 10.1016/j.chemosphere.2020.127605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F) and their precursors - pentachlorophenol (PCP) and triclosan (TCS), constitute a group of persistent, highly toxic multimedia pollutants, being easily transported via atmosphere over long distances, thus particularly threatening to the polar areas. The global fate of PCDD/Fs is temperature-dependent, and their transfer and immobilization at the Poles are described by the grasshopper effect and the cold trap phenomenon. The aim of this interdisciplinary study was to perform a preliminary assessment of the present state of pollution of Arctic and Antarctic marine sediments by PCP and TCS along with determination of PCDD/Fs contamination by immunoassay. Sediments from 20 stations were collected during two polar expeditions (2013-2016). The study area covered Hornsund Fjord and the southwest coast of Wedel-Jarlsberg Land (Arctic) - Skodde Bay, Nottingham Bay, Isbjørnhamna Bay and Admiralty Bay (Antarctica) - Suszczewski Cove, Halfmoon Cove and Herve Cove. The studied contaminants were quantified in 60% of the collected sediments, with almost half exceeding the environmentally safe levels according European regulations and worldwide literature. The determined levels of PCP, TCS and PCDD/F in Arctic and Antarctic sediments were to be comparable to those reported in the southern Baltic Sea located in the intense industrialized mid-latitudes. Maximum concentrations were observed in the vicinity of retreating, marine terminating glaciers. This observation confirms reemission of POPs into the global cycle with respect to the worldwide ocean warming. The results of this study should gain attention of the international and regional environmental agencies as well as the main chlorine production decision makers.
Collapse
Affiliation(s)
- Marta Ewelina Kobusińska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Krzysztof Konrad Lewandowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Anna Panasiuk
- Department of Marine Plankton Research, Faculty of Oceanography and Geography, University of Gdansk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Leszek Łęczyński
- Department of Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magdalena Urbaniak
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90 364, Lodz, Poland; UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Elżbieta Niemirycz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
6
|
Wang P, Wang Z, Xia P, Zhang X. Concentration-dependent transcriptome of zebrafish embryo for environmental chemical assessment. CHEMOSPHERE 2020; 245:125632. [PMID: 31864044 DOI: 10.1016/j.chemosphere.2019.125632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Mechanistic information is essential to screen and predict the adverse effects of a large number of chemicals during early-life exposure. Concentration-dependent omics can capture the extent of perturbations of biological pathways or processes and provide information on the mechanism of toxicity. However, the application of concentration-dependent transcriptome to assess the developmental toxicity of environmental chemicals is still limited. Here, twelve chemicals representing five different modes of action (MOAs) were tested by the concentration-dependent reduced zebrafish transcriptome approach (CRZT) in combination with a phenotype-based high content screen (PHCS). The responsiveness, sensitivity and mechanistic differentiation of CRZT were validated in comparison with PHCS. First, PHCS identified 10 chemicals with obvious embryotoxicity (LD50 range: 2.11-70.68 μM), while the potencies of the biological pathways perturbed by 12 chemicals (PODpath20 range: 0.002-2.1 μM) were demonstrated by CRZT. Second, although the potency of the transcriptome perturbations was positively correlated with lethality (LD50) (R2 = 0.64, P-value < 0.05) for most tested chemicals, BbF was non-embryotoxic but was the most potent on the perturbance of biological pathways. Finally, the profiles of the perturbed biological processes and the transcriptome potency (PODpath20) captured by CRZT could effectively classify most chemicals corresponding to their known MOAs. In summary, CRZT could significantly improve testing the developmental toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Pingping Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
7
|
Triclosan toothpaste as an adjunct therapy to plaque control in children from periodontitis families: a crossover clinical trial. Clin Oral Investig 2020; 24:1421-1430. [PMID: 31907625 DOI: 10.1007/s00784-019-03121-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/09/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Studies have demonstrated that children from aggressive periodontitis (AgP) parents presented precocious alterations in their periodontal condition, and the use of chemical agents in association to plaque control could be useful to control these alterations. This study aimed to evaluate the effect of Triclosan toothpaste to modulate the clinical and subgingival condition in children from AgP parents. METHODS Fifteen children from AgP parents and 15 from periodontally healthy parents were included in this crossover placebo study. Children were randomly allocated into triclosan or placebo therapy, using selected toothpaste for 45 days. After 15 days of wash-out, groups were crossed, changing the used toothpaste. Clinical examination and saliva, crevicular gingival fluid (GCF), and subgingival biofilm collection were performed at baseline and 45 days of each phase. GCF cytokines' levels were analyzed by Luminex/MAGpix platform and subgingival and salivary periodontal pathogens' levels by qPCR. RESULTS At baseline, AgP group presented higher plaque index (PI), gingival index (GI), and bleeding on probing (BoP), higher Aggregatibacter actinomycetemcomitans (Aa) abundance in saliva and subgingival biofilm, and lower levels of INF-ɣ, IL-4, and IL-17 in GCF. Placebo therapy only reduced PI in both groups. Triclosan toothpaste reduced PI and GI in both groups. Triclosan promoted reduction of BoP and probing depth (PD), Aa salivary, and IL-1β levels in AgP group. In health group, triclosan reduced INF-ɣ and IL-4 concentration. CONCLUSION Triclosan toothpaste demonstrated to be more effective than placebo toothpaste to control the periodontal condition in children from AgP parents, by reducing the BoP, PD, salivary Aa, and IL-1β. CLINICAL RELEVANCE Triclosan toothpaste can improve oral conditions in higher-risk population for AgP. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov with the identifier NCT03642353.
Collapse
|
8
|
Karde PA, Sethi KS, Mahale SA, Mamajiwala AS, Kale AM, Joshi CP. Comparative evaluation of two antibacterial-coated resorbable sutures versus noncoated resorbable sutures in periodontal flap surgery: A clinico-microbiological study. J Indian Soc Periodontol 2019; 23:220-225. [PMID: 31143002 PMCID: PMC6519104 DOI: 10.4103/jisp.jisp_524_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background: Sutures at the surgical site can act as a reservoir for microbes, leading to surgical site infection. This mainly occurs in braided sutures due to wicking action. The use of triclosan-coated suture (TCS) or chlorhexidine-coated suture (CCS) could be one of the possible alternatives to reduce the microbial load. Objectives: The study was designed to assess the antibacterial efficacy of resorbable TCS and CCS along with its effect on healing after periodontal flap surgery in comparison to noncoated sutures (NCSs). Materials and Methods: Thirty patients with chronic periodontitis indicated for periodontal flap surgery satisfying inclusion criteria were randomly assigned in the three groups: (1) NCS-polyglycolic acid sutures (control group), (2) TCS-polyglycolic acid sutures (experimental Group A), and (3) CCS-polyglycolic acid sutures (experimental Group B). All the patients were evaluated at day 0 (baseline), day 8, day 15, and day 30 for healing index (HI), postoperative pain (POP), and visible plaque index (VPI). Aerobic and anaerobic bacterial growth around each suture was evaluated after day 8. Two randomly chosen samples from each group were examined using confocal laser scanning microscopy (CLSM) for the presence of biofilm. Results: Although intergroup HI and POP were statistically insignificant (P > 0.05), intragroup evaluation showed statistically significant improvement. VPI was more in NCS compared to antibacterial sutures. There was significantly less concentration of anaerobic bacteria as compared to aerobic bacteria (P < 0.05). CLSM showed the presence of more viable bacteria on NCS as compared to antibacterial sutures. Conclusion: TCS or CCS sutures can be used in periodontal surgeries to reduce the bacterial load at the surgical sites.
Collapse
Affiliation(s)
- Prerna Ashok Karde
- Department of Periodontics, MGV's KBH Dental College and Hospital, Nashik 422 003, Maharashtra, India
| | - Kunal Sunder Sethi
- Department of Periodontics, MGV's KBH Dental College and Hospital, Nashik 422 003, Maharashtra, India
| | - Swapna Arunkumar Mahale
- Department of Periodontics, MGV's KBH Dental College and Hospital, Nashik 422 003, Maharashtra, India
| | | | - Aishwarya Madhukar Kale
- Department of Periodontics, MGV's KBH Dental College and Hospital, Nashik 422 003, Maharashtra, India
| | - Chaitanya Pradeep Joshi
- Institute of Dentistry, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZR, Scotland
| |
Collapse
|
9
|
Triclosan: An Update on Biochemical and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607304. [PMID: 31191794 PMCID: PMC6525925 DOI: 10.1155/2019/1607304] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in commercial and healthcare products. Items made with TCS include soaps, deodorants, shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of information obtained from in vitro and in vivo studies has demonstrated the therapeutic effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive investigations on the molecular aspects of TCS action have identified numerous adversaries associated with the disinfectant including oxidative injury and influence of physiological lifespan and longevity. This review presents a summary of the biochemical alterations pertaining to TCS exposure, with special emphasis on the diverse molecular pathways responsive to TCS that have been elucidated during the present decade.
Collapse
|
10
|
Geskovski N, Sazdovska SD, Gjosheva S, Petkovska R, Popovska M, Anastasova L, Mladenovska K, Goracinova K. Rational development of nanomedicines for molecular targeting in periodontal disease. Arch Oral Biol 2018; 93:31-46. [DOI: 10.1016/j.archoralbio.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
|
11
|
Delitto AE, Rocha F, Decker AM, Amador B, Sorenson HL, Wallet SM. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation. Arch Oral Biol 2017; 87:125-130. [PMID: 29289808 DOI: 10.1016/j.archoralbio.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Periodontal diseases are a class of non-resolving inflammatory diseases, initiated by a pathogenic subgingival biofilm, in a susceptible host, which if left untreated can result in soft and hard tissue destruction. Oral epithelial cells are the first line of defense against microbial infection within the oral cavity, whereby they can sense the environment through innate immune receptors including toll-like receptors (TLRs). Therefore, oral epithelial cells directly and indirectly contribute to mucosal homeostasis and inflammation, and disruption of this homeostasis or over-activation of innate immunity can result in initiation and/or exacerbation of localized inflammation as observed in periodontal diseases. Dynamics of TLR signaling outcomes are attributable to several factors including the cell type on which it engaged. Indeed, our previously published data indicates that oral epithelial cells respond in a unique manner when compared to canonical immune cells stimulated in a similar fashion. Thus, the objective of this study was to evaluate the role of oral epithelial cell innate sensing on periodontal disease, using a murine poly-microbial model in an epithelial cell specific knockout of the key TLR-signaling molecule MyD88 (B6K5Cre.MyD88plox). Following knockdown of MyD88 in the oral epithelium, mice were infected with Porphorymonas gingivalis and Aggregatibacter actinomycetemcomitans by oral lavage 4 times per week, every other week for 6 weeks. Loss of oral epithelial cell MyD88 expression resulted in exacerbated bone loss, soft tissue morphological changes, soft tissue infiltration, and soft tissue inflammation following polymicrobial oral infection. Most interestingly while less robust, loss of oral epithelial cell MyD88 also resulted in mild but statistically significant soft tissue inflammation and bone loss even in the absence of a polymicrobial infection. Together these data demonstrate that oral epithelial cell MyD88-dependent TLR signaling regulates the immunological balance within the oral cavity under conditions of health and disease.
Collapse
Affiliation(s)
- Andrea E Delitto
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Fernanda Rocha
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ann M Decker
- Department of Periodontology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Byron Amador
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Heather L Sorenson
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
12
|
Zhou Z, Yang J, Chan KM. Toxic effects of triclosan on a zebrafish (Danio rerio) liver cell line, ZFL. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:175-188. [PMID: 28843737 DOI: 10.1016/j.aquatox.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 05/15/2023]
Abstract
Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy) phenol) is an antimicrobial agent widely used in personal care products. It has been detected in surface water, soil, aquatic species, and even humans. In this study, we used zebrafish (Danio rerio) as a model to test the hypothesis that TCS exhibits toxic effects by interacting with thyroid hormone receptor β (TRβ) and aryl hydrocarbon receptor (AhR) and by inducing the transcription of thyroid hormone (TH)-associated genes and affecting phase I and phase II enzymes. The median lethal concentrations (LC50) of TCS in zebrafish embryos/larvae and a zebrafish liver cell line (ZFL) were first determined. Hatched larvae were most sensitive to TCS exposure, with LC50 values ranging from 1.26 to 1.46μM for 96h after hatching exposure. The major effect of TCS was delayed hatching which occurred from 1.13μM. The constructed GFP-zfTRβ fusion protein revealed the subcellular location of zfTRβ as the nucleus in both T3-induced and uninduced states, adding to the difficulty of studying TCS action on thyroid hormone receptors in ZFL cells. TCS had neither agonistic nor antagonistic effects on zfTRβLBD or AhR from the reporter gene systems. Ethoxyresorufin-o-deethylase (EROD) assay suggested that TCS is a weak P4501a (Cyp1a) agonist at 5μM and that it inhibits cytochrome Cyp1a activity induced by benzo(a)pyrene (BaP). In time course-based mRNA profiling in ZFL cells, 4-h exposure to TCS caused a significant (up to 37.5-fold) inhibition of Cyp1a at 2.5μM. An overall inhibition of liver phase I and II gene transcription at 4h exposure indicates the possible quick catabolism of TCS. Our findings suggest that TCS is not a TH mimic that affects TH-related gene expression. The impairment of Cyp1a mRNA expression could be due to stimulation by other stressors such as oxidative stress, warranting further investigation into the underlying mechanism in zebrafish.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Jie Yang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China.
| |
Collapse
|
13
|
|
14
|
Xia P, Zhang X, Xie Y, Guan M, Villeneuve DL, Yu H. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10682-10692. [PMID: 27459410 DOI: 10.1021/acs.est.6b02328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of <IC10. It is suggested that the CRISPR-Cas9 fingerprint may reveal the patterns of TCS toxicity at low concentration levels. Moreover, we retrieved the potential connection between CRISPR-Cas9 fingerprint and disease terms, obesity, and breast cancer from an existing chemical-gene-disease database. Overall, CRISPR-Cas9 functional genomic screening offers an alternative approach for chemical toxicity testing.
Collapse
Affiliation(s)
- Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Miao Guan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, United States Environmental Protection Agency , Duluth, Minnesota 55804, United States
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
15
|
Olaniyan LWB, Mkwetshana N, Okoh AI. Triclosan in water, implications for human and environmental health. SPRINGERPLUS 2016; 5:1639. [PMID: 27722057 PMCID: PMC5031584 DOI: 10.1186/s40064-016-3287-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/11/2016] [Indexed: 01/08/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent present as an active ingredient in some personal care products such as soaps, toothpastes and sterilizers. It is an endocrine disrupting compound and its increasing presence in water resources as well as in biosolid-amended soils used in farming, its potential for bioaccumulation in fatty tissues and toxicity in aquatic organisms are a cause for concern to human and environmental health. TCS has also been detected in blood, breast milk, urine and nails of humans. The significance of this is not precisely understood. Data on its bioaccumulation in humans are also lacking. Cell based studies however showed that TCS is a pro-oxidant and may be cytotoxic via a number of mechanisms. Uncoupling of oxidative phosphorylation appears to be prevailing as a toxicity mechanism though the compound's role in apoptosis has been cited. TCS is not known to be carcinogenic per se in vitro but has been reported to promote tumourigenesis in the presence of a carcinogen, in mice. Recent laboratory reports appear to support the view that TCS oestrogenicity as well as its anti-oestrogenicity play significant role in cancer progression. Results from epidemiological studies on the effect of TCS on human health have implicated the compound as responsible for certain allergies and reproductive defects. Its presence in chlorinated water also raises toxicity concern for humans as carcinogenic metabolites such as chlorophenols may be generated in the presence of the residual chlorine. In this paper, we carried out a detailed overview of TCS pollution and the implications for human and environmental health.
Collapse
Affiliation(s)
- L. W. B. Olaniyan
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape 5700 South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| | - N. Mkwetshana
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| | - A. I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape 5700 South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|
16
|
Regnault C, Willison J, Veyrenc S, Airieau A, Méresse P, Fortier M, Fournier M, Brousseau P, Raveton M, Reynaud S. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis. CHEMOSPHERE 2016; 155:519-527. [PMID: 27153234 DOI: 10.1016/j.chemosphere.2016.04.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 μg L(-1)) or a mixture of the two (10 μg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - John Willison
- Univ. Grenoble-Alpes, Institut de recherches en technologies et Sciences pour le vivant, Laboratoire de chimie et biologie des métaux (iRTSV-LCBM), F-38000, France; CNRS, IRTSV-LCBM, F-38000, Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives (CEA), iRTSV-LCBM, F-38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Antinéa Airieau
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Patrick Méresse
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, CUBE, F-38000, Grenoble, France.
| | | | | | | | - Muriel Raveton
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| |
Collapse
|
17
|
Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. PLoS One 2016; 11:e0154632. [PMID: 27191725 PMCID: PMC4871530 DOI: 10.1371/journal.pone.0154632] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/15/2016] [Indexed: 12/30/2022] Open
Abstract
Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome's interaction with environmental chemicals.
Collapse
Affiliation(s)
- Christopher A. Gaulke
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Carrie L. Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
- The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Sarah Proffitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
- The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Robert L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
- The Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
18
|
Seymour GJ, Palmer JE, Leishman SJ, Do HL, Westerman B, Carle AD, Faddy MJ, West MJ, Cullinan MP. Influence of a triclosan toothpaste on periodontopathic bacteria and periodontitis progression in cardiovascular patients: a randomized controlled trial. J Periodontal Res 2016; 52:61-73. [PMID: 26932733 DOI: 10.1111/jre.12369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Triclosan/copolymer toothpaste is effective in controlling plaque and gingivitis and in slowing the progression of periodontitis. This study describes its influence on microbiological and clinical outcomes, over a 5-year period, in patients with established cardiovascular disease (CVD). MATERIAL AND METHODS Four-hundred and thirty-eight patients were recruited from the Cardiovascular Unit at The Prince Charles Hospital, Brisbane, Australia, and randomized to triclosan or placebo groups. Six sites per tooth were examined annually for probing pocket depth and loss of attachment. These outcomes were analysed, using generalized linear modelling, in 381 patients who had measurements from consecutive examinations. Concurrent load of the periodontal pathogens Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Tannerella forsythia and Porphyromonas gingivalis was determined, using quantitative real-time PCR, in 437 patients with baseline plaque samples. Group comparisons were expressed as geometric means. The chi-square test was used to test for differences between the two groups of patients with regard to the proportion of patients with different numbers of bacterial species. RESULTS There was no difference in general health or periodontal status between the groups at baseline. There was a significant reduction in the number of interproximal sites showing loss of attachment between examinations, by 21% on average (p < 0.01), in the triclosan group compared with the placebo group. The prevalence of patients with F. nucleatum and A. actinomycetemcomitans was high and remained relatively constant throughout the 5 years of the study. In contrast, the prevalence of T. forsythia and P. gingivalis showed more variability; however, there was no significant difference between the groups, at any time point, in the prevalence of any organism. A significant difference in the geometric means for P. gingivalis (p = 0.01) was seen at years 1 and 4, and for F. nucleatum (p = 0.01) and in the total bacterial load (p = 0.03) at year 2; however, these differences were not statistically significant following a Bonferroni correction for multiple comparisons. There was no difference between the groups in the geometric means for each organism at year 5. CONCLUSION Within the limitations of the study, these data suggest that the use of triclosan/copolymer toothpaste significantly slowed the progression of periodontitis in patients with CVD but that it had little influence on key subgingival periodontopathic bacteria in these patients over the 5 years of the study.
Collapse
Affiliation(s)
- G J Seymour
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia.,The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - J E Palmer
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - S J Leishman
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia.,School of Dentistry, The University of Queensland, Brisbane, Qld, Australia
| | - H L Do
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - B Westerman
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - A D Carle
- Metro North Hospital and Health Service, The Prince Charles Hospital, Chermside, Qld, Australia
| | - M J Faddy
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - M J West
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - M P Cullinan
- School of Medicine, The University of Queensland, Brisbane, Qld, Australia.,The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Marsh PD, Head DA, Devine DA. Dental plaque as a biofilm and a microbial community—Implications for treatment. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Kebschull M, Papapanou PN. Mini but mighty: microRNAs in the pathobiology of periodontal disease. Periodontol 2000 2015; 69:201-20. [PMID: 26252410 PMCID: PMC4530521 DOI: 10.1111/prd.12095] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a family of small, noncoding RNA molecules that negatively regulate protein expression either by inhibiting initiation of the translation of mRNA or by inducing the degradation of mRNA molecules. Accumulating evidence suggests that miRNA-mediated repression of protein expression is of paramount importance in a broad range of physiologic and pathologic conditions. In particular, miRNA-induced dysregulation of molecular processes involved in inflammatory pathways has been shown to contribute to the development of chronic inflammatory diseases. In this review, first of all we provide an overview of miRNA biogenesis, the main mechanisms of action and the miRNA profiling tools currently available. Then, we summarize the available evidence supporting a specific role for miRNAs in the pathobiology of periodontitis. Based on a review of available data on the differential expression of miRNAs in gingival tissues in states of periodontal health and disease, we address specific roles for miRNAs in molecular and cellular pathways causally linked to periodontitis. Our review points to several lines of evidence suggesting the involvement of miRNAs in periodontal tissue homeostasis and pathology. Although the intricate regulatory networks affected by miRNA function are still incompletely mapped, further utilization of systems biology tools is expected to enhance our understanding of the pathobiology of periodontitis.
Collapse
Affiliation(s)
- Moritz Kebschull
- Associate Professor of Dental Medicine, Consultant, Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany, Tel: +49-228-28722-007,
| | - Panos N. Papapanou
- Professor of Dental Medicine, Director, Division of Periodontics, Chair, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, 630 West 168 Street, PH-7E-110, New York, NY 10032, USA, Tel: +1-212-342-3008, Fax: +1-212-305-9313,
| |
Collapse
|
21
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci A, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams G, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi AI, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D'Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar PK, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Sing Leung P, Nangia-Makker P, Cheng QS, Robey RB, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Abd Hamid R, Langie SAS, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell WK, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-96. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer. This risk may be overlooked by current regulatory practices and needs to be vigorously investigated. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H Goodson
- California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA, Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK, Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA, Getting to Know Cancer, Guelph N1G 1E4, Canada, School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA, Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK, Department of Nutrition, University of Oslo, Oslo, Norway, Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway, Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA, Spanish National Cancer Research Centre, CNI
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Barry J Barclay
- Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W Felsher
- Department of Medicine, Oncology and Pathology, Stanford University, Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606-8507, Japan
| | - Hosni K Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R Whitfield
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia, Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie, De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E Lleonart
- Institut De Recerca Hospital Vall D'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Michael J Gonzalez
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Nancy B Kuemmerle
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy , Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria, Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta, GA 30322, USA, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida Abd Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada, Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy, Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy, National Institute of Biostructures and Biosystems, Viale Medaglie d' Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France, Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Cullinan MP, Palmer JE, Faddy MJ, Westerman B, Carle AD, West MJ, Seymour GJ. The Influence of Triclosan on Biomarkers of Cardiovascular Risk in Patients in the Cardiovascular and Periodontal Study (CAPS): A Randomized Controlled Trial. J Periodontol 2015; 86:847-55. [DOI: 10.1902/jop.2015.140716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
ANDRADE E, WEIDLICH P, ANGST PDM, GOMES SC, OPPERMANN RV. Efficacy of a triclosan formula in controlling early subgingival biofilm formation: a randomized trial. Braz Oral Res 2015; 29:S1806-83242015000100262. [DOI: 10.1590/1807-3107bor-2015.vol29.0065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/28/2015] [Indexed: 11/21/2022] Open
|
24
|
Kravchenko J, Corsini E, Williams MA, Decker W, Manjili MH, Otsuki T, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH, Lowe L, Lyerly HK. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions. Carcinogenesis 2015; 36 Suppl 1:S111-27. [PMID: 26002081 DOI: 10.1093/carcin/bgv033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression.
Collapse
Affiliation(s)
- Julia Kravchenko
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Emanuela Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, School of Pharmacy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marc A Williams
- MEDCOM Army Institute of Public Health, Toxicology Portfolio - Health Effects Research Program, Aberdeen Proving Ground, Edgewood, Baltimore, MD 21010, USA
| | - William Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Faha Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO, 80523-1680, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO, 80523-1680, USA
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA,
| | - Leroy Lowe
- Getting to Know Cancer, Nova Scotia, Canada and
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Ajao C, Andersson MA, Teplova VV, Nagy S, Gahmberg CG, Andersson LC, Hautaniemi M, Kakasi B, Roivainen M, Salkinoja-Salonen M. Mitochondrial toxicity of triclosan on mammalian cells. Toxicol Rep 2015; 2:624-637. [PMID: 28962398 PMCID: PMC5598359 DOI: 10.1016/j.toxrep.2015.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 01/08/2023] Open
Abstract
Effects of triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol) on mammalian cells were investigated using human peripheral blood mono nuclear cells (PBMC), keratinocytes (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine pancreatic islets (MIN-6) and neuroblastoma cells (MNA) as targets. We show that triclosan (1-10 μg ml-1) depolarised the mitochondria, upshifted the rate of glucose consumption in PMBC, HaCaT, PK-15 and MNA, and subsequently induced metabolic acidosis. Triclosan induced a regression of insulin producing pancreatic islets into tiny pycnotic cells and necrotic death. Short exposure to low concentrations of triclosan (30 min, ≤1 μg/ml) paralyzed the high amplitude tail beating and progressive motility of spermatozoa, within 30 min exposure, depolarized the spermatozoan mitochondria and hyperpolarised the acrosome region of the sperm head and the flagellar fibrous sheath (distal part of the flagellum). Experiments with isolated rat liver mitochondria showed that triclosan impaired oxidative phosphorylation, downshifted ATP synthesis, uncoupled respiration and provoked excessive oxygen uptake. These exposure concentrations are 100-1000 fold lower that those permitted in consumer goods. The mitochondriotoxic mechanism of triclosan differs from that of valinomycin, cereulide and the enniatins by not involving potassium ionophoric activity.
Collapse
Key Words
- Acidosis
- BCF, bioconcentration factor
- EC50, concentration that diminishes the respective vitality parameter by ≥50%
- Electric transmembrane potential
- Glycolysis
- HaCaT, a spontaneously immortalized (non-neoplastic) keratinocyte cell line
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide
- MIC, minimal inhibitory concentration
- MIN-6, a murine pancreatic beta cell line
- MNA, a murine neuroblastoma cells
- Oxidative phosphorylation
- PBMC, monocyte-enriched peripheral blood mononuclear cells
- PI, propidium iodide
- PK-15, a porcine kidney tubular epithelial cell line
- PN, pyridine nucleotides
- RLM, rat liver mitochondria
- Sperm motility
- TPP+, tetraphenylphosphonium
- Uncoupler
- ΔΨ, electric transmembrane potential
- ΔΨm, membrane potential of the mitochondrial membrane
- ΔΨp, membrane potential of the plasma membrane
Collapse
Affiliation(s)
- Charmaine Ajao
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| | - Maria A. Andersson
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| | - Vera V. Teplova
- Institute of Theoretical and Experimental Biophysics, RAS, Puschino, Moscow Region, Russia
| | - Szabolcs Nagy
- Department of Animal Science and Animal Husbandry, University of Pannonia, Georgikon Faculty, Deak F. u.,16, H8360 Keszthely, Hungary
| | - Carl G. Gahmberg
- Dept. of Bio- and Environmental Sciences, Haartman Institute, University of Helsinki, FI-00014, Finland
| | - Leif C. Andersson
- Dept. of Pathology, Haartman Institute, University of Helsinki, FI-00014, Finland
| | - Maria Hautaniemi
- Finnish Food Safety Authority (EVIRA), Research and Laboratory Department, Veterinary Virology Research Unit, Mustialankatu 3, FI 00790 Helsinki, Finland
| | - Balazs Kakasi
- Institute of Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary
| | - Merja Roivainen
- National Institute for Health and Welfare, Department of Virology, Mannerheimintie 166, 00300 Helsinki, Finland
| | - Mirja Salkinoja-Salonen
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| |
Collapse
|
26
|
Watkins DJ, Ferguson KK, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. Int J Hyg Environ Health 2014; 218:212-9. [PMID: 25435060 DOI: 10.1016/j.ijheh.2014.11.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 02/02/2023]
Abstract
Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all p<0.05). An IQR increase in triclosan (TCS) was associated with 31% higher serum concentrations of IL-6 (p=0.007), a pro-inflammatory cytokine. In contrast, IQR increases in BP-3 and B-PB were significantly associated with 16% and 18% lower CRP, a measure of systemic inflammation. Our findings suggest that exposure to BPA, select parabens, and TCS during pregnancy may be related to oxidative stress and inflammation, potential mechanisms by which exposure to these compounds may influence birth outcomes and other adverse health effects, but additional research is needed.
Collapse
Affiliation(s)
- Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Liza V Anzalota Del Toro
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | | | - José F Cordero
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| |
Collapse
|
27
|
Haraszthy VI, Sreenivasan PK, Zambon JJ. Community-level assessment of dental plaque bacteria susceptibility to triclosan over 19 years. BMC Oral Health 2014; 14:61. [PMID: 24889743 PMCID: PMC4075995 DOI: 10.1186/1472-6831-14-61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Triclosan is a broad-spectrum antimicrobial agent used in toothpaste to reduce dental plaque, gingivitis and oral malodor. This community-level assessment evaluated the susceptibility of dental plaque bacteria to triclosan in samples collected over 19 years. Methods A total of 155 dental plaque samples were collected at eleven different times over 19 years from 58 adults using 0.3% triclosan, 2% copolymer, 0.243% sodium fluoride toothpaste and from 97 adults using toothpaste without triclosan. These included samples from 21 subjects who used triclosan toothpaste for at least five years and samples from 20 control subjects. The samples were cultured on media containing 0, 7.5 or 25 μg/ml triclosan. Descriptive statistics and p values were computed and a linear regression model and the runs test were used to examine susceptibility over time. Results Growth inhibition averaged 99.451% (91.209 - 99.830%) on media containing 7.5 μg/ml triclosan and 99.989% (99.670 - 100%) on media containing 25 μg/ml triclosan. There was no change in microbial susceptibility to triclosan over time discernible by regression analysis or the runs test in plaque samples taken over 19 years including samples from subjects using a triclosan-containing dentifrice for at least five years. Conclusions This community-level assessment of microbial susceptibility to triclosan among supragingival plaque bacteria is consistent with the long-term safety of a 0.3% triclosan, 2% copolymer, 0.243% sodium fluoride dentifrice.
Collapse
Affiliation(s)
| | | | - Joseph J Zambon
- University at Buffalo, School of Dental Medicine, 222 Foster Hall, 3435 Main Street, Buffalo NY 14214-3008, USA.
| |
Collapse
|
28
|
Lo J, Lange D, Chew BH. Ureteral Stents and Foley Catheters-Associated Urinary Tract Infections: The Role of Coatings and Materials in Infection Prevention. Antibiotics (Basel) 2014; 3:87-97. [PMID: 27025736 PMCID: PMC4790349 DOI: 10.3390/antibiotics3010087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 01/20/2023] Open
Abstract
Urinary tract infections affect many patients, especially those who are admitted to hospital and receive a bladder catheter for drainage. Catheter associated urinary tract infections are some of the most common hospital infections and cost the health care system billions of dollars. Early removal is one of the mainstays of prevention as 100% of catheters become colonized. Patients with ureteral stents are also affected by infection and antibiotic therapy alone may not be the answer. We will review the current evidence on how to prevent infections of urinary biomaterials by using different coatings, new materials, and drug eluting technologies to decrease infection rates of ureteral stents and catheters.
Collapse
Affiliation(s)
- Joey Lo
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | - Dirk Lange
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | - Ben H Chew
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
29
|
Neiva KG, Calderon NL, Alonso TR, Panagakos F, Wallet SM. Type 1 diabetes-associated TLR responsiveness of oral epithelial cells. J Dent Res 2013; 93:169-74. [PMID: 24334435 DOI: 10.1177/0022034513516345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In type 1 diabetes (T1D), a Toll-like receptor (TLR)-hyper-inflammatory monocytic phenotype has been implicated as a mechanism of exacerbated tissue destruction. Other cells of the periodontium, including oral epithelial cells (OECs), express innate immune receptors, including TLRs. To delineate the TLR responses of OECs derived from T1D participants and to determine effects of the anti-inflammatory agent triclosan on the TLR-hyper-inflammatory phenotype, primary human OECs from individuals with T1D and diabetes-free individuals were stimulated with TLR ligands in the presence and/or absence of triclosan. The expression of pro-inflammatory cytokines and micro-RNAs (miRNAs) was evaluated. While the repertoire of TLRs expressed by OECs is similar to that expressed by macrophages (M), the relative amounts and ratios are significantly different. OECs demonstrate a TLR-response profile similar to that of M, yet attenuated. OECs have a unique response to P. gingivalis LPS, where miR146a and miR155 play a regulatory role in responsiveness. OECs from T1D participants are TLR-hyper-responsive, due to dysregulated induction of miR146a and miR155, which is abrogated by pre-treatment with triclosan. The aberrant TLR-activation of OECs in T1D has the potential to contribute to excessive soft- and hard-tissue destruction. Importantly, triclosan's anti-inflammatory property is effective in abrogating TLR-induced OEC hyperactivity.
Collapse
Affiliation(s)
- K G Neiva
- Department of Endodontics, College of Dentistry, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|