1
|
Bush X, Fratz-Berilla EJ, Kohnhorst CL, King R, Agarabi C, Powers DN, Trunfio N. Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality. Biotechnol Bioeng 2024. [PMID: 39462977 DOI: 10.1002/bit.28873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.
Collapse
Affiliation(s)
- Xin Bush
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| | - Erica J Fratz-Berilla
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| | - Casey L Kohnhorst
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research III, Silver Spring, Maryland, USA
| | - Roberta King
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Cyrus Agarabi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality Research, Immediate Office, Silver Spring, Maryland, USA
| | - David N Powers
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| | - Nicholas Trunfio
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Göritzer K, Strasser R, Ma JKC. Stability Engineering of Recombinant Secretory IgA. Int J Mol Sci 2024; 25:6856. [PMID: 38999969 PMCID: PMC11240955 DOI: 10.3390/ijms25136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Secretory IgA (SIgA) presents a promising avenue for mucosal immunotherapy yet faces challenges in expression, purification, and stability. IgA exists in two primary isotypes, IgA1 and IgA2, with IgA2 further subdivided into two common allotypes: IgA2m(1) and IgA2m(2). The major differences between IgA1 and IgA2 are located in the hinge region, with IgA1 featuring a 13-amino acid elongation that includes up to six O-glycosylation sites. Furthermore, the IgA2m(1) allotype lacks a covalent disulfide bond between heavy and light chains, which is present in IgA1 and IgA2m(2). While IgA1 demonstrates superior epitope binding and pathogen neutralization, IgA2 exhibits enhanced effector functions and stability against mucosal bacterial degradation. However, the noncovalent linkage in the IgA2m(1) allotype raises production and stability challenges. The introduction of distinct single mutations aims to facilitate an alternate disulfide bond formation to mitigate these challenges. We compare four different IgA2 versions with IgA1 to further develop secretory IgA antibodies against SARS-CoV-2 for topical delivery to mucosal surfaces. Our results indicate significantly improved expression levels and assembly efficacy of SIgA2 (P221R) in Nicotiana benthamiana. Moreover, engineered SIgA2 displays heightened thermal stability under physiological as well as acidic conditions and can be aerosolized using a mesh nebulizer. In summary, our study elucidates the benefits of stability-enhancing mutations in overcoming hurdles associated with SIgA expression and stability.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Julian K.-C. Ma
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| |
Collapse
|
3
|
Göritzer K, Groppelli E, Grünwald-Gruber C, Figl R, Ni F, Hu H, Li Y, Liu Y, Hu Q, Puligedda RD, Jung JW, Strasser R, Dessain S, Ma JKC. Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Mol Ther 2024; 32:689-703. [PMID: 38268188 PMCID: PMC10928148 DOI: 10.1016/j.ymthe.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Jae-Wan Jung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| |
Collapse
|
4
|
Moore CM, Ljungars A, Paul MJ, Dahl CH, Ahmadi S, Adams AC, Grav LM, Schoffelen S, Voldborg BG, Laustsen AH, Ma JKC. Characterisation of two snake toxin-targeting human monoclonal immunoglobulin G antibodies expressed in tobacco plants. Toxicon 2023:107225. [PMID: 37442299 DOI: 10.1016/j.toxicon.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Current snakebite antivenoms are based on polyclonal animal-derived antibodies, which can neutralize snake venom toxins in envenomed victims, but which are also associated with adverse reactions. Therefore, several efforts within antivenom research aim to explore the utility of recombinant monoclonal antibodies, such as human immunoglobulin G (IgG) antibodies, which are routinely used in the clinic for other indications. In this study, the feasibility of using tobacco plants as bioreactors for expressing full-length human monoclonal IgG antibodies against snake toxins was investigated. We show that the plant-produced antibodies perform similarly to their mammalian cell-expressed equivalents in terms of in vitro binding. Complete neutralization was achieved by both the plant and mammalian cell-produced anti-α-cobratoxin antibody. The feasibility of using plant-based expression systems may potentially make it easier for laboratories in resource-poor settings to work with human monoclonal IgG antibodies.
Collapse
Affiliation(s)
- Catherine M Moore
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, United Kingdom.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthew J Paul
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Camilla Holst Dahl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Christina Adams
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| |
Collapse
|
5
|
Ridgley LA, Falci Finardi N, Gengenbach BB, Opdensteinen P, Croxford Z, Ma JKC, Bodman-Smith M, Buyel JF, Teh AYH. Killer to cure: Expression and production costs calculation of tobacco plant-made cancer-immune checkpoint inhibitors. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1254-1269. [PMID: 36811226 DOI: 10.1111/pbi.14034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have achieved huge clinical success. However, many still have limited response rates, and are prohibitively costly. There is a need for effective and affordable ICIs, as well as local manufacturing capacity to improve accessibility, especially to low-to-middle income countries (LMICs). Here, we have successfully expressed three key ICIs (anti-PD-1 Nivolumab, anti-NKG2A Monalizumab, and anti-LAG-3 Relatimab) transiently in Nicotiana benthamiana and Nicotiana tabacum plants. The ICIs were expressed with a combination of different Fc regions and glycosylation profiles. They were characterized in terms of protein accumulation levels, target cell binding, binding to human neonatal Fc receptors (hFcRn), human complement component C1q (hC1q) and various Fcγ receptors, as well as protein recovery during purification at 100 mg- and kg-scale. It was found that all ICIs bound to the expected target cells. Furthermore, the recovery during purification, as well as Fcγ receptor binding, can be altered depending on the Fc region used and the glycosylation profiles. This opens the possibility of using these two parameters to fine-tune the ICIs for desired effector functions. A scenario-based production cost model was also generated based on two production scenarios in hypothetical high- and low-income countries. We have shown that the product accumulation and recovery of plant production platforms were as competitive as mammalian cell-based platforms. This highlights the potential of plants to deliver ICIs that are more affordable and accessible to a widespread market, including LMICs.
Collapse
Affiliation(s)
- Laura A Ridgley
- Institute for Infection and Immunity, St. George's, University of London, London, UK
- Institute for Cancer Vaccines and Immunotherapy, London, UK
| | - Nicole Falci Finardi
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | | | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Zack Croxford
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Mark Bodman-Smith
- Institute for Infection and Immunity, St. George's, University of London, London, UK
- Institute for Cancer Vaccines and Immunotherapy, London, UK
| | - Johannes F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Audrey Y-H Teh
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| |
Collapse
|
6
|
Grandits M, Grünwald-Gruber C, Gastine S, Standing JF, Reljic R, Teh AYH, Ma JKC. Improving the efficacy of plant-made anti-HIV monoclonal antibodies for clinical use. FRONTIERS IN PLANT SCIENCE 2023; 14:1126470. [PMID: 36923134 PMCID: PMC10009187 DOI: 10.3389/fpls.2023.1126470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Introduction Broadly neutralising antibodies are promising candidates for preventing and treating Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS), as an alternative to or in combination with antiretroviral therapy (ART). These mAbs bind to sites on the virus essential for virus attachment and entry, thereby inhibiting entry into the host cell. However, the cost and availability of monoclonal antibodies, especially combinations of antibodies, hampers implementation of anti-HIV bNAb therapies in low- to middle- income countries (LMICs) where HIV-1 prevalence is highest. Methods We have produced three HIV broadly neutralizing antibodies (bNAbs), 10-1074, VRC01 and 3BNC117 in the Nicotiana benthamiana transient expression system. The impact of specific modifications to enhance potency and efficacy were assessed. To prolong half-life and increase bioavailability, a M252Y/S254T/T256E (YTE) or M428L/N434S (LS) mutation was introduced. To increase antibody dependent cellular cytotoxicity (ADCC), we expressed an afucosylated version of each antibody using a glycoengineered plant line. Results The majority of bNAbs and their variants could be expressed at yields of up to 47 mg/kg. Neither the expression system nor the modifications impacted the neutralization potential of the bNAbs. Afucosylated bNAbs exhibit enhanced ability to bind to FcγRIIIa and trigger ADCC, regardless of the presence of Fc amino acid mutations. Lastly, we demonstrated that Fc-modified variants expressed in plants show enhanced binding to FcRn, which results in a favourable in vivo pharmacokinetic profile compared to their unmodified counterparts. Conclusion Tobacco plants are suitable expression hosts for anti-HIV bNAbs with increased efficacy and an improved pharmacokinetic profile.
Collapse
Affiliation(s)
- Melanie Grandits
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Silke Gastine
- Infection, Immunity and Inflammation Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajko Reljic
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Audrey Y-H. Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| |
Collapse
|
7
|
Göritzer K, Grandits M, Grünwald-Gruber C, Figl R, Mercx S, Navarre C, Ma JKC, Teh AYH. Engineering the N-glycosylation pathway of Nicotiana tabacum for molecular pharming using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2022; 13:1003065. [PMID: 36161010 PMCID: PMC9493077 DOI: 10.3389/fpls.2022.1003065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 05/31/2023]
Abstract
Molecular pharming in plants offers exciting possibilities to address global access to modern biologics. However, differences in the N-glycosylation pathway including the presence of β(1,2)-xylose and core α(1,3)-fucose can affect activity, potency and immunogenicity of plant-derived proteins. Successful glycoengineering approaches toward human-like structures with no changes in plant phenotype, growth, or recombinant protein expression levels have been reported for Arabidopsis thaliana and Nicotiana benthamiana. Such engineering of N-glycosylation would also be desirable for Nicotiana tabacum, which remains the crop of choice for recombinant protein pharmaceuticals required at massive scale and for manufacturing technology transfer to less developed countries. Here, we generated N. tabacum cv. SR-1 β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT) knockout lines using CRISPR/Cas9 multiplex genome editing, targeting three conserved regions of the four FucT and two XylT genes. These two enzymes are responsible for generating non-human N-glycan structures. We confirmed full functional knockout of transformants by immunoblotting of total soluble protein by antibodies recognizing β(1,2)-xylose and core α(1,3)-fucose, mass spectrometry analysis of recombinantly produced VRC01, a broadly neutralizing anti-HIV-1 hIgG1 antibody, and Sanger sequencing of targeted regions of the putative transformants. These data represent an important step toward establishing Nicotiana tabacum as a biologics platform for Global Health.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Melanie Grandits
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sébastien Mercx
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Julian K-C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Audrey Y-H. Teh
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| |
Collapse
|
8
|
Pinneh EC, van Dolleweerd CJ, Göritzer K, Drake PMW, Ma JK, Teh AY. Multiple gene expression in plants using MIDAS-P, a versatile type II restriction-based modular expression vector. Biotechnol Bioeng 2022; 119:1660-1672. [PMID: 35238400 PMCID: PMC9313558 DOI: 10.1002/bit.28073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
MIDAS-P is a plant expression vector with blue/white screening for iterative cloning of multiple, tandemly arranged transcription units (TUs). We have used the MIDAS-P system to investigate the expression of up to five genes encoding three anti-HIV proteins and the reporter gene DsRed in Nicotiana benthamiana plants. The anti-HIV cocktail was made up of a broadly neutralizing monoclonal antibody (VRC01), a lectin (Griffithsin), and a single-chain camelid nanobody (J3-VHH). Constructs containing different combinations of 3, 4, or 5 TUs encoding different components of the anti-HIV cocktail were assembled. Messenger RNA (mRNA) levels of the genes of interest decreased beyond two TUs. Coexpression of the RNA silencing suppressor P19 dramatically increased the overall mRNA and protein expression levels of each component. The position of individual TUs in 3 TU constructs did not affect mRNA or protein expression levels. However, their expression dropped to non-detectable levels in constructs with four or more TUs each containing the same promoter and terminator elements, with the exception of DsRed at the first or last position in 5 TU constructs. This drop was alleviated by co-expression of P19. In short, the MIDAS-P system is suitable for the simultaneous expression of multiple proteins in one construct.
Collapse
Affiliation(s)
- Elizabeth C. Pinneh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Kathrin Göritzer
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Pascal M. W. Drake
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
9
|
Szeto TH, Drake PMW, Teh AYH, Falci Finardi N, Clegg AG, Paul MJ, Reljic R, Ma JKC. Production of Recombinant Proteins in Transgenic Tobacco Plants. Methods Mol Biol 2022; 2480:17-48. [PMID: 35616855 DOI: 10.1007/978-1-0716-2241-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nicotiana tabacum (the tobacco plant ) has numerous advantages for molecular farming, including rapid growth, large biomass and the possibility of both cross- and self-fertilization. In addition, genetic transformation and tissue culture protocols for regeneration of transgenic plants are well-established. Here, we describe the production of transgenic tobacco using Agrobacterium tumefaciens and the analysis of recombinant proteins, either in crude plant extracts or after purification, by enzyme-linked immunosorbent assays, sodium dodecyl sulfate polyacrylamide gel electrophoresis with western blotting and surface plasmon resonance.
Collapse
Affiliation(s)
- Tim H Szeto
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Pascal M W Drake
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK.
| | - Audrey Y-H Teh
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Nicole Falci Finardi
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Ashleigh G Clegg
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Mathew J Paul
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Rajko Reljic
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, Institute for Infection and Immunity, London, UK
| |
Collapse
|
10
|
Singh AA, Pillay P, Kwezi L, Tsekoa TL. A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:180. [PMID: 34878628 PMCID: PMC8655037 DOI: 10.1186/s43141-021-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient production of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that gender inequalities remain a major driver of the epidemic.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Priyen Pillay
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Tsepo Lebiletsa Tsekoa
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa.
| |
Collapse
|
11
|
Jugler C, Sun H, Chen Q. SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody. Vaccines (Basel) 2021; 9:vaccines9111365. [PMID: 34835296 PMCID: PMC8623585 DOI: 10.3390/vaccines9111365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has caused more than 4.5 million deaths worldwide. Severe and fatal cases of COVID-19 are often associated with increased proinflammatory cytokine levels including interleukin 6 (IL-6) and acute respiratory distress syndrome. In this study, we explored the feasibility of using plants to produce an anti-IL-6 receptor (IL-6R) monoclonal antibody (mAb) and examined its utility in reducing IL-6 signaling in an in vitro model, which simulates IL-6 induction during SARS-CoV-2 infection. The anti-IL6R mAb (IL6RmAb) was quickly expressed and correctly assembled in Nicotiana benthamiana leaves. Plant-produced IL6RmAb (pIL6RmAb) could be enriched to homogeneity by a simple purification scheme. Furthermore, pIL6RmAb was shown to effectively inhibit IL-6 signaling in a cell-based model system. Notably, pIL6RmAb also suppressed IL-6 signaling that was induced by the exposure of human peripheral blood mononuclear cells to the spike protein of SARS-CoV-2. This is the first report of a plant-made anti-IL-6R mAb and its activity against SARS-CoV-2-related cytokine signaling. This study demonstrates the capacity of plants for producing functionally active mAbs that block cytokine signaling and implies their potential efficacy to curb cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (C.J.); (H.S.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Haiyan Sun
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (C.J.); (H.S.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (C.J.); (H.S.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-8110; Fax: +1-480-727-7615
| |
Collapse
|
12
|
Anand SP, Ding S, Tolbert WD, Prévost J, Richard J, Gil HM, Gendron-Lepage G, Cheung WF, Wang H, Pastora R, Saxena H, Wakarchuk W, Medjahed H, Wines BD, Hogarth M, Shaw GM, Martin MA, Burton DR, Hangartner L, Evans DT, Pazgier M, Cossar D, McLean MD, Finzi A. Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. J Virol 2021; 95:e0079621. [PMID: 34232070 PMCID: PMC8387047 DOI: 10.1128/jvi.00796-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Hirak Saxena
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malcom A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, Massachusetts, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Doug Cossar
- PlantForm Corporation, Toronto, Ontario, Canada
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Moore CM, Grandits M, Grünwald-Gruber C, Altmann F, Kotouckova M, Teh AYH, Ma JKC. Characterisation of a highly potent and near pan-neutralising anti-HIV monoclonal antibody expressed in tobacco plants. Retrovirology 2021; 18:17. [PMID: 34183026 PMCID: PMC8240387 DOI: 10.1186/s12977-021-00560-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND HIV remains one of the most important health issues worldwide, with almost 40 million people living with HIV. Although patients develop antibodies against the virus, its high mutation rate allows evasion of immune responses. Some patients, however, produce antibodies that are able to bind to, and neutralise different strains of HIV. One such 'broadly neutralising' antibody is 'N6'. Identified in 2016, N6 can neutralise 98% of HIV-1 isolates with a median IC50 of 0.066 µg/mL. This neutralisation breadth makes N6 a very promising therapeutic candidate. RESULTS N6 was expressed in a glycoengineered line of N. benthamiana plants (pN6) and compared to the mammalian cell-expressed equivalent (mN6). Expression at 49 mg/kg (fresh leaf tissue) was achieved in plants, although extraction and purification are more challenging than for most plant-expressed antibodies. N-glycoanalysis demonstrated the absence of xylosylation and a reduction in α(1,3)-fucosylation that are typically found in plant glycoproteins. The N6 light chain contains a potential N-glycosylation site, which was modified and displayed more α(1,3)-fucose than the heavy chain. The binding kinetics of pN6 and mN6, measured by surface plasmon resonance, were similar for HIV gp120. pN6 had a tenfold higher affinity for FcγRIIIa, which was reflected in an antibody-dependent cellular cytotoxicity assay, where pN6 induced a more potent response from effector cells than that of mN6. pN6 demonstrated the same potency and breadth of neutralisation as mN6, against a panel of HIV strains. CONCLUSIONS The successful expression of N6 in tobacco supports the prospect of developing a low-cost, low-tech production platform for a monoclonal antibody cocktail to control HIV in low-to middle income countries.
Collapse
Affiliation(s)
- Catherine M. Moore
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Melanie Grandits
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Maria Kotouckova
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Audrey Y.-H. Teh
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Julian K.-C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| |
Collapse
|
14
|
Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, Budi Purwono P, Rattanapisit K, Shanmugaraj B, Smith DR, Borwornpinyo S, Thitithanyanont A, Phoolcharoen W. Development of Plant-Produced Recombinant ACE2-Fc Fusion Protein as a Potential Therapeutic Agent Against SARS-CoV-2. FRONTIERS IN PLANT SCIENCE 2021; 11:604663. [PMID: 33584747 PMCID: PMC7874119 DOI: 10.3389/fpls.2020.604663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease (COVID-19) which has recently emerged as a potential threat to global public health. SARS-CoV-2 is the third known human coronavirus that has huge impact on the human population after SARS-CoV and MERS-CoV. Although some vaccines and therapeutic drugs are currently in clinical trials, none of them are approved for commercial use yet. As with SARS-CoV, SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the cell entry receptor to enter into the host cell. In this study, we have transiently produced human ACE2 fused with the Fc region of human IgG1 in Nicotiana benthamiana and the in vitro neutralization efficacy of the plant-produced ACE2-Fc fusion protein was assessed. The recombinant ACE2-Fc fusion protein was expressed in N. benthamiana at 100 μg/g leaf fresh weight on day 6 post-infiltration. The recombinant fusion protein showed potent binding to receptor binding domain (RBD) of SARS-CoV-2. Importantly, the plant-produced fusion protein exhibited potent anti-SARS-CoV-2 activity in vitro. Treatment with ACE2-Fc fusion protein after viral infection dramatically inhibit SARS-CoV-2 infectivity in Vero cells with an IC50 value of 0.84 μg/ml. Moreover, treatment with ACE2-Fc fusion protein at the pre-entry stage suppressed SARS-CoV-2 infection with an IC50 of 94.66 μg/ml. These findings put a spotlight on the plant-produced ACE2-Fc fusion protein as a potential therapeutic candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Konlavat Siriwattananon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Priyo Budi Purwono
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Duncan R. Smith
- Institute of Molecular Bioscience, Mahidol University, Salaya, Thailand
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Teh AYH, Cavacini L, Hu Y, Kumru OS, Xiong J, Bolick DT, Joshi SB, Grünwald-Gruber C, Altmann F, Klempner M, Guerrant RL, Volkin DB, Wang Y, Ma JKC. Investigation of a monoclonal antibody against enterotoxigenic Escherichia coli, expressed as secretory IgA1 and IgA2 in plants. Gut Microbes 2021; 13:1-14. [PMID: 33439092 PMCID: PMC7833773 DOI: 10.1080/19490976.2020.1859813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
Passive immunization with antibodies is a promising approach against enterotoxigenic Escherichia coli diarrhea, a prevalent disease in LMICs. The objective of this study was to investigate expression of a monoclonal anti-ETEC CfaE secretory IgA antibody in N. benthamiana plants, with a view to facilitating access to ETEC passive immunotherapy. SIgA1 and SIgA2 forms of mAb 68-81 were produced by co-expressing the light and engineered heavy chains with J chain and secretory component in N. benthamiana. Antibody expression and assembly were compared with CHO-derived antibodies by SDS-PAGE, western blotting, size-exclusion chromatography and LC-MS peptide mapping. N-linked glycosylation was assessed by rapid fluorescence/mass spectrometry and LC-ESI-MS. Susceptibility to gastric digestion was assessed in an in vitro model. Antibody function was compared for antigen binding, a Caco-2 cell-based ETEC adhesion assay, an ETEC hemagglutination inhibition assay and a murine in vivo challenge study. SIgA1 assembly appeared superior to SIgA2 in plants. Both sub-classes exhibited resistance to degradation by simulated gastric fluid, comparable to CHO-produced 68-61 SIgA1. The plant expressed SIgAs had more homogeneous N-glycosylation than CHO-derived SIgAs, but no alteration of in vitro functional activity was observed, including antibodies expressed in a plant line engineered for mammalian-like N glycosylation. The plant-derived SIgA2 mAb demonstrated protection against diarrhea in a murine infection model. Although antibody yield and purification need to be optimized, anti-ETEC SIgA antibodies produced in a low-cost plant platform are functionally equivalent to CHO antibodies, and provide promise for passive immunotherapy in LMICs.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Antibodies, Bacterial/therapeutic use
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Bacterial Adhesion/drug effects
- Caco-2 Cells
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/therapy
- Gastric Acid/metabolism
- Glycosylation
- Humans
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin A, Secretory/therapeutic use
- Immunotherapy
- Mice
- Plants, Genetically Modified
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Audrey Y-H Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Yue Hu
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ozan S. Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Jian Xiong
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David T. Bolick
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sangeeta B. Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Clemens Grünwald-Gruber
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David B. Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| |
Collapse
|
17
|
Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono PB, Siriwattananon K, Khorattanakulchai N, Hanittinan O, Boonyayothin W, Thitithanyanont A, Smith DR, Phoolcharoen W. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci Rep 2020. [PMID: 33077899 DOI: 10.21203/rs.3.rs-27160/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the ongoing global outbreak of coronavirus disease (COVID-19) which is a significant threat to global public health. The rapid spread of COVID-19 necessitates the development of cost-effective technology platforms for the production of vaccines, drugs, and protein reagents for appropriate disease diagnosis and treatment. In this study, we explored the possibility of producing the receptor binding domain (RBD) of SARS-CoV-2 and an anti-SARS-CoV monoclonal antibody (mAb) CR3022 in Nicotiana benthamiana. Both RBD and mAb CR3022 were transiently produced with the highest expression level of 8 μg/g and 130 μg/g leaf fresh weight respectively at 3 days post-infiltration. The plant-produced RBD exhibited specific binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, the plant-produced mAb CR3022 binds to SARS-CoV-2, but fails to neutralize the virus in vitro. This is the first report showing the production of anti-SARS-CoV-2 RBD and mAb CR3022 in plants. Overall these findings provide a proof-of-concept for using plants as an expression system for the production of SARS-CoV-2 antigens and antibodies or similar other diagnostic reagents against SARS-CoV-2 rapidly, especially during epidemic or pandemic situation.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Betacoronavirus/metabolism
- COVID-19
- Chlorocebus aethiops
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Humans
- Neutralization Tests
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/metabolism
- Plant Leaves/metabolism
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Domains/immunology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Tobacco/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Priyo Budi Purwono
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Konlavat Siriwattananon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Oranicha Hanittinan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanuttha Boonyayothin
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
18
|
Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono PB, Siriwattananon K, Khorattanakulchai N, Hanittinan O, Boonyayothin W, Thitithanyanont A, Smith DR, Phoolcharoen W. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci Rep 2020; 10:17698. [PMID: 33077899 PMCID: PMC7573609 DOI: 10.1038/s41598-020-74904-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the ongoing global outbreak of coronavirus disease (COVID-19) which is a significant threat to global public health. The rapid spread of COVID-19 necessitates the development of cost-effective technology platforms for the production of vaccines, drugs, and protein reagents for appropriate disease diagnosis and treatment. In this study, we explored the possibility of producing the receptor binding domain (RBD) of SARS-CoV-2 and an anti-SARS-CoV monoclonal antibody (mAb) CR3022 in Nicotiana benthamiana. Both RBD and mAb CR3022 were transiently produced with the highest expression level of 8 μg/g and 130 μg/g leaf fresh weight respectively at 3 days post-infiltration. The plant-produced RBD exhibited specific binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, the plant-produced mAb CR3022 binds to SARS-CoV-2, but fails to neutralize the virus in vitro. This is the first report showing the production of anti-SARS-CoV-2 RBD and mAb CR3022 in plants. Overall these findings provide a proof-of-concept for using plants as an expression system for the production of SARS-CoV-2 antigens and antibodies or similar other diagnostic reagents against SARS-CoV-2 rapidly, especially during epidemic or pandemic situation.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Betacoronavirus/metabolism
- COVID-19
- Chlorocebus aethiops
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Humans
- Neutralization Tests
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/metabolism
- Plant Leaves/metabolism
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Domains/immunology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Nicotiana/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Priyo Budi Purwono
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Konlavat Siriwattananon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Oranicha Hanittinan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanuttha Boonyayothin
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Highly synergistic drug combination prevents vaginal HIV infection in humanized mice. Sci Rep 2020; 10:12995. [PMID: 32747682 PMCID: PMC7400648 DOI: 10.1038/s41598-020-69937-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 epidemic remains an urgent global health concern. Young women are disproportionately at risk of acquiring the virus. A range of highly effective, female-controlled, discrete vaginal products therefore is needed to help curb the epidemic. Oral tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are effective in HIV-1 pre-exposure prophylaxis (PrEP) and form a promising basis for a vaginal product. Here, we evaluate TDF and FTC in combination with the broadly neutralizing antibody VRC01-N using a highly reproducible humanized mouse model. The agents were vaginally dosed individually and in combination, and the efficacy of HIV-1 prevention was analyzed using the established, rigorous median-effect model. Surprisingly, the triple combination showed a high degree of synergism, unprecedented for in vivo HIV-1 PrEP, leading to a possible fivefold dose reduction for some of the agents. Vaginal administration of the TDF-FTC-VRC01-N combination holds significant promise for HIV-1 PrEP.
Collapse
|
20
|
Menary J, Amato M, Sanchez AC, Hobbs M, Pacho A, Fuller SS. New Hope for a "Cursed" Crop? Understanding Stakeholder Attitudes to Plant Molecular Farming With Modified Tobacco in Europe. FRONTIERS IN PLANT SCIENCE 2020; 11:791. [PMID: 32595677 PMCID: PMC7304234 DOI: 10.3389/fpls.2020.00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Plant molecular farming (PMF) with tobacco could provide a sustainable and cheap platform for the production of high-value proteins for medical use. It could also offer European tobacco farmers an alternative, healthful end use for their crop. New plant breeding techniques (NPBTs) offer a means of quickly and precisely optimizing molecular farming platforms for this purpose. However, there has been little empirical research focussing on the barriers and facilitators of these technologies in the agricultural sphere. Here, we explore key stakeholder perceptions toward this combination of technologies, exploring their understanding of risk and opportunity. We interviewed N = 24 key stakeholders - tobacco farmers, agronomists, policymakers, and researchers - in three tobacco-growing areas of Spain and Italy. Our findings demonstrate these stakeholders have a favorable attitude toward PMF with tobacco due to its beneficial medical purpose and the opportunity it provides farmers to continue growing tobacco in a declining European market. Tobacco producers also reported favorable views toward NPBTs, though for some this was contingent on their use for non-food crops like tobacco. Most stakeholders' concerns are economic in nature, such as potential profitability and demands for new agronomic practices or infrastructure. Tobacco producer associations were thought to be important facilitators for future PMF scale-up. The attitude toward these technologies by smoking tobacco companies is, however, unknown and constitutes a potential risk to the development of PMF.
Collapse
Affiliation(s)
- Jonathan Menary
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Mario Amato
- Department of Political Science, University of Naples Federico II, Naples, Italy
| | - Andrés Cid Sanchez
- Department of Microbiology, Centro Technológico Agroalimentario Extremadura (CTAEX), Badajoz, Spain
| | - Matthew Hobbs
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Agata Pacho
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Sebastian S. Fuller
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
21
|
Abd-Aziz N, Tan BC, Rejab NA, Othman RY, Khalid N. A New Plant Expression System for Producing Pharmaceutical Proteins. Mol Biotechnol 2020; 62:240-251. [PMID: 32108286 DOI: 10.1007/s12033-020-00242-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.
Collapse
Affiliation(s)
- Nazrin Abd-Aziz
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Singh AA, Pooe O, Kwezi L, Lotter-Stark T, Stoychev SH, Alexandra K, Gerber I, Bhiman JN, Vorster J, Pauly M, Zeitlin L, Whaley K, Mach L, Steinkellner H, Morris L, Tsekoa TL, Chikwamba R. Plant-based production of highly potent anti-HIV antibodies with engineered posttranslational modifications. Sci Rep 2020; 10:6201. [PMID: 32277089 PMCID: PMC7148297 DOI: 10.1038/s41598-020-63052-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
Broadly neutralising antibodies (bNAbs) against human immunodeficiency virus type 1 (HIV-1), such as CAP256-VRC26 are being developed for HIV prevention and treatment. These Abs carry a unique but crucial post-translational modification (PTM), namely O-sulfated tyrosine in the heavy chain complementarity determining region (CDR) H3 loop. Several studies have demonstrated that plants are suitable hosts for the generation of highly active anti-HIV-1 antibodies with the potential to engineer PTMs. Here we report the expression and characterisation of CAP256-VRC26 bNAbs with posttranslational modifications (PTM). Two variants, CAP256-VRC26 (08 and 09) were expressed in glycoengineered Nicotiana benthamiana plants. By in planta co-expression of tyrosyl protein sulfotransferase 1, we installed O-sulfated tyrosine in CDR H3 of both bNAbs. These exhibited similar structural folding to the mammalian cell produced bNAbs, but non-sulfated versions showed loss of neutralisation breadth and potency. In contrast, tyrosine sulfated versions displayed equivalent neutralising activity to mammalian produced antibodies retaining exceptional potency against some subtype C viruses. Together, the data demonstrate the enormous potential of plant-based systems for multiple posttranslational engineering and production of fully active bNAbs for application in passive immunisation or as an alternative for current HIV/AIDS antiretroviral therapy regimens.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ofentse Pooe
- Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Therese Lotter-Stark
- Department of Production Animal Studies, University of Pretoria, Pretoria, South Africa
| | - Stoyan H Stoychev
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Kabamba Alexandra
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Isak Gerber
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Jinal N Bhiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael Pauly
- Mapp Biopharmaceutical, San Diego, California, United States
| | - Larry Zeitlin
- Mapp Biopharmaceutical, San Diego, California, United States
| | - Kevin Whaley
- Mapp Biopharmaceutical, San Diego, California, United States
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Tsepo Lebiletsa Tsekoa
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Rachel Chikwamba
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
23
|
Menary J, Hobbs M, Mesquita de Albuquerque S, Pacho A, Drake PMW, Prendiville A, Ma JKC, Fuller SS. Shotguns vs Lasers: Identifying barriers and facilitators to scaling-up plant molecular farming for high-value health products. PLoS One 2020; 15:e0229952. [PMID: 32196508 PMCID: PMC7083274 DOI: 10.1371/journal.pone.0229952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plant molecular farming (PMF) is a convenient and cost-effective way to produce high-value recombinant proteins that can be used in the production of a range of health products, from pharmaceutical therapeutics to cosmetic products. New plant breeding techniques (NPBTs) provide a means to enhance PMF systems more quickly and with greater precision than ever before. However, the feasibility, regulatory standing and social acceptability of both PMF and NPBTs are in question. This paper explores the perceptions of key stakeholders on two European Union (EU) Horizon 2020 programmes-Pharma-Factory and Newcotiana-towards the barriers and facilitators of PMF and NPBTs in Europe. One-on-one qualitative interviews were undertaken with N = 20 individuals involved in one or both of the two projects at 16 institutions in seven countries (Belgium, France, Germany, Italy, Israel, Spain and the UK). The findings indicate that the current EU regulatory environment and the perception of the public towards biotechnology are seen as the main barriers to scaling-up PMF and NPBTs. Competition from existing systems and the lack of plant-specific regulations likewise present challenges for PMF developing beyond its current niche. However, respondents felt that the communication of the benefits and purpose of NPBT PMF could provide a platform for improving the social acceptance of genetic modification. The importance of the media in this process was highlighted. This article also uses the multi-level perspective to explore the ways in which NPBTs are being legitimated by interested parties and the systemic factors that have shaped and are continuing to shape the development of PMF in Europe.
Collapse
Affiliation(s)
- Jonathan Menary
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Matthew Hobbs
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | | | - Agata Pacho
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Pascal M. W. Drake
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Alison Prendiville
- London College of Communication, University of the Arts, London, United Kingdom
| | - Julian K-C. Ma
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Sebastian S. Fuller
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| |
Collapse
|
24
|
Puchol Tarazona AA, Lobner E, Taubenschmid Y, Paireder M, Torres Acosta JA, Göritzer K, Steinkellner H, Mach L. Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Anti-HIV-1 Antibodies 2F5, 2G12, and PG9 in Plants. Biotechnol J 2020; 15:e1900308. [PMID: 31657528 DOI: 10.1002/biot.201900308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) to human immunodeficiency virus type 1 (HIV-1) hold great promise for immunoprophylaxis and the suppression of viremia in HIV-positive individuals. Several studies have demonstrated that plants as Nicotiana benthamiana are suitable hosts for the generation of protective anti-HIV-1 antibodies. However, the production of the anti-HIV-1 bNAbs 2F5 and PG9 in N. benthamiana is associated with their processing by apoplastic proteases in the complementarity-determining-region (CDR) H3 loops of the heavy chains. Here, it is shown that apoplastic proteases can also cleave the CDR H3 loop of the bNAb 2G12 when the unusual domain exchange between its heavy chains is prevented by the replacement of Ile19 with Arg. It is demonstrated that CDR H3 proteolysis leads to a strong reduction of the antigen-binding potencies of 2F5, PG9, and 2G12-I19R. Inhibitor profiling experiments indicate that different subtilisin-like serine proteases account for bNAb fragmentation in the apoplast. Differential scanning calorimetry experiments corroborate that the antigen-binding domains of wild-type 2G12 and 4E10 are more compact than those of proteolysis-sensitive antibodies, thus shielding their CDR H3 regions from proteolytic attack. This suggests that the extent of proteolytic inactivation of bNAbs in plants is primarily dictated by the steric accessibility of their CDR H3 loops.
Collapse
Affiliation(s)
- Alejandro A Puchol Tarazona
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190, Vienna, Austria
| | - Yvonne Taubenschmid
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Melanie Paireder
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Juan A Torres Acosta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
25
|
Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020; 9:E148. [PMID: 32098302 PMCID: PMC7168632 DOI: 10.3390/pathogens9020148] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Novel Coronavirus (2019-nCoV) is an emerging pathogen that was first identified in Wuhan, China in late December 2019. This virus is responsible for the ongoing outbreak that causes severe respiratory illness and pneumonia-like infection in humans. Due to the increasing number of cases in China and outside China, the WHO declared coronavirus as a global health emergency. Nearly 35,000 cases were reported and at least 24 other countries or territories have reported coronavirus cases as early on as February. Inter-human transmission was reported in a few countries, including the United States. Neither an effective anti-viral nor a vaccine is currently available to treat this infection. As the virus is a newly emerging pathogen, many questions remain unanswered regarding the virus's reservoirs, pathogenesis, transmissibility, and much more is unknown. The collaborative efforts of researchers are needed to fill the knowledge gaps about this new virus, to develop the proper diagnostic tools, and effective treatment to combat this infection. Recent advancements in plant biotechnology proved that plants have the ability to produce vaccines or biopharmaceuticals rapidly in a short time. In this review, the outbreak of 2019-nCoV in China, the need for rapid vaccine development, and the potential of a plant system for biopharmaceutical development are discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Malla
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranyoo Phoolcharoen
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
26
|
Temporini C, Colombo R, Calleri E, Tengattini S, Rinaldi F, Massolini G. Chromatographic tools for plant-derived recombinant antibodies purification and characterization. J Pharm Biomed Anal 2020; 179:112920. [DOI: 10.1016/j.jpba.2019.112920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023]
|
27
|
Stelter S, Paul MJ, Teh AY, Grandits M, Altmann F, Vanier J, Bardor M, Castilho A, Allen RL, Ma JK. Engineering the interactions between a plant-produced HIV antibody and human Fc receptors. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:402-414. [PMID: 31301102 PMCID: PMC6953194 DOI: 10.1111/pbi.13207] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 05/03/2023]
Abstract
Plants can provide a cost-effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3-fucose and β1,2-xylose residues and glycans extended with terminal β1,4-galactose. Surface plasmon resonance-based assays were established for kinetic/affinity evaluation of antibody-FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant-made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell-derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant-produced antibodies.
Collapse
Affiliation(s)
- Szymon Stelter
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
- Present address:
Crescendo Biologics LtdMeditrina Building 260Babraham Research CampusCambridgeCB22 3ATUK
| | - Mathew J. Paul
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Audrey Y.‐H. Teh
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Melanie Grandits
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Friedrich Altmann
- Division of BiochemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Jessica Vanier
- UNIROUENLaboratoire Glycobiologie et Matrice Extracellulaire Végétale EANormandie UnivRouenFrance
| | - Muriel Bardor
- UNIROUENLaboratoire Glycobiologie et Matrice Extracellulaire Végétale EANormandie UnivRouenFrance
- Institut Universitaire de France (I.U.F.)Paris Cedex 05France
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Rachel Louise Allen
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Hotung Molecular Immunology UnitInstitute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
28
|
Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, Thitithanyanont A, Phoolcharoen W. Monoclonal Antibodies B38 and H4 Produced in Nicotiana benthamiana Neutralize SARS-CoV-2 in vitro. FRONTIERS IN PLANT SCIENCE 2020; 11:589995. [PMID: 33329653 PMCID: PMC7728718 DOI: 10.3389/fpls.2020.589995] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) outbreak caused by novel zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially reported in Wuhan city, Hubei Province of China, in late December 2019. The rapid global spread of the virus calls for the urgent development of vaccines or therapeutics for human applications to combat the coronavirus infection. Monoclonal antibodies (mAbs) have been utilized as effective therapeutics for treating various infectious diseases. In the present study, we evaluated the feasibility of plant expression system for the rapid production of recently identified therapeutically suitable human anti-SARS-CoV-2 mAbs B38 and H4. Transient co-expression of heavy-chain and light-chain sequences of both the antibodies by using plant expression geminiviral vector resulted in rapid accumulation of assembled mAbs in Nicotiana benthamiana leaves within 4 days post-infiltration. Furthermore, both the mAbs were purified from the plant crude extracts with single-step protein A affinity column chromatography. The expression level of mAb B38 and H4 was estimated to be 4 and 35 μg/g leaf fresh weight, respectively. Both plant-produced mAbs demonstrated specific binding to receptor binding domain (RBD) of SARS-CoV-2 and exhibited efficient virus neutralization activity in vitro. To the best of our knowledge, this is the first report of functional anti-SARS-CoV-2 mAbs produced in plants, which demonstrates the ability of using a plant expression system as a suitable platform for the production of effective, safe, and affordable SARS-CoV-2 mAbs to fight against the spread of this highly infectious pathogen.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kaewta Rattanapisit
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Waranyoo Phoolcharoen,
| |
Collapse
|
29
|
Habibi P, Daniell H, Soccol CR, Grossi‐de‐Sa MF. The potential of plant systems to break the HIV-TB link. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1868-1891. [PMID: 30908823 PMCID: PMC6737023 DOI: 10.1111/pbi.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaPRBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasíliaBrasíliaDFBrazil
- Post Graduation Program in BiotechnologyUniversity PotiguarNatalRNBrazil
| |
Collapse
|
30
|
Phoolcharoen W, Banyard AC, Prehaud C, Selden D, Wu G, Birch CPD, Szeto TH, Lafon M, Fooks AR, Ma JKC. In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity. Vaccine 2019; 37:4673-4680. [PMID: 29523449 PMCID: PMC6677913 DOI: 10.1016/j.vaccine.2018.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. Importantly, rabies is one of the few pathogens for which there is no treatment following the onset of clinical disease with the outcome of infection being death in almost 100% of cases. Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for post-exposure administration are available, no tools have been identified that can reduce or prevent rabies virus replication once clinical disease has initiated. The search for effective antiviral molecules to treat those that have already developed clinical disease associated with rabies virus infection is considered one of the most important goals in rabies research. The current study assesses a single chain antibody molecule (ScFv) based on a monoclonal antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where the molecule was inoculated either four hours before, two days after or four days after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that the approach taken with the ScFv/RVG conjugate may have utility in the design and implementation of novel tools targetting rabies virus infection in the brain.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK; Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Colin P D Birch
- Biomathematics and Risk Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Tim H Szeto
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK.
| |
Collapse
|
31
|
Seber Kasinger LE, Dent MW, Mahajan G, Hamorsky KT, Matoba N. A novel anti-HIV-1 bispecific bNAb-lectin fusion protein engineered in a plant-based transient expression system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1646-1656. [PMID: 30729651 PMCID: PMC6662308 DOI: 10.1111/pbi.13090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The discovery of broadly neutralizing antibodies (bNAbs) has been a major step towards better prophylactic and therapeutic agents against human immunodeficiency virus type 1 (HIV-1). However, effective therapy will likely require a combination of anti-HIV agents to avoid viral evasion. One possible solution to this problem is the creation of bispecific molecules that can concurrently target two vulnerable sites providing synergistic inhibitory effects. Here, we describe the production in plants and anti-HIV activity of a novel bispecific fusion protein consisting of the antigen-binding fragment (Fab) of the CD4 binding site-specific bNAb VRC01 and the antiviral lectin Avaren, which targets the glycan shield of the HIV-1 envelope (VRC01Fab -Avaren). This combination was justified by a preliminary experiment demonstrating the synergistic HIV-1 neutralization activity of VRC01 and Fc-fused Avaren dimer (Avaren-Fc). Using the GENEWARE® tobacco mosaic virus vector, VRC01Fab -Avaren was expressed in Nicotiana benthamiana and purified using a three-step chromatography procedure. Surface plasmon resonance and ELISA demonstrated that both the Avaren and VRC01Fab moieties retain their individual binding specificities. VRC01Fab -Avaren demonstrated enhanced neutralizing activity against representative HIV-1 strains from A, B and C clades, compared to equimolar combinations of VRC01Fab and Avaren. Notably, VRC01Fab -Avaren showed significantly stronger neutralizing effects than the bivalent parent molecules VRC01 IgG and Avaren-Fc, with IC50 values ranging from 48 to 310 pm. These results support the continued development of bispecific anti-HIV proteins based on Avaren and bNAbs, to which plant-based transient overexpression systems will provide an efficient protein engineering and production platform.
Collapse
Affiliation(s)
| | - Matthew W. Dent
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Garima Mahajan
- James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Krystal Teasley Hamorsky
- James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Nobuyuki Matoba
- James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
32
|
Kopertekh L, Meyer T, Freyer C, Hust M. Transient plant production of Salmonella Typhimurium diagnostic antibodies. ACTA ACUST UNITED AC 2019; 21:e00314. [PMID: 30847285 PMCID: PMC6389800 DOI: 10.1016/j.btre.2019.e00314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
Abstract
Salmonella Typhimurium is one of the most important zoonotic pathogens worldwide and a major cause of economic losses in the pig production chain. The emergence of multi-drug resistant strains over the past years has led to considerations about an enhanced surveillance of bacterial food contamination. Currently, ELISA is the method of choice for high throughput identification of S. Typhimurium. The sensitivity and specificity of this assay might be improved by application of new diagnostic antibodies. We focused on plant-based expression of candidate diagnostic TM43-E10 antibodies discovered using as antigen the S. Typhimurium OmpD protein. The scFv-TM43-E10 and scFv-Fc-TM43-E10 antibody derivatives have been successfully produced in N. benthamiana using a deconstructed movement-deficient PVX vector supplemented with the γb silencing suppressor from Poa semilatent virus. The plant-made antibodies showed the same antigen-binding specificity as that of the microbial/mammalian cell-produced counterparts and could recognize the OmpD antigen in S. Typhimurium infected plant samples.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für die Sicherheit biotechnologischer Verfahren bei Pflanzen, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
- Corresponding author.
| | - Torsten Meyer
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Cornelia Freyer
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für die Sicherheit biotechnologischer Verfahren bei Pflanzen, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| |
Collapse
|
33
|
Webster GR, van Dolleweerd C, Guerra T, Stelter S, Hofmann S, Kim M, Teh AY, Diogo GR, Copland A, Paul MJ, Hart P, Reljic R, Ma JK. A polymeric immunoglobulin-antigen fusion protein strategy for enhancing vaccine immunogenicity. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1983-1996. [PMID: 29682888 PMCID: PMC6230950 DOI: 10.1111/pbi.12932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 05/06/2023]
Abstract
In this study, a strategy based on polymeric immunoglobulin G scaffolds (PIGS) was used to produce a vaccine candidate for Mycobacterium tuberculosis. A genetic fusion construct comprising genes encoding the mycobacterial Ag85B antigen, an immunoglobulin γ-chain fragment and the tailpiece from immunoglobulin μ chain was engineered. Expression was attempted in Chinese Hamster Ovary (CHO) cells and in Nicotiana benthamiana. The recombinant protein assembled into polymeric structures (TB-PIGS) in N. benthamiana, similar in size to polymeric IgM. These complexes were subsequently shown to bind to the complement protein C1q and FcγRs with increased affinity. Modification of the N-glycans linked to TB-PIGS by removal of xylose and fucose residues that are normally found in plant glycosylated proteins also resulted in increased affinity for low-affinity FcγRs. Immunization studies in mice indicated that TB-PIGS are highly immunogenic with and without adjuvant. However, they did not improve protective efficacy in mice against challenge with M. tuberculosis compared to conventional vaccination with BCG, suggesting that additional or alternative antigens may be needed to protect against this disease. Nevertheless, these results establish a novel platform for producing polymeric antigen-IgG γ-chain molecules with inherent functional characteristics that are desirable in vaccines.
Collapse
Affiliation(s)
- Gina R. Webster
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | | | - Thais Guerra
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Szymon Stelter
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Mi‐Young Kim
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Gil Reynolds Diogo
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Alastair Copland
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Peter Hart
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Rajko Reljic
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
34
|
Grosse‐Holz F, Madeira L, Zahid MA, Songer M, Kourelis J, Fesenko M, Ninck S, Kaschani F, Kaiser M, van der Hoorn RA. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1797-1810. [PMID: 29509983 PMCID: PMC6131417 DOI: 10.1111/pbi.12916] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 05/21/2023]
Abstract
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α-Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose-dependent. Activity-based protein profiling (ABPP) revealed that the activities of papain-like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.
Collapse
Affiliation(s)
| | - Luisa Madeira
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Muhammad Awais Zahid
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Molly Songer
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Jiorgos Kourelis
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Mary Fesenko
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordOxfordUK
| | - Sabrina Ninck
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstrEssenGermany
| | | |
Collapse
|
35
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
36
|
Aw R, McKay PF, Shattock RJ, Polizzi KM. A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization. Protein Expr Purif 2018; 149:43-50. [PMID: 29601964 PMCID: PMC5982643 DOI: 10.1016/j.pep.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
Abstract
Pichia pastoris (Komagataella phaffi) has been used for recombinant protein production for over 30 years with over 5000 proteins reported to date. However, yields of antibody are generally low. We have evaluated the effect of secretion signal peptides on the production of a broadly neutralizing antibody (VRC01) to increase yield. Eleven different signal peptides, including the murine IgG1 signal peptide, were combinatorially evaluated for their effect on antibody titer. Strains using different combinations of signal peptides were identified that secreted approximately 2-7 fold higher levels of VRC01 than the previous best secretor, with the highest yield of 6.50 mg L-1 in shake flask expression. Interestingly it was determined that the highest yields were achieved when the murine IgG1 signal peptide was fused to the light chain, with several different signal peptides leading to high yield when fused to the heavy chain. Finally, we have evaluated the effect of using a 2A signal peptide to create a bicistronic vector in the attempt to reduce burden and increase transformation efficiency, but found it to give reduced yields compared to using two independent vectors.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ, UK
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
37
|
Melnik S, Neumann AC, Karongo R, Dirndorfer S, Stübler M, Ibl V, Niessner R, Knopp D, Stoger E. Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:27-38. [PMID: 28421663 PMCID: PMC5785354 DOI: 10.1111/pbi.12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100-300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.
Collapse
Affiliation(s)
- Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Cathrine Neumann
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Ryan Karongo
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Sebastian Dirndorfer
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Martin Stübler
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
38
|
Genetic manipulations in crops: Challenges and opportunities. Genomics 2017; 109:494-505. [PMID: 28778540 DOI: 10.1016/j.ygeno.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
An alarming increase in the human population necessitates doubling the world food production in the next few decades. Although a number of possible biotechnological measures are under consideration, central to these efforts is the development of transgenic crops to produce more food, and the traits with which plants could better adapt to adverse environmental conditions in a changing climate. The emergence of new tools for the introduction of foreign genes into plants has increased both our knowledge and the capacity to develop transgenic plants. In addition, a better understanding of genetic modifications has allowed us to study the impact that genetically modified crop plants may have on the environment. This article discusses different techniques routinely used to carry out genetic modifications in plants while highlighting challenges with them, which future research must address to increase acceptance of GM crops for meeting food security challenges effectively.
Collapse
|
39
|
Pharmacokinetics and Preliminary Safety of Pod-Intravaginal Rings Delivering the Monoclonal Antibody VRC01-N for HIV Prophylaxis in a Macaque Model. Antimicrob Agents Chemother 2017; 61:AAC.02465-16. [PMID: 28416548 DOI: 10.1128/aac.02465-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/09/2017] [Indexed: 01/02/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) VRC01, capable of neutralizing 91% of known human immunodeficiency virus type 1 (HIV-1) isolates in vitro, is a promising candidate microbicide for preventing sexual HIV infection when administered topically to the vagina; however, accessibility to antibody-based prophylactic treatment by target populations in sub-Saharan Africa and other underdeveloped regions may be limited by the high cost of conventionally produced antibodies and the limited capacity to manufacture such antibodies. Intravaginal rings of the pod design (pod-IVRs) delivering Nicotiana-manufactured VRC01 (VRC01-N) over a range of release rates have been developed. The pharmacokinetics and preliminary safety of VRC01-N pod-IVRs were evaluated in a rhesus macaque model. The devices sustained VRC01-N release for up to 21 days at controlled rates, with mean steady-state VRC01-N levels in vaginal fluids in the range of 102 to 103 μg g-1 being correlated with in vitro release rates. No adverse safety indications were observed. These findings indicate that pod-IVRs are promising devices for the delivery of the candidate topical microbicide VRC01-N against HIV-1 infection and merit further preclinical evaluation.
Collapse
|
40
|
Marusic C, Novelli F, Salzano AM, Scaloni A, Benvenuto E, Pioli C, Donini M. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:240-51. [PMID: 25879373 PMCID: PMC11388813 DOI: 10.1111/pbi.12378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Anti-CD20 murine or chimeric antibodies (Abs) have been used to treat non-Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti-CD20 Abs demonstrated to be effective in inducing regression of B-cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti-CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL-2-based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti-CD20-human interleukin-2 (hIL-2) immunocytokine (2B8-Fc-hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv-Fc-engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS-PAGE and gel filtration. Purification yields using protein-A affinity chromatography were in the range of 15-20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant-type glycosylation. 2B8-Fc-hIL2 and the cognate 2B8-Fc antibody, devoid of hIL-2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody-dependent cell-mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8-Fc-hIL2, IL-2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.
Collapse
Affiliation(s)
- Carla Marusic
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Flavia Novelli
- Laboratory of Radiation Biology and Biomedicine, ENEA Research Center Casaccia, Rome, Italy
| | - Anna M Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Claudio Pioli
- Laboratory of Radiation Biology and Biomedicine, ENEA Research Center Casaccia, Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| |
Collapse
|
41
|
Paul M, Reljic R, Klein K, Drake PMW, van Dolleweerd C, Pabst M, Windwarder M, Arcalis E, Stoger E, Altmann F, Cosgrove C, Bartolf A, Baden S, Ma JKC. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs 2014; 6:1585-97. [PMID: 25484063 PMCID: PMC4622858 DOI: 10.4161/mabs.36336] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/15/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Binding Sites/immunology
- Body Fluids/immunology
- Body Fluids/metabolism
- Female
- Glycosylation
- HIV/drug effects
- HIV/immunology
- HIV/metabolism
- Humans
- Immunoblotting
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/ultrastructure
- Plants, Genetically Modified
- Polysaccharides/analysis
- Polysaccharides/immunology
- Protein Binding/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Nicotiana/genetics
- Nicotiana/metabolism
- Vagina/immunology
- Vagina/metabolism
- Virion/drug effects
- Virion/immunology
- Virion/metabolism
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Matthew Paul
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Rajko Reljic
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Katja Klein
- Faculty of Medicine; Department of Medicine; Imperial College; London, UK
| | - Pascal MW Drake
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Martin Pabst
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Markus Windwarder
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Elsa Arcalis
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Eva Stoger
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Catherine Cosgrove
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Angela Bartolf
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Susan Baden
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| |
Collapse
|