1
|
Haslam RP, Michaelson LV, Eastmond PJ, Napier JA. Born of frustration: the emergence of Camelina sativa as a platform for lipid biotechnology. PLANT PHYSIOLOGY 2025; 197:kiaf009. [PMID: 39813144 PMCID: PMC11812462 DOI: 10.1093/plphys/kiaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognized by agronomists for its traits, including yield, oil/protein content, drought tolerance, limited input requirements, plasticity, and resilience. Its utility as a platform for metabolic engineering was then quickly recognized, and biotechnologists have benefited from its short life cycle and facile genetic transformation, producing numerous transgenic interventions to modify seed lipid content and generate novel products. The desire to work with a plant that is both a model and crop has driven the expansion of research resources for camelina, including increased availability of genome and other -omics data sets. Collectively, the expansion of these resources has established camelina as an ideal plant to study the regulation of lipid metabolism and genetic improvement. Furthermore, the unique characteristics of camelina enables the design-build-test-learn cycle to be transitioned from the controlled environment to the field. Complex metabolic engineering to synthesize and accumulate high levels of novel fatty acids and modified oils in seeds can be deployed, tested, and undergo rounds of iteration in agronomically relevant environments. Engineered camelina oils are now increasingly being developed and used to sustainably supply improved nutrition, feed, biofuels, and fossil fuel replacements for high-value chemical products. In this review, we provide a summary of seed fatty acid synthesis and oil assembly in camelina, highlighting how discovery research in camelina supports the advance of metabolic engineering toward the predictive manipulation of metabolism to produce desirable bio-based products. Further examples of innovation in camelina seed lipid engineering and crop improvement are then provided, describing how technologies (e.g. genetic modification [GM], gene editing [GE], RNAi, alongside GM and GE stacking) can be applied to produce new products and denude undesirable traits. Focusing on the production of long chain polyunsaturated omega-3 fatty acids in camelina, we describe how lipid biotechnology can transition from discovery to a commercial prototype. The prospects to produce structured triacylglycerol with fatty acids in specified stereospecific positions are also discussed, alongside the future outlook for the agronomic uptake of camelina lipid biotechnology.
Collapse
|
2
|
Alkotami L, White DJ, Schuler KM, Esfahanian M, Jarvis BA, Paulson AE, Koley S, Kang J, Lu C, Allen DK, Lee YJ, Sedbrook JC, Durrett TP. Targeted engineering of camelina and pennycress seeds for ultrahigh accumulation of acetyl-TAG. Proc Natl Acad Sci U S A 2024; 121:e2412542121. [PMID: 39527733 PMCID: PMC11588082 DOI: 10.1073/pnas.2412542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Acetyl-TAG (3-acetyl-1,2-diacylglycerol), unique triacylglycerols (TAG) possessing an acetate group at the sn-3 position, exhibit valuable properties, such as reduced viscosity and freezing points. Previous attempts to engineer acetyl-TAG production in oilseed crops did not achieve the high levels found in naturally producing Euonymus seeds. Here, we demonstrate the successful generation of camelina and pennycress transgenic lines accumulating nearly pure acetyl-TAG at 93 mol% and 98 mol%, respectively. These ultrahigh acetyl-TAG synthesizing lines were created using gene-edited FATTY ACID ELONGASE1 (FAE1) mutant lines as an improved genetic background to increase levels of acetyl-CoA available for acetyl-TAG synthesis mediated by the expression of EfDAcT, a high-activity diacylglycerol acetyltransferase isolated from Euonymus fortunei. Combining EfDAcT expression with suppression of the competing TAG-synthesizing enzyme DGAT1 further enhanced acetyl-TAG accumulation. These ultrahigh levels of acetyl-TAG exceed those in earlier engineered oilseeds and are equivalent or greater than those in Euonymus seeds. Imaging of lipid localization in transgenic seeds revealed that the low amounts of residual TAG were mostly confined to the embryonic axis. Similar spatial distributions of specific TAG and acetyl-TAG molecular species, as well as their probable diacylglycerol (DAG) precursors, provide additional evidence that acetyl-TAG and TAG are both synthesized from the same tissue-specific DAG pools. Remarkably, this ultrahigh production of acetyl-TAG in transgenic seeds exhibited minimal negative effects on seed properties, highlighting the potential for production of designer oils required for economical biofuel industries.
Collapse
Affiliation(s)
- Linah Alkotami
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS66506
| | - Dexter J. White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS66506
| | | | - Maliheh Esfahanian
- School of Biological Sciences, Illinois State University, Normal, IL61790
| | - Brice A. Jarvis
- School of Biological Sciences, Illinois State University, Normal, IL61790
| | | | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO63132
| | - Jinling Kang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT59717
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT59717
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO63132
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO63132
| | - Young-Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA50011
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, IL61790
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS66506
| |
Collapse
|
3
|
Lee KR, Park ME, Kim HU. Domestication and engineering of pennycress (Thlaspi arvense L.): challenges and opportunities for sustainable bio-based feedstocks. PLANTA 2024; 260:127. [PMID: 39470818 DOI: 10.1007/s00425-024-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
MAIN CONCLUSION Pennycress, as an emerging oilseed crop with high oil content, faces challenges but offers potential for sustainable bioproducts; ongoing research aims to enhance its traits and quality. Pennycress (Thlaspi arvense L.) is an emerging oilseed crop with many advantages, such as high seed oil (27-39%) and monounsaturated fatty acid (55.6%) content, making it an attractive candidate to produce sustainable bioproducts. However, several challenges are associated with domesticating pennycress, including high silicle shatter, which reduces seed yield during harvest, non-uniformed germination rate and high contents of erucic acid and glucosinolates, which have adverse health effects on humans and animals. Pennycress, which can be easily and rapidly transformed using the floral dip method under vacuum, can achieve trait improvements. Ongoing research for pennycress domestication using mutation breeding, including ethylmethylsulfonate treatment and genome editing, aims to improve its quality. Pennycress can be used as an excellent platform for producing industrially important fatty acids such as hydroxy and epoxy fatty acids and docosahexaenoic acid. In conclusion, pennycress is a promising oilseed crop with multiple advantages and potential applications. Continuous improvements in quality and engineering for producing high-value bio-based feedstocks in pennycress will establish it as a sustainable and economically valuable crop.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
4
|
Gao H, Xue J, Yuan L, Sun Y, Song Y, Zhang C, Li R, Jia X. Systematic characterization of CsbZIP transcription factors in Camelina sativa and functional analysis of CsbZIP-A12 mediating regulation of unsaturated fatty acid-enriched oil biosynthesis. Int J Biol Macromol 2024; 270:132273. [PMID: 38734348 DOI: 10.1016/j.ijbiomac.2024.132273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), β-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.
Collapse
Affiliation(s)
- Huiling Gao
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Jinai Xue
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Yanan Song
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Chunhui Zhang
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| | - Xiaoyun Jia
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| |
Collapse
|
5
|
Abdullah HM, Pang N, Chilcoat B, Shachar-Hill Y, Schnell DJ, Dhankher OP. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108470. [PMID: 38422576 DOI: 10.1016/j.plaphy.2024.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds. Accordingly, we selected candidate genes for the metabolic engineering of Camelina. Here we targeted the overexpression of Camelina PDCT gene, which encodes the phosphatidylcholine: diacylglycerol cholinephosphotransferase enzyme. PDCT is proposed as a gatekeeper responsible for the interconversions of diacylglycerol (DAG) and phosphatidylcholine (PC) pools and has the potential to increase the levels of TAG in seeds. To confirm whether increased CsPDCT activity in developing Camelina seeds would enhance carbon flux toward increased levels of TAG and alter oil composition, we overexpressed the CsPDCT gene under the control of the seed-specific phaseolin promoter. Camelina transgenics exhibited significant increases in seed yield (19-56%), seed oil content (9-13%), oil yields per plant (32-76%), and altered polyunsaturated fatty acid (PUFA) content compared to their parental wild-type (WT) plants. Results from [14C] acetate labeling of Camelina developing embryos expressing CsPDCT in culture indicated increased rates of radiolabeled fatty acid incorporation into glycerolipids (up to 64%, 59%, and 43% higher in TAG, DAG, and PC, respectively), relative to WT embryos. We conclude that overexpression of PDCT appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, thereby further increasing oil yields in Camelina.
Collapse
Affiliation(s)
- Hesham M Abdullah
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt.
| | - Na Pang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Benjamin Chilcoat
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Yan Q, Jacobson TB, Ye Z, Cortés-Pena YR, Bhagwat SS, Hubbard S, Cordell WT, Oleniczak RE, Gambacorta FV, Vazquez JR, Shusta EV, Amador-Noguez D, Guest JS, Pfleger BF. Evaluation of 1,2-diacyl-3-acetyl triacylglycerol production in Yarrowia lipolytica. Metab Eng 2023; 76:18-28. [PMID: 36626963 DOI: 10.1016/j.ymben.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Plants produce many high-value oleochemical molecules. While oil-crop agriculture is performed at industrial scales, suitable land is not available to meet global oleochemical demand. Worse, establishing new oil-crop farms often comes with the environmental cost of tropical deforestation. The field of metabolic engineering offers tools to transplant oleochemical metabolism into tractable hosts while simultaneously providing access to molecules produced by non-agricultural plants. Here, we evaluate strategies for rewiring metabolism in the oleaginous yeast Yarrowia lipolytica to synthesize a foreign lipid, 3-acetyl-1,2-diacyl-sn-glycerol (acTAG). Oils made up of acTAG have a reduced viscosity and melting point relative to traditional triacylglycerol oils making them attractive as low-grade diesels, lubricants, and emulsifiers. This manuscript describes a metabolic engineering study that established acTAG production at g/L scale, exploration of the impact of lipid bodies on acTAG titer, and a techno-economic analysis that establishes the performance benchmarks required for microbial acTAG production to be economically feasible.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zhou Ye
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yoel R Cortés-Pena
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Sarang S Bhagwat
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Susan Hubbard
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rebecca E Oleniczak
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Francesca V Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Julio Rivera Vazquez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Jeremy S Guest
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Huang D, Gao L, McAdams J, Zhao F, Lu H, Wu Y, Martin J, Sherif SM, Subramanian J, Duan H, Liu W. Engineered Cleistogamy in Camelina sativa for bioconfinement. HORTICULTURE RESEARCH 2023; 10:uhac280. [PMID: 36793756 PMCID: PMC9926159 DOI: 10.1093/hr/uhac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Camelina sativa is a self-pollinating and facultative outcrossing oilseed crop. Genetic engineering has been used to improve camelina yield potential for altered fatty acid composition, modified protein profiles, improved seed and oil yield, and enhanced drought resistance. The deployment of transgenic camelina in the field posits high risks related to the introgression of transgenes into non-transgenic camelina and wild relatives. Thus, effective bioconfinement strategies need to be developed to prevent pollen-mediated gene flow (PMGF) from transgenic camelina. In the present study, we overexpressed the cleistogamy (i.e. floral petal non-openness)-inducing PpJAZ1 gene from peach in transgenic camelina. Transgenic camelina overexpressing PpJAZ1 showed three levels of cleistogamy, affected pollen germination rates after anthesis but not during anthesis, and caused a minor silicle abortion only on the main branches. We also conducted field trials to examine the effects of the overexpressed PpJAZ1 on PMGF in the field, and found that the overexpressed PpJAZ1 dramatically inhibited PMGF from transgenic camelina to non-transgenic camelina under the field conditions. Thus, the engineered cleistogamy using the overexpressed PpJAZ1 is a highly effective bioconfinement strategy to limit PMGF from transgenic camelina, and could be used for bioconfinement in other dicot species.
Collapse
Affiliation(s)
- Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Liwei Gao
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
- College of Life Sciences, Ganzhou Normal University, Ganzhou, Jiangxi 341000, China
| | - Jeremy McAdams
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongyan Lu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430048, China
| | - Yonghui Wu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeremy Martin
- Sandhills Research Station, North Carolina State University, Jackson Springs, NC 27281, USA
| | - Sherif M Sherif
- Vineland Research Station, Department of Plant Agriculture, University of Guelph, Vinland Station, ON LOR 2E0, Canada
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Jayasankar Subramanian
- Vineland Research Station, Department of Plant Agriculture, University of Guelph, Vinland Station, ON LOR 2E0, Canada
| | - Hui Duan
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | | |
Collapse
|
8
|
Ghidoli M, Ponzoni E, Araniti F, Miglio D, Pilu R. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:570. [PMID: 36771654 PMCID: PMC9920110 DOI: 10.3390/plants12030570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, a renewed interest in novel crops has been developing due to the environmental issues associated with the sustainability of agricultural practices. In particular, a cover crop, Camelina sativa (L.) Crantz, belonging to the Brassicaceae family, is attracting the scientific community's interest for several desirable features. It is related to the model species Arabidopsis thaliana, and its oil extracted from the seeds can be used either for food and feed, or for industrial uses such as biofuel production. From an agronomic point of view, it can grow in marginal lands with little or no inputs, and is practically resistant to the most important pathogens of Brassicaceae. Although cultivated in the past, particularly in northern Europe and Italy, in the last century, it was abandoned. For this reason, little breeding work has been conducted to improve this plant, also because of the low genetic variability present in this hexaploid species. In this review, we summarize the main works on this crop, focused on genetic improvement with three main objectives: yield, seed oil content and quality, and reduction in glucosinolates content in the seed, which are the main anti-nutritional substances present in camelina. We also report the latest advances in utilising classical plant breeding, transgenic approaches, and CRISPR-Cas9 genome-editing.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Elena Ponzoni
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Daniela Miglio
- Laboratory for Mother and Child Health, Department of Public Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
9
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
10
|
Trenz TS, Turchetto-Zolet AC, Margis R, Margis-Pinheiro M, Maraschin FDS. Functional analysis of alternative castor bean DGAT enzymes. Genet Mol Biol 2022; 46:e20220097. [PMID: 36512712 PMCID: PMC9747089 DOI: 10.1590/1678-4685-gmb-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
The diversity of diacylglycerol acyltransferases (DGATs) indicates alternative roles for these enzymes in plant metabolism besides triacylglycerol (TAG) biosynthesis. In this work, we functionally characterized castor bean (Ricinus communis L.) DGATs assessing their subcellular localization, expression in seeds, capacity to restore triacylglycerol (TAG) biosynthesis in mutant yeast and evaluating whether they provide tolerance over free fatty acids (FFA) in sensitive yeast. RcDGAT3 displayed a distinct subcellular localization, located in vesicles outside the endoplasmic reticulum (ER) in most leaf epidermal cells. This enzyme was unable to restore TAG biosynthesis in mutant yeast; however, it was able to outperform other DGATs providing higher tolerance over FFA. RcDAcTA subcellular localization was associated with the ER membranes, resembling RcDGAT1 and RcDGAT2, but it failed to rescue the long-chain TAG biosynthesis in mutant yeast, even with fatty acid supplementation. Besides TAG biosynthesis, our results suggest that RcDGAT3 might have alternative functions and roles in lipid metabolism.
Collapse
Affiliation(s)
- Thomaz Stumpf Trenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Rogério Margis
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Biofísica, Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Felipe dos Santos Maraschin
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
12
|
Manful CF, Pham TH, Spicer H, Thomas RH. A multimodal analytical method to simultaneously determine monoacetyldiacylglycerols, medium and long chain triglycerides in biological samples during routine lipidomics. Lipids Health Dis 2022; 21:42. [PMID: 35538477 PMCID: PMC9092795 DOI: 10.1186/s12944-022-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Monoacetyldiglycerides (MAcDG), are acetylated triglycerides (TG) and an emerging class of bioactive or functional lipid with promising nutritional, medical, and industrial applications. A major challenge exists when analyzing MAcDG from other subclasses of TG in biological matrices, limiting knowledge on their applications and metabolism. Methods Herein a multimodal analytical method for resolution, identification, and quantitation of MAcDG in biological samples was demonstrated based on thin layer chromatography-flame ionization detection complimentary with C30-reversed phase liquid chromatography-high resolution accurate mass tandem mass spectrometry. This method was then applied to determine the MAcDG molecular species composition and quantity in E. solidaginis larvae. The statistical method for analysis of TG subclass composition and molecular species composition of E. solidaginis larvae was one-way analysis of variance (ANOVA). Results The findings suggest that the proposed analytical method could simultaneously provide a fast, accurate, sensitive, high throughput analysis of MAcDG from other TG subclasses, including the fatty acids, isomers, and molecular species composition. Conclusion This method would allow for MAcDG to be included during routine lipidomics analysis of biological samples and will have broad interests and applications in the scientific community in areas such as nutrition, climate change, medicine and biofuel innovations. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01650-w.
Collapse
Affiliation(s)
- Charles F Manful
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada.
| | - Thu H Pham
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| | - Heather Spicer
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| | - Raymond H Thomas
- School of Science and the Environment/ Boreal Ecosystem Research Initiative, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada.
| |
Collapse
|
13
|
Stamenković OS, Gautam K, Singla‐Pareek SL, Dhankher OP, Djalović IG, Kostić MD, Mitrović PM, Pareek A, Veljković VB. Biodiesel production from camelina oil: Present status and future perspectives. Food Energy Secur 2021. [DOI: 10.1002/fes3.340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Kshipra Gautam
- Reliance Technology Group Reliance Industries Limited Navi Mumbai India
| | - Sneh L. Singla‐Pareek
- Plant Stress Biology International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Om P. Dhankher
- Stockbridge School of Agriculture University of Massachusetts Amherst Massachusetts USA
| | - Ivica G. Djalović
- Institute of Field and Vegetable Crops National Institute of the Republic of Serbia Novi Sad Serbia
| | | | - Petar M. Mitrović
- Institute of Field and Vegetable Crops National Institute of the Republic of Serbia Novi Sad Serbia
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
- National Agri‐Food Biotechnology Institute Mohali India
| | - Vlada B. Veljković
- Faculty of Technology University of Niš Leskovac Serbia
- The Serbian Academy of Sciences and Arts Belgrade Serbia
| |
Collapse
|
14
|
Efficient plant regeneration from embryogenic cell suspension cultures of Euonymus alatus. Sci Rep 2021; 11:15120. [PMID: 34301990 PMCID: PMC8302629 DOI: 10.1038/s41598-021-94597-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
To establish an efficient plant regeneration system from cell suspension cultures of Euonymus alatus, embryogenic callus formation from immature embryos was investigated. The highest frequency of embryogenic callus formation reached 50% when the immature zygotic embryos were incubated on Murashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D). At higher concentrations of 2,4-D (over 2 mg/L), the frequency of embryogenic callus formation declined significantly. The total number of somatic embryos development was highest with the 3% (w/v) sucrose treatment, which was found to be the optimal concentration for somatic embryo formation. Activated charcoal (AC) and 6-benzyladenine (BA) significantly increased the frequency of plantlet conversion from somatic embryos, but gibberellic acid (GA3) had a negative effect on plantlet conversion and subsequent development from somatic embryos. Even though the cell suspension cultures were maintained for more than 1 year, cell aggregates from embryogenic cell suspension cultures were successfully converted into normal somatic embryos with two cotyledons. To our knowledge, this is the first successful report of a plant regeneration system of E. alatus via somatic embryogenesis. Thus, the embryogenic cell line and plant regeneration system established in this study can be applied to mass proliferation and production of pharmaceutical metabolite in E. alatus.
Collapse
|
15
|
Li H, Hu X, Lovell JT, Grabowski PP, Mamidi S, Chen C, Amirebrahimi M, Kahanda I, Mumey B, Barry K, Kudrna D, Schmutz J, Lachowiec J, Lu C. Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping. THE PLANT GENOME 2021; 14:e20110. [PMID: 34106529 DOI: 10.1002/tpg2.20110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Camelina [Camelina sativa (L.) Crantz] is an oilseed crop in the Brassicaceae family that is currently being developed as a source of bioenergy and healthy fatty acids. To facilitate modern breeding efforts through marker-assisted selection and biotechnology, we evaluated genetic variation among a worldwide collection of 222 camelina accessions. We performed whole-genome resequencing to obtain single nucleotide polymorphism (SNP) markers and to analyze genomic diversity. We also conducted phenotypic field evaluations in two consecutive seasons for variations in key agronomic traits related to oilseed production such as seed size, oil content (OC), fatty acid composition, and flowering time. We determined the population structure of the camelina accessions using 161,301 SNPs. Further, we identified quantitative trait loci (QTL) and candidate genes controlling the above field-evaluated traits by genome-wide association studies (GWAS) complemented with linkage mapping using a recombinant inbred line (RIL) population. Characterization of the natural variation at the genome and phenotypic levels provides valuable resources to camelina genetic studies and crop improvement. The QTL and candidate genes should assist in breeding of advanced camelina varieties that can be integrated into the cropping systems for the production of high yield of oils of desired fatty acid composition.
Collapse
Affiliation(s)
- Huang Li
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Xiao Hu
- School of Computing, Montana State University, Bozeman, MT, 59717, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
| | - Paul P Grabowski
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
| | - Cindy Chen
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Indika Kahanda
- School of Computing, Montana State University, Bozeman, MT, 59717, USA
| | - Brendan Mumey
- School of Computing, Montana State University, Bozeman, MT, 59717, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 38508, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
16
|
Alkotami L, Kornacki C, Campbell S, McIntosh G, Wilson C, Tran TNT, Durrett TP. Expression of a high-activity diacylglycerol acetyltransferase results in enhanced synthesis of acetyl-TAG in camelina seed oil. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:953-964. [PMID: 33619818 DOI: 10.1111/tpj.15210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Acetyl-triacylglycerols (acetyl-TAG) contain an acetate group in the sn-3 position instead of the long-chain fatty acid present in regular triacylglycerol (TAG). The acetate group confers unique physical properties such as reduced viscosity and a lower freezing point to acetyl-TAG, providing advantages for use as emulsifiers, lubricants, and 'drop-in' biofuels. Previously, the synthesis of acetyl-TAG in the seeds of the oilseed crop camelina (Camelina sativa) was achieved through the heterologous expression of the diacylglycerol acetyltransferase gene EaDAcT, isolated from Euonymus alatus seeds that naturally accumulate high levels of acetyl-TAG. Subsequent work identified a similar acetyltransferase, EfDAcT, in the seeds of Euonymus fortunei, that possesses higher in vitro activity compared to EaDAcT. In this study, the seed-specific expression of EfDAcT in camelina led to a 20 mol% increase in acetyl-TAG levels over that of EaDAcT. Coupling EfDAcT expression with suppression of the endogenous competing enzyme DGAT1 further enhanced acetyl-TAG accumulation, up to 90 mol% in the best transgenic lines. Accumulation of high levels of acetyl-TAG was stable over multiple generations, with minimal effect on seed size, weight, and fatty acid content. Slight delays in germination were noted in transgenic seeds compared to the wild type. EfDAcT transcript and protein levels were correlated during seed development with a limited window of EfDAcT protein accumulation. In high acetyl-TAG producing lines, EfDAcT protein expression in developing seeds did not reflect the eventual acetyl-TAG levels in mature seeds, suggesting that other factors limit acetyl-TAG accumulation.
Collapse
Affiliation(s)
- Linah Alkotami
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Catherine Kornacki
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Shahna Campbell
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Gary McIntosh
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Cole Wilson
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Tam N T Tran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
17
|
Cai G, Wang G, Kim SC, Li J, Zhou Y, Wang X. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:49. [PMID: 33640013 PMCID: PMC7913393 DOI: 10.1186/s13068-021-01899-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipid transporters play an essential role in lipid delivery and distribution, but their influence on seed oil production in oilseed crops is not well studied. RESULTS Here, we examined the effect of two lipid transporters, FAX1 (fatty acid export1) and ABCA9 (ATP-binding cassette transporter subfamily A9) on oil production and lipid metabolism in the oilseed plant Camelina sativa. Overexpression (OE) of FAX1 and ABCA9 increased seed weight and size, with FAX1-OEs and ABCA9-OEs increasing seed length and width, respectively, whereas FAX1/ABCA9-OEs increasing both. FAX1-OE and ABCA9-OE displayed additive effects on seed oil content and seed yield. Also, OE of FAX1 and ABCA9 affected membrane lipid composition in developing pods, especially on phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The expression of some genes involved in seed oil synthesis, such as DGAT2, PDAT1, and LEC1, was increased in developing seeds of FAX1- and/or ABCA9-OEs. CONCLUSION These results indicate that increased expression of FAX1 and ABCA9 can potentially be applied to improving camelina oil production.
Collapse
Affiliation(s)
- Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 Hubei China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Jianwu Li
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
18
|
Chen GQ, Kim WN, Johnson K, Park ME, Lee KR, Kim HU. Transcriptome Analysis and Identification of Lipid Genes in Physaria lindheimeri, a Genetic Resource for Hydroxy Fatty Acids in Seed Oil. Int J Mol Sci 2021; 22:ijms22020514. [PMID: 33419225 PMCID: PMC7825617 DOI: 10.3390/ijms22020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Hydroxy fatty acids (HFAs) have numerous industrial applications but are absent in most vegetable oils. Physaria lindheimeri accumulating 85% HFA in its seed oil makes it a valuable resource for engineering oilseed crops for HFA production. To discover lipid genes involved in HFA synthesis in P. lindheimeri, transcripts from developing seeds at various stages, as well as leaf and flower buds, were sequenced. Ninety-seven percent clean reads from 552,614,582 raw reads were assembled to 129,633 contigs (or transcripts) which represented 85,948 unique genes. Gene Ontology analysis indicated that 60% of the contigs matched proteins involved in biological process, cellular component or molecular function, while the remaining matched unknown proteins. We identified 42 P. lindheimeri genes involved in fatty acid and seed oil biosynthesis, and 39 of them shared 78-100% nucleotide identity with Arabidopsis orthologs. We manually annotated 16 key genes and 14 of them contained full-length protein sequences, indicating high coverage of clean reads to the assembled contigs. A detailed profiling of the 16 genes revealed various spatial and temporal expression patterns. The further comparison of their protein sequences uncovered amino acids conserved among HFA-producing species, but these varied among non-HFA-producing species. Our findings provide essential information for basic and applied research on HFA biosynthesis.
Collapse
Affiliation(s)
- Grace Q. Chen
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
- Correspondence: (G.Q.C.); (H.U.K.)
| | - Won Nyeong Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
| | - Kumiko Johnson
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
| | - Mid-Eum Park
- Department of Molecular Biology, Graduate School, Sejong University, Seoul 05006, Korea;
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54974, Korea;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
- Department of Molecular Biology, Graduate School, Sejong University, Seoul 05006, Korea;
- Correspondence: (G.Q.C.); (H.U.K.)
| |
Collapse
|
19
|
Mihálik D, Lančaričová A, Mrkvová M, Kaňuková Š, Moravčíková J, Glasa M, Šubr Z, Predajňa L, Hančinský R, Grešíková S, Havrlentová M, Hauptvogel P, Kraic J. Diacylglycerol Acetyltransferase Gene Isolated from Euonymus europaeus L. Altered Lipid Metabolism in Transgenic Plant towards the Production of Acetylated Triacylglycerols. Life (Basel) 2020; 10:life10090205. [PMID: 32947896 PMCID: PMC7554731 DOI: 10.3390/life10090205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Euonymus species from the Celastraceae family are considered as a source of unusual genes modifying the oil content and fatty acid composition of vegetable oils. Due to the possession of genes encoding enzyme diacylglycerol acetyltransferase (DAcT), Euonymus plants can synthesize and accumulate acetylated triacyglycerols. The gene from Euonymus europaeus (EeDAcT) encoding the DAcT was identified, isolated, characterized, and modified for cloning and genetic transformation of plants. This gene has a unique nucleotide sequence and amino acid composition, different from orthologous genes from other Euonymus species. Nucleotide sequence of original EeDAcT gene was modified, cloned into transformation vector, and introduced into tobacco plants. Overexpression of EeDAcT gene was confirmed, and transgenic host plants produced and accumulated acetylated triacylglycerols (TAGs) in immature seeds. Individual transgenic plants showed difference in amounts of synthesized acetylTAGs and also in fatty acid composition of acetylTAGs.
Collapse
Affiliation(s)
- Daniel Mihálik
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 92168 Piešt’any, Slovakia; (D.M.); (A.L.); (M.H.); (P.H.)
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Andrea Lančaričová
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 92168 Piešt’any, Slovakia; (D.M.); (A.L.); (M.H.); (P.H.)
| | - Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Šarlota Kaňuková
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Jana Moravčíková
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (Z.Š.); (L.P.)
| | - Zdeno Šubr
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (Z.Š.); (L.P.)
| | - Lukáš Predajňa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (Z.Š.); (L.P.)
| | - Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Simona Grešíková
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Michaela Havrlentová
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 92168 Piešt’any, Slovakia; (D.M.); (A.L.); (M.H.); (P.H.)
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
| | - Pavol Hauptvogel
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 92168 Piešt’any, Slovakia; (D.M.); (A.L.); (M.H.); (P.H.)
| | - Ján Kraic
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 92168 Piešt’any, Slovakia; (D.M.); (A.L.); (M.H.); (P.H.)
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (Š.K.); (J.M.); (M.G.); (R.H.); (S.G.)
- Correspondence:
| |
Collapse
|
20
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
21
|
Naeem I, Munir I, Durrett TP, Iqbal A, Aulakh KS, Ahmad MA, Khan H, Khan IA, Hussain F, Shuaib M, Shah AA, Muhammad I, Bahadur S, Begim K, Hussain F. Feasible regeneration and agro bacterium-mediated transformation of Brassica juncea with Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene. Saudi J Biol Sci 2020; 27:1324-1332. [PMID: 32346342 PMCID: PMC7182792 DOI: 10.1016/j.sjbs.2019.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
In the present study an effort has been made to optimize the in vitro regeneration protocol for Agrobacterium-mediated transformation of Brassica juncea, because of its importance as oilseed crops. The highest callus induction frequency of 87% was observed on MS (Murashige and Skoog, 1962) medium supplemented with 4 µM 6-benzyladenine (BA) after four weeks of culture period. Subculturing of organogenic calli in MS media with a similar hormonal composition resulted in shoot organogenesis after six weeks of culture cultivation. The highest shoot induction frequency (92%) was recorded on MS medium containing 4 µM BA in combination with 1 µM of α-naphthalene acetic acid (NAA). Further, well-developed roots were formed in MS media augmented with 6 µM of Indole acetic acid (IAA) in combination with 1 µM Kinetin (Kn). Cotyledon explants were exploited in vitro for the successful transformation of B. juncea. A binary vector comprised of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene under the transcriptional control of a glycinin promoter and with a basta selection marker was introduced into A. tumefaciens strain GV3101 via electroporation. EaDAcT gene is responsible for unusual triacylglycerol’s production where the sn-3 position is esterified with acetate instead of the long-chain fatty acid found in the triacylglycerol’s. The highest regeneration frequency (100%) of transgenic shoots was observed on MS medium supplemented with 4 µM BA plus 1 µM NAA in the presence of 25 mg l−1 basta and 160 mg l−1 timintin. The efficiency of stable transformation was found to be approximately 7% in the transgenic plants. Moreover, the transformed regenerated shoots were confirmed by PCR analysis using EaDAcT gene-specific primers.
Collapse
Affiliation(s)
- Ijaz Naeem
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan
- Department of Biotechnology, University of Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Iqbal Munir
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan
- Corresponding authors at: Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan (I. Munir). School of Ecology and Environmental Science, Yunnan University, Kunming, China (M. Shuaib).
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 66506, USA
| | - Aqib Iqbal
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan
| | - Karanbir S Aulakh
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 66506, USA
| | - Mian Afaq Ahmad
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan
| | - Hayat Khan
- Department of Microbiology, University of Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Imtiaz Ali Khan
- Department of Entomology, The University of Agriculture, Peshawar 25000, Pakistan
| | - Firasat Hussain
- Department of Microbiology, University of Swabi, Khyber Pakhtunkhwa 23561, Pakistan
- Department of Microbiology, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Shuaib
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Corresponding authors at: Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan (I. Munir). School of Ecology and Environmental Science, Yunnan University, Kunming, China (M. Shuaib).
| | - Asad Ali Shah
- Department of Medical Laboratory Technology, College of Applied Medical Science, Jazan University, Saudi Arabia
| | - Ikram Muhammad
- Laboratory of Plant Metabolic Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, China
| | - Saraj Bahadur
- College of Life and Pharmaceutical Sciences, Hainan University Haikou China
| | - Khaist Begim
- Department of Genetics, Hazara University, Pakistan
| | - Fida Hussain
- Department of Botany, Qurtuba University Peshawar, Pakistan
| |
Collapse
|
22
|
Lager I, Jeppson S, Gippert AL, Feussner I, Stymne S, Marmon S. Acyltransferases Regulate Oil Quality in Camelina sativa Through Both Acyl Donor and Acyl Acceptor Specificities. FRONTIERS IN PLANT SCIENCE 2020; 11:1144. [PMID: 32922411 PMCID: PMC7456936 DOI: 10.3389/fpls.2020.01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Camelina sativa is an emerging biotechnology oil crop. However, more information is needed regarding its innate lipid enzyme specificities. We have therefore characterized several triacylglycerol (TAG) producing enzymes by measuring in vitro substrate specificities using different combinations of acyl-acceptors (diacylglycerol, DAG) and donors. Specifically, C. sativa acyl-CoA:diacylglycerol acyltransferase (DGAT) 1 and 2 (which both use acyl-CoA as acyl donor) and phospholipid:diacylglycerol acyltransferase (PDAT, with phosphatidylcoline as acyl donor) were studied. The results show that the DGAT1 and DGAT2 specificities are complementary, with DGAT2 exhibiting a high specificity for acyl acceptors containing only polyunsaturated fatty acids (FAs), whereas DGAT1 prefers acyl donors with saturated and monounsaturated FAs. Furthermore, the combination of substrates that resulted in the highest activity for DGAT2, but very low activity for DGAT1, corresponds to TAG species previously shown to increase in C. sativa seeds with downregulated DGAT1. Similarly, the combinations of substrates that gave the highest PDAT1 activity were also those that produce the two TAG species (54:7 and 54:8 TAG) with the highest increase in PDAT overexpressing C. sativa seeds. Thus, the in vitro data correlate well with the changes in the overall fatty acid profile and TAG species in C. sativa seeds with altered DGAT1 and PDAT activity. Additionally, in vitro studies of C. sativa phosphatidycholine:diacylglycerol cholinephosphotransferase (PDCT), another activity involved in TAG biosynthesis, revealed that PDCT accepts substrates with different desaturation levels. Furthermore, PDCT was unable to use DAG with ricineoleyl groups, and the presence of this substrate also inhibited PDCT from using other DAG-moieties. This gives insights relating to previous in vivo studies regarding this enzyme.
Collapse
Affiliation(s)
- Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Simon Jeppson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anna-Lena Gippert
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sofia Marmon
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- *Correspondence: Sofia Marmon,
| |
Collapse
|
23
|
Yuan L, Li R. Metabolic Engineering a Model Oilseed Camelina sativa for the Sustainable Production of High-Value Designed Oils. FRONTIERS IN PLANT SCIENCE 2020; 11:11. [PMID: 32117362 PMCID: PMC7028685 DOI: 10.3389/fpls.2020.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 05/06/2023]
Abstract
Camelina sativa (L.) Crantz is an important Brassicaceae oil crop with a number of excellent agronomic traits including low water and fertilizer input, strong adaptation and resistance. Furthermore, its short life cycle and easy genetic transformation, combined with available data of genome and other "-omics" have enabled camelina as a model oil plant to study lipid metabolism regulation and genetic improvement. Particularly, camelina is capable of rapid metabolic engineering to synthesize and accumulate high levels of unusual fatty acids and modified oils in seeds, which are more stable and environmentally friendly. Such engineered camelina oils have been increasingly used as the super resource for edible oil, health-promoting food and medicine, biofuel oil and high-valued chemical production. In this review, we mainly highlight the latest advance in metabolic engineering towards the predictive manipulation of metabolism for commercial production of desirable bio-based products using camelina as an ideal platform. Moreover, we deeply analysis camelina seed metabolic engineering strategy and its promising achievements by describing the metabolic assembly of biosynthesis pathways for acetyl glycerides, hydroxylated fatty acids, medium-chain fatty acids, ω-3 long-chain polyunsaturated fatty acids, palmitoleic acid (ω-7) and other high-value oils. Future prospects are discussed, with a focus on the cutting-edge techniques in camelina such as genome editing application, fine directed manipulation of metabolism and future outlook for camelina industry development.
Collapse
Affiliation(s)
- Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
- *Correspondence: Runzhi Li,
| |
Collapse
|
24
|
Zhou XR, Li J, Wan X, Hua W, Singh S. Harnessing Biotechnology for the Development of New Seed Lipid Traits in Brassica. PLANT & CELL PHYSIOLOGY 2019; 60:1197-1204. [PMID: 31076774 DOI: 10.1093/pcp/pcz070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
The seed oil quality of Brassica oilseed species has been improved in the last few decades, using conventional breeding approaches. Modern biotechnology has enabled the significant development of new seed lipid traits in many oil crops. Alternation of seed lipid component with gene knockout by RNAi gene silencing, artificial microRNA or gene editing within the crop is relative straightforward. Introducing a new pathway from an exogenous source via biotechnology enables the creation of a new trait, where the biosynthetic pathway for such a new trait is not available in the host crop. This review updates the recent development of new seed lipid traits in six major Brassica species and highlights the capability of biotechnology to improve the composition of important fatty acids for both industrial and nutritional purposes.
Collapse
Affiliation(s)
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | | |
Collapse
|
25
|
McGinn M, Phippen WB, Chopra R, Bansal S, Jarvis BA, Phippen ME, Dorn KM, Esfahanian M, Nazarenus TJ, Cahoon EB, Durrett TP, Marks MD, Sedbrook JC. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:776-788. [PMID: 30230695 PMCID: PMC6419581 DOI: 10.1111/pbi.13014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 05/05/2023]
Abstract
Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyl-triacylglycerol-containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress' rapid domestication to meet the growing sustainable food and fuel demands.
Collapse
Affiliation(s)
- Michaela McGinn
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | | | - Ratan Chopra
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMNUSA
| | - Sunil Bansal
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKSUSA
| | - Brice A. Jarvis
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | | | - Kevin M. Dorn
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMNUSA
| | | | - Tara J. Nazarenus
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKSUSA
| | - M. David Marks
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMNUSA
| | - John C. Sedbrook
- School of Biological SciencesIllinois State UniversityNormalILUSA
| |
Collapse
|
26
|
Maraschin FDS, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Prog Lipid Res 2019; 73:46-64. [DOI: 10.1016/j.plipres.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/01/2018] [Indexed: 01/30/2023]
|
27
|
Schmidt MA, Herman EM. Characterization and functional biology of the soybean aleurone layer. BMC PLANT BIOLOGY 2018; 18:354. [PMID: 30545296 PMCID: PMC6293662 DOI: 10.1186/s12870-018-1579-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Soybean is a globally important oil seed crop. Both the high protein and oil content of soybean seeds make this crop a lucrative commodity. As in higher eukaryotic species with available genomes, the functional annotation of most of soybean's genes still remains to be investigated. A major hurdle in the functional genomics of soybean is a rapid method to test gene constructs before embarking on stable transformation experiments. RESULTS In this paper we describe the morphology and composition of the persistent single-cell aleurone layer that derives from the endosperm of developing soybean seeds. Its composition compared to cotyledonary tissue indicates the aleurone layer plays a role in both abiotic and biotic stress. The potential utility as the aleurone layer as a transient expression system in soybean was shown. As a near transparent single-cell layer it can be used as a transient expression system to study transgene expression and inter- and intra-cellular targeting as it is amenable to microscopic techniques. CONCLUSION The transparent single cell aleurone layer was shown to be compositionally comparable to cotyledonary tissue in soybean with an enrichment in oxidative response proteins and shown to be a potential transient expression platform.
Collapse
Affiliation(s)
- Monica A. Schmidt
- School of Plant Sciences/BIO5 Institute/University of Arizona, 1657 E. Helen St, Tucson, AZ 85721 USA
| | - Eliot M. Herman
- School of Plant Sciences/BIO5 Institute/University of Arizona, 1657 E. Helen St, Tucson, AZ 85721 USA
| |
Collapse
|
28
|
Abstract
Studying seed oil metabolism. The seeds of higher plants represent valuable factories capable of converting photosynthetically derived sugars into a variety of storage compounds, including oils. Oils are the most energy-dense plant reserves and fatty acids composing these oils represent an excellent nutritional source. They supply humans with much of the calories and essential fatty acids required in their diet. These oils are then increasingly being utilized as renewable alternatives to petroleum for the chemical industry and for biofuels. Plant oils therefore represent a highly valuable agricultural commodity, the demand for which is increasing rapidly. Knowledge regarding seed oil production is extensively exploited in the frame of breeding programs and approaches of metabolic engineering for oilseed crop improvement. Complementary aspects of this research include (1) the study of carbon metabolism responsible for the conversion of photosynthetically derived sugars into precursors for fatty acid biosynthesis, (2) the identification and characterization of the enzymatic actors allowing the production of the wide set of fatty acid structures found in seed oils, and (3) the investigation of the complex biosynthetic pathways leading to the production of storage lipids (waxes, triacylglycerols). In this review, we outline the most recent developments in our understanding of the underlying biochemical and molecular mechanisms of seed oil production, focusing on fatty acids and oils that can have a significant impact on the emerging bioeconomy.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
29
|
Durrett TP. A New Class of Acetyl‐TAG Present in Seed Oils of
Polygala
Species. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy P. Durrett
- Department of Biochemistry and Molecular BiophysicsKansas State University141 Chalmers HallManhattanKansas66506
| |
Collapse
|
30
|
Bansal S, Kim HJ, Na G, Hamilton ME, Cahoon EB, Lu C, Durrett TP. Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4395-4402. [PMID: 29982623 PMCID: PMC6093318 DOI: 10.1093/jxb/ery225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
The ability to manipulate expression of key biosynthetic enzymes has allowed the development of genetically modified plants that synthesise unusual lipids that are useful for biofuel and industrial applications. By taking advantage of the unique activities of enzymes from different species, tailored lipids with a targeted structure can be conceived. In this study we demonstrate the successful implementation of such an approach by metabolically engineering the oilseed crop Camelina sativa to produce 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) with medium-chain fatty acids (MCFAs). Different transgenic camelina lines that had been genetically modified to produce MCFAs through the expression of MCFA-specific thioesterases and acyltransferases were retransformed with the Euonymus alatus gene for diacylglycerol acetyltransferase (EaDAcT) that synthesises acetyl-TAGs. Concomitant RNAi suppression of acyl-CoA:diacylglycerol acyltransferase increased the levels of acetyl-TAG, with up to 77 mole percent in the best lines. However, the total oil content was reduced. Analysis of the composition of the acetyl-TAG molecular species using electrospray ionisation mass spectrometry demonstrated the successful synthesis of acetyl-TAG containing MCFAs. Field growth of high-yielding plants generated enough oil for quantification of viscosity. As part of an ongoing design-test-learn cycle, these results, which include not only the synthesis of 'designer' lipids but also their functional analysis, will lead to the future production of such molecules tailored for specific applications.
Collapse
Affiliation(s)
- Sunil Bansal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - GunNam Na
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Megan E Hamilton
- Department of Chemistry and Biology, Bethany College, Lindsborg, KS, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
- Correspondence:
| |
Collapse
|
31
|
Smith MA, Zhang H, Burton IW, Liu C, Cheng A, Sun J. 2‐Acetyl‐1,3‐Diacyl–
sn
‐Glycerols with Unusual Acyl Composition in Seed Oils of the Genus
Polygala. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark A. Smith
- National Research Council of Canada 110 Gymnasium PlaceSaskatoonSKS7N 0W9Canada
| | - Haixia Zhang
- National Research Council of Canada 110 Gymnasium PlaceSaskatoonSKS7N 0W9Canada
| | - Ian W. Burton
- National Research Council of Canada1411 Oxford StreetHalifaxNSB3H 3Z1Canada
| | - Chao Liu
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Technology of Shandong Province and Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture202 Gongye North RoadJinan250100China
| | - An‐Wei Cheng
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Technology of Shandong Province and Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture202 Gongye North RoadJinan250100China
| | - Jin‐Yue Sun
- Institute of Agro‐Food Science and TechnologyShandong Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Technology of Shandong Province and Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture202 Gongye North RoadJinan250100China
| |
Collapse
|
32
|
Aryal N, Lu C. A Phospholipase C-Like Protein From Ricinus communis Increases Hydroxy Fatty Acids Accumulation in Transgenic Seeds of Camelina sativa. FRONTIERS IN PLANT SCIENCE 2018; 9:1576. [PMID: 30443260 PMCID: PMC6221933 DOI: 10.3389/fpls.2018.01576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/09/2018] [Indexed: 05/23/2023]
Abstract
There have been strong interests in producing unusual fatty acids in oilseed crops to provide renewable industrial feedstock. Results are so far largely disappointing since much lower amounts of such fatty acids accumulate in genetically engineered seeds than in their original natural sources. It has been suggested that the flux of unusual fatty acids through phosphatidylcholine (PC) represents a major bottleneck for high accumulation of such fatty acids in triacylglycerol (TAG). We show here that a phospholipase C-like protein (RcPLCL1) from castor bean, which accumulates nearly 90% of the hydroxylated ricinoleic acid in its seed TAG, increases the amount of hydroxy fatty acids (HFAs) when co-expresses with the fatty acid hydroxylase (RcFAH12) in transgenic seed of Camelina sativa. RcPLCL1 shows hydrolyzing activities on both PC and phosphatidylinositol substrates in our in vitro assay conditions. The PC-PLC activity of the RcPLCL1 may have increased the efficiency of HFA-PC to diacylglycerol conversion, which explains our observation of increased HFA contents in TAG concomitant with decreased HFA in the membrane lipid PC during seed development. Consequently, this may also alleviate the potential detrimental effect of HFA on germination of the engineered camelina seeds. Our results provide new knowledge that will help design effective strategies to engineer high levels of HFAs in transgenic oilseeds.
Collapse
|
33
|
Aznar-Moreno JA, Durrett TP. Review: Metabolic engineering of unusual lipids in the synthetic biology era. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:126-131. [PMID: 28818368 DOI: 10.1016/j.plantsci.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/06/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
34
|
Tran TNT, Shelton J, Brown S, Durrett TP. Membrane topology and identification of key residues of EaDAcT, a plant MBOAT with unusual substrate specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:82-94. [PMID: 28715115 DOI: 10.1111/tpj.13636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition.
Collapse
Affiliation(s)
- Tam N T Tran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Jennifer Shelton
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
35
|
Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol 2017; 70:235-54. [PMID: 27607553 DOI: 10.1146/annurev-micro-102215-095748] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.
Collapse
Affiliation(s)
- Gina R Lewin
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Heidi A Horn
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706;
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Robert J Stankey
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Brian G Fox
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726.,Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| |
Collapse
|
36
|
Aznar-Moreno JA, Durrett TP. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. PLANT & CELL PHYSIOLOGY 2017; 58:1260-1267. [PMID: 28444368 DOI: 10.1093/pcp/pcx058] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/14/2017] [Indexed: 05/20/2023]
Abstract
The ability to transform Camelina sativa easily with biosynthetic enzymes derived from other plants has made this oil seed crop an ideal platform for the production of unusual lipids valuable for different applications. However, in addition to expressing transgenic enzymes, the suppression of endogenous enzyme activity to reduce competition for common substrates or cofactors is also required to enhance the production of target compounds. As camelina possesses a relatively undifferentiated hexaploid genome, up to three gene homeologs can code for any particular enzymatic activity, complicating efforts to alter endogenous biosynthetic pathways. New genome editing technologies, such as that offered by the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system, offer the capability to introduce mutations into specifically targeted genomic sites. Here, by using a carefully designed guide RNA identical to all three homeologs, we demonstrate the ability of the CRISPR/Cas genome editing system to introduce mutations in all three CsDGAT1 or CsPDAT1 homeologous genes important for triacylglycerol (TAG) synthesis in developing seeds. Sequence analysis from transgenic T1 plants revealed that each CsDGAT1 or each CsPDAT1 homeolog was altered by multiple mutations, resulting in a genetic mosaic in the plants. Interestingly, seed harvested from both CsDGAT1- and CsPDAT1-targeted lines was often shrunken and wrinkled. Further, lipid analysis revealed that many lines produced seed with reduced oil content and altered fatty acid composition, consistent with the role of the targeted genes in seed oil biosynthesis. The CRISPR/Cas system therefore represents a useful method to alter endogenous biosynthetic pathways efficiently in polyploid species such as camelina.
Collapse
Affiliation(s)
- J A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - T P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
37
|
Tran TNT, Breuer RJ, Avanasi Narasimhan R, Parreiras LS, Zhang Y, Sato TK, Durrett TP. Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:69. [PMID: 28331545 PMCID: PMC5359884 DOI: 10.1186/s13068-017-0751-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/09/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Acetyl-triacylglycerols (acetyl-TAGs) are unusual triacylglycerol (TAG) molecules that contain an sn-3 acetate group. Compared to typical triacylglycerol molecules (here referred to as long chain TAGs; lcTAGs), acetyl-TAGs possess reduced viscosity and improved cold temperature properties, which may allow direct use as a drop-in diesel fuel. Their different chemical and physical properties also make acetyl-TAGs useful for other applications such as lubricants and plasticizers. Acetyl-TAGs can be synthesized by EaDAcT, a diacylglycerol acetyltransferase enzyme originally isolated from Euonymus alatus (Burning Bush). The heterologous expression of EaDAcT in different organisms, including Saccharomyces cerevisiae, resulted in the accumulation of acetyl-TAGs in storage lipids. Microbial conversion of lignocellulose into acetyl-TAGs could allow biorefinery production of versatile molecules for biofuel and bioproducts. RESULTS In order to produce acetyl-TAGs from abundant lignocellulose feedstocks, we expressed EaDAcT in S. cerevisiae previously engineered to utilize xylose as a carbon source. The resulting strains were capable of producing acetyl-TAGs when grown on different media. The highest levels of acetyl-TAG production were observed with growth on synthetic lab media containing glucose or xylose. Importantly, acetyl-TAGs were also synthesized by this strain in ammonia fiber expansion (AFEX)-pretreated corn stover hydrolysate (ACSH) at higher volumetric titers than previously published strains. The deletion of the four endogenous enzymes known to contribute to lcTAG production increased the proportion of acetyl-TAGs in the total storage lipids beyond that in existing strains, which will make purification of these useful lipids easier. Surprisingly, the strains containing the four deletions were still capable of synthesizing lcTAG, suggesting that the particular strain used in this study possesses additional undetermined diacylglycerol acyltransferase activity. Additionally, the carbon source used for growth influenced the accumulation of these residual lcTAGs, with higher levels in strains cultured on xylose containing media. CONCLUSION Our results demonstrate that S. cerevisiae can be metabolically engineered to produce acetyl-TAGs when grown on different carbon sources, including hydrolysate derived from lignocellulose. Deletion of four endogenous acyltransferases enabled a higher purity of acetyl-TAGs to be achieved, but lcTAGs were still synthesized. Longer incubation times also decreased the levels of acetyl-TAGs produced. Therefore, additional work is needed to further manipulate acetyl-TAG production in this strain of S. cerevisiae, including the identification of other TAG biosynthetic and lipolytic enzymes and a better understanding of the regulation of the synthesis and degradation of storage lipids.
Collapse
Affiliation(s)
- Tam N. T. Tran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506 USA
| | - Rebecca J. Breuer
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | | | - Lucas S. Parreiras
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726 USA
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506 USA
| |
Collapse
|
38
|
Abstract
Lipids and oils derived from plant and algal photosynthesis constitute much of human daily caloric intake and provide the basis for high-energy bioproducts, chemical feedstocks for countless applications, and even fossil fuels over geological time scales. Sustainable production of high-energy compounds from plants is essential to preserving fossil fuel sources and ensuring the well-being of future generations. As a result of progress in basic research on plant and algal lipid metabolism, in combination with advances in synthetic biology, we can now tailor plant lipids for desirable biological, physical, and chemical properties. We highlight recent advances in plant lipid translational biology and discuss untapped areas of research that might expand the application of plant lipids.
Collapse
Affiliation(s)
- Patrick J Horn
- Michigan State University-U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Christoph Benning
- Michigan State University-U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
39
|
An D, Kim H, Ju S, Go YS, Kim HU, Suh MC. Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:34. [PMID: 28174580 PMCID: PMC5258696 DOI: 10.3389/fpls.2017.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/06/2017] [Indexed: 05/04/2023]
Abstract
Triacylglycerol (TAG) is an energy-rich reserve in plant seeds that is composed of glycerol esters with three fatty acids. Since TAG can be used as a feedstock for the production of biofuels and bio-chemicals, producing TAGs in vegetative tissue is an alternative way of meeting the increasing demand for its usage. The WRINKLED1 (WRI1) gene is a well-established key transcriptional regulator involved in the upregulation of fatty acid biosynthesis in developing seeds. WRI1s from Arabidopsis and several other crops have been previously employed for increasing TAGs in seed and vegetative tissues. In the present study, we first identified three functional CsWRI1 genes (CsWRI1A. B, and C) from the Camelina oil crop and tested their ability to induce TAG synthesis in leaves. The amino acid sequences of CsWRI1s exhibited more than 90% identity with those of Arabidopsis WRI1. The transcript levels of the three CsWRI1 genes showed higher expression levels in developing seeds than in vegetative and floral tissues. When the CsWRI1A. B, or C was introduced into Arabidopsis wri1-3 loss-of-function mutant, the fatty acid content was restored to near wild-type levels and percentages of the wrinkled seeds were remarkably reduced in the transgenic lines relative to wri1-3 mutant line. In addition, the fluorescent signals of the enhanced yellow fluorescent protein (eYFP) fused to the CsWRI1 genes were observed in the nuclei of Nicotiana benthamiana leaf epidermal cells. Nile red staining indicated that the transient expression of CsWRI1A. B, or C caused an enhanced accumulation of oil bodies in N. benthamiana leaves. The levels of TAGs was higher by approximately 2.5- to 4.0-fold in N. benthamiana fresh leaves expressing CsWRI1 genes than in the control leaves. These results suggest that the three Camelina WRI1s can be used as key transcriptional regulators to increase fatty acids in biomass.
Collapse
Affiliation(s)
- Dahee An
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Seulgi Ju
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong UniversitySeoul, South Korea
- *Correspondence: Hyun Uk Kim, Mi Chung Suh,
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
- *Correspondence: Hyun Uk Kim, Mi Chung Suh,
| |
Collapse
|
40
|
Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, Bollina V, Robinson SJ, Coutu C, Hegedus DD, Sharpe AG, Parkin IAP. The developmental transcriptome atlas of the biofuel crop Camelina sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:879-894. [PMID: 27513981 DOI: 10.1111/tpj.13302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 05/17/2023]
Abstract
Camelina sativa is currently being embraced as a viable industrial bio-platform crop due to a number of desirable agronomic attributes and the unique fatty acid profile of the seed oil that has applications for food, feed and biofuel. The recent completion of the reference genome sequence of C. sativa identified a young hexaploid genome. To complement this work, we have generated a genome-wide developmental transcriptome map by RNA sequencing of 12 different tissues covering major developmental stages during the life cycle of C. sativa. We have generated a digital atlas of this comprehensive transcriptome resource that enables interactive visualization of expression data through a searchable database of electronic fluorescent pictographs (eFP browser). An analysis of this dataset supported expression of 88% of the annotated genes in C. sativa and provided a global overview of the complex architecture of temporal and spatial gene expression patterns active during development. Conventional differential gene expression analysis combined with weighted gene expression network analysis uncovered similarities as well as differences in gene expression patterns between different tissues and identified tissue-specific genes and network modules. A high-quality census of transcription factors, analysis of alternative splicing and tissue-specific genome dominance provided insight into the transcriptional dynamics and sub-genome interplay among the well-preserved triplicated repertoire of homeologous loci. The comprehensive transcriptome atlas in combination with the reference genome sequence provides a powerful resource for genomics research which can be leveraged to identify functional associations between genes and understand the regulatory networks underlying developmental processes.
Collapse
Affiliation(s)
- Sateesh Kagale
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, Canada
| | - John Nixon
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Yogendra Khedikar
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Venkatesh Bollina
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| |
Collapse
|
41
|
Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase. Biosci Rep 2016; 36:BSR20160277. [PMID: 27688773 PMCID: PMC5100001 DOI: 10.1042/bsr20160277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022] Open
Abstract
The membrane-bound O-acyltransferase Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) preferentially uses acetyl-CoA to acetylate sn-1,2 DAGs but other acyl-donor and acyl-acceptor substrates can be used with low efficiency. Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants.
Collapse
|
42
|
The potential of nuclear magnetic resonance to track lipids in planta. Biochimie 2016; 130:97-108. [DOI: 10.1016/j.biochi.2016.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
43
|
Rapid Quantification of Low-Viscosity Acetyl-Triacylglycerols Using Electrospray Ionization Mass Spectrometry. Lipids 2016; 51:1093-102. [PMID: 27497979 DOI: 10.1007/s11745-016-4179-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
Acetyl-triacylglycerols (acetyl-TAG) possess an sn-3 acetate group, which confers useful chemical and physical properties to these unusual triacylglycerols (TAG). Current methods for quantification of acetyl-TAG are time consuming and do not provide any information on the molecular species profile. Electrospray ionization mass spectrometry (ESI-MS)-based methods can overcome these drawbacks. However, the ESI-MS signal intensity for TAG depends on the aliphatic chain length and unsaturation index of the molecule. Therefore response factors for different molecular species need to be determined before any quantification. The effects of the chain length and the number of double-bonds of the sn-1/2 acyl groups on the signal intensity for the neutral loss of short chain length sn-3 groups were quantified using a series of synthesized sn-3 specific structured TAG. The signal intensity for the neutral loss of the sn-3 acyl group was found to negatively correlated with the aliphatic chain length and unsaturation index of the sn-1/2 acyl groups. The signal intensity of the neutral loss of the sn-3 acyl group was also negatively correlated with the size of that chain. Further, the position of the group undergoing neutral loss was also important, with the signal from an sn-2 acyl group much lower than that from one located at sn-3. Response factors obtained from these analyses were used to develop a method for the absolute quantification of acetyl-TAG. The increased sensitivity of this ESI-MS-based approach allowed successful quantification of acetyl-TAG in various biological settings, including the products of in vitro enzyme activity assays.
Collapse
|
44
|
Haslam RP, Sayanova O, Kim HJ, Cahoon EB, Napier JA. Synthetic redesign of plant lipid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:76-86. [PMID: 27483205 PMCID: PMC4982047 DOI: 10.1111/tpj.13172] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 05/19/2023]
Abstract
Plant seed lipid metabolism is an area of intensive research, including many examples of transgenic events in which oil composition has been modified. In the selected examples described in this review, progress towards the predictive manipulation of metabolism and the reconstitution of desired traits in a non-native host is considered. The advantages of a particular oilseed crop, Camelina sativa, as a flexible and utilitarian chassis for advanced metabolic engineering and applied synthetic biology are considered, as are the issues that still represent gaps in our ability to predictably alter plant lipid biosynthesis. Opportunities to deliver useful bio-based products via transgenic plants are described, some of which represent the most complex genetic engineering in plants to date. Future prospects are considered, with a focus on the desire to transition to more (computationally) directed manipulations of metabolism.
Collapse
Affiliation(s)
- Richard P Haslam
- Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Olga Sayanova
- Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Hae Jin Kim
- Centre for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Centre for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| |
Collapse
|
45
|
Horn PJ, Liu J, Cocuron JC, McGlew K, Thrower NA, Larson M, Lu C, Alonso AP, Ohlrogge J. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:322-348. [PMID: 26991237 DOI: 10.1111/tpj.13163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jinjie Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | | | - Kathleen McGlew
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas A Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Matt Larson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Ana P Alonso
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
46
|
Chen GQ, van Erp H, Martin-Moreno J, Johnson K, Morales E, Browse J, Eastmond PJ, Lin JT. Expression of Castor LPAT2 Enhances Ricinoleic Acid Content at the sn-2 Position of Triacylglycerols in Lesquerella Seed. Int J Mol Sci 2016; 17:507. [PMID: 27058535 PMCID: PMC4848963 DOI: 10.3390/ijms17040507] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 01/20/2023] Open
Abstract
Lesquerella is a potential industrial oilseed crop that makes hydroxy fatty acid (HFA). Unlike castor its seeds are not poisonous but accumulate lesquerolic acid mostly at the sn-1 and sn-3 positions of triacylglycerol (TAG), whereas castor contains ricinoleic acid (18:1OH) at all three positions. To investigate whether lesquerella can be engineered to accumulate HFAs in the sn-2 position, multiple transgenic lines were made that express castor lysophosphatidic acid acyltransferase 2 (RcLPAT2) in the seed. RcLPAT2 increased 18:1OH at the sn-2 position of TAGs from 2% to 14%–17%, which resulted in an increase of tri-HFA-TAGs from 5% to 13%–14%. Our result is the first example of using a LPAT to increase ricinoleic acid at the sn-2 position of seed TAG. This work provides insights to the mechanism of HFA-containing TAG assembly in lesquerella and directs future research to optimize this plant for HFA production.
Collapse
Affiliation(s)
- Grace Q Chen
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| | - Harrie van Erp
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC 99164, USA.
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Jose Martin-Moreno
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Kumiko Johnson
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| | - Eva Morales
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC 99164, USA.
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Jiann-Tsyh Lin
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
47
|
Bansal S, Durrett TP. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 2016; 120:9-16. [DOI: 10.1016/j.biochi.2015.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/13/2015] [Indexed: 12/27/2022]
|
48
|
Pollard M, Delamarter D, Martin TM, Shachar-Hill Y. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates. PHYTOCHEMISTRY 2015; 118:192-203. [PMID: 26265565 DOI: 10.1016/j.phytochem.2015.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Studies on the metabolism of lipids in seeds frequently use radiolabeled acetate and glycerol supplied to excised developing seeds to track the biosynthesis of acyl and lipid head groups, respectively. Such experiments are generally restricted to shorter time periods and the results may not quantitatively reflect in planta rates. These limitations can be removed by using cultured embryos, provided they mimic growth and lipid deposition observed for embryos in planta. Mid-maturation embryos from Camelina sativa were cultured in vitro to assess the use of sufficient acetate or glycerol concentrations and labeling periods for stable isotope labeling and mass spectrometric detection. Maximum incorporation of exogenous acetate into fatty acids occurred at 1mM and above. This provides about 5% of the total carbon flux entering fatty acids, enough for (13)C isotopomer analysis while maintaining normal biosynthetic rates for over 24h. Labeling analysis indicates that acetate reports lipid metabolism uniformly across the embryo. At higher acetate concentrations with longer incubations, the rate of fatty acid synthesis is reduced and the composition of newly synthesized fatty acids changes. While the mole fractions of oleate that undergo Δ12-desaturation or elongation are independent of biosynthetic flux, Δ15-desaturation shows a bimodal dependence. These observations are consistent with changes occurring in planta over seed development. Incorporation rates of the glyceryl moiety into lipids saturates at about 0.5mM exogenous glycerol. At saturation, the exogenous glycerol almost completely replaces the endogenous supply of glycerol-3-phosphate without affecting net lipid accumulation or fatty acid composition. It is concluded that acetate and glycerol labeling of cultured C. sativa embryos can provide an accurate representation of lipid metabolism in embryos in vivo, and that in Camelina embryos glycerol-3-phosphate levels do not co-limit triacylglycerol synthesis.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA.
| | - Danielle Delamarter
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Tina M Martin
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Pollard M, Martin TM, Shachar-Hill Y. Lipid analysis of developing Camelina sativa seeds and cultured embryos. PHYTOCHEMISTRY 2015; 118:23-32. [PMID: 26262674 DOI: 10.1016/j.phytochem.2015.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Camelina sativa is a cultivated oilseed rich in triacylglycerols containing oleic, linoleic, α-linolenic and eicosenoic acids. As it holds promise as a model species, its lipid synthesis was characterized in vivo and in culture. Lipid accumulates at a maximum rate of about 26 μg/day/seed (11.5 mg lipid/day/g fresh seed weight), a rate comparable with other oilseeds. Noteworthy is a late stage surge in α-linolenic acid accumulation. Small amounts of unusual epoxy and hydroxy fatty acids are also present in the triacylglycerols. These include 15,16-epoxy- and 15-hydroxy-octadecadienoic acids and homologous series of ω7-hydroxy-alk-ω9-enoic and ω9/10-hydroxy-alkanoic acids. Mid-maturation embryos cultured in vitro have growth and lipid deposition rates and fatty acid compositions that closely match that of seeds, but extended culture periods allow these rates to rise and surpass those observed in planta. Optimized thin layer chromatography systems for characterization of labeled products from acetate or glycerol labeling are described. Glycerol label is only found in acylglycerols, largely as the intact glyceryl backbone, but acetate can label acyl groups and sterols, the latter to a much higher relative specific activity. This presumably occurs because mevalonic acid precursor is derived from the non-plastid pool of acetyl-CoA that is also the source for malonyl-CoA to drive FAE1-dependent chain elongation. Particular attention has been paid to the separation of sterols and diacylglycerols, and to hydrogenation of triacylglycerols to simplify their analysis. These improved methods will allow more accurate analyses of the fluxes of lipid metabolism in cultured plant embryos.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI 48824, United States.
| | - Tina M Martin
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI 48824, United States
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI 48824, United States
| |
Collapse
|