1
|
Dong Y, Huang L, Liu J, Nong H, Li H, Zhang W, Zheng H, Tao J. Genome-wide identified VvOFP genes family and VvOFP4 functional characterization provide insight into fruit shape in grape. Int J Biol Macromol 2024; 276:133880. [PMID: 39025176 DOI: 10.1016/j.ijbiomac.2024.133880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Ovate Family Proteins (OFPs) are emerging as novel transcriptional regulators of fruit shape. Despite their established role in various species, their involvement in regulating grape fruit shape remains understudied. This study encompassed a comprehensive evaluation of 16 grape OFP genes in total at the whole genome level. Phylogenetic and synteny analyses established a close relationship between grape VvOFP genes and their tomato counterparts. Expression profiling post-treatment with gibberellic acid (GA3) and thidiazuron (TDZ) revealed that certain OFP genes responded to these regulators, with VvOFP4 showing peak expression three days post-anthesis. Functional assays via overexpression of VvOFP4 in tobacco and tomato altered the morphology of both vegetative and reproductive organs, including leaves, stamens, and fruits/pods. Paraffin sections of transgenic tobacco stems and tomato fruits demonstrated that VvOFP4 overexpression modifies cell dimensions, leading to changes in organ morphology. Additionally, treatments with GA3 and TDZ similarly influenced the shape of grape pulp cells and thereby the overall fruit morphology. These findings suggest that the VvOFP4 gene plays a crucial role in fruit shape determination by modulating cell shape and presents a potential target for future grape breeding programs aimed at diversifying fruit shapes.
Collapse
Affiliation(s)
- Yang Dong
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyuan Huang
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Liu
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilan Nong
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Li
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China
| | - Huan Zheng
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Tao
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China.
| |
Collapse
|
2
|
Wu Q, Xia R, Yang J, Chen R, Zeng Z, Fan C. Identification and Comprehensive Analysis of OFP Genes for Fruit Shape Influence in Mango. Genes (Basel) 2024; 15:823. [PMID: 39062602 PMCID: PMC11275924 DOI: 10.3390/genes15070823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
OVATE family proteins (OFPs) are a class of plant-specific proteins with a conserved OVATE domain that play fundamental roles in fruit development and plant growth. Mango (Mangifera indica L.) is an economically important subtropical fruit tree characterized by a diverse array of fruit shapes and sizes. Despite extensive research on OFPs across various species, there remains a scarcity of information regarding OFPs in mango. Here, we have successfully identified 25 OFP genes (MiOFPs) in mango, each of which exhibits the conserved OVATE domains. The MiOFP gene exhibit a range of 2-6 motifs, with all genes containing both motif 1 and motif 2. Phylogenetic analysis on 97 OFPs (including 18 AtOFPs, 24 SlOFPs, 25 MiOFPs, and 30 OsOFPs) indicated that MiOFPs could be divided into three main clades: clade I, II, and III. Comparative morphological analysis identified significant variations in fruit longitudinal diameter, fruit transverse diameter, and fruit shape index between two distinct shaped mango cultivars ('Hongxiangya' and 'Jingpingmang') at DAP5, DAP7, and DAP10 stages. The subsequent examination of paraffin sections revealed distinct patterns of cell elongation. The majority of MiOFP genes exhibited predominantly expressed in developing organs, specifically flowers and immature fruits, while displaying distinct expression patterns. RNA-Seq analysis revealed significant disparities in the expression levels of several OFP genes, including MiOFP5, MiOFP11, MiOFP21, MiOFP22, MiOFP23, and MiOFP25, between the two mango cultivars. These findings suggest that these six genes may play a crucial role for fruit shape in mango, especially the MiOFP22. The findings of this study have established a basis for future investigations into MiOFPs in mango, offering a solid foundation for further research in this field.
Collapse
Affiliation(s)
- Qiuping Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| | - Rui Xia
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Jie Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| | - Rong Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| | - Zaohai Zeng
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Chao Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| |
Collapse
|
3
|
Patel-Tupper D, Kelikian A, Leipertz A, Maryn N, Tjahjadi M, Karavolias NG, Cho MJ, Niyogi KK. Multiplexed CRISPR-Cas9 mutagenesis of rice PSBS1 noncoding sequences for transgene-free overexpression. SCIENCE ADVANCES 2024; 10:eadm7452. [PMID: 38848363 PMCID: PMC11160471 DOI: 10.1126/sciadv.adm7452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Understanding CRISPR-Cas9's capacity to produce native overexpression (OX) alleles would accelerate agronomic gains achievable by gene editing. To generate OX alleles with increased RNA and protein abundance, we leveraged multiplexed CRISPR-Cas9 mutagenesis of noncoding sequences upstream of the rice PSBS1 gene. We isolated 120 gene-edited alleles with varying non-photochemical quenching (NPQ) capacity in vivo-from knockout to overexpression-using a high-throughput screening pipeline. Overexpression increased OsPsbS1 protein abundance two- to threefold, matching fold changes obtained by transgenesis. Increased PsbS protein abundance enhanced NPQ capacity and water-use efficiency. Across our resolved genetic variation, we identify the role of 5'UTR indels and inversions in driving knockout/knockdown and overexpression phenotypes, respectively. Complex structural variants, such as the 252-kb duplication/inversion generated here, evidence the potential of CRISPR-Cas9 to facilitate significant genomic changes with negligible off-target transcriptomic perturbations. Our results may inform future gene-editing strategies for hypermorphic alleles and have advanced the pursuit of gene-edited, non-transgenic rice plants with accelerated relaxation of photoprotection.
Collapse
Affiliation(s)
- Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Armen Kelikian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Leipertz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Nina Maryn
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Michelle Tjahjadi
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Nicholas G. Karavolias
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Dujak C, Coleto-Alcudia V, Aranzana MJ. Genomic analysis of fruit size and shape traits in apple: unveiling candidate genes through GWAS analysis. HORTICULTURE RESEARCH 2024; 11:uhad270. [PMID: 38419968 PMCID: PMC10901474 DOI: 10.1093/hr/uhad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 03/02/2024]
Abstract
Genomic tools facilitate the efficient selection of improved genetic materials within a breeding program. Here, we focus on two apple fruit quality traits: shape and size. We utilized data from 11 fruit morphology parameters gathered across three years of harvest from 355 genotypes of the apple REFPOP collection, which serves as a representative sample of the genetic variability present in European-cultivated apples. The data were then employed for genome-wide association studies (GWAS) using the FarmCPU and the BLINK models. The analysis identified 59 SNPs associated with fruit size and shape traits (35 with FarmCPU and 45 with BLINK) responsible for 71 QTNs. These QTNs were distributed across all chromosomes except for chromosomes 10 and 15. Thirty-four QTNs, identified by 27 SNPs, were related for size traits, and 37 QTNs, identified by 26 SNPs, were related to shape attributes. The definition of the haploblocks containing the most relevant SNPs served to propose candidate genes, among them the genes of the ovate family protein MdOFP17 and MdOFP4 that were in a 9.7kb haploblock on Chromosome 11. RNA-seq data revealed low or null expression of these genes in the oblong cultivar "Skovfoged" and higher expression in the flat "Grand'mere." The Gene Ontology enrichment analysis support a role of OFPs and hormones in shape regulation. In conclusion, this comprehensive GWAS analysis of the apple REFPOP collection has revealed promising genetic markers and candidate genes associated with apple fruit shape and size attributes, providing valuable insights that could enhance the efficiency of future breeding programs.
Collapse
Affiliation(s)
- Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Veredas Coleto-Alcudia
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Genomics and Biotechnology, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
5
|
McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, Gros C, Boyaci HF, Ozalp R, Borovsky Y, Schafleitner R, Barchenger D, Finkers R, Brouwer M, Stein N, Rabanus-Wallace MT, Giuliano G, Voorrips R, Paran I, Lefebvre V. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1508-1528. [PMID: 37602679 DOI: 10.1111/tpj.16425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.
Collapse
Affiliation(s)
- Louis McLeod
- INRAE, GAFL, Montfavet, France
- INRAE, A2M, Montfavet, France
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pontecagnano Faiano, Italy
| | | | | | | | - Ramazan Ozalp
- Bati Akdeniz Agricultural Research Institute (BATEM), Antalya, Türkiye
| | - Yelena Borovsky
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Roland Schafleitner
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Derek Barchenger
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Corre, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | | | - Giovanni Giuliano
- Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy
| | - Roeland Voorrips
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Ilan Paran
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | | |
Collapse
|
6
|
Bao Z, Guo Y, Deng Y, Zang J, Zhang J, Deng Y, Ouyang B, Qu X, Bürstenbinder K, Wang P. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. THE PLANT CELL 2023; 35:4266-4283. [PMID: 37668409 PMCID: PMC10689142 DOI: 10.1093/plcell/koad231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaling Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
7
|
Wang S, Long C, Liu H, Pan L, Yang S, Zhao J, Jiang Y, Bei X. Comparative physiochemical and transcriptomic analysis reveals the influences of cross-pollination on ovary and fruit development in pummelo (Citrus maxima). Sci Rep 2023; 13:19081. [PMID: 37925539 PMCID: PMC10625566 DOI: 10.1038/s41598-023-46058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
'Shuijingmiyou' pummelo (SJ), one of the most popular fruits in Yunnan province of China, is of relatively low fruit shape (FS) quality. In this study, we compared the FS promoting effects of cross pollinations using pollens from seven pummelo varieties, and found that 'Guanximiyou' pummelo (GX) cross-pollination showed the best FS promoting effects on SJ fruits by shortening its fruit neck. To explore the underlying mechanism, physiochemical and transcriptomic differences between self- and cross-pollinated SJ ovaries (SJO and GXO) were investigated. Higher salicylic acid, gibberellin and indole acetic acid contents and superoxide dismutase, peroxidase and catalase activities, and lower polyphenol oxidase activity were determined in GXO compared with SJO. Enrichment analysis of the identified 578 differentially expressed genes (123 up-regulated and 455 down-regulated) in GXO showed that genes involved in solute transport, RNA biosynthesis, phytohormone action and cell wall organization were significantly enriched. The results obtained in this study will be helpful in understanding the influences of cross-pollination on pummelo ovary and fruit development, and can provide the basis for clarifying the underlying mechanism of cross-pollination improved fruit quality.
Collapse
Affiliation(s)
- Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Chunrui Long
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Hongming Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Li Pan
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Shizao Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Jun Zhao
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Yan Jiang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Xuejun Bei
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
8
|
An Y, Xia X, Zheng H, Yu S, Jing T, Zhang F. Multi-genome comprehensive identification of SSR/SV and development of molecular markers database to serve Sorghum bicolor (L.) breeding. BMC Genom Data 2023; 24:62. [PMID: 37924022 PMCID: PMC10625204 DOI: 10.1186/s12863-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND As an important food and cash crop, identification of DNA molecular markers is of great significance for molecular marker-assisted breeding of Sorghum (Sorghum bicolor (L.) moench). Although some sorghum-related mutation databases have been published, the special SSR and SV databases still need to be constructed and updated. RESULTS In this study, the quality of 18 different sorghum genomes was evaluated, and two genomes were assembled at chromosome level. Through the identification and comparative analysis of SSR loci in these genomes, the distribution characteristics of SSR in the above sorghum genomes were initially revealed. At the same time, five representative reference genomes were selected to identify the structural variation of sorghum. Finally, a convenient SSR/SV database of sorghum was constructed by integrating the above results ( http://www.sorghum.top:8079/ ; http://43.154.129.150:8079/ ; http://47.106.184.91:8079/ ). Users can query the information of related sites and primer pairs. CONCLUSIONS Anyway, our research provides convenience for sorghum researchers and will play an active role in sorghum molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Xiaobo Xia
- College of Plant Protection , Nanjing Agricultural University, Nanjing, 210095, China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China.
| |
Collapse
|
9
|
Bie H, Li Y, Zhao Y, Fang W, Chen C, Wang X, Wu J, Wang L, Cao K. Genome-wide presence/absence variation discovery and its application in Peach (Prunus persica). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111778. [PMID: 37353009 DOI: 10.1016/j.plantsci.2023.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Gene presence/absence variation (PAV) is an important contributor to the studies of genetic diversity, gene identification, and molecular marker development in plants. In the present study, 100 peach (Prunus persica) accessions were used for genome resequencing to identify PAVs. Alignmentwith a reference genome yielded a total of 2.52 Mb non-reference sequences and 923 novel genes were identified. The dispensable PAVs were enriched in resistance, perhaps reflecting their roles in plant adaptation to various environments. Furthermore, selection sweeps associated with peach domestication and improvement were identified based on PAV data. Only 4.3% and 13.4% of domestication and improvement sweeps, respectively, were identified simultaneously using single nucleotide polymorphism (SNP) data, suggesting flexible identification between the different methods. To further verify the applicability of PAV identification, a genome-wide association study was conducted using 21 agronomic traits. Some of the identified loci were consistent with those reported in previous studies, while some were mapped for the first time; the latter included petiole length, petiole gland shape, and petiole gland number. Through tissue-specific expression analysis and gene transformation experiments, a novel gene, evm.model.Contig322_A94.1, was identified and found to be involved in chilling requirements. We speculated that this novel gene might regulate the trait by participating in the ABA signaling pathway. The PAVs identified in P. persica provide valuable resources for mapping the entire gene set and identifying optional markers for molecular selection in future studies.
Collapse
Affiliation(s)
- Hangling Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China; The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yalin Zhao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China; The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
10
|
Liu J, Wang Y, Deng X, Zhang M, Sun H, Gao L, Song H, Xin J, Ming R, Yang D, Yang M. Transcription factor NnMYB5 controls petal color by regulating GLUTATHIONE S-TRANSFERASE2 in Nelumbo nucifera. PLANT PHYSIOLOGY 2023; 193:1213-1226. [PMID: 37348874 PMCID: PMC10517185 DOI: 10.1093/plphys/kiad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023]
Abstract
Lotus (Nelumbo spp.) is an important aquatic ornamental genus in the family Nelumbonaceae comprising only 2 species: Nelumbo lutea with yellow flowers and Nelumbo nucifera with red or white flowers. The petal color variations between these 2 species have previously been associated with the potential activities of FLAVONOL SYNTHASE (FLS) and MYB5. However, the underlying genetic mechanisms of flower color divergence within the N. nucifera species remain unclear. Here, quantitative trait locus mapping led to the identification of MYB5, a candidate gene controlling petal color in N. nucifera. Genotyping of 213 natural lotus accessions revealed an 80 kb presence/absence variant (PAV) of the NnMYB5 gene that is associated with petal color variation. Transcriptome analysis, dual-luciferase, and yeast 1-hybrid assays showed that NnMYB5 could directly activate the anthocyanin transporter gene GLUTATHIONE S-TRANSFERASE2 (NnGST2). Heterologous expression of NnGST2 in Arabidopsis (Arabidopsis thaliana) and its overexpression in lotus petals induced anthocyanin accumulation. Deletion of the 80 kb PAV within NnMYB5 inactivated NnGST2 expression and blocked anthocyanin accumulation in white N. nucifera petals. In contrast, the anthocyanin deficiency of N. lutea occurred due to pseudogenized NlMYB5 alleles. Our results establish a regulatory link between NnMYB5 and NnGST2 in petal anthocyanin accumulation and demonstrate the independent mechanisms controlling flower coloration in Nelumbo.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
12
|
Zheng G, Hu S, Cheng S, Wang L, Kan L, Wang Z, Xu Q, Liu Z, Kang C. Factor of DNA methylation 1 affects woodland strawberry plant stature and organ size via DNA methylation. PLANT PHYSIOLOGY 2023; 191:335-351. [PMID: 36200851 PMCID: PMC9806633 DOI: 10.1093/plphys/kiac462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process that directs silencing to specific genomic regions and loci. The biological functions of RdDM are not well studied in horticultural plants. Here, we isolated the ethyl methane-sulfonate-induced mutant reduced organ size (ros) producing small leaves, flowers, and fruits in woodland strawberry (Fragaria vesca) due to reduced cell numbers compared with that in the wild-type (WT). The candidate mutation causes a premature stop codon in FvH4_6g28780, which shares high similarity to Arabidopsis (Arabidopsis thaliana) Factor of DNA Methylation1 (FDM1) encoding an RdDM pathway component and was named FveFDM1. Consistently, the fvefdm1CR mutants generated by CRISPR/Cas9 also produced smaller organs. Overexpressing FveFDM1 in an Arabidopsis fdm1-1 fdm2-1 double mutant restored DNA methylation at the RdDM target loci. FveFDM1 acts in a protein complex with its homolog Involved in De Novo 2 (FveIDN2). Furthermore, whole-genome bisulfite sequencing revealed that DNA methylation, especially in the CHH context, was remarkably reduced throughout the genome in fvefdm1. Common and specific differentially expressed genes were identified in different tissues of fvefdm1 compared to in WT tissues. DNA methylation and expression levels of several gibberellic acid (GA) biosynthesis and cell cycle genes were validated. Moreover, the contents of GA and auxin were substantially reduced in the young leaves of fvefdm1 compared to in the WT. However, exogenous application of GA and auxin could not recover the organ size of fvefdm1. In addition, expression levels of FveFDM1, FveIDN2, Nuclear RNA Polymerase D1 (FveNRPD1), Domains Rearranged Methylase 2 (FveDRM2), and cell cycle genes were greatly induced by GA treatment. Overall, our work demonstrated the critical roles of FveFDM1 in plant growth and development via RdDM-mediated DNA methylation in horticultural crops.
Collapse
Affiliation(s)
- Guanghui Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Simin Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liyang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lijun Kan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengming Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, Mary land 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
An Y, Zhang X, Jiang S, Zhao J, Zhang F. TeaPVs: a comprehensive genomic variation database for tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:513. [PMID: 36324064 PMCID: PMC9632082 DOI: 10.1186/s12870-022-03901-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Genome variation not only plays an important role in plant phenotypic modeling and adaptive evolution, but also enhances population genetic diversity and regulates gene expression. The tea tree (Camellia sinensis) has a large genome (~ 3.0 Gb), making the identification of genome-wide variants time-consuming and expensive. With the continuous publication of a large number of different types of population sequencing data, there is a lack of an open platform to integrate these data and identify variants in the tea plant genome.To integrate the genetic variation confidence in the tea plant population genome, 238 whole-genome resequencing, 213 transcriptome sequencing, and 96 hybrid F1 individuals with a total of more than 20 Tb were collected for mutation site identification. Based on these variations information, we constructed the first tea tree variation web service database TeaPVs ( http://47.106.184.91:8025/ and http://liushang.top:8025/ ). It supports users to search all SNP, Indel, SV mutations and SSR/Polymorphic SSR sequences by location or gene ID. Furthermore, the website also provides the functions of gene expression search of different transcriptome, sequence blast, sequence extraction of CDS and mutation loci, etc.The features of the TeaPVs database make it a comprehensive tea plant genetic variation bioinformatics platform for researchers, and will also be helpful for revealing new functional mutations in the tea plant genome and molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, People's Republic of China
| | - Xiaoqin Zhang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, People's Republic of China
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, People's Republic of China
| | - Jingjing Zhao
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, People's Republic of China
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, 564502, Guizhou, People's Republic of China.
| |
Collapse
|
14
|
The CsHEC1-CsOVATE module contributes to fruit neck length variation via modulating auxin biosynthesis in cucumber. Proc Natl Acad Sci U S A 2022; 119:e2209717119. [PMID: 36122223 PMCID: PMC9522363 DOI: 10.1073/pnas.2209717119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fruit neck is the proximal portion of the fruit with undesirable taste that has detrimental effects on fruit shape and commercial value in cucumber. Despite the dramatic variations in fruit neck length of cucumber germplasms, the genes and regulatory mechanisms underlying fruit neck elongation remain mysterious. In this study, we found that Cucumis sativus HECATE1 (CsHEC1) was highly expressed in fruit neck. Knockout of CsHEC1 resulted in shortened fruit neck and decreased auxin accumulation, whereas overexpression of CsHEC1 displayed the opposite effects, suggesting that CsHEC1 positively regulated fruit neck length by modulating local auxin level. Further analysis showed that CsHEC1 directly bound to the promoter of the auxin biosynthesis gene YUCCA4 (CsYUC4) and activated its expression. Enhanced expression of CsYUC4 resulted in elongated fruit neck and elevated auxin content. Moreover, knockout of CsOVATE resulted in longer fruit neck and higher auxin. Genetic and biochemical data showed that CsOVATE physically interacted with CsHEC1 to antagonize its function by attenuating the CsHEC1-mediated CsYUC4 transcriptional activation. In cucumber germplasms, the expression of CsHEC1 and CsYUC4 positively correlated with fruit neck length, while that of CsOVATE showed a negative correlation. Together, our results revealed a CsHEC1-CsOVATE regulatory module that confers fruit neck length variation via CsYUC4-mediated auxin biosynthesis in cucumber.
Collapse
|
15
|
An Y, Xia X, Jing T, Zhang F. Identification of gene family members and a key structural variation reveal important roles of OVATE genes in regulating tea ( Camellia sinensis) leaf development. FRONTIERS IN PLANT SCIENCE 2022; 13:1008408. [PMID: 36212328 PMCID: PMC9539550 DOI: 10.3389/fpls.2022.1008408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
OVATE genes are a new class of transcriptional repressors with important regulatory roles in plant growth and development. Through genome-wide analysis of the OVATE gene family of tea plants, 26 and 13 family members were identified in cultivated and ancient tea plants, respectively. Syntenic results showed that OVATE gene family in cultivated tea plants may have experienced a special expansion event. Based on phylogenetic tree analysis, all OVATE genes were divided into four groups, and the third group had the largest number, reaching 16. Transcriptome data from different organs and populations indicated that many OVATE family members were highly expressed in young shoots and leaves, and their expression levels gradually decreased as tea leaves developed. Finally, the expression trends of the six key candidate genes were verified by RT-qPCR, which were consistent with the transcriptome results, indicating that the ovate gene family plays an important role in regulating the process of tea leaf development. In addition, we identified a key structural variation with a length of 184 bp, and the population genotyping showed that it was closely related to the area of tea leaves. Our research provides an important clue for further exploring the function of ovate gene family in tea plants and the development mechanism of tea leaves.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Xiaobo Xia
- CIMMYT-JAAS Joint Center for Wheat Diseases/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing) Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| |
Collapse
|
16
|
Wu Q, Sun J, Fu J, Yu H, Wang X, Wang S, Adhikari PB, Deng X, Xu Q. Genome-wide identification of ovate family in Citrus and functional characterization of CitOFP19. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111328. [PMID: 35696928 DOI: 10.1016/j.plantsci.2022.111328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Fruit shape is an important trait for fruit appearance and commercial value. Diversity of fruit-shape has been utilized in the breeding of pummelo (Citrus maxima), a basic species in Citrus. However, little is known about genetic basis of fruit shape in citrus. In this study, we identified 16 OVATE family protein (OFP) genes in the pummelo genome. Phylogenetically, they were classified into three subfamilies, which was consistent with the classification of their Arabidopsis orthologs. Synteny analysis suggested that segment and tandem duplications were responsible for their expansion in pummelo. Expression pattern analysis of Citrus OFPs (CitOFPs) showed that CitOFP19 had significantly higher expression level in the ovaries of round pummelo than in those of pear-shaped pummelo. Heterologous overexpression of CitOFP19 in tomato resulted in pear-shaped ovary and fruit shape. Taken together, this study characterized OVATE gene family in Citrus genome and assessed the function of CitOFP19.
Collapse
Affiliation(s)
- Qingjiang Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Institute of Horticultural Sciences, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Juan Sun
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiwen Yu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou 363000, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Prakash Babu Adhikari
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Belal MA, Ezzat M, Zhang Y, Xu Z, Cao Y, Han Y. Integrative Analysis of the DICER-like (DCL) Genes From Peach (Prunus persica): A Critical Role in Response to Drought Stress. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DICER-likes (DCLs) proteins are the core component for non-coding RNA (ncRNA) biogenesis, playing essential roles in some biological processes. The DCL family has been characterized in model plants, such as Arabidopsis, rice, and poplar. However, the evolutionary aspect and the expression mechanism under drought stress were scarce and have never been reported and characterized in one of the most important worldwide cultivated fruit trees, peach (Prunus persica). Eight DCLs genes in the Prunus persica genome were detected, in addition to 51 DCLs in the other seven Rosaceae genomes. The phylogenetic analysis with Arabidopsis thaliana and RTL1 gene as outgroups suggested that DCL members are divided into four clades: DCL1, DCL2, DCL3, and DCL4 with several gene gain/loss events of DCL gene copies through the evolutionary tract of the Rosacea family. The number of homologous DCL copies within each clade, along with the chromosomal location indicated gene duplication event of the DCL2 gene occurred once for the subfamily Amygdaloideae and twice for Pyrus communis and Prunus dulics and trice for the P. persica on Chromosome number 7 genes. Another duplication event was found for the DCL3 gene that occurred once for all the eight Rosaceae species with no match in A. thaliana. The DCL genetic similarity and activity was evaluated using BLASTp and previously published RNA-seq data among different tissues and over different time points of peach trees exposed to drought conditions. Finally, the expression pattern of PrupeDCLs in response to drought stress was identified, and two of these members, Prupe.7G047900 and Prupe.6G363600, were found as main candidate genes for response to drought stress. Our data presented here provide useful information for a better understanding of the molecular evolution of DCL genes in Rosaceae genomes, and the function of DCLs in P. persica.
Collapse
|
18
|
Boualem A, Berthet S, Devani RS, Camps C, Fleurier S, Morin H, Troadec C, Giovinazzo N, Sari N, Dogimont C, Bendahmane A. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr Biol 2022; 32:2390-2401.e4. [PMID: 35525245 DOI: 10.1016/j.cub.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.
Collapse
Affiliation(s)
- Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Serge Berthet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Celine Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Sebastien Fleurier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Nathalie Giovinazzo
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Nebahat Sari
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Catherine Dogimont
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
19
|
Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X, Li J, Zhang L, Li Z, Tan B, Feng J. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 34919780 PMCID: PMC9055816 DOI: 10.1111/pbi.v20.5 10.1111/pbi.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Haipeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Chao Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Fan Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Liu Yan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xiaobei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Langlang Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Zhiqian Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| |
Collapse
|
20
|
Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X, Li J, Zhang L, Li Z, Tan B, Feng J. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:886-902. [PMID: 34919780 PMCID: PMC9055816 DOI: 10.1111/pbi.13767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 05/16/2023]
Abstract
Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Haipeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Chao Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Fan Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Liu Yan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xiaobei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Langlang Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Zhiqian Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| |
Collapse
|
21
|
Ma J, Li C, Zong M, Qiu Y, Liu Y, Huang Y, Xie Y, Zhang H, Wang J. CmFSI8/CmOFP13 encoding an OVATE family protein controls fruit shape in melon. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1370-1384. [PMID: 34849737 DOI: 10.1093/jxb/erab510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Fruit shape is an important quality and yield trait in melon (Cucumis melo). Although some quantitative trait loci for fruit shape have been reported in in this species, the genes responsible and the underlying mechanisms remain poorly understood. Here, we identified and characterized a gene controlling fruit shape from two melon inbred lines, B8 with long-horn fruit and HP22 with flat-round fruit. Genetic analysis suggested that the shape was controlled by a single and incompletely dominant locus, which we designate as CmFSI8/CmOFP13. This gene was finely mapped to a 53.7-kb interval on chromosome 8 based on bulked-segregant analysis sequencing and map-based cloning strategies. CmFSI8/CmOFP13 encodes an OVATE family protein (OFP) and is orthologous to AtOFP1 and SlOFP20. The transcription level of CmFSI8/CmOFP13 in the ovary of HP22 was significantly higher than that in B8, and sequence analysis showed that a 12.5-kb genomic variation with a retrotransposon insertion identified in the promoter was responsible for elevating the expression, and this ultimately caused the differences in fruit shape. Ectopic overexpression of CmFSI8/CmOFP13 in Arabidopsis led to multiple phenotypic changes, including kidney-shaped leaves and shortened siliques. Taken together, our results demonstrate the involvement of an OFP in regulating fruit shape in melon, and our improved understanding of the molecular mechanisms will enable us to better manipulate fruit shape in breeding.
Collapse
Affiliation(s)
- Jian Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Congcong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Zong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhong Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuemin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yating Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuli Xie
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Jianshe Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
22
|
Martínez-Martínez C, Gonzalo MJ, Sipowicz P, Campos M, Martínez-Fernández I, Leida C, Zouine M, Alexiou KG, Garcia-Mas J, Gómez MD, Tornero P, Pérez-Amador MÁ, Esteras C, Picó B, Romero C, Monforte AJ. A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:785-801. [PMID: 34821982 PMCID: PMC8942903 DOI: 10.1007/s00122-021-03998-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
The gene underlying the melon fruit shape QTL fsqs8.1 is a member of the Ovate Family Proteins. Variation in fruit morphology is caused by changes in gene expression likely due to a cryptic structural variation in this locus. Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identified underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar 'Piel de Sapo' (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among different melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele effects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology.
Collapse
Affiliation(s)
- Cecilia Martínez-Martínez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
- Universidad de Almería, Almería, Spain
| | - Maria José Gonzalo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Pablo Sipowicz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
- Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Manuel Campos
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Irene Martínez-Fernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Carmen Leida
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Mohammed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Konstantinos G Alexiou
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Barcelona, Spain
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Miguel Ángel Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | - Belén Picó
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| |
Collapse
|
23
|
Zhang C, Cui L, Fang J. Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC PLANT BIOLOGY 2022; 22:42. [PMID: 35057757 PMCID: PMC8772106 DOI: 10.1186/s12870-022-03434-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the breeding of new horticultural crops, fruit shape is an important selection characteristic. A variety of fruit shapes appeared during the gradual process of selection and domestication. However, few studies have been conducted on grape berry shape, especially studies related to mining candidate genes. To discover candidate genes related to grape berry shape, the present study first took the berry shape parameters analyzed by Tomato Analyzer as the target traits and used a genome-wide association analysis to analyze candidate genes. RESULTS In total, 122 single-nucleotide polymorphism (SNP) loci had significant correlations with multiple berry shape traits in both years, and some candidate genes were further mined. These genes were mainly related to LRR receptor-like serine/threonine-protein kinase (At1g05700 and At1g07650), transcription factors (GATA transcription factor 23-like, transcription factor VIP1, transcription initiation factor TFIID, and MADS-box transcription factor 6), ubiquitin ligases (F-box protein SKIP19 and RING finger protein 44), and plant hormones (indole-3-acetic acid-amido synthetase GH3.6 and ethylene-responsive transcription factor ERF061). In addition, some important SNP loci were associated with multiple berry-shape traits. The study further revealed some genes that control multiple traits simultaneously, indicating that these berry shape traits are subject to the coordinated regulation of some genes in controlling berry shape. CONCLUSIONS In the present work, we identified interesting genetic determinants of grape berry shape-related traits. The identification of molecular markers that are closely related to these berry-shape traits is of great significance for breeding specific berry-shaped grape varieties.
Collapse
Affiliation(s)
- Chuan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liwen Cui
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
24
|
Borovsky Y, Raz A, Doron-Faigenboim A, Zemach H, Karavani E, Paran I. Pepper Fruit Elongation Is Controlled by Capsicum annuum Ovate Family Protein 20. FRONTIERS IN PLANT SCIENCE 2022; 12:815589. [PMID: 35058962 PMCID: PMC8763684 DOI: 10.3389/fpls.2021.815589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/28/2023]
Abstract
Fruit shape is one of the most important quality traits of pepper (Capsicum spp.) and is used as a major attribute for the classification of fruit types. Wide natural variation in fruit shape exists among the major cultivated species Capsicum annuum, allowing the identification of several QTLs controlling the trait. However, to date, no genes underlying fruit shape QTLs have been conclusively identified, nor has their function been verified in pepper. We constructed a mapping population from a cross of round- and elongated-fruited C. annuum parents and identified a single major QTL on chromosome 10, termed fs10, explaining 68 and 70% of the phenotypic variation for fruit shape index and for distal fruit end angle, respectively. The QTL was mapped in several generations and was localized to a 5 Mbp region containing the ortholog of SlOFP20 that suppresses fruit elongation in tomato. Virus-induced gene silencing of the pepper ortholog CaOFP20 resulted in increased fruit elongation on two independent backgrounds. Furthermore, CaOFP20 exhibited differential expression in fs10 near-isogenic lines, as well as in an association panel of elongated- and round-fruited accessions. A 42-bp deletion in the upstream region of CaOFP20 was most strongly associated with fruit shape variation within the locus. Histological observations in ovaries and fruit pericarps indicated that fs10 exerts its effect on fruit elongation by controlling cell expansion and replication. Our results indicate that CaOFP20 functions as a suppressor of fruit elongation in C. annuum and is the most likely candidate gene underlying fs10.
Collapse
|
25
|
Cirilli M, Baccichet I, Chiozzotto R, Silvestri C, Rossini L, Bassi D. Genetic and phenotypic analyses reveal major quantitative loci associated to fruit size and shape traits in a non-flat peach collection (P. persica L. Batsch). HORTICULTURE RESEARCH 2021; 8:232. [PMID: 34719677 PMCID: PMC8558339 DOI: 10.1038/s41438-021-00661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Fruit size and shape are critical agronomical and pomological attributes and prime targets in peach breeding programs. Apart from the flat peach type, a Mendelian trait well-characterized at the genetic level, ample diversity of fruit size and shapes is present across peach germplasms. Nevertheless, knowledge of the underlying genomic loci remains limited. In this work, fruit size and shape were assessed in a collection of non-flat peach accessions and selections, under controlled fruit load conditions. The architecture of these traits was then dissected by combining association and linkage mapping, revealing a major locus on the proximal end of chromosome 6 (qSHL/Fs6.1) explaining a large proportion of phenotypic variability for longitudinal shape and also affecting fruit size. A second major locus for fruit longitudinal shape (qSHL5.1), probably also affecting fruit size, was found co-localizing at locus G, suggesting pleiotropic effects of peach/nectarine traits. An additional QTL for fruit longitudinal shape (qSHL6.2) was identified in the distal end of chromosome 6 in a cross with an ornamental double-flower peach and co-localized with the Di2 locus, controlling flower morphology. Besides assisting breeding activities, knowledge of loci controlling fruit size and shape paves the way for more in-depth studies aimed at the identification of underlying genetic variant(s).
Collapse
Affiliation(s)
- Marco Cirilli
- Università degli Studi di Milano - DiSAA, Milano, Italy.
| | | | | | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Milano, Italy
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Milano, Italy
| |
Collapse
|
26
|
Molecular Insights of Fruit Quality Traits in Peaches, Prunus persica. PLANTS 2021; 10:plants10102191. [PMID: 34686000 PMCID: PMC8541108 DOI: 10.3390/plants10102191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Fleshy fruits are the most demanded fruits because of their organoleptic qualities and nutritional values. The genus Prunus is a rich source of diversified stone/drupe fruits such as almonds, apricots, plums, sweet cherries, peaches, and nectarines. The fruit-ripening process in Prunus involves coordinated biochemical and physiological changes resulting in changes in fruit texture, aroma gain, color change in the pericarp, sugar/organic acid balance, fruit growth, and weight gain. There are different varieties of peaches with unique palatable qualities and gaining knowledge in the genetics behind these quality traits helps in seedling selection for breeding programs. In addition, peaches have shorter post-harvest life due to excessive softening, resulting in fruit quality reduction and market loss. Many studies have been executed to understand the softening process at the molecular level to find the genetic basis. To summarize, this review focused on the molecular aspects of peach fruit quality attributes and their related genetics to understand the underlying mechanisms.
Collapse
|
27
|
Fine Mapping of the Gene Controlling the Fruit Skin Hairiness of Prunus persica and Its Uses for MAS in Progenies. PLANTS 2021; 10:plants10071433. [PMID: 34371636 PMCID: PMC8309289 DOI: 10.3390/plants10071433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
The fruit skin pubescence of Prunus persica is an economically important characteristic and comprises the classification criteria. The mapping and identification of a complete linkage marker to the fruit skin trichome trait locus of peach fruit are critical for the molecular marker-assisted selection for peach/nectarine. In this study, the BC1 population was constructed from the parents “Zhongyou No. 4”, the recurrent parent, and “Baihuashanbitao”, the non-recurrent parent. Based on the 38 BC1 individuals’ phenotypes and their genotyping using next-generation sequencing, the G (Glabrous skin) locus of the gene was first identified between 14.099 and 16.721 Mb on chromosome 5. Using other individuals of this population, the gene was fine-mapped in the range of 481 kb with SNP markers. Based on the resequencing data of other cultivars (lines), the candidate SNP in the gene Prupe.5G196400 was obtained. Subsequently, the SNP marker was designed and applied to natural and hybrid peach populations. Via genotyping analysis, we confirmed co-segregation between the peach/nectarine phenotype, which was used in the identification of peach or nectarine with 100% accuracy.
Collapse
|
28
|
Zhang A, Zhou H, Jiang X, Han Y, Zhang X. The Draft Genome of a Flat Peach ( Prunus persica L. cv. '124 Pan') Provides Insights into Its Good Fruit Flavor Traits. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030538. [PMID: 33809190 PMCID: PMC7998450 DOI: 10.3390/plants10030538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/28/2023]
Abstract
The flat peach has become more and more popular worldwide for its fruit quality with relatively low acidity, high sugar content and rich flavor. However, the draft genome assembly of flat peach is still unavailable and the genetic basis for its fruit flavor remains unclear. In this study, the draft genome of a flat peach cultivar '124 Pan' was assembled by using a hybrid assembly algorithm. The final assembly resulted in a total size of 206 Mb with a N50 of 26.3 Mb containing eight chromosomes and seven scaffolds. Genome annotation revealed that a total of 25,233 protein-coding genes were predicted with comparable gene abundance among the sequenced peach species. The phylogenetic tree and divergence times inferred from 572 single copy genes of 13 plant species confirmed that Prunus ferganensis was the ancestor of the domesticated peach. By comparing with the genomes of Prunus persica (Lovell) and Prunus ferganensis, the expansion of genes encoding enzymes involved in terpene biosynthesis was found, which might contribute to the good fruit flavor traits of '124 Pan'. The flat peach draft genome assembly obtained in this study will provide a valuable genomic resource for peach improvement and molecular breeding.
Collapse
Affiliation(s)
- Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaohan Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
29
|
Li Y, Cao K, Li N, Zhu G, Fang W, Chen C, Wang X, Guo J, Wang Q, Ding T, Wang J, Guan L, Wang J, Liu K, Guo W, Arús P, Huang S, Fei Z, Wang L. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Res 2021; 31:592-606. [PMID: 33687945 PMCID: PMC8015852 DOI: 10.1101/gr.261032.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.
Collapse
Affiliation(s)
- Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Nan Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Junxiu Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Kuozhan Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Pere Arús
- IRTA-Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB-UB), Barcelona 08193, Spain
| | - Sanwen Huang
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
30
|
Guo J, Cao K, Yao JL, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guo W, Wang L. Reduced expression of a subunit gene of sucrose non-fermenting 1 related kinase, PpSnRK1βγ, confers flat fruit abortion in peach by regulating sugar and starch metabolism. BMC PLANT BIOLOGY 2021; 21:88. [PMID: 33568056 PMCID: PMC7877075 DOI: 10.1186/s12870-021-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit abortion is a major limiting factor for fruit production. In flat peach, fruit abortion is present in the whole tree of some accessions during early fruit development. However, the physiological factors and genetic mechanism underlying flat fruit abortion remain largely elusive. RESULTS In this study, we have revealed that the fertilization process was accomplished and the reduction of sucrose and starch contents might result in flat fruit abortion. By combining association and gene expression analysis, a key candidate gene, PpSnRK1βγ, was identified. A 1.67-Mb inversion co-segregated with flat fruit shape altered the promoter activity of PpSnRK1βγ, resulting in much lower expression in aborting flat peach. Ectopic transformation in tomato and transient overexpression in peach fruit have shown that PpSnRK1βγ could increase sugar and starch contents. Comparative transcriptome analysis further confirmed that PpSnRK1βγ participated in carbohydrate metabolism. Subcellular localization found that PpSnRK1βγ was located in nucleus. CONCLUSIONS This study provides a possible reason for flat fruit abortion and identified a critical candidate gene, PpSnRK1βγ, that might be responsible for flat fruit abortion in peach. The results will provide great help in peach breeding and facilitate gene identification for fruit abortion in other plant species.
Collapse
Affiliation(s)
- Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenwu Guo
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
31
|
Guan J, Xu Y, Yu Y, Fu J, Ren F, Guo J, Zhao J, Jiang Q, Wei J, Xie H. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biol 2021; 22:13. [PMID: 33402202 PMCID: PMC7784018 DOI: 10.1186/s13059-020-02239-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Structural variations (SVs), a major resource of genomic variation, can have profound consequences on phenotypic variation, yet the impacts of SVs remain largely unexplored in crops. RESULTS Here, we generate a high-quality de novo genome assembly for a flat-fruit peach cultivar and produce a comprehensive SV map for peach, as a high proportion of genomic sequence is occupied by heterozygous SVs in the peach genome. We conduct population-level analyses that indicate SVs have undergone strong purifying selection during peach domestication, and find evidence of positive selection, with a significant preference for upstream and intronic regions during later peach improvement. We perform a SV-based GWAS that identifies a large 1.67-Mb heterozygous inversion that segregates perfectly with flat-fruit shape. Mechanistically, this derived allele alters the expression of the PpOFP2 gene positioned near the proximal breakpoint of the inversion, and we confirm in transgenic tomatoes that PpOFP2 is causal for flat-fruit shape. CONCLUSIONS Thus, beyond introducing new genomics resources for peach research, our study illustrates how focusing on SV data can drive basic functional discoveries in plant science.
Collapse
Affiliation(s)
- Jiantao Guan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Yaoguang Xu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Yang Yu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Jun Fu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jiying Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China.
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China.
| |
Collapse
|
32
|
An Y, Chen L, Tao L, Liu S, Wei C. QTL Mapping for Leaf Area of Tea Plants ( Camellia sinensis) Based on a High-Quality Genetic Map Constructed by Whole Genome Resequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:705285. [PMID: 34394160 PMCID: PMC8358608 DOI: 10.3389/fpls.2021.705285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 05/08/2023]
Abstract
High-quality genetic maps play important roles in QTL mapping and molecular marker-assisted breeding. Tea leaves are not only important vegetative organs but are also the organ for harvest with important economic value. However, the key genes and genetic mechanism of regulating leaf area have not been clarified. In this study, we performed whole-genome resequencing on "Jinxuan," "Yuncha 1" and their 96 F1 hybrid offspring. From the 1.84 Tb of original sequencing data, abundant genetic variation loci were identified, including 28,144,625 SNPs and 2,780,380 indels. By integrating the markers of a previously reported genetic map, a high-density genetic map consisting of 15 linkage groups including 8,956 high-quality SNPs was constructed. The total length of the genetic map is 1,490.81 cM, which shows good collinearity with the genome. A total of 25 representative markers (potential QTLs) related to leaf area were identified, and there were genes differentially expressed in large and small leaf samples near these markers. GWAS analysis further verified the reliability of QTL mapping. Thirty-one pairs of newly developed indel markers located near these potential QTLs showed high polymorphism and had good discrimination between large and small leaf tea plant samples. Our research will provide necessary support and new insights for tea plant genetic breeding, quantitative trait mapping and yield improvement.
Collapse
Affiliation(s)
- Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Linbo Chen
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Chaoling Wei,
| |
Collapse
|