1
|
Ryals DK, Buschkoetter AC, Given JK, Harpur BA. Individual and social heterosis act independently in honey bee (Apis mellifera) colonies. J Hered 2025; 116:54-61. [PMID: 39150220 DOI: 10.1093/jhered/esae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024] Open
Abstract
Heterosis occurs in individuals when genetic diversity, e.g., heterozygosity, increases fitness. Many advanced eusocial insects evolved mating behaviors, including polyandry and polygyny, which increase inter-individual genetic diversity within colonies. The possibility of this structure of diversity to improve group fitness has been termed social heterosis. Neither the independence of individual and social heterosis nor their relative effect sizes have been explicitly measured. Through controlled breeding between pairs of Western honey bee queens (Apis mellifera L.; n = 3 pairs) from two distinct populations, we created inbred colonies with low genetic diversity, hybrid colonies with high heterozygosity, and mixed colonies (combining inbred workers from each population) with low heterozygosity and high social diversity. We then quantified two independent traits in colonies: survival against bacterial challenge and maintenance of brood nest temperature. For both traits, we found hybrid and mixed colonies outperformed inbred colonies but did not perform differently from each other. During immune challenge assays, hybrid and mixed colonies experienced hazard ratios of 0.49 (95% CI [0.37, 0.65]) and 0.69 (95% CI [0.50, 0.96]) compared to inbred colonies. For nest temperatures, hybrid and mixed colonies experienced 1.94 ± 0.97 °C and 2.82 ± 2.46 °C less thermal error and 0.14 ± 0.11 °C2 and 0.16 ± 0.06 °C2 less thermal variance per hour than inbred lines. This suggests social and individual heterosis operate independently and may have similar effect sizes. These results highlight the importance of both inter- and intra-individual diversity to fitness, which may help explain the emergence of polyandry/polygyny in eusocial insects and inform breeding efforts in these systems.
Collapse
Affiliation(s)
- Dylan K Ryals
- Department of Entomology, Purdue University, 901 Mitch Daniels Blvd., West Lafayette, IN 47907, United States
| | - Amos C Buschkoetter
- Department of Entomology, Purdue University, 901 Mitch Daniels Blvd., West Lafayette, IN 47907, United States
| | - J Krispn Given
- Department of Entomology, Purdue University, 901 Mitch Daniels Blvd., West Lafayette, IN 47907, United States
| | - Brock A Harpur
- Department of Entomology, Purdue University, 901 Mitch Daniels Blvd., West Lafayette, IN 47907, United States
| |
Collapse
|
2
|
Kou Z, Wang S, Luo X, Xu J, Tomberlin JK, Huang Y. Wingless strain created using binary transgenic CRISPR/Cas9 alleviates concerns about mass rearing of Hermetia illucens. Commun Biol 2024; 7:1652. [PMID: 39702666 DOI: 10.1038/s42003-024-07254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Larvae of the black soldier fly Hermetia illucens have potential as a natural waste recycler and subsequent use as protein-rich feed for livestock. A common question about the insect-farming processes is, what about the concerns of mass escape of insects from large populations? Here, we present a binary transgenic CRISPR/Cas9 system to generate wingless strain with the potential to address this issue. We identified gonad-specific promoters in vivo and evaluated use of the two strongest promoters, nanos and exuperantia, to drive Cas9 expression. We found that crossing the Hiexu-Cas9 with transgenic sgRNA-expressing insects resulted in higher knockout efficiency of the marker gene white. The Hiexu-Cas9 strain exhibited a maternal deposition of Cas9 that caused more effective knockout in the progeny of female Cas9-expressing individuals. Using this system, we generated wingless mutants lacking mating ability, which can be maintained in colony through a genetic cross of two single strain. These insects are less likely to escape and would be unable to successfully mate if they did escape. Taken together, this study validates effective genetic tools that can be used for gene function studies and industrial applications in black soldier fly and provides an approach to alleviate the concern about massive rearing.
Collapse
Affiliation(s)
- Zongqing Kou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaozhen Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xingyu Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77845, USA
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Ezoe A, Todaka D, Utsumi Y, Takahashi S, Kawaura K, Seki M. Decrease in purifying selection pressures on wheat homoeologous genes: tetraploidization versus hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1190-1205. [PMID: 39428689 DOI: 10.1111/tpj.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
A series of polyploidizations in higher-order polyploids is the main event affecting gene content in a genome. Each polyploidization event can lead to massive functional divergence because of the subsequent decrease in selection pressure on duplicated genes; however, the causal relationship between multiple rounds of polyploidization and the functional divergence of duplicated genes is poorly understood. We focused on the Triticum-Aegilops complex lineage and compared selection pressure before and after tetraploidization and hexaploidization events. Although both events led to decreased selection pressure on homoeologous gene pairs (compared with diploids and tetraploids), the initial tetraploidization had a greater impact on selection pressure on homoeologous gene pairs than did subsequent hexaploidization. Consistent with this, selection pressure on expression patterns for the initial event relaxed more than those for the subsequent event. Surprisingly, the decreased selection pressure on these homoeologous genes was independent of the existence of in-paralogs within the same subgenome. Wheat homoeologous pairs had different evolutionary consequences compared with orthologs related to other mechanisms (ancient allopolyploidization, ancient autopolyploidization, and small-scale duplication). Furthermore, tetraploidization and hexaploidization also seemed to have different evolutionary consequences. This suggests that homoeologous genes retain unique functions, including functions that are unlikely to be preserved in genes generated by the other duplication mechanisms. We found that their unique functions differed between tetraploidization and hexaploidization (e.g., reproductive and chromosome segregation processes). These findings imply that the substantial number of gene pairs resulting from multiple allopolyploidization events, especially initial tetraploidization, may have been a unique source of functional divergence.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
4
|
Feldmann MJ, Pincot DDA, Seymour DK, Famula RA, Jiménez NP, López CM, Cole GS, Knapp SJ. A Dominance Hypothesis Argument for Historical Genetic Gains and the Fixation of Heterosis in Octoploid Strawberry. Genetics 2024; 228:iyae159. [PMID: 39385702 PMCID: PMC11631417 DOI: 10.1093/genetics/iyae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Heterosis was the catalyst for the domestication of cultivated strawberry (Fragaria × ananassa), an interspecific hybrid species that originated in the 1700s. The hybrid origin was discovered because the phenotypes of spontaneous hybrids transgressed those of their parent species. The transgressions included fruit yield increases and other genetic gains in the twentieth century that sparked the global expansion of strawberry production. The importance of heterosis to the agricultural success of the hybrid species, however, has remained a mystery. Here we show that heterosis has disappeared (become fixed) among improved hybrids within a population (the California population) that has been under long-term selection for increased fruit yield, weight, and firmness. We found that the highest yielding hybrids are among the most highly inbred (59-79%), which seems counterintuitive for a highly heterozygous, outbreeder carrying heavy genetic loads. Although faint remnants of heterosis were discovered, the between-parent allele frequency differences and dispersed favorable dominant alleles necessary for heterosis have decreased nearly genome-wide within the California population. Conversely, heterosis was prevalent and significant among wide hybrids, especially for fruit count, a significant driver of genetic gains for fruit yield. We attributed the disappearance (fixation) of heterosis within the California population to increased homozygosity of favorable dominant alleles and inbreeding associated with selection, random genetic drift, and selective sweeps. Despite historical inbreeding, the highest yielding hybrids reported to-date are estimated to be heterozygous for 20,370-44,280 of 97,000-108,000 genes in the octoploid genome, the equivalent of an entire diploid genome or more.
Collapse
Affiliation(s)
- Mitchell J Feldmann
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nicolás P Jiménez
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cindy M López
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
5
|
Deviren B, Bilgin O, Kutlu I. Heterotic grouping of wheat hybrids based on general and specific combining ability from line × tester analysis. PeerJ 2024; 12:e18136. [PMID: 39346035 PMCID: PMC11438435 DOI: 10.7717/peerj.18136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
The most important step in plant breeding is the correct selection of parents, and it would be wise to use heterotic groups for this. The purpose of this study is to analyse yield and its components as well as genetic diversity in line × tester wheat populations. It also seeks to present a coherent framework for the isolation of early superior families and the development of heterotic groups in bread wheat. F1 and F2 generations of 51 genotypes, including 36 combinations between 12 lines and three testers and 15 parents, were evaluated for yield and its components in a three-replication experiment according to the randomized block design. Line × tester analysis of variance, general and specific combining abilities, heterosis, heterobeltiosis and inbreeding depression were calculated. Heterotic groups created based on general and specific combining abilities were compared with each other. The results showed that there was sufficient genetic variation in the population and that further genetic calculations could be made. The selections made based on general and specific combining abilities, heterosis values and average performance of genotypes without heterotic grouping indicated different genotypes for each feature. The creation of heterotic groups made it possible to select genotypes that were superior in terms of all the criteria listed. It was concluded that heterotic groups created based on specific combining abilities may be more useful for breeding studies.
Collapse
Affiliation(s)
- Birol Deviren
- Field Crops Department, Agricultural Faculty, Namık Kemal University, Tekirdağ, Turkey
| | - Oguz Bilgin
- Field Crops Department, Agricultural Faculty, Namık Kemal University, Tekirdağ, Turkey
| | - Imren Kutlu
- Field Crops Department, Agricultural Faculty, Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
6
|
Huang C, Cheng Y, Hu Y, Zhang X, Chen J, Zhao T, Si Z, Cao Y, Li Y, Fang L, Guan X, Zhang T. Impacts of parental genomic divergence in non-syntenic regions on cotton heterosis. J Adv Res 2024:S2090-1232(24)00331-X. [PMID: 39111623 DOI: 10.1016/j.jare.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Heterosis has revolutionized crop breeding, enhancing global agricultural production. However, the mechanisms underlying heterosis remain obscure. Xiangzamian 2# (XZM2), a super hybrid upland cotton (Gossypium hirsutum L.) characterized by high-yield heterosis, has been developed and extensively planted in China. OBJECTIVES We conducted a systematic analysis of CRI12 and J8891, two parents of XZM2. We aimed to reveal the precise genetic information and the role of non-syntenic divergence in shaping heterosis, laying a foundation for advancing understanding of heterosis. METHODS We de novo assembled high-quality genomes of CRI12 and J8891, and further uncovered abundant genetic variations and non-syntenic regions between the parents. Whole-genome comparison, association analysis, transcriptomic analysis and relative identity-by-descent (rIBD) estimation were conducted to identify structural variations (SVs) and introgressions within non-syntenic blocks and to analyze their impacts on promoting heterosis. RESULTS Parental genetic divergence increased in non-syntenic regions. Furthermore, these regions, accounting for only 16.71% of the total genome, contained more loci with significantly higher heterotic effects, far exceeding the syntenic background. SVs covered 97.26% of non-syntenic sequences and caused widespread gene expression differences in these regions, driving dynamic complementation of gene expression in the hybrid. A set of SVs were responsible for trait improvement and had positive effects on heterosis, contributing larger heritability than short variations. We characterized numerous parental-specific introgressions from G. barbadense. Specifically, a functional introgression segment within non-syntenic blocks introduced an elite haplotype, which significantly increased lint yield and enhanced heterosis. CONCLUSION Our study clarified non-syntenic regions to harbor more loci with higher heterotic effects, revealed their importance in promoting heterosis and supported the crucial role of genetic complementation in heterosis. SVs and introgressions were identified as key factors responsible for non-syntenic divergence between the parents. They had important effects on gene expression and trait improvement, positively contributing to heterosis.
Collapse
Affiliation(s)
- Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Cheng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yiqian Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
7
|
Xu X, Xu Y, Che J, Han X, Wang Z, Wang X, Zhang Q, Li X, Zhang Q, Xiao J, Li X, Zhang Q, Ouyang Y. The genetic basis and process of inbreeding depression in an elite hybrid rice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1727-1738. [PMID: 38679669 DOI: 10.1007/s11427-023-2547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 05/01/2024]
Abstract
Inbreeding depression refers to the reduced performance arising from increased homozygosity, a phenomenon that is the reverse of heterosis and exists among plants and animals. As a natural self-pollinated crop with strong heterosis, the mechanism of inbreeding depression in rice is largely unknown. To understand the genetic basis of inbreeding depression, we constructed a successive inbreeding population from the F2 to F4 generation and observed inbreeding depression of all heterotic traits in the progeny along with the decay of heterozygosity in each generation. The expected depression effect was largely explained by 13 QTLs showing dominant effects for spikelets per panicle, 11 for primary branches, and 12 for secondary branches, and these loci constitute the main correlation between heterosis and inbreeding depression. However, the genetic basis of inbreeding depression is also distinct from that of heterosis, such that a biased transmission ratio of alleles for QTLs with either dominant or additive effects in four segregation distortion regions would result in minor effects in expected depression. Noticeably, two-locus interactions may change the extent and direction of the depression effects of the target loci, and overall interactions would promote inbreeding depression among generations. Using an F2:3 variation population, the actual performance of the loci showing expected depression was evaluated considering the heterozygosity decay in the background after inbreeding. We found inconsistent or various degrees of background depression from the F2 to F3 generation assuming different genotypes of the target locus, which may affect the actual depression effect of the locus due to epistasis. The results suggest that the genetic architecture of inbreeding depression and heterosis is closely linked but also differs in their intrinsic mechanisms, which expand our understanding of the whole-genome architecture of inbreeding depression.
Collapse
Affiliation(s)
- Xiaodong Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yawen Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengji Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianmeng Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Wang F, Miao H, Zhang S, Hu X, Li C, Chu Y, Chen C, Zhong W, Zhang T, Wang H, Xu L, Yang W, Chen J. Identification of a major QTL underlying sugar content in peanut kernels based on the RIL mapping population. FRONTIERS IN PLANT SCIENCE 2024; 15:1423586. [PMID: 39027670 PMCID: PMC11254704 DOI: 10.3389/fpls.2024.1423586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
High sugar content in peanut seeds is one of the major breeding objectives for peanut flavor improvement. In order to explore the genetic control of sugar accumulation in peanut kernels, we constructed a recombinant inbred line population of 256 F2:6-7 lines derived from the Luhua11 × 06B16 cross. A high-resolution genetic map was constructed with 3692 bin markers through whole genome re-sequencing. The total map distance was 981.65 cM and the average bin marker distance was 0.27cM. A major stable QTL region (qSCB09/qSSCB09) was identified on linkage group (LG) B09 associated with both sucrose content (SC) and soluble sugar content (SSC) explaining 21.51-33.58% phenotypic variations. This major QTL region was consistently detected in three environments and mapped within a physical interval of 1.56 Mb on chromosome B09, and six candidate genes were identified. These results provide valuable information for further map-based cloning of favorable allele for sugar content in peanut.
Collapse
Affiliation(s)
- Feifei Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Huarong Miao
- Shandong Peanut Research Institute, Qingdao, China
| | | | - Xiaohui Hu
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Ye Chu
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Charles Chen
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan, Shandong, China
| | - Tianyu Zhang
- Shandong Seed Administration Station, Jinan, Shandong, China
| | - Heng Wang
- Rizhao Agricultural Technical Service Center, Rizhao, Shandong, China
| | - Linying Xu
- Cixi Agricultural Science Research Institute, Cixi, Ningbo, Zhejiang, China
| | | | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
9
|
John-Bejai C, Trethowan R, Revell I, de Groot S, Shezi L, Koekemoer F, Diffey S, Lage J. Identifying the seeds of heterotic pools for Southern and Eastern Africa from global elite spring wheat germplasm. FRONTIERS IN PLANT SCIENCE 2024; 15:1398715. [PMID: 38993941 PMCID: PMC11236601 DOI: 10.3389/fpls.2024.1398715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Hybrid breeding can increase the competitiveness of wheat (Triticum aestivum L.) in Sub-Saharan Africa by fostering more public-private partnerships and promoting investment by the private sector. The benefit of hybrid wheat cultivars in South Africa has previously been demonstrated but due to the high cost of hybrid seed production, hybrid breeding has not received significant attention in the past decade. Considering the renewed commitment of the private sector to establish wheat as a hybrid crop globally, coupled with significant research investment into enhancement of outcrossing of wheat, hybrid wheat breeding in Southern and Eastern Africa should be revisited. Our study aimed to identify genetically distinct germplasm groups in spring wheat that would be useful in the establishment of heterotic pools targeting this region. Multi-environment yield testing of a large panel of F1 test hybrids, generated using global elite germplasm, was carried out between 2019 and 2020 in Argentina, Africa, Europe, and Australia. We observed significant genotype by environment interactions within our testing network, confirming the distinctiveness of African trial sites. Relatively high additive genetic variance was observed highlighting the contribution of parental genotypes to the grain yield of test hybrids. We explored the genetic architecture of these parents and the genetic factors underlying the value of parents appear to be associated with their genetic subgroup, with positive marker effects distributed throughout the genome. In testcrosses, elite germplasm from the International Maize and Wheat Improvement Center (CIMMYT) appear to be complementary to the genetically distinct germplasm bred in South Africa. The feasibility of achieving genetic gain via heterotic pool establishment and divergence, and by extension the viability of hybrid cultivars in Sub-Saharan Africa, is supported by the results of our study.
Collapse
Affiliation(s)
| | - Richard Trethowan
- The Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Isobella Revell
- The Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | | | - Lindani Shezi
- Wheat Breeding, Sensako (Syngenta), Bethlehem, South Africa
| | | | | | - Jacob Lage
- Wheat Breeding, KWS UK Ltd, Thriplow, United Kingdom
| |
Collapse
|
10
|
Wang C, Wang Z, Cai Y, Zhu Z, Yu D, Hong L, Wang Y, Lv W, Zhao Q, Si L, Liu K, Han B. A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1669-1680. [PMID: 38450899 PMCID: PMC11123404 DOI: 10.1111/pbi.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunxiao Cai
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Danheng Yu
- Department of Life Sciences, Imperial College LondonSouth KensingtonLondonUK
| | - Lei Hong
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Wei Lv
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Kun Liu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
11
|
Schwartz LC, González VL, Strong EE, Truebano M, Hilbish TJ. Transgressive gene expression and expression plasticity under thermal stress in a stable hybrid zone. Mol Ecol 2024; 33:e17333. [PMID: 38597343 DOI: 10.1111/mec.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.
Collapse
Affiliation(s)
- Lindsey C Schwartz
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Vanessa L González
- Informatics and Data Science Center, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Ellen E Strong
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Thomas J Hilbish
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
12
|
Feldmann MJ, Pincot DDA, Cole GS, Knapp SJ. Genetic gains underpinning a little-known strawberry Green Revolution. Nat Commun 2024; 15:2468. [PMID: 38504104 PMCID: PMC10951273 DOI: 10.1038/s41467-024-46421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The annual production of strawberry has increased by one million tonnes in the US and 8.4 million tonnes worldwide since 1960. Here we show that the US expansion was driven by genetic gains from Green Revolution breeding and production advances that increased yields by 2,755%. Using a California population with a century-long breeding history and phenotypes of hybrids observed in coastal California environments, we estimate that breeding has increased fruit yields by 2,974-6,636%, counts by 1,454-3,940%, weights by 228-504%, and firmness by 239-769%. Using genomic prediction approaches, we pinpoint the origin of the Green Revolution to the early 1950s and uncover significant increases in additive genetic variation caused by transgressive segregation and phenotypic diversification. Lastly, we show that the most consequential Green Revolution breeding breakthrough was the introduction of photoperiod-insensitive, PERPETUAL FLOWERING hybrids in the 1970s that doubled yields and drove the dramatic expansion of strawberry production in California.
Collapse
Affiliation(s)
- Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Knapp SJ, Cole GS, Pincot DDA, Dilla-Ermita CJ, Bjornson M, Famula RA, Gordon TR, Harshman JM, Henry PM, Feldmann MJ. Transgressive segregation, hopeful monsters, and phenotypic selection drove rapid genetic gains and breakthroughs in predictive breeding for quantitative resistance to Macrophomina in strawberry. HORTICULTURE RESEARCH 2024; 11:uhad289. [PMID: 38487295 PMCID: PMC10939388 DOI: 10.1093/hr/uhad289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024]
Abstract
Two decades have passed since the strawberry (Fragaria x ananassa) disease caused by Macrophomina phaseolina, a necrotrophic soilborne fungal pathogen, began surfacing in California, Florida, and elsewhere. This disease has since become one of the most common causes of plant death and yield losses in strawberry. The Macrophomina problem emerged and expanded in the wake of the global phase-out of soil fumigation with methyl bromide and appears to have been aggravated by an increase in climate change-associated abiotic stresses. Here we show that sources of resistance to this pathogen are rare in gene banks and that the favorable alleles they carry are phenotypically unobvious. The latter were exposed by transgressive segregation and selection in populations phenotyped for resistance to Macrophomina under heat and drought stress. The genetic gains were immediate and dramatic. The frequency of highly resistant individuals increased from 1% in selection cycle 0 to 74% in selection cycle 2. Using GWAS and survival analysis, we found that phenotypic selection had increased the frequencies of favorable alleles among 10 loci associated with resistance and that favorable alleles had to be accumulated among four or more of these loci for an individual to acquire resistance. An unexpectedly straightforward solution to the Macrophomina disease resistance breeding problem emerged from our studies, which showed that highly resistant cultivars can be developed by genomic selection per se or marker-assisted stacking of favorable alleles among a comparatively small number of large-effect loci.
Collapse
Affiliation(s)
- Steven J Knapp
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine Jade Dilla-Ermita
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal Street, CA 93905, USA
| | - Marta Bjornson
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Julia M Harshman
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter M Henry
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal Street, CA 93905, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
14
|
Ma J, Jia B, Bian Y, Pei W, Song J, Wu M, Wang W, Kashif, Shahzad, Wang L, Zhang B, Feng P, Yang L, Zhang J, Yu J. Genomic and co-expression network analyses reveal candidate genes for oil accumulation based on an introgression population in Upland cotton (Gossypium hirsutum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:23. [PMID: 38231256 DOI: 10.1007/s00122-023-04527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
KEY MESSAGE Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Yingying Bian
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | | | - Shahzad
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Liupeng Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China.
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Taliei F, Sabouri H, Kazerani B, Ghasemi S. Finding stable and closely linked QTLs against spot blotch in different planting dates during the adult stage in barley. Sci Rep 2024; 14:818. [PMID: 38191625 PMCID: PMC10774436 DOI: 10.1038/s41598-024-51358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
The common resistance to Spot Blotch (SB) and drought stress in barley was studied using a RILs population caused Kavir × Badia cross. These lines were inoculated with Cochliobolus sativus Gonbad isolate during the adult stage and were evaluated for three crop seasons in different planting dates. The different osmotic potentials during the flowering were regulated by changing the planting dates. In total, 43 lines had resistant to SB and drought. The high-density linkage map covered 1045 cM of barley genome. A total of five stable and closely linked QTLs to SB resistance were mapped on chromosomes 2H, 3H, 4H and 7H using genome-wide composite interval mapping. Moreover, four stable and closely linked QTLs to SB susceptibility were located on chromosomes 3H, 4H, 5H and 7H. Additionally, the ISJ19-A, SCoT7-C, ISJ17-B, Bmac0144k, iPBS2415-1, Bmac0282b and EBmatc0016 markers can be used for positive screening of resistant cultivars. However, ISJ3-C, UMB310, ISJ9-B, UMB706, D03-D and iPBS2257-A markers can be used for negative screening of susceptible cultivars in marker-assisted selection. The bioinformatics studies showed that QRCsa-2H (ISJ19-A region), QRCsa-2H (SCoT7-C-ISJ17-B region), QRCsa-3H (Bmac0144k region), QRCsa-4H (iPBS2415-1 region) and QRCsa-7H (Bmac0282b-EBmatc0016 region) are involved in the carboxypeptidase, Glycosyltransferase, transcription factors, kinase and AP2/ERF, respectively.
Collapse
Affiliation(s)
- Fakhtak Taliei
- Department of Plant Production, College of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Hossein Sabouri
- Department of Plant Production, College of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Borzo Kazerani
- Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Shahram Ghasemi
- Department of Plant Production, College of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
| |
Collapse
|
16
|
Mathias-Ramwell M, Pavez V, Meneses M, Fernández F, Valdés A, Lobos I, Silva M, Saldaña R, Hinrichsen P. Phenotypic and genetic characterization of an Avena sativa L. germplasm collection of diverse origin: implications for food-oat breeding in Chile. FRONTIERS IN PLANT SCIENCE 2023; 14:1298591. [PMID: 38179484 PMCID: PMC10764548 DOI: 10.3389/fpls.2023.1298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Oats are known for their nutritional value and also for their beneficial properties on human health, such as the reduction of cholesterol levels and risk of coronary heart disease; they are an important export product for Chile. During the last decade (2010-2022) over 90% of the oat cultivated area in Chile has been covered with Avena sativa L. cv. Supernova INIA. This lack of genetic diversity in a context of climate change could limit the long-term possibility of growing oats in Chile. The present study is a phenotypic and genetic analysis of 132 oat cultivars and pure lines of diverse origin that can be considered as potential breeding material. The germplasm was evaluated for 28 traits and analyzed with 14 SSR markers. The effects of genotypes on phenotype were significant over all traits (P ≤ 0.05). Most traits exhibited moderate to high broad-sense heritability with exceptions such as yield (H2 = 0.27) and hulls staining (H2 = 0.32). Significant undesirable correlations between traits were generally of small biological importance, which is auspicious for achieving breeding objectives. Some of the heritability data and correlations provided here have not been previously reported. The overall phenotypic diversity was high (H' = 0.68 ± 0.18). The germplasm was grouped into three phenotypic clusters, differing in their qualities for breeding. Twenty-six genotypes outperforming Supernova INIA were identified for breeding of conventional food-oats. The genetic diversity of the germplasm was moderate on average (He = 0.58 ± 0.03), varying between 0.32 (AM22) and 0.77 (AME178). Two genetic subpopulations supported by the Structure algorithm exhibited a genetic distance of 0.24, showing low divergence of the germplasm. The diversity and phenotypic values found in this collection of oat genotypes are promising with respect to obtaining genetic gain in the short term in breeding programs. However, the similar genetic diversity, higher phenotypic diversity, and better phenotypic performance of the germplasm created in Chile compared to foreign germplasm suggest that germplasm harboring new genetic diversity will be key to favor yield and quality in new oat cultivars in the long term.
Collapse
Affiliation(s)
- Mónica Mathias-Ramwell
- Programa de mejoramiento genético de avena, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Carillanca, Temuco, Chile
| | - Valentina Pavez
- Laboratorio de Análisis Genético, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, Chile
| | - Marco Meneses
- Laboratorio de Análisis Genético, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, Chile
| | - Feledino Fernández
- Programa de mejoramiento genético de avena, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Carillanca, Temuco, Chile
| | - Adriana Valdés
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Iris Lobos
- Laboratorio de Espectroscopía Infrarrojo Cercano, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, Chile
| | - Mariela Silva
- Laboratorio de Espectroscopía Infrarrojo Cercano, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, Chile
| | - Rodolfo Saldaña
- Laboratorio de Nutrición Animal y Medio Ambiente, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Remehue, Osorno, Chile
| | - Patricio Hinrichsen
- Laboratorio de Análisis Genético, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, Chile
| |
Collapse
|
17
|
Westbrook AS, DiTommaso A. Hybridization in agricultural weeds: A review from ecological, evolutionary, and management perspectives. AMERICAN JOURNAL OF BOTANY 2023; 110:e16258. [PMID: 38031455 DOI: 10.1002/ajb2.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Agricultural weeds frequently hybridize with each other or with related crop species. Some hybrid weeds exhibit heterosis (hybrid vigor), which may be stabilized through mechanisms like genome duplication or vegetative reproduction. Even when heterosis is not stabilized, hybridization events diversify weed gene pools and often enable adaptive introgression. Consequently, hybridization may promote weed evolution and exacerbate weed-crop competition. However, hybridization does not always increase weediness. Even when viable and fertile, hybrid weeds sometimes prove unsuccessful in crop fields. This review provides an overview of weed hybridization and its management implications. We describe intrinsic and extrinsic factors that influence hybrid fitness in agroecosystems. We also survey the rapidly growing literature on crop-weed hybridization and the link between hybridization and invasiveness. These topics are increasingly relevant in this era of genetic tools for crop improvement, intensive and simplified cropping systems, and globalized trade. The review concludes with suggested research priorities, including hybridization in the context of climate change, plant-insect interactions, and redesigned weed management programs. From a weed management perspective, hybridization is one of many reasons that researchers and land managers must diversify their weed control toolkits.
Collapse
Affiliation(s)
- Anna S Westbrook
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Antonio DiTommaso
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Gu Z, Gong J, Zhu Z, Li Z, Feng Q, Wang C, Zhao Y, Zhan Q, Zhou C, Wang A, Huang T, Zhang L, Tian Q, Fan D, Lu Y, Zhao Q, Huang X, Yang S, Han B. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat Genet 2023; 55:1745-1756. [PMID: 37679493 PMCID: PMC10562254 DOI: 10.1038/s41588-023-01495-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Exploitation of crop heterosis is crucial for increasing global agriculture production. However, the quantitative genomic analysis of heterosis was lacking, and there is currently no effective prediction tool to optimize cross-combinations. Here 2,839 rice hybrid cultivars and 9,839 segregation individuals were resequenced and phenotyped. Our findings demonstrated that indica-indica hybrid-improving breeding was a process that broadened genetic resources, pyramided breeding-favorable alleles through combinatorial selection and collaboratively improved both parents by eliminating the inferior alleles at negative dominant loci. Furthermore, we revealed that widespread genetic complementarity contributed to indica-japonica intersubspecific heterosis in yield traits, with dominance effect loci making a greater contribution to phenotypic variance than overdominance effect loci. On the basis of the comprehensive dataset, a genomic model applicable to diverse rice varieties was developed and optimized to predict the performance of hybrid combinations. Our data offer a valuable resource for advancing the understanding and facilitating the utilization of heterosis in rice.
Collapse
Affiliation(s)
- Zhoulin Gu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junyi Gong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shihua Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Mugisa I, Karungi J, Musana P, Odama R, Anyanga MO, Edema R, Gibson P, Ssali RT, Campos H, Oloka BM, Yencho GC, Yada B. Heterotic gains, transgressive segregation and fitness cost of sweetpotato weevil resistance expression in a partial diallel cross of sweetpotato. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2023; 219:110. [PMID: 37780031 PMCID: PMC10533626 DOI: 10.1007/s10681-023-03225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/06/2023] [Indexed: 10/03/2023]
Abstract
Heterosis-exploiting breeding schemes are currently under consideration as a means of accelerating genetic gains in sweetpotato (Ipomoea batatas) breeding. This study was aimed at establishing heterotic gains, fitness costs and transgressive segregation associated with sweetpotato weevil (SPW) resistance in a partial diallel cross of sweetpotato. A total of 1896 clones were tested at two sites, for two seasons each in Uganda. Data on weevil severity (WED), weevil incidence (WI), storage root yield (SRY) and dry matter content (DM) were obtained. Best linear unbiased predictors (BLUPs) for each clone across environments were used to estimate heterotic gains and for regression analyses to establish relationships between key traits. In general, low mid-parent heterotic gains were detected with the highest favorable levels recorded for SRY (14.7%) and WED (- 7.9%). About 25% of the crosses exhibited desirable and significant mid-parent heterosis for weevil resistance. Over 16% of the clones displayed superior transgressive segregation, with the highest percentages recorded for SRY (21%) and WED (18%). A yield penalty of 10% was observed to be associated with SPW resistance whereas no decline in DM was detected in relation to the same. Chances of improving sweetpotato through exploiting heterosis in controlled crosses using parents of mostly similar background are somewhat minimal, as revealed by the low heterotic gains. The yield penalty detected due to SPW resistance suggests that a trade-off may be necessary between maximizing yields and developing weevil-resistant cultivars if the current needs for this crop are to be met in weevil-prone areas.
Collapse
Affiliation(s)
- Immaculate Mugisa
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | - Jeninah Karungi
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | - Paul Musana
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
| | - Roy Odama
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
| | - Milton O. Anyanga
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
| | - Richard Edema
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | - Paul Gibson
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | | | | | - Bonny M. Oloka
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - G. Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Benard Yada
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), P.O. Box 7084, Namulonge, Kampala, Uganda
| |
Collapse
|
20
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Shamuyarira KW, Shimelis H, Figlan S, Chaplot V. Combining ability analysis of yield and biomass allocation related traits in newly developed wheat populations. Sci Rep 2023; 13:11832. [PMID: 37481645 PMCID: PMC10363107 DOI: 10.1038/s41598-023-38961-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
Increasing biomass allocation to the root system may increase soil-organic carbon stocks and confer drought adaptation in water-limited environments. Understanding the genetic bases and inheritance of biomass allocation is fundamental for drought tolerance breeding and soil health. The objective of this study was to determine the general and specific combining ability, maternal effects and the mode of gene action controlling the major yield and biomass allocation related traits in wheat to identify good combiners for breeding and enhanced carbon sequestration. Ten selected wheat genotypes were crossed in a full diallel mating design, and 90 F2 families were generated and evaluated in the field and greenhouse under drought-stressed and non-stressed conditions. Significant differences were recorded among the tested families revealing substantial variation for plant height (PH), kernels per spike (KPS), root biomass (RB), shoot biomass (SB), total plant biomass (PB) and grain yield (GY). Additive gene effects conditioned PH, SB, PB and GY under drought, suggesting the polygenic inheritance for drought tolerance. Strong maternal and reciprocal genetic effects were recorded for RB across the testing sites under drought-stressed conditions. Line BW162 had high yield and biomass production and can be used to transfer favourable genes to its progeny. The parental line LM75 maintained the general combining ability (GCA) effects in a positive and desirable direction for SB, PB and GY. Early generation selection using PH, SB, PB and GY will improve drought tolerance by exploiting additive gene action under drought conditions. Higher RB production may be maintained by a positive selection of male and female parents to capture the significant maternal and reciprocal effects found in this study.
Collapse
Affiliation(s)
- Kwame W Shamuyarira
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| | - Vincent Chaplot
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
- Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), UMR 7159, IRD/C NRS/UPMC/ MNHN, IPSL, Paris, France
| |
Collapse
|
22
|
Orantes-Bonilla M, Wang H, Lee HT, Golicz AA, Hu D, Li W, Zou J, Snowdon RJ. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:113. [PMID: 37071201 PMCID: PMC10113308 DOI: 10.1007/s00122-023-04345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huey Tyng Lee
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenwen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
23
|
Zanella CM, Rotondo M, McCormick‐Barnes C, Mellers G, Corsi B, Berry S, Ciccone G, Day R, Faralli M, Galle A, Gardner KA, Jacobs J, Ober ES, Sánchez del Rio A, Van Rie J, Lawson T, Cockram J. Longer epidermal cells underlie a quantitative source of variation in wheat flag leaf size. THE NEW PHYTOLOGIST 2023; 237:1558-1573. [PMID: 36519272 PMCID: PMC10107444 DOI: 10.1111/nph.18676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.
Collapse
Affiliation(s)
| | - Marilena Rotondo
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- University of MessinaMessina98122Italy
| | | | | | | | | | - Giulia Ciccone
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- University of MessinaMessina98122Italy
| | - Rob Day
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | - Michele Faralli
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Alexander Galle
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | | | - John Jacobs
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | | | | | - Jeroen Van Rie
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | | |
Collapse
|
24
|
Rodas LR, Sarbu SM, Bancila R, Price D, Fišer Ž, Protas M. Standing genetic variation as a potential mechanism of novel cave phenotype evolution in the freshwater isopod, Asellus aquaticus. Evol Dev 2023; 25:137-152. [PMID: 36755467 DOI: 10.1111/ede.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 02/10/2023]
Abstract
Novel phenotypes can come about through a variety of mechanisms including standing genetic variation from a founding population. Cave animals are an excellent system in which to study the evolution of novel phenotypes such as loss of pigmentation and eyes. Asellus aquaticus is a freshwater isopod crustacean found in Europe and has both a surface and a cave ecomorph which vary in multiple phenotypic traits. An orange eye phenotype was previously revealed by F2 crosses and backcrosses to the cave parent within two examined Slovenian cave populations. Complete loss of pigmentation, both in eye and body, is epistatic to the orange eye phenotype and therefore the orange eye phenotype is hidden within the cave populations. Our goal was to investigate the origin of the orange eye alleles within the Slovenian cave populations by examining A. aquaticus individuals from Slovenian and Romanian surface populations and Asellus aquaticus infernus individuals from a Romanian cave population. We found orange eye individuals present in lab raised surface populations of A. aquaticus from both Slovenia and Romania. Using a mapping approach with crosses between individuals of two surface populations, we found that the region known to be responsible for the orange eye phenotype within the two previously examined Slovenian cave populations was also responsible within both the Slovenian and the Romanian surface populations. Complementation crosses between orange eye Slovenian and orange eye Romanian surface individuals suggest that the same gene is responsible for the orange eye phenotype in both surface populations. Additionally, we observed a low frequency phenotype of eye loss in crosses generated between the two surface populations and also in the Romanian surface population. Finally, in a cave population from Romania, A. aquaticus infernus, we found that the same region is also responsible for the orange eye phenotype as the Slovenian cave populations and the Slovenian and Romanian surface populations. Therefore, we present evidence that variation present in the cave populations could originate from standing variation present in the surface populations and/or transgressive hybridization of different surface phylogenetic lineages rather than de novo mutations.
Collapse
Affiliation(s)
- Lizet R Rodas
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| | - Serban M Sarbu
- Department of Biospeleology and Karst Edaphobiology, "Emil Racoviţă" Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania.,Department of Biological Sciences, California State University, Chico, California, USA
| | - Raluca Bancila
- Department of Biospeleology and Karst Edaphobiology, "Emil Racoviţă" Institute of Speleology of Romanian Academy of Sciences, Bucharest, Romania
| | - Devon Price
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| | - Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Meredith Protas
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
25
|
The role of non-additive gene action on gene expression variation in plant domestication. EvoDevo 2023; 14:3. [PMID: 36765382 PMCID: PMC9912502 DOI: 10.1186/s13227-022-00206-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/05/2022] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Plant domestication is a remarkable example of rapid phenotypic transformation of polygenic traits, such as organ size. Evidence from a handful of study cases suggests this transformation is due to gene regulatory changes that result in non-additive phenotypes. Employing data from published genetic crosses, we estimated the role of non-additive gene action in the modulation of transcriptional landscapes in three domesticated plants: maize, sunflower, and chili pepper. Using A. thaliana, we assessed the correlation between gene regulatory network (GRN) connectivity properties, transcript abundance variation, and gene action. Finally, we investigated the propagation of non-additive gene action in GRNs. RESULTS We compared crosses between domesticated plants and their wild relatives to a set of control crosses that included a pair of subspecies evolving under natural selection and a set of inbred lines evolving under domestication. We found abundance differences on a higher portion of transcripts in crosses between domesticated-wild plants relative to the control crosses. These transcripts showed non-additive gene action more often in crosses of domesticated-wild plants than in our control crosses. This pattern was strong for genes associated with cell cycle and cell fate determination, which control organ size. We found weak but significant negative correlations between the number of targets of trans-acting genes (Out-degree) and both the magnitude of transcript abundance difference a well as the absolute degree of dominance. Likewise, we found that the number of regulators that control a gene's expression (In-degree) is weakly but negatively correlated with the magnitude of transcript abundance differences. We observed that dominant-recessive gene action is highly propagable through GRNs. Finally, we found that transgressive gene action is driven by trans-acting regulators showing additive gene action. CONCLUSIONS Our study highlights the role of non-additive gene action on modulating domestication-related traits, such as organ size via regulatory divergence. We propose that GRNs are shaped by regulatory changes at genes with modest connectivity, which reduces the effects of antagonistic pleiotropy. Finally, we provide empirical evidence of the propagation of non-additive gene action in GRNs, which suggests a transcriptional epistatic model for the control of polygenic traits, such as organ size.
Collapse
|
26
|
Butrón A, Santiago R, Gowda M. Editorial: Model organisms in plant science: Maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1147857. [PMID: 36844039 PMCID: PMC9945335 DOI: 10.3389/fpls.2023.1147857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Ana Butrón
- Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Rogelio Santiago
- Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas University of Vigo (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain
| | - Manje Gowda
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
27
|
de Vries ME, Adams JR, Eggers EJ, Ying S, Stockem JE, Kacheyo OC, van Dijk LCM, Khera P, Bachem CW, Lindhout P, van der Vossen EAG. Converting Hybrid Potato Breeding Science into Practice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020230. [PMID: 36678942 PMCID: PMC9861226 DOI: 10.3390/plants12020230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 05/27/2023]
Abstract
Research on diploid hybrid potato has made fast advances in recent years. In this review we give an overview of the most recent and relevant research outcomes. We define different components needed for a complete hybrid program: inbred line development, hybrid evaluation, cropping systems and variety registration. For each of these components the important research results are discussed and the outcomes and issues that merit further study are identified. We connect fundamental and applied research to application in a breeding program, based on the experiences at the breeding company Solynta. In the concluding remarks, we set hybrid breeding in a societal perspective, and we identify bottlenecks that need to be overcome to allow successful adoption of hybrid potato.
Collapse
Affiliation(s)
| | - James R. Adams
- Solynta, Wageningen 6703 HA, The Netherlands
- Institute of Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Ernst-jan Eggers
- Solynta, Wageningen 6703 HA, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen 6708 PB, The Netherlands
| | - Su Ying
- Solynta, Wageningen 6703 HA, The Netherlands
| | - Julia E. Stockem
- Solynta, Wageningen 6703 HA, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen 6700 AK, The Netherlands
| | - Olivia C. Kacheyo
- Solynta, Wageningen 6703 HA, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen 6700 AK, The Netherlands
| | - Luuk C. M. van Dijk
- Solynta, Wageningen 6703 HA, The Netherlands
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen 6700 AK, The Netherlands
| | - Pawan Khera
- Solynta, Wageningen 6703 HA, The Netherlands
| | - Christian W. Bachem
- Solynta, Wageningen 6703 HA, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen 6708 PB, The Netherlands
| | | | | |
Collapse
|
28
|
Viana JMS. The impact of epistasis in the heterosis and combining ability analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1168419. [PMID: 37143879 PMCID: PMC10151527 DOI: 10.3389/fpls.2023.1168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
The current theoretical knowledge concerning the influence of epistasis on heterosis is based on a simplified multiplicative model. The objective of this study was to assess how epistasis affects the heterosis and combining ability analyses, assuming additive model, hundreds of genes, linkage disequilibrium (LD), dominance, and seven types of digenic epistasis. We developed the quantitative genetics theory for supporting the simulation of the individual genotypic values in nine populations, the selfed populations, the 36 interpopulation crosses, 180 doubled haploids (DHs), and their 16,110 crosses, assuming 400 genes on 10 chromosomes of 200 cM. Epistasis only affects population heterosis if there is LD. Only additive × additive and dominance × dominance epistasis can affect the components of the heterosis and combining ability analyses of populations. Epistasis can have a negative impact on the heterosis and combining ability analysis of populations, leading to wrong inferences regarding the identification of superior and most divergent populations. However, this depends on the type of epistasis, percentage of epistatic genes, and magnitude of their effects. Except for duplicate genes with cumulative effects and non-epistatic genic interaction, there was a decrease in the average heterosis by increasing the percentage of epistatic genes and the magnitude of their effects. The same results are generally true for the combining ability analysis of DHs. The combining ability analyses of subsets of 20 DHs showed no significant average impact of epistasis on the identification of the most divergent ones, regardless of the number of epistatic genes and magnitude of their effects. However, a negative effect on the assessment of the superior DHs can occur assuming 100% of epistatic genes, but depending on the epistasis type and the epistatic effect magnitude.
Collapse
|
29
|
Identification of quantitative trait loci for growth traits in red swamp crayfish (Procambarus clarkii). AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Fei M, Jin Y, Hu J, Dotsenko G, Ruan Y, Liu C, Seisenbaeva G, Andersson AAM, Andersson R, Sun C. Achieving of high-diet-fiber barley via managing fructan hydrolysis. Sci Rep 2022; 12:19151. [PMID: 36351972 PMCID: PMC9646770 DOI: 10.1038/s41598-022-21955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
High fructan content in the grain of cereals is an important trait in agriculture such as environmental resilience and dietary fiber food production. To understand the mechanism in determining final grain fructan content and achieve high fructan cereal, a cross breeding strategy based on fructan synthesis and hydrolysis activities was set up and have achieved barley lines with 11.8% storage fructan in the harvested grain. Our study discovered that high activity of fructan hydrolysis at later grain developmental stage leads to the low fructan content in mature seeds, simultaneously increasing fructan synthesis at early stage and decreasing fructan hydrolysis at later stage through crossing breeding is an efficient way to elevate grain diet-fiber content. A good correlation between fructan and beta glucans was also discovered with obvious interest. Field trials showed that the achieved high fructan barley produced over seven folds higher fructan content than control barley and pull carbon-flux to fructan through decreasing fructan hydrolysis without disruption starch synthesis will probably not bring yield deficiency.
Collapse
Affiliation(s)
- Mingliang Fei
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Yunkai Jin
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Jia Hu
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Gleb Dotsenko
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Ying Ruan
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Chunlin Liu
- grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Gulaim Seisenbaeva
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Annica A. M. Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Roger Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
31
|
Ma J, Jiang Y, Pei W, Wu M, Ma Q, Liu J, Song J, Jia B, Liu S, Wu J, Zhang J, Yu J. Expressed genes and their new alleles identification during fibre elongation reveal the genetic factors underlying improvements of fibre length in cotton. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1940-1955. [PMID: 35718938 PMCID: PMC9491459 DOI: 10.1111/pbi.13874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 05/27/2023]
Abstract
Interspecific breeding in cotton takes advantage of genetic recombination among desirable genes from different parental lines. However, the expression new alleles (ENAs) from crossovers within genic regions and their significance in fibre length (FL) improvement are currently not understood. Here, we generated resequencing genomes of 191 interspecific backcross inbred lines derived from CRI36 (Gossypium hirsutum) × Hai7124 (Gossypium barbadense) and 277 dynamic fibre transcriptomes to identify the ENAs and extremely expressed genes (eGenes) potentially influencing FL, and uncovered the dynamic regulatory network of fibre elongation. Of 35 420 eGenes in developing fibres, 10 366 ENAs were identified and preferentially distributed in chromosomes subtelomeric regions. In total, 1056-1255 ENAs showed transgressive expression in fibres at 5-15 dpa (days post-anthesis) of some BILs, 520 of which were located in FL-quantitative trait locus (QTLs) and GhFLA9 (recombination allele) was identified with a larger effect for FL than GhFLA9 of CRI36 allele. Using ENAs as a type of markers, we identified three novel FL-QTLs. Additionally, 456 extremely eGenes were identified that were preferentially distributed in recombination hotspots. Importantly, 34 of them were significantly associated with FL. Gene expression quantitative trait locus analysis identified 1286, 1089 and 1059 eGenes that were colocalized with the FL trait at 5, 10 and 15 dpa, respectively. Finally, we verified the Ghir_D10G011050 gene linked to fibre elongation by the CRISPR-cas9 system. This study provides the first glimpse into the occurrence, distribution and expression of the developing fibres genes (especially ENAs) in an introgression population, and their possible biological significance in FL.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yafei Jiang
- Novogene Bioinformatics InstituteBeijingChina
| | - Wenfeng Pei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Man Wu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Qifeng Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Ji Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Jikun Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Bing Jia
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Shang Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Jianyong Wu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Jinfa Zhang
- Department of Plant and Environmental SciencesNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Jiwen Yu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
32
|
Wittern LM, Barrero JM, Bovill WD, Verbyla KL, Hughes T, Swain SM, Steed G, Webb AAR, Gardner K, Greenland A, Jacobs J, Frohberg C, Schmidt RC, Cavanagh C, Rohde A, Davey MW, Hannah MA. Overexpression of the WAPO-A1 gene increases the number of spikelets per spike in bread wheat. Sci Rep 2022; 12:14229. [PMID: 35987959 PMCID: PMC9392761 DOI: 10.1038/s41598-022-18614-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other genetic and environmental factors, hence, will require a finely balanced expression level to avoid the development of detrimental pleiotropic phenotypes.
Collapse
Affiliation(s)
- Lukas M Wittern
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jose M Barrero
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - William D Bovill
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Klara L Verbyla
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Trijntje Hughes
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Steve M Swain
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Keith Gardner
- National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Andy Greenland
- National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE, UK
| | - John Jacobs
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | - Claus Frohberg
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | | | - Colin Cavanagh
- BASF Australia Ltd., 28 Freshwater Place, Melbourne, 3006, Australia
| | - Antje Rohde
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | - Mark W Davey
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | - Matthew A Hannah
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium.
| |
Collapse
|
33
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
34
|
Ter Steeg EMS, Struik PC, Visser RGF, Lindhout P. Crucial factors for the feasibility of commercial hybrid breeding in food crops. NATURE PLANTS 2022; 8:463-473. [PMID: 35513713 DOI: 10.1038/s41477-022-01142-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/22/2022] [Indexed: 05/26/2023]
Abstract
There is an ongoing societal debate about plant breeding systems and their impact on stakeholders in food systems. Hybrid breeding and hybrid seed have become controversial topics as they are believed to mostly serve high-tech agricultural systems. This article focuses on the perspective of commercial plant breeders when developing new cultivars of food crops. Arguably, hybrid breeding is the most effective breeding system for genetic improvement of crops, enhancing yields, improving product quality and increasing resistance against (a)biotic stresses. Nonetheless, hybrid breeding is not commercially applied in all crops. We analyse how biological and economic factors determine whether a commercial plant breeder opts for the hybrid system or not. We show that the commercial feasibility of hybrid breeding depends on the crop and business case. In conclusion, the commercial application of hybrid breeding in crops seems to be hampered mostly by high costs of seed production. Case studies regarding the hybrid transitions in maize, wheat and potato are included to illustrate these findings.
Collapse
Affiliation(s)
- Emily M S Ter Steeg
- Development Economics, Wageningen University & Research, Wageningen, the Netherlands.
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, the Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | | |
Collapse
|
35
|
White J, Sharma R, Balding D, Cockram J, Mackay IJ. Genome-wide association mapping of Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. CROP SCIENCE 2022; 62:965-981. [PMID: 35915786 PMCID: PMC9314726 DOI: 10.1002/csc2.20692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Association mapping using crop cultivars allows identification of genetic loci of direct relevance to breeding. Here, 150 U.K. wheat (Triticum aestivum L.) cultivars genotyped with 23,288 single nucleotide polymorphisms (SNPs) were used for genome-wide association studies (GWAS) using historical phenotypic data for grain protein content, Hagberg falling number (HFN), test weight, and grain yield. Power calculations indicated experimental design would enable detection of quantitative trait loci (QTL) explaining ≥20% of the variation (PVE) at a relatively high power of >80%, falling to 40% for detection of a SNP with an R2 ≥ .5 with the same QTL. Genome-wide association studies identified marker-trait associations for all four traits. For HFN (h 2 = .89), six QTL were identified, including a major locus on chromosome 7B explaining 49% PVE and reducing HFN by 44 s. For protein content (h 2 = 0.86), 10 QTL were found on chromosomes 1A, 2A, 2B, 3A, 3B, and 6B, together explaining 48.9% PVE. For test weight, five QTL were identified (one on 1B and four on 3B; 26.3% PVE). Finally, 14 loci were identified for grain yield (h 2 = 0.95) on eight chromosomes (1A, 2A, 2B, 2D, 3A, 5B, 6A, 6B; 68.1% PVE), of which five were located within 16 Mbp of genetic regions previously identified as under breeder selection in European wheat. Our study demonstrates the utility of exploiting historical crop datasets, identifying genomic targets for independent validation, and ultimately for wheat genetic improvement.
Collapse
Affiliation(s)
- Jon White
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
| | - Rajiv Sharma
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| | - David Balding
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
- Current address: Melbourne Integrative GenomicsUniv. of MelbourneMelbourneAustralia
| | - James Cockram
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
| | - Ian J. Mackay
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| |
Collapse
|
36
|
Adams JR, de Vries ME, Zheng C, van Eeuwijk FA. Little heterosis found in diploid hybrid potato: The genetic underpinnings of a new hybrid crop. G3 (BETHESDA, MD.) 2022; 12:6572814. [PMID: 35460241 PMCID: PMC9157145 DOI: 10.1093/g3journal/jkac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
Hybrid potato breeding has become a novel alternative to conventional potato breeding allowing breeders to overcome intractable barriers (e.g. tetrasomic inheritance, masked deleterious alleles, obligate clonal propagation) with the benefit of seed-based propagule, flexible population design, and the potential of hybrid vigor. Until now, however, no formal inquiry has adequately examined the relevant genetic components for complex traits in hybrid potato populations. In this present study, we use a 2-step multivariate modeling approach to estimate the variance components to assess the magnitude of the general and specific combining abilities in diploid hybrid potato. Specific combining ability effects were identified for all yield components studied here warranting evidence of nonadditive genetic effects in hybrid potato yield. However, the estimated general combining ability effects were on average 2 times larger than their respective specific combining ability quantile across all yield phenotypes. Tuber number general combining abilities and specific combining abilities were found to be highly correlated with total yield's genetic components. Tuber volume was shown to have the largest proportion of additive and nonadditive genetic variation suggesting under-selection of this phenotype in this population. The prominence of additive effects found for all traits presents evidence that the mid-parent value alone is useful for hybrid potato evaluation. Heterotic vigor stands to be useful in bolstering simpler traits but this will be dependent on target phenotypes and market requirements. This study represents the first diallel analysis of its kind in diploid potato using material derived from a commercial hybrid breeding program.
Collapse
Affiliation(s)
- James R Adams
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6700 HB Wageningen, The Netherlands,Solynta, 6703 HA Wageningen, The Netherlands,Corresponding author: Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6700 HB Wageningen, The Netherlands.
| | | | - Chaozhi Zheng
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| |
Collapse
|
37
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
38
|
Flavell RB. Wheat Breeding, Transcription Factories, and Genetic Interactions: New Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:807884. [PMID: 35283934 PMCID: PMC8905190 DOI: 10.3389/fpls.2022.807884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Epistatic interactions and negative heterosis have been shown to be associated with interchromosomal interactions in wheat. Physical gene-gene interactions between co-regulated genes clustered in "transcription factories" have been documented, and a genome-wide atlas of functionally paired, interacting regulatory elements and genes of wheat recently produced. Integration of these new studies on gene and regulatory element interactions, co-regulation of gene expression in "transcription factories," and epigenetics generates new perspectives for wheat breeding and trait enhancement.
Collapse
|
39
|
Soliman M, Bocchini M, Stein J, Ortiz JPA, Albertini E, Delgado L. Environmental and Genetic Factors Affecting Apospory Expressivity in Diploid Paspalum rufum. PLANTS 2021; 10:plants10102100. [PMID: 34685909 PMCID: PMC8537111 DOI: 10.3390/plants10102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
In angiosperms, gametophytic apomixis (clonal reproduction through seeds) is strongly associated with polyploidy and hybridization. The trait is facultative and its expressivity is highly variable between genotypes. Here, we used an F1 progeny derived from diploid apomictic (aposporic) genotypes of Paspalum rufum and two F2 families, derived from F1 hybrids with different apospory expressivity (%AES), to analyze the influence of the environment and the transgenerational transmission of the trait. In addition, AFLP markers were developed in the F1 population to identify genomic regions associated with the %AES. Cytoembryological analyses showed that the %AES was significantly influenced by different environments, but remained stable across the years. F1 and F2 progenies showed a wide range of %AES variation, but most hybrids were not significantly different from the parental genotypes. Maternal and paternal genetic linkage maps were built covering the ten expected linkage groups (LG). A single-marker analysis detected at least one region of 5.7 cM on LG3 that was significantly associated with apospory expressivity. Our results underline the importance of environmental influence in modulating apospory expressivity and identified a genomic region associated with apospory expressivity at the diploid level.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Marika Bocchini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.B.); (E.A.)
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.B.); (E.A.)
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
- Correspondence:
| |
Collapse
|
40
|
Abstract
Tradeoffs among plant traits help maintain relative fitness under unpredictable conditions and maximize reproductive success. However, modifying tradeoffs is a breeding challenge since many genes of minor effect are involved. The intensive crosstalk and fine-tuning between growth and defense responsive phytohormones via transcription factors optimizes growth, reproduction, and stress tolerance. There are regulating genes in grain crops that deploy diverse functions to overcome tradeoffs, e.g., miR-156-IPA1 regulates crosstalk between growth and defense to achieve high disease resistance and yield, while OsALDH2B1 loss of function causes imbalance among defense, growth, and reproduction in rice. GNI-A1 regulates seed number and weight in wheat by suppressing distal florets and altering assimilate distribution of proximal seeds in spikelets. Knocking out ABA-induced transcription repressors (AITRs) enhances abiotic stress adaptation without fitness cost in Arabidopsis. Deploying AITRs homologs in grain crops may facilitate breeding. This knowledge suggests overcoming tradeoffs through breeding may expose new ones.
Collapse
Affiliation(s)
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| |
Collapse
|
41
|
Downie RC, Lin M, Corsi B, Ficke A, Lillemo M, Oliver RP, Phan HTT, Tan KC, Cockram J. Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. PHYTOPATHOLOGY 2021; 111:906-920. [PMID: 33245254 DOI: 10.1094/phyto-07-20-0280-rvw] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.
Collapse
Affiliation(s)
- Rowena C Downie
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Min Lin
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| | - Andrea Ficke
- Norwegian Institute for Bioeconomy Research, Ås NO-1432, Norway
| | - Morten Lillemo
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | | | - Huyen T T Phan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| |
Collapse
|
42
|
Corsi B, Obinu L, Zanella CM, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hartl L, Cockram J. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1435-1454. [PMID: 33712876 PMCID: PMC8081691 DOI: 10.1007/s00122-021-03781-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Quantitative trait locus (QTL) mapping of 15 yield component traits in a German multi-founder population identified eight QTL each controlling ≥2 phenotypes, including the genetic loci Rht24, WAPO-A1 and WAPO-B1. Grain yield in wheat (Triticum aestivum L.) is a polygenic trait representing the culmination of many developmental processes and their interactions with the environment. Toward maintaining genetic gains in yield potential, 'reductionist approaches' are commonly undertaken by which the genetic control of yield components, that collectively determine yield, are established. Here we use an eight-founder German multi-parental wheat population to investigate the genetic control and phenotypic trade-offs between 15 yield components. Increased grains per ear was significantly positively correlated with the number of fertile spikelets per ear and negatively correlated with the number of infertile spikelets. However, as increased grain number and fertile spikelet number per ear were significantly negatively correlated with thousand grain weight, sink strength limitations were evident. Genetic mapping identified 34 replicated quantitative trait loci (QTL) at two or more test environments, of which 24 resolved into eight loci each controlling two or more traits-termed here 'multi-trait QTL' (MT-QTL). These included MT-QTL associated with previously cloned genes controlling semi-dwarf plant stature, and with the genetic locus Reduced height 24 (Rht24) that further modulates plant height. Additionally, MT-QTL controlling spikelet number traits were located to chromosome 7A encompassing the gene WHEAT ORTHOLOG OF APO1 (WAPO-A1), and to its homoeologous location on chromosome 7B containing WAPO-B1. The genetic loci identified in this study, particularly those that potentially control multiple yield components, provide future opportunities for the targeted investigation of their underlying genes, gene networks and phenotypic trade-offs, in order to underpin further genetic gains in yield.
Collapse
Affiliation(s)
| | - Lia Obinu
- Department of Agriculture, University of Sassari, Viale Italia, 07100, Sassari, Italy
| | | | | | - Rob Day
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - Morten Lillemo
- Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway
| | - Min Lin
- Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway
| | | | | | - Melanie Stadlmeier
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
- Saatzucht Donau GesmbH and Co KG, Mendelweg 1, 4981, Reichersberg, Austria
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
43
|
Ruiz-García L, Gago P, Martínez-Mora C, Santiago JL, Fernádez-López DJ, Martínez MDC, Boso S. Evaluation and Pre-selection of New Grapevine Genotypes Resistant to Downy and Powdery Mildew, Obtained by Cross-Breeding Programs in Spain. FRONTIERS IN PLANT SCIENCE 2021; 12:674510. [PMID: 34956246 PMCID: PMC8703198 DOI: 10.3389/fpls.2021.674510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 05/08/2023]
Abstract
The need to develop an environmentally friendly, sustainable viticulture model has led to numerous grapevine improvement programmes aiming to increase resistance to downy and powdery mildew. The success of such programmes relies on the availability of protocols that can quantify the resistance/susceptibility of new genotypes, and on the existence of molecular markers of resistance loci that can aid in the selection process. The present work assesses the degree of phenotypic resistance/susceptibility to downy and powdery mildew of 28 new genotypes obtained from crosses between "Monastrell" and "Regent." Three genotypes showed strong combined resistance, making them good candidates for future crosses with other sources of resistance to these diseases (pyramiding). In general, laboratory and glasshouse assessments of resistance at the phenotype level agreed with the resistance expected from the presence of resistance-associated alleles of simple sequence repeat (SSR) markers for the loci Rpv3 and Ren3 (inherited from "Regent"), confirming their usefulness as indicators of likely resistance to downy and powdery mildew, respectively, particularly so for downy mildew.
Collapse
Affiliation(s)
- Leonor Ruiz-García
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Pilar Gago
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Celia Martínez-Mora
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - José Luis Santiago
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Diego J. Fernádez-López
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - María del Carmen Martínez
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Susana Boso
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
- *Correspondence: Susana Boso,
| |
Collapse
|