1
|
Kaleem M, Hameed M, Ahmad MSA, Ahmad F, Iqbal U, Asghar N, Ameer A, Mehmood A, Shehzadi N, Chishti MS, Hashem A, Abd-Allah EF. Role of leaf micro-structural modifications in modulation of growth and photosynthetic performance of aquatic halophyte Fimbristylis complanata (Retz.) under temporal salinity regimes. Sci Rep 2024; 14:26442. [PMID: 39488568 PMCID: PMC11531486 DOI: 10.1038/s41598-024-77589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Fimbristylis complanata is an aquatic halophytic sedge that thrives in salt-affected land, marshes, and water channels. Two ecotypes (HR-Rasool headworks ECe 19.45; SH- Sahianwala 47.49 dS m-1) of F. complanata were collected from two salt-affected wetlands of Punjab, Pakistan. Five rhizomes of each ecotype were grown in plastic pots in the Botanical garden research area and treated with three intensities of salt [0 mM (control), 200 mM (moderate), 400 mM (high) NaCl for three durations (0, 15 and 30 days). The pots were arranged using a completely randomized block design (CRD) with three replications. After each duration, sampling was done. The HR ecotype optimally performed better under moderate salt incubation and moderate to higher salt exposure. This ecotype had improved growth traits, including shoot fresh weight (SFW), shoot dry weight (SDW), leaf area (LA), root length (RL), leaf mass fraction (LMF), relative growth rate (RGR), and unit leaf area (ULA) at higher NaCl (400 mM) in comparison with control NaCl (0 mM). This improvement in growth occurs due to the accumulation of photosynthetic pigments, better photosynthesis, and water use efficiency (A/E). The leaf microstructure increased in HR ecotype as midrib (MrT), leaf blade (LTh), bulliform cells (BTh), and cortical cells (CcT) thicknesses to prevent water loss under salinity, increase aerenchymatous area (ArA) for efficient gas movements at moderate salt levels and less exposure time concerning absolute control (0 mM NaCl). The SH ecotype affirmed more tolerance to salt by securing higher biomass (SFW, SDW), increased growth traits (LA, RL, LMF, ULA), photosynthetic pigments (Chl a, b, Car), and maximum photosynthetic performance at high salt regimes and prolonged duration in comparison to control (0 mM NaCl). Additionally, increased MrT, LTh, BTh, ECA, abaxial and adaxial stomatal area, and density, broadened metaxylem and phloem area, large aerenchyma, more cortical cell thickness under moderate to high salt regimes under moderate to high salt levels and time. Overall, changes in morpho-physiological traits and leaf microstructures in both ecotypes are linked to salt tolerance under temporal salt regimes. Our findings suggest that both ecotypes of F. complanata can potentially rehabilitate the salt-affected wetlands.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Farooq Ahmad
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ummar Iqbal
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Bahawalpur, 64200, Pakistan
| | - Naila Asghar
- College of Agronomy, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Amina Ameer
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Anam Mehmood
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, 38040, Pakistan
| | - Nimra Shehzadi
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shahbaz Chishti
- Stat Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhuang S, Yu Z, Li J, Wang F, Zhang C. Physiological and transcriptomic analyses reveal the molecular mechanism of PsAMT1.2 in salt tolerance. TREE PHYSIOLOGY 2024; 44:tpae113. [PMID: 39231271 DOI: 10.1093/treephys/tpae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Soil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with wild type under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase and ascorbate peroxidase activities, and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity and anion transport. Among the 1056 differentially expressed genes, genes related to photosystem I and photosystem II were up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.
Collapse
Affiliation(s)
- Shuaijun Zhuang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zhaoyou Yu
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jiayuan Li
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Fan Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Chunxia Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Wu X, Li J, Song LY, Zeng LL, Guo ZJ, Ma DN, Wei MY, Zhang LD, Wang XX, Zheng HL. NADPH oxidase-dependent H 2O 2 production mediates salicylic acid-induced salt tolerance in mangrove plant Kandelia obovata by regulating Na +/K + and redox homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1119-1135. [PMID: 38308390 DOI: 10.1111/tpj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lin-Lan Zeng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Xiu-Xiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| |
Collapse
|
4
|
Yu B, Wang L, Guan Q, Xue X, Gao W, Nie P. Exogenous 24-epibrassinolide promoted growth and nitrogen absorption and assimilation efficiency of apple seedlings under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1178085. [PMID: 37123869 PMCID: PMC10140579 DOI: 10.3389/fpls.2023.1178085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Introduction High salinity significantly hampers global agricultural productivity. Plants typically undergo lower nitrogen utilization efficiency (NUE) under salt stress. As an active byproduct from brassinolide biosynthesis, 24-epibrassinolide (EBR) is involved in regulating the stress-treated plant N absorption and assimilation. However, the exogenous EBR application effects' on N absorption and assimilation in apple exposed to the salt-stressed condition remains unclear. Methods We sprayed exogenous EBR (0.2 mg L-1) on apple dwarf rootstock (M9T337) seedlings (growing hydroponically) under salt (NaCl) stress in a growth chamber. We analyzed the seedling development, photosynthesis and its-mediated C fixation, N ( NO 3 - ) absorption and assimilation in reponse to exogenous EBR application under salt stress. Results The findings demonstrated that NaCl stress greatly hampered seedlings' root growth and that exogenous EBR application obviously alleviated this growth suppression. Exogenous EBR-treated plants under NaCl stress displayed the more ideal root morphology and root activity, stronger salt stress tolerance and photosynthetic capacity as well as higher C- and N-assimilation enzyme activities, NO 3 - ion flow rate and nitrate transporter gene expression level than did untreated plants. Furthermore, the results of isotope labeling noted that exogenous EBR application also enhanced 13C-photoassimilate transport from leaves to roots and 15 NO 3 - transport from roots to leaves under NaCl stress. Conclusion Our findings imply that exogenous EBR application, through strengthening photosynthesis, C- and N-assimilation enzyme activities, nitrate absorption and transport as well as synchronized optimizing the distribution of seedlings' C and N, has a fundamental role in improving NUE in apple rootstock seedlings under salt stress.
Collapse
Affiliation(s)
- Bo Yu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Laiping Wang
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Wensheng Gao
- Shandong Provincial Department of Agriculture and Rural Affairs, Shandong Agricultural Technology Extension Center, Jinan, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- *Correspondence: Peixian Nie,
| |
Collapse
|
5
|
Liu Y, Su M, Han Z. Effects of NaCl Stress on the Growth, Physiological Characteristics and Anatomical Structures of Populus talassica × Populus euphratica Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3025. [PMID: 36432761 PMCID: PMC9698527 DOI: 10.3390/plants11223025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In order to elucidate the salt tolerance mechanism of Populus talassica × Populus euphratica, the growth, physiology and anatomical characteristics of P. talassica × P. euphratica were studied under different concentrations of NaCl-stress treatments. In this study, the annual seedlings of Populus talassica × Populus euphratica were used as the test material in a field potted control experiment. The basic salt content of the culture soil was the control (CK), and two NaCl treatments of 200 mmol/L and 400 mmol/L were established. The pot experiment showed that: (1) Compared with CK, the 200 mmol/L NaCl-stress treatment significantly increased the growth parameters of P. talassica × P. euphratica, such as leaf area, plant height, ground diameter, biomass, root length, root surface area, root fork number and root-shoot ratio. However, compared with CK, the 400 mmol/L NaCl-stress treatment significantly reduced most growth parameters. (2) The 200 and 400 mmol/L NaCl-stress treatments significantly decreased various physiological parameters such as relative water content (RWC), chlorophyll content, water potential, stomatal opening and photosynthetic parameters and increased the accumulation of MDA and Pro compared with CK. The 200 mmol/L NaCl-stress treatment significantly increased the activity of antioxidant enzymes, and the 400 mmol/L NaCl-stress treatment significantly decreased the activity of antioxidant enzymes. (3) Compared with CK, 200 and 400 mmol/L NaCl-stress treatments significantly improved the leaf palisade tissue thickness and palisade-to-sea ratio, as well as the stem xylem and stem phloem thickness and pith diameter, and significantly increased the root xylem thickness, root phloem thickness, and root cross-cutting diameter of P. talassica × P. euphratica. The growth, physiological characteristics and anatomical characteristics of P. talassica × P. euphratica under NaCl-stress treatments showed that it had good salt tolerance and adaptability, and the 200 mmol/L NaCl-stress treatment promoted the growth of P. talassica × P. euphratica to a certain extent. This study provided a theoretical basis for the study of the salt-tolerant mechanism of P. talassica × P. euphratica.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Mengxu Su
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Zhanjiang Han
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| |
Collapse
|
6
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
7
|
First Form, Then Function: 3D Reconstruction of Cucumber Plants (Cucumis sativus L.) Allows Early Detection of Stress Effects through Leaf Dimensions. REMOTE SENSING 2022. [DOI: 10.3390/rs14051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Detection of morphological stress symptoms through 3D examination of plants might be a cost-efficient way to avoid yield losses and ensure product quality in agricultural and horticultural production. Although the 3D reconstruction of plants was intensively performed, the relationships between morphological and physiological plant responses to salinity stress need to be established. Therefore, cucumber plants were grown in a greenhouse in nutrient solutions under three salinity treatments: 0, 25, and 50 mM NaCl. To detect stress-induced changes in leaf transversal and longitudinal angles and dimensions, photographs were taken from plants for 3D reconstruction through photogrammetry. For assessment of physiological stress responses, invasive leaf measurements, including the determination of leaf osmotic potential, leaf relative water content, and the leaf dry to fresh weight ratio, were performed. The transversal and longitudinal leaf dimensions revealed statistically significant differences between stressed and control plants after 60 °Cd (day 3) for the leaves which appeared before stress imposition. Strong correlations were found between the transversal width and some investigated physiological traits. Morphological changes were shown as indicators of physiological responses of leaves under salinity stress.
Collapse
|
8
|
Liao Q, Gu S, Kang S, Du T, Tong L, Wood JD, Ding R. Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150364. [PMID: 34818800 DOI: 10.1016/j.scitotenv.2021.150364] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Water and salt stress often occur simultaneously in heavily irrigated arid agricultural areas, yet they are usually studied in isolation. To understand the physiological bases of water use efficiency (WUE) of field-grown maize (Zea mays) at multi-scales under combined water and salt stress, we investigated the joint effects of water and salt stress on physiology, growth, yield, and WUE of two genotypes (XY335 and ZD958). We measured leaf stomatal conductance (gs), net photosynthesis rate (A) and hydraulic traits, whole-plant growth and water use (ET), and final biomass and grain yield. Leaf osmotic adjustment was a key trait of the physiological differences between XY335 and ZD958 under water and salt stress. Although the responses of the two genotypes were different, mild water and salt stress improved intrinsic water use efficiency (iWUE = A/gs) by (i) decreasing gsvia increasing osmotic adjustment and hydraulic resistance, and (ii) declining A via increasing stomatal limitations rather than reducing photosynthetic capacity. Joint water and salt stress had a synergistic effect on reproductive growth and grain formation of maize. Mild water and salt stress reduced ET, stabilized grain yield, and improved grain WUE via declining gs, maintaining photosynthetic capacity, and improving harvest index. Collectively, our study provides a novel insight into the physiological mechanisms of WUE and demonstrates an approach for the efficient management of water and salt by using a growth stage-based deficit irrigation strategy or/and selecting genotypes with strong osmotic adjustment capacity and high harvest index.
Collapse
Affiliation(s)
- Qi Liao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Shujie Gu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China.
| |
Collapse
|
9
|
Liu M, Liu X, Du X, Korpelainen H, Niinemets Ü, Li C. Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources. TREE PHYSIOLOGY 2021; 41:1462-1478. [PMID: 33554242 DOI: 10.1093/treephys/tpab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/18/2021] [Indexed: 05/26/2023]
Abstract
Synergistic regulation in leaf architecture and photosynthesis is essential for salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were investigated under salt stress conditions combined with nitrate NO3- and ammonium NH4+ supplies to clarify the underlying mechanisms. In salt-stressed females, we observed an increased mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area of chloroplasts adjacent to the intercellular air space (Sc/S) and an increased mesophyll cell area per transverse section width (S/W), consequently causing mesophyll conductance (gm) and photosynthesis inhibition, especially under NH4+ supply. Conversely, males with a greater mesophyll palisade tissue thickness and chloroplast density, but a lower spongy cell density had lower S/W and higher Sc/S, and higher gm and photosynthesis. NH4+-fed females had a lower CO2 conductance through cell wall and stromal conductance perpendicular to the cell wall, but a higher chloroplast conductance from the cell wall (gcyt1) than females supplied with NO3-, whereas males had a higher chloroplast conductance and lower CO2 conductance through cell wall when supplied with NO3- instead of NH4+ under salt stress. These findings indicate sex-specific strategies in coping with salt stress related to leaf anatomy and gm under both types of nitrogen supplies, which may contribute to sex-specific CO2 capture and niche segregation.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Xuhua Du
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, State Forestry and Grassland Administration, Wenyi Road 310, Hangzhou 310012, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO P.O. Box 27, Latokartanonkaari 5, FI-00014 Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| |
Collapse
|
10
|
Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021; 10:2023. [PMID: 34440792 PMCID: PMC8395010 DOI: 10.3390/cells10082023] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Salinity is a growing problem affecting soils and agriculture in many parts of the world. The presence of salt in plant cells disrupts many basic metabolic processes, contributing to severe negative effects on plant development and growth. This review focuses on the effects of salinity on chloroplasts, including the structures and function of these organelles. Chloroplasts house various important biochemical reactions, including photosynthesis, most of which are considered essential for plant survival. Salinity can affect these reactions in a number of ways, for example, by changing the chloroplast size, number, lamellar organization, lipid and starch accumulation, and interfering with cross-membrane transportation. Research has shown that maintenance of the normal chloroplast physiology is necessary for the survival of the entire plant. Many plant species have evolved different mechanisms to withstand the harmful effects of salt-induced toxicity on their chloroplasts and its machinery. The differences depend on the plant species and growth stage and can be quite different between salt-sensitive (glycophyte) and salt-tolerant (halophyte) plants. Salt stress tolerance is a complex trait, and many aspects of salt tolerance in plants are not entirely clear yet. In this review, we discuss the different mechanisms of salt stress tolerance in plants with a special focus on chloroplast structure and its functions, including the underlying differences between glycophytes and halophytes.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Muhammad Zaheer Ahmed
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Tabassum Hussain
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Irfan Aziz
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan;
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Science (PIEAS), Islamabad 44000, Pakistan
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Brent L. Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
11
|
Horiguchi G, Matsumoto K, Nemoto K, Inokuchi M, Hirotsu N. Transition From Proto-Kranz-Type Photosynthesis to HCO 3 - Use Photosynthesis in the Amphibious Plant Hygrophila polysperma. FRONTIERS IN PLANT SCIENCE 2021; 12:675507. [PMID: 34220895 PMCID: PMC8242947 DOI: 10.3389/fpls.2021.675507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Hygrophila polysperma is a heterophyllous amphibious plant. The growth of H. polysperma in submerged conditions is challenging due to the low CO2 environment, increased resistance to gas diffusion, and bicarbonate ion (HCO3 -) being the dominant dissolved inorganic carbon source. The submerged leaves of H. polysperma have significantly higher rates of underwater photosynthesis compared with the terrestrial leaves. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), an anion exchanger protein inhibitor, and ethoxyzolamide (EZ), an inhibitor of internal carbonic anhydrase, repressed underwater photosynthesis by the submerged leaves. These results suggested that H. polysperma acclimates to the submerged condition by using HCO3 - for photosynthesis. H. polysperma transports HCO3 - into the leaf by a DIDS-sensitive HCO3 - transporter and converted to CO2 by carbonic anhydrase. Additionally, proteome analysis revealed that submerged leaves accumulated fewer proteins associated with C4 photosynthesis compared with terrestrial leaves. This finding suggested that H. polysperma is capable of C4 and C3 photosynthesis in the terrestrial and submerged leaves, respectively. The ratio of phosphoenol pyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the submerged leaves was less than that in the terrestrial leaves. Upon anatomical observation, the terrestrial leaves exhibited a phenotype similar to the Kranz anatomy found among C4 plants; however, chloroplasts in the bundle sheath cells were not located adjacent to the vascular bundles, and the typical Kranz anatomy was absent in submerged leaves. These results suggest that H. polysperma performs proto-Kranz type photosynthesis in a terrestrial environment and shifts from a proto-Kranz type in terrestrial leaves to a HCO3 - use photosynthesis in the submerged environments.
Collapse
Affiliation(s)
- Genki Horiguchi
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | | | - Kyosuke Nemoto
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Mayu Inokuchi
- Faculty of Life Sciences, Toyo University, Gunma, Japan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
12
|
Kolomeichuk LV, Efimova MV, Zlobin IE, Kreslavski VD, Murgan OK, Kovtun IS, Khripach VA, Kuznetsov VV, Allakhverdiev SI. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants. PHOTOSYNTHESIS RESEARCH 2020; 146:151-163. [PMID: 31939071 DOI: 10.1007/s11120-020-00708-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Brassinosteroids are promising agents for alleviating the negative effects of salinity on plants, but the mechanism of their protective action is far from being understood. We investigated the effect of pretreatment with 24-epibrassinolide (24-EBL) on the photosynthetic and physiological parameters of potato plants under progressive salinity stress caused by root application of 100 mM NaCl. Salinity clearly inhibited primary photosynthetic processes in potato plants by reducing the contents of photosynthetic pigments, photosynthetic electron transport and photosystem II (PSII) maximal and effective quantum yields. These negative effects of salinity on primary photosynthetic processes were mainly due to toxic ionic effects on the plant's ability to oxidize the plastoquinone pool. Pretreatment with 24-EBL alleviated this stress effect and allowed the maintenance of plastoquinone pool oxidation and the efficiency of photosystem II photochemistry to be at the same levels as those in unstressed plants; however, the pretreatment did not affect the photosynthetic pigment content. 24-EBL pretreatment clearly alleviated the decrease in leaf osmotic potential under salinity stress. The stress-induced increases in lipid peroxidation and proline contents were not changed under brassinosteroid pretreatment. However, 24-EBL pretreatment increased the peroxidase activity and improved the K+/Na+ ratio in potato leaves, which were likely responsible for the protective 24-EBL action under salt stress.
Collapse
Affiliation(s)
| | - Marina V Efimova
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Vladimir D Kreslavski
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Ol'ga K Murgan
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Irina S Kovtun
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Belarus, Belarus
| | - Vladimir V Kuznetsov
- National Research Tomsk State University, Tomsk, Russian Federation
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russian Federation.
- M.V. Lomonosov Moscow State University, Moscow, Russia.
- College of Science, King Saud University, Riyadh, Saudi Arabia.
- Institute of Molecular Biology and Biotechnology, ANAS, Baku, Azerbaijan.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russian Federation.
| |
Collapse
|
13
|
Tang X, Liu G, Jiang J, Lei C, Zhang Y, Wang L, Liu X. Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1053-1061. [PMID: 32600525 DOI: 10.1071/fp20062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Light intensity is a major environmental factor affecting the growth and survival of trees in a forest. The effect of light reduction on photosynthesis and photorespiration of an evergreen broad-leaved tree, Phoebe bournei (Hemsley) Yang was examined with three levels of full light, 50.5% light, and 21.8% light. The results showed that shading led to significant increase in plant height and crown diameter. Light-saturated leaf photosynthetic rate (Amax), maximal carboxylation activity (Vcmax), maximum electron transfer rate (Jmax), stomatal conductance (gs), mesophyll conductance (gm) and chloroplast CO2 concentration (Cc) significantly increased in response to shade. Photorespiratory CO2 release rate (PR) was higher in plants grown under shade conditions than under full light. The relative limitations of gm (lm) was higher than the relative limitations of gs (ls) and the relative limitations of biochemical factors (lb) in leaves of P. bournei grown under full light, whereas lm was lower than ls and lb under shade. Our results suggest that increase of photosynthesis in P. bournei leaves grown under shade is associated with enhanced CO2 diffusion and biochemistry. And we propose that enhancement of the photorespiratory is essential for shade leaves to improve photosynthesis.
Collapse
Affiliation(s)
- Xinglin Tang
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China; and College of Forestry, Nanjing Forestry University, 159-Longpan Road, Xuanwu District, Nanjing, 210037, China; and Corresponding author.
| | - Guangzheng Liu
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| | - Jiang Jiang
- College of Forestry, Nanjing Forestry University, 159-Longpan Road, Xuanwu District, Nanjing, 210037, China
| | - Changju Lei
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| | - Yunxing Zhang
- School of Architectural and Artistic Design, Henan Polytechnic University, 2001-Century Road, Jiaozuo, 454003, China
| | - Liyan Wang
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| | - Xinliang Liu
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| |
Collapse
|
14
|
Hussain T, Koyro HW, Zhang W, Liu X, Gul B, Liu X. Low Salinity Improves Photosynthetic Performance in Panicum antidotale Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:481. [PMID: 32547567 PMCID: PMC7273886 DOI: 10.3389/fpls.2020.00481] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
Salinity and drought are two often simultaneously occurring abiotic stresses that limit the production of food crops worldwide. This study aimed to distinguish between the separate and combined impacts of drought and salinity on the plant response. Panicum antidotale was cultivated in a greenhouse under the following growth conditions: control, 100 mM NaCl (100) and 300 mM NaCl (300) salinity, drought (D; 30% irrigation), and two combinations of salinity and drought (100 + D and 300 + D). The growth response was as follows: 0 ≈ 100 > 100 + D > > D ≈ 300 ≈ 300 + D. Growth correlated directly with photosynthesis. The net photosynthesis, stomatal conductance, intercellular CO2, transpiration, ribulose 1,5-bisphosphate carboxylase (Rubisco), ribulose 1,5-bisphosphate (RuBP) regeneration, and triose phosphate utilization protein (e.g., phosphoenolpyruvate carboxylase) were highest in the control and declined most at 300 + D, while 100 + D performed significantly better as compared to drought. Maximum and actual photosystem II (PSII) efficiencies, along with photochemical quenching during light harvesting, resemble the plant growth and contemporary CO2/H2O gas exchange parameters in the given treatments. Plant improves water use efficiency under salt and drought treatments, which reflects the high water conservation ability of Panicum. Our findings indicate that the combination of low salinity with drought was able to minimize the deleterious effects of drought alone on growth, chlorophyll content, cell integrity, photosynthesis, leaf water potential, and water deficit. This synergetic effect demonstrates the positive role of Na+ and Cl- in carbon assimilation and osmotic adjustment. In contrast, the combination of high salinity and drought enforced the negative response of plants in comparison to single stress, demonstrating the antagonistic impact of water availability and ion toxicity.
Collapse
Affiliation(s)
- Tabassum Hussain
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
| | - Wensheng Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaotong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Bilquees Gul
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Xiaojing Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
15
|
Abstract
Cucumber (Cucumis sativus L.), an important vegetable crop, is sensitive to NaCl. Its salinity tolerance can be improved by grafting onto pumpkin rootstocks, which restricts the uptake of Na+, but not of Cl−. Although Na+ seems to be more toxic than Cl− in cucumber, tissue tolerance to Na+ and Cl− is still unclear. In this study, a mixed-salt experiment, designed for equal osmolarity and equimolar concentrations of ions between treatments, was conducted using cucumber genotypes “Aramon” and “Line-759,” which are different in Na+ and Cl− exclusion. This combination of treatments generated various patterns of ion concentrations in leaves for deriving the response curves of photosynthesis and stomatal conductance to ion concentrations. In both cultivars, photosynthesis and stomatal conductance were sensitive to leaf Na+ concentration but insensitive to Cl− concentration. In these genotypes, tissue tolerance to Na+ varied independently of Na+ exclusion. Grafting “Aramon” onto pumpkin rootstock modified the Na+/Cl− ratio in leaves, reduced Na+ uptake, enhanced K+ transport towards the young leaves, and induced Cl− recirculation to the old leaves. These results suggest that (1) cucumber cannot restrict the Na+ accumulation in leaves but is able to avoid overaccumulation of Cl−, and (2) pumpkin rootstock regulates the recirculation of K+ and Cl−, but not Na+.
Collapse
|
16
|
Che-Othman MH, Jacoby RP, Millar AH, Taylor NL. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. THE NEW PHYTOLOGIST 2020; 225:1166-1180. [PMID: 30688365 DOI: 10.1111/nph.15713] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 05/24/2023]
Abstract
Mitochondrial respiration and tricarboxylic acid (TCA) cycle activity are required during salt stress in plants to provide ATP and reductants for adaptive processes such as ion exclusion, compatible solute synthesis and reactive oxygen species (ROS) detoxification. However, there is a poor mechanistic understanding of how salinity affects mitochondrial metabolism, particularly respiratory substrate source. To determine the mechanism of respiratory changes under salt stress in wheat leaves, we conducted an integrated analysis of metabolite content, respiratory rate and targeted protein abundance measurements. Also, we investigated the direct effect of salt on mitochondrial enzyme activities. Salt-treated wheat leaves exhibit higher respiration rate and extensive metabolite changes. The activity of the TCA cycle enzymes pyruvate dehydrogenase complex and the 2-oxoglutarate dehydrogenase complex were shown to be directly salt-sensitive. Multiple lines of evidence showed that the γ-aminobutyric acid (GABA) shunt was activated under salt treatment. During salt exposure, key metabolic enzymes required for the cyclic operation of the TCA cycle are physiochemically inhibited by salt. This inhibition is overcome by increased GABA shunt activity, which provides an alternative carbon source for mitochondria that bypasses salt-sensitive enzymes, to facilitate the increased respiration of wheat leaves.
Collapse
Affiliation(s)
- M Hafiz Che-Othman
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre of Biotechnology and Functional Food, Faculty of Science and Technology, The National University of Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Richard P Jacoby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
17
|
Xie K, Lu Z, Pan Y, Gao L, Hu P, Wang M, Guo S. Leaf photosynthesis is mediated by the coordination of nitrogen and potassium: The importance of anatomical-determined mesophyll conductance to CO 2 and carboxylation capacity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110267. [PMID: 31779911 DOI: 10.1016/j.plantsci.2019.110267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 05/28/2023]
Abstract
Both nitrogen (N) and potassium (K) have been widely studied in maintaining efficient photosynthesis and plant growth. However, the mechanisms underlying the photosynthetic response to their interaction remain unclear. This study assessed the effects of N and K supply on photosynthetic limitations and the corresponding changes in anatomical structures in leaves of rice (Oryza sativa L.) plants, grown hydroponically under different levels of N and K in a greenhouse. Results revealed that a suitable leaf N/K ratio (2.99-3.10) maintain a high rate of photosynthesis (A). The A under N and/or K deficiency was primarily limited by mesophyll conductance (gm) and RuBP carboxylation in biochemical processes. The decline of gm in N- or K-starved leaves was mostly resulted from low surface area of chloroplasts exposed to intercellular airspaces (Sc) and high mesophyll cell wall thickness. Synergistic effects of N and K on gm were reflected in leaf anatomical structure, especially their coordinated roles in enhancing Sc. The enhanced photosynthesis in plants with coordinated supply of N and K was caused by the balance of RuBP carboxylation and regeneration. These results highlight the synergistic effect of N and K on leaf photosynthesis, which are mainly reflected in facilitating anatomical-determined gm and carboxylation capacity.
Collapse
Affiliation(s)
- Kailiu Xie
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yonghui Pan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Limin Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ping Hu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
18
|
Sun D, Zhu Y, Xu H, He Y, Cen H. Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress. SENSORS 2019; 19:s19122649. [PMID: 31212744 PMCID: PMC6631407 DOI: 10.3390/s19122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Resistance to drought stress is one of the most favorable traits in breeding programs yet drought stress is one of the most poorly addressed biological processes for both phenomics and genetics. In this study, we investigated the potential of using a time-series chlorophyll fluorescence (ChlF) analysis to dissect the ChlF fingerprints of salt overly sensitive (SOS) mutants under drought stress. Principle component analysis (PCA) was used to identify a shifting pattern of different genotypes including sos mutants and wild type (WT) Col-0. A time-series deep-learning algorithm, sparse auto encoders (SAEs) neural network, was applied to extract time-series ChlF features which were used in four classification models including linear discriminant analysis (LDA), k-nearest neighbor classifier (KNN), Gaussian naive Bayes (NB) and support vector machine (SVM). The results showed that the discrimination accuracy of sos mutants SOS1-1, SOS2-3, and wild type Col-0 reached 95% with LDA classification model. Sequential forward selection (SFS) algorithm was used to obtain ChlF fingerprints of the shifting pattern, which could address the response of sos mutants and Col-0 to drought stress over time. Parameters including QY, NPQ and Fm, etc. were significantly different between sos mutants and WT. This research proved the potential of ChlF imaging for gene function analysis and the study of drought stress using ChlF in a time-series manner.
Collapse
Affiliation(s)
- Dawei Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Yueming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Haixia Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Cen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Zait Y, Shtein I, Schwartz A. Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance. TREE PHYSIOLOGY 2019; 39:701-716. [PMID: 30597082 DOI: 10.1093/treephys/tpy133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Photosynthesis is limited by three main factors: stomatal conductance (gs), mesophyll conductance (gm) and maximum capacity for Rubisco carboxylation (Vcmax). It is unclear how limiting factors vary under stress, particularly during long-term stress acclimation. In this work, we compared for the first time photosynthesis limitation resulting from long-term acclimation to three major abiotic stresses: drought, salinity and temperature. We used saplings of Ziziphus spina-christi, a thermophilic and drought-tolerant tree, which recently became more abundant in the Mediterranean, presumably due to increased winter temperatures. Stress acclimation was investigated by measuring growth, gas exchange, chlorophyll fluorescence and leaf structure. For each stress, photosynthesis-limiting factors were compared. We developed an integrative stress index that allowed us to precisely define stress level, enabling a comparison between stress types. Photosynthesis under all stresses was limited mostly by gs and gm (80-90%); whereas biochemistry (Vcmax) made a minor contribution (10-20%). The relative contribution of gs and gm on photosynthetic limitation was influenced by stress type. During acclimation to drought or salinity, photosynthesis was limited by a decline in gs, while intolerance to low temperatures was driven by decline in gm. In all the stresses, gm decreased only under progressive reduction in leaf physiological functionality and was associated with low turgor under drought, an increase in leaf Na+ under salinity and low leaf hydraulic conductance (Kleaf) at low temperatures. Mesophyll structure (mesophyll surface area exposed to the intercellular air spaces, leaf thickness, % intercellular air spaces) did not explain gm acclimation to stress. Current work gives methodology for stress studies, and defines the main factors underlying the plant response to climate change. The ability to minimize mesophyll-imposed limitations on photosynthesis was found as a strong indicator of progressive stress tolerance. Moreover, the results demonstrate how warming climate benefits the photosynthetic function in thermophilic species, such as Ziziphus spina-christi.
Collapse
Affiliation(s)
- Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilana Shtein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amnon Schwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
20
|
Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:31-38. [PMID: 30059606 DOI: 10.1111/plb.12884] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 05/18/2023]
Abstract
Thirty crop species provide 90% of our food, most of which display severe yield losses under moderate salinity. Securing and augmenting agricultural yield in times of global warming and population increase is urgent and should, aside from ameliorating saline soils, include attempts to increase crop plant salt tolerance. This short review provides an overview of the processes that limit growth and yield in saline conditions. Yield is reduced if soil salinity surpasses crop-specific thresholds, with cotton, barley and sugar beet being highly tolerant, while sweet potato, wheat and maize display high sensitivity. Apart from Na+ , also Cl- , Mg2+ , SO4 2- or HCO3 - contribute to salt toxicity. The inhibition of biochemical or physiological processes cause imbalance in metabolism and cell signalling and enhance the production of reactive oxygen species interfering with cell redox and energy state. Plant development and root patterning is disturbed, and this response depends on redox and reactive oxygen species signalling, calcium and plant hormones. The interlink of the physiological understanding of tolerance processes from molecular processes as well as the agronomical techniques for stabilizing growth and yield and their interlinks might help improving our crops for future demand and will provide improvement for cultivating crops in saline environment.
Collapse
Affiliation(s)
- C Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - C-M Geilfus
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Division of Controlled Environment Horticulture, Humboldt Universität Berlin, Berlin, Germany
| | - K-J Dietz
- Biochemistry and Physiology of Plants, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
21
|
Wang X, Wang W, Huang J, Peng S, Xiong D. Diffusional conductance to CO 2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). PHYSIOLOGIA PLANTARUM 2018; 163:45-58. [PMID: 29055043 DOI: 10.1111/ppl.12653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 05/06/2023]
Abstract
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt-stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt-stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc ) of rice leaves. Decreased A in salt-stressed leaves was mainly attributable to low Cc , which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt-stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity-tolerant rice cultivars.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wencheng Wang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
22
|
Chen TW, Stützel H, Kahlen K. High light aggravates functional limitations of cucumber canopy photosynthesis under salinity. ANNALS OF BOTANY 2018; 121:797-807. [PMID: 29028871 PMCID: PMC5906908 DOI: 10.1093/aob/mcx100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/24/2017] [Indexed: 05/07/2023]
Abstract
Background and Aims Most crop species are glycophytes, and salinity stress is one of the most severe abiotic stresses reducing crop yields worldwide. Salinity affects plant architecture and physiological functions by different mechanisms, which vary largely between crop species and determine the susceptibility or tolerance of a crop species to salinity. Methods Experimental data from greenhouse cucumber (Cucumis sativus), a salt-sensitive species, grown under three salinity levels were interpreted by combining a functional-structural plant model and quantitative limitation analysis of photosynthesis. This approach allowed the quantitative dissection of canopy photosynthetic limitations into architectural and functional limitations. Functional limitations were further dissected into stomatal (Ls), mesophyll (Lm) and biochemical (Lb). Key Results Architectural limitations increased rapidly after the start of the salinity treatment and became stronger than the sum of functional limitations (Ls + Lm + Lb) under high salinity. Stomatal limitations resulted from ionic effects and were much stronger than biochemical limitations, indicating that canopy photosynthesis was more limited by the effects of leaf sodium on stomatal regulation than on photosynthetic enzymes. Sensitivity analyses suggested that the relative importance of salinity effects on architectural and functional limitations depends on light conditions, with high light aggravating functional limitations through salinity effects on stomatal limitations. Conclusions Salinity tolerance of cucumber is more likely to be improved by traits related to leaf growth and stomatal regulation than by traits related to tissue tolerance to ion toxicity, especially under high light conditions.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | | |
Collapse
|
23
|
|
24
|
Moualeu-Ngangue DP, Chen TW, Stützel H. A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space CO 2 concentration (A-C i ) curve and chlorophyll fluorescence measurements. THE NEW PHYTOLOGIST 2017; 213:1543-1554. [PMID: 27768807 DOI: 10.1111/nph.14260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Gas exchange (GE) and chlorophyll fluorescence (CF) measurements are widely used to noninvasively study photosynthetic parameters, for example the rates of maximum Rubisco carboxylation (Vcmax ), electron transport rate (J), daytime respiration (Rd ) and mesophyll conductance (gm ). Existing methods for fitting GE data (net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve) are based on two assumptions: gm is unvaried with CO2 concentration in the intercellular space (Ci ); and light absorption (α) and the proportion of quanta absorbed by photosystem II (β) are constant in the data set. These may result in significant bias in estimating photosynthetic parameters. To avoid the above-mentioned hypotheses, we present a new method for fitting A-Ci curves and CF data simultaneously. This method was applied to a data set obtained from cucumber (Cucumis sativus) leaves of various leaf ages and grown under eight different light conditions. The new method had significantly lower root mean square error and a lower rate of failures compared with previously published methods (6.72% versus 24.1%, respectively) and the effect of light conditions on Vcmax and J was better observed. Furthermore, the new method allows the estimation of a new parameter, the fraction of incoming irradiance harvested by photosystem II, and the dependence of gm on Ci .
Collapse
Affiliation(s)
- Dany P Moualeu-Ngangue
- Institute for Horticultural Production Systems, Vegetable Systems Modelling Section, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419, Hannover, Germany
| | - Tsu-Wei Chen
- Institute for Horticultural Production Systems, Vegetable Systems Modelling Section, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419, Hannover, Germany
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060, Montpellier, France
| | - Hartmut Stützel
- Institute for Horticultural Production Systems, Vegetable Systems Modelling Section, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Straße 2, D-30419, Hannover, Germany
| |
Collapse
|
25
|
Lu Z, Lu J, Pan Y, Lu P, Li X, Cong R, Ren T. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. PLANT, CELL & ENVIRONMENT 2016; 39:2428-2439. [PMID: 27423139 DOI: 10.1111/pce.12795] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 05/22/2023]
Abstract
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (gm ) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining gm have been quantified; however, anatomical variabilities related to low gm under K starvation remain imperfectly known. A one-dimensional model was used to quantify anatomical controls of the entire CO2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down-regulated gm . The mesophyll conductance limitation contributed to more than one-half of A decline. The decreased internal air space in K-starved leaves was associated with the increase of gas-phase resistance. Potassium deficiency reduced liquid-phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (Sc /S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of gm variations, ascribing to an altered Sc /S. These results emphasize the important role of K on the regulation of gm by enhancing Sc /S and reducing cytoplasm resistance.
Collapse
Affiliation(s)
- Zhifeng Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghui Pan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Piaopiao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, Trtílek M, Tester M, Julkowska MM, Panzarová K. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1414. [PMID: 27733855 PMCID: PMC5039194 DOI: 10.3389/fpls.2016.01414] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/05/2016] [Indexed: 05/18/2023]
Abstract
Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions.
Collapse
Affiliation(s)
- Mariam Awlia
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Arianna Nigro
- Institute of Plant and Microbial Biology, University of ZurichZurich, Switzerland
| | - Jiří Fajkus
- PSI (Photon Systems Instruments)Drásov, Czech Republic
| | - Sandra M. Schmoeckel
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Diana Santelia
- Institute of Plant and Microbial Biology, University of ZurichZurich, Switzerland
| | | | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Magdalena M. Julkowska
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | | |
Collapse
|
27
|
Scotti-Campos P, Duro N, Costa MD, Pais IP, Rodrigues AP, Batista-Santos P, Semedo JN, Leitão AE, Lidon FC, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:60-9. [PMID: 27070734 DOI: 10.1016/j.jplph.2016.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/15/2023]
Abstract
The actinorhizal tree Casuarina glauca tolerates extreme environmental conditions, such as high salinity. This species is also able to establish a root-nodule symbiosis with N2-fixing bacteria of the genus Frankia. Recent studies have shown that C. glauca tolerance to high salt concentrations is innate and linked to photosynthetic adjustments. In this study we have examined the impact of increasing NaCl concentrations (200, 400 and 600mM) on membrane integrity as well as on the control of oxidative stress in branchlets of symbiotic (NOD+) and non-symbiotic (KNO3+) C. glauca. Membrane selectivity was maintained in both plant groups at 200mM NaCl, accompanied by an increase in the activity of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase). Regarding cellular membrane lipid composition, linolenic acid (C18:3) showed a significant decline at 200mM NaCl in both NOD+ and KNO3+ plants. In addition, total fatty acids (TFA) and C18:2 also decreased in NOD+ plants at this salt concentration, resulting in malondialdehyde (MDA) production. Such initial impact at 200mM NaCl is probably due to the fact that NOD+ plants are subjected to a double stress, i.e., salinity and low nitrogen availability. At 400mM NaCl a strong reduction of TFA and C18:3 levels was observed in both plant groups. This was accompanied by a decrease in the unsaturation degree of membrane lipids in NOD+. However, in both NOD+ and KNO3+ lipid modifications were not reflected by membrane leakage at 200 or 400mM, suggesting acclimation mechanisms at the membrane level. The fact that membrane selectivity was impaired only at 600mM NaCl in both groups of plants points to a high tolerance of C. glauca to salt stress independently of the symbiotic relation with Frankia.
Collapse
Affiliation(s)
- Paula Scotti-Campos
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Nuno Duro
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Mário da Costa
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P Pais
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Ana P Rodrigues
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Paula Batista-Santos
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - José N Semedo
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - A Eduardo Leitão
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Fernando C Lidon
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - José C Ramalho
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Ana I Ribeiro-Barros
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| |
Collapse
|
28
|
Lu Z, Ren T, Pan Y, Li X, Cong R, Lu J. Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L. Sci Rep 2016; 6:21725. [PMID: 26902263 PMCID: PMC4763197 DOI: 10.1038/srep21725] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/29/2016] [Indexed: 01/16/2023] Open
Abstract
Analyzing the proportions of stomatal (SL), mesophyll conductance (MCL) and biochemical limitations (BL) imposed by potassium (K) deficit, and evaluating their relationships to leaf K status will be helpful to understand the mechanism underlying the inhibition of K deficiency on photosynthesis (A). A quantitative limitation analysis of K deficiency on photosynthesis was performed on leaf margins and centers under K deficiency and sufficient K supply treatments of Brassica napus L. Potassium deficiency decreased A, stomatal (gs) and mesophyll conductance (gm) of margins, SL, MCL and BL accounted for 23.9%, 33.0% and 43.1% of the total limitations. While for leaf centers, relatively low limitations occurred. Nonlinear curve fitting analysis indicated that each limiting factor generated at same leaf K status (1.07%). Although MCL was the main component of limitations when A began to fall, BL replaced it at a leaf K concentration below 0.78%. Up-regulated MCL was related to lower surface area of chloroplasts exposed to intercellular airspaces (Sc/S) and larger cytosol diffusion resistance but not the cell wall thickness. Our results highlighted that photosynthetic limitations appear simultaneously under K deficiency and vary with increasing K deficiency intensity.
Collapse
Affiliation(s)
- Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan 430070, China
| | - Yonghui Pan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan 430070, China
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
29
|
Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Alexantrov V, Goltsev V, Kalaji MH. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 157:22-31. [PMID: 26878219 DOI: 10.1016/j.jphotobiol.2016.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/25/2022]
Abstract
Perennial ryegrass (Lolium perenne L.) is one of the most popular grass species in Europe. It is commonly used for establishing the lawns in urban areas, where the salt stress is one of the major environmental conditions limiting its growth. The basic aim of this study was the detailed in vivo analysis of the changes in photosynthetic efficiency, induced by salt stress, of two lawn varieties of Perennial ryegrass and to find out the variety of better properties to create lawn on the soils contaminated with salt. Two lawn varieties of L. perenne L. were used: Nira and Roadrunner. The salinization was applied 8 weeks after sowing by adding NaCl in water solution (0, 0.15, and 0.30 M). The measurements were carried out 8 times: 0, 24, 48, 96, 144, 192, 240 and 288 h after salinization. Our results revealed that the disturbance of PSII function could easily be estimated by measuring chlorophyll a fluorescence and analyzing that signal by JIP-test. Our work allowed to identify various limiting parameters of photosynthetic efficiency of perennial ryegrass lawn varieties grown under salt stress conditions. This knowledge can allow for selection of plants with a higher potential photosynthetic efficiency (vitality) during salt stress conditions, that can be used successfully neighboring roads, where salt is applied.
Collapse
Affiliation(s)
- P Dąbrowski
- Department of Environmental Improvement, Warsaw University of Life Science, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - A H Baczewska
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, 2 Prawdziwka St., 02-973 Warsaw, Poland
| | - B Pawluśkiewicz
- Department of Environmental Improvement, Warsaw University of Life Science, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - M Paunov
- Department of Biophysics and Radiobiology, University of Sofia "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - V Alexantrov
- Department of Biophysics and Radiobiology, University of Sofia "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - V Goltsev
- Department of Biophysics and Radiobiology, University of Sofia "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - M H Kalaji
- Department of Plant Physiology, Warsaw University of Life Science, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| |
Collapse
|