1
|
Schiell C, Rivard C, Portanguen S, Scislowski V, Mirade PS, Astruc T. Iron distribution and speciation in a 3D-printed hybrid food using synchrotron X-ray fluorescence and X-ray absorption spectroscopies. Food Chem 2024; 463:141058. [PMID: 39243607 DOI: 10.1016/j.foodchem.2024.141058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The bioavailability of iron from a food depends on its concentration and chemical form but also on dietary factors and nutrient interactions, which are affected by storage conditions and time. Here we investigated the time-course profile of iron in a hybrid 3D-printed food composed of alternating layers of liver and lentils after 0, 5, 7, 14 and 21 days of storage at 4 °C under oxygen or nitrogen packaging. Synchrotron X-ray fluorescence highlighted major variations in iron distribution in both the animal and plant parts of the food as a function of storage conditions. FeP and FeS positive spatial correlations pointed to iron-associated compounds. X-ray absorption near-edge structure spectroscopy showed spectral signatures specific to the animal and plant mixtures, and then highlighted interactions between animal and plant parts during food storage, with a change in iron forms in the plant part.
Collapse
Affiliation(s)
- Coline Schiell
- ADIV (Association pour le Développement de l'Institut de la Viande), 10 rue Jacqueline Auriol, 63039 Clermont-Ferrand, France; Université Clermont Auvergne, INRAE, UR370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès-Champanelle, France.
| | - Camille Rivard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France; INRAE, UAR1008 TRANSFORM, 44316 Nantes, France.
| | - Stéphane Portanguen
- Université Clermont Auvergne, INRAE, UR370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès-Champanelle, France.
| | - Valérie Scislowski
- ADIV (Association pour le Développement de l'Institut de la Viande), 10 rue Jacqueline Auriol, 63039 Clermont-Ferrand, France.
| | - Pierre-Sylvain Mirade
- Université Clermont Auvergne, INRAE, UR370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès-Champanelle, France.
| | - Thierry Astruc
- Université Clermont Auvergne, INRAE, UR370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
2
|
Zhou J, Guo W, Hu Z, Jin L, Hu S. Elemental Imaging of Fertilized ZnO NP Wheat Endosperms Using Laser Ablation-Inductively Coupled Plasma Optical Emission Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19856-19865. [PMID: 38019292 DOI: 10.1021/acs.jafc.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Zinc (Zn) is an essential trace element in the human body, and its deficiency can seriously affect health. Agronomic Zn biofortification with ZnO nanoparticles (ZnO NPs) in consumable wheat prospectively relieves Zn deficiency. We developed an elemental quantitative imaging laser ablation-inductively coupled plasma optical emission spectrometry method to examine the distributions of Zn and other micronutrient elements in wheat grain and the endosperm. After foliar application of ZnO NPs (four rounds), Zn content in the endosperm can be significantly increased (221 ± 61%), and the Zn, Ca, Mg, and P content gradient decreased from the outside seed coat and aleurone layer to the endosperm, whereas the Fe, Mn, K, Cu, Sr, and Ba content gradient decreased from the crease region to the deeper endosperm. This may indicate how different elements enter the endosperm. Foliar application of ZnO NPs did not change the micronutrient accumulation pattern but did change their contents in wheat grain.
Collapse
Affiliation(s)
- Jianzong Zhou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zhaochu Hu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China
| | - Lanlan Jin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
3
|
Indore NS, Karunakaran C, Jayas DS, Bondici VF, Vu M, Tu K, Muir D. Mapping biochemical and nutritional changes in durum wheat due to spoilage during storage. Heliyon 2023; 9:e22139. [PMID: 38045167 PMCID: PMC10692805 DOI: 10.1016/j.heliyon.2023.e22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Synchrotron X-ray imaging and spectroscopy techniques were used for studying changes during post-harvest storage of food grains. Three varieties (AAC Spitfire, CDC Defy, and AAC Stronghold) of the Canada Western Amber Durum (CWAD) wheat class were stored for five weeks at 17 % moisture content (wb). Control (dry) and stored moistened seeds were analyzed for biochemical and nutritional changes using synchrotron bulk X-ray fluorescence spectroscopy (SR-XRF), X-ray fluorescence imaging (SR-XFI), and mid-infrared (mid-IR) spectroscopy at the Canadian Light Source (CLS), Saskatoon, SK. All varieties of durum wheat were spoiled at the end of five week, and AAC Spitfire and CDC Defy varieties were most affected in nutritional composition and their distribution than AAC Stronghold. Variable response to changes in biochemical and nutrition were found in all three spoiled varieties of the same durum wheat class.
Collapse
Affiliation(s)
- Navnath S. Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Chithra Karunakaran
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Digvir S. Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- President's Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - David Muir
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
4
|
Indore NS, Jayas DS, Karunakaran C, Stobbs J, Bondici VF, Vu M, Tu K, Marinos O. Study of Microstructural, Nutritional, and Biochemical Changes in Hulled and Hulless Barley during Storage Using X-ray and Infrared Techniques. Foods 2023; 12:3935. [PMID: 37959054 PMCID: PMC10650746 DOI: 10.3390/foods12213935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Four varieties of barley (Esma, AC Metacalf, Tradition, and AB Cattlelac), representing four Canadian barley classes, were stored at 17% moisture content (mc) for 8 week. Stored barely was characterized using synchrotron X-ray phase contrast microcomputed tomography, synchrotron X-ray fluorescence imaging, and mid-infrared spectroscopy at the Canadian Light Source, Saskatoon. The deterioration was observed in all the selected varieties of barley at the end of 8 week of storage. Changes due to spoilage over time were observed in the grain microstructure and its nutrient distribution and composition. This study underscores the critical importance of the initial condition of barley grain microstructure in determining its storage life, particularly under unfavorable conditions. The hulled barley varieties showed more deterioration in microstructure than the hulless varieties of barley, where a direct correlation between microstructural changes and alterations in nutritional content was found. All selected barley classes showed changes in the distribution of nutrients (Ca, Fe, K, Mn, Cu, and Zn), but the two-row AC Metcalf variety exhibited more substantial variations in their nutrient distribution (Zn and Mn) than the other three varieties during storage. The two-row class barley varieties showed more changes in biochemical components (protein, lipids, and carbohydrates) than the six-row class varieties.
Collapse
Affiliation(s)
- Navnath S. Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
| | - Digvir S. Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
- President’s Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Chithra Karunakaran
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Jarvis Stobbs
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Viorica F. Bondici
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Omar Marinos
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| |
Collapse
|
5
|
Sun J, Yang Y, Luo L. Pb speciation and elemental distribution in leeks by micro X-ray fluorescence and X-ray absorption near-edge structure. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:934-940. [PMID: 37615637 PMCID: PMC10481275 DOI: 10.1107/s1600577523006616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Vegetables are crucial to a human diet as they supply the body with essential vitamins, minerals, etc. Heavy metals that accumulate in plants consequently enter the food chain and endanger people's health. Studying the spatial distribution and chemical forms of elements in plant/vegetable tissues is vital to comprehending the potential interactions between elements and detoxification mechanisms. In this study, leek plants and soil from vegetable gardens near lead-zinc mines were collected and cultivated with 500 mg L-1 PbNO3 solutions for three weeks. Micro X-ray fluorescence was used to map the distribution of Pb and other chemical elements in leek roots, and X-ray absorption near-edge spectroscopy was used to assess the Pb speciation in leek roots and leaves. These findings demonstrated that Pb, Cu, Mn, Cr, Ti and Fe were detected in the outer rings of the root's cross section, and high-intensity points were observed in the epidermis. Zn, K and Ca, on the other hand, were distributed throughout the root's cross section. Leek root and leaf contained significant quantities of lead phosphate and basic lead carbonate at more than 80%, followed by lead sulfide (19%) and lead stearate (11.1%). The capacity of leek roots to convert ambient lead into precipitated lead and fix it on the root epidermis and other inner surfaces is a key mechanism for reducing the toxic effects of Pb.
Collapse
Affiliation(s)
- Jianling Sun
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, People’s Republic of China
- National Engineering Research Centre for Urban Environmental Pollution Control, Beijing 100037, People’s Republic of China
| | - Yongqiang Yang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, People’s Republic of China
- National Engineering Research Centre for Urban Environmental Pollution Control, Beijing 100037, People’s Republic of China
| | - Liqiang Luo
- National Research Center for Geoanalysis, Beijing 100037, People’s Republic of China
| |
Collapse
|
6
|
Song C, Xie K, Hu X, Zhou Z, Liu A, Zhang Y, Du J, Jia J, Gao L, Mao H. Genome wide association and haplotype analyses for the crease depth trait in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1203253. [PMID: 37465391 PMCID: PMC10350514 DOI: 10.3389/fpls.2023.1203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
Wheat grain has a complex structure that includes a crease on one side, and tissues within the crease region play an important role in nutrient transportation during wheat grain development. However, the genetic architecture of the crease region is still unclear. In this study, 413 global wheat accessions were resequenced and a method was developed for evaluating the phenotypic data of crease depth (CD). The CD values exhibited continuous and considerable large variation in the population, and the broad-sense heritability was 84.09%. CD was found to be positively correlated with grain-related traits and negatively with quality-related traits. Analysis of differentiation of traits between landraces and cultivars revealed that grain-related traits and CD were simultaneously improved during breeding improvement. Moreover, 2,150.8-Mb genetic segments were identified to fall within the selective sweeps between the landraces and cultivars; they contained some known functional genes for quality- and grain-related traits. Genome-wide association study (GWAS) was performed using around 10 million SNPs generated by genome resequencing and 551 significant SNPs and 18 QTLs were detected significantly associated with CD. Combined with cluster analysis of gene expression, haplotype analysis, and annotated information of candidate genes, two promising genes TraesCS3D02G197700 and TraesCS5A02G292900 were identified to potentially regulate CD. To the best of our knowledge, this is the first study to provide the genetic basis of CD, and the genetic loci identified in this study may ultimately assist in wheat breeding programs.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiale Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Zhong Y, Chen Y, Pan M, Wang H, Sun J, Chen Y, Cai J, Zhou Q, Wang X, Jiang D. Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112192. [PMID: 37299171 DOI: 10.3390/plants12112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Wheat is a staple crop; its production must achieve both high yield and good quality due to worldwide demands for food security and better quality of life. It has been found that the grain qualities vary greatly within the different layers of wheat kernels. In this paper, the spatial distributions of protein and its components, starch, dietary fiber, and microelements are summarized in detail. The underlying mechanisms regarding the formation of protein and starch, as well as spatial distribution, are discussed from the views of substrate supply and the protein and starch synthesis capacity. The regulating effects of cultivation practices on gradients in composition are identified. Finally, breakthrough solutions for exploring the underlying mechanisms of the spatial gradients of functional components are presented. This paper will provide research perspectives for producing wheat that is both high in yield and of good quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingsheng Pan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengtong Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Wang X, Guo Z, Hui X, Wang R, Wang S, Kopittke PM, Wang Z, Shi M. Improved Zn bioavailability by its enhanced colocalization and speciation with S in wheat grain tissues after N addition. Food Chem 2023; 404:134582. [DOI: 10.1016/j.foodchem.2022.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/25/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
|
9
|
Deng G, Vu M, Korbas M, Bondici VF, Karunakaran C, Christensen D, Bart Lardner HA, Yu P. Distribution of Micronutrients in Arborg Oat (Avena sativa L.) Using Synchrotron X-ray Fluorescence Imaging. Food Chem 2023; 421:135661. [PMID: 37094404 DOI: 10.1016/j.foodchem.2023.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
It is important to know the mineral distribution in cereal grains for nutritional improvement or genetic biofortification. Distributions and intensities of micro-elements (Mn, Fe, Cu, and Zn) and macro-elements (P, S, K and Ca) in Arborg oat were investigated using synchrotron-based on X-ray fluorescence imaging (XFI). Arborg oat provided by the Crop Development Center (CDC, Aaron Beattie) of the University of Saskatchewan for 2D X-ray fluorescence scans were measured at the BioXAS-Imaging beamline at the Canadian Light Source. The results show that the Ca and Mn were mainly localized in the aleurone layer and scutellum. P, K, Fe, Cu, and Zn were mainly accumulated in the aleurone layer and embryo. Particularly the intensities of P, K, Cu, and Zn in the scutellum were higher compared to other areas. S was also distributed in each tissue and its abundance in the sub-aleurone was the highest. In addition, the intensities of S and Cu were highest in the nucellar projection of the crease region. All these elements were also found in the pericarp but they were at lower levels than other tissues. Overall, the details of these experimental results can provide important information for micronutrient biofortification and processing strategies on oat through elemental mapping in Arborg oat.
Collapse
Affiliation(s)
- Ganqi Deng
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Miranda Vu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Malgorzata Korbas
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Viorica F Bondici
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - David Christensen
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - H A Bart Lardner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
10
|
Sun H, Guo W, Zhou Q, Gong Y, Lv Z, Wang Q, Mao H, Kopittke PM. Uptake, transformation, and environmental impact of zinc oxide nanoparticles in a soil-wheat system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159307. [PMID: 36216048 DOI: 10.1016/j.scitotenv.2022.159307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are metal-based nanomaterials, but their long-term effects on plant growth and the soil environment in the field remain unclear with most previous studies using short-term laboratory and glasshouse studies. In this study, we used a field experiment to examine the long-term effects of ZnO-NPs in a soil-wheat (Triticum aestivum) system. It was found that although ZnO-NPs had no significant effect on either yield or the concentration of other nutrients within the grain, the application of ZnO-NPs significantly increased Zn concentrations. Indeed, for grain, the application of ZnO-NPs to both the soil and foliage (SFZnO) (average of 33.1 mg/kg) significantly increased grain Zn concentrations compared to the the control treatment (21.7 mg/kg). Using in situ analyses, nutrients were found to accumulate primarily in the crease tissue and the aleurone layer of the grain, regardless of treatment. Specifically, the concentration of Zn in the aleurone layer for the SFZnO treatment was 2-3 times higher than that in the control, being >300 mg/kg, whilst the Zn concentration in the crease tissue was ca. 600 mg/kg in the SFZnO treatment, being two times higher than for the control. Although the application of ZnO-NPs increased the total Zn within the grain, it did not accumulate within the grain as ZnO-NPs with this being important for food safety, but rather mainly as Zn-phytate, with the remainder of the Zn complexed with either cysteine or phosphate. Finally, we also observed that ZnO-NPs caused fewer changes to the soil bacterial community structure and that it had no nano-specific toxicity.
Collapse
Affiliation(s)
- Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yafang Gong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiyuan Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Guo Z, Wang X, Zhang X, Wang L, Wang R, Hui X, Wang S, Chen Y, White PJ, Shi M, Wang Z. Synchrotron X-ray Fluorescence Technique Identifies Contribution of Node Iron and Zinc Accumulations to the Grain of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9346-9355. [PMID: 35852475 DOI: 10.1021/acs.jafc.2c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing iron (Fe) and zinc (Zn) concentrations in crop grains with high yield is an effective measure to ensure food supply and alleviate mineral malnutrition in humans. Micronutrient concentrations in grains depend on not only their availability in soils but also their uptake in roots and translocation to shoots and grains. In this three-year field study, we investigated genotypic variation in Fe and Zn uptake and translocation within six wheat cultivars and examined in detail Fe and Zn distributions in various tissues of two cultivars with similar high yield but different grain Fe and Zn concentrations using synchrotron micro-X-ray fluorescence. Results revealed that root Fe and Zn concentrations were 11 and 44% greater in high-nutrient (HN) than in low-nutrient (LN) concentration cultivar. Although both cultivars accumulated similar amounts of Fe in shoots, HN cultivar had greater accumulation of Fe in grain and greater accumulation of Zn in both shoots and grain. Grain Zn concentration was positively correlated with shoot Zn accumulation, and grain Fe concentration was positively correlated with the ability to translocate Fe from leaves/stem to grains. In the first nodes of shoots, HN cultivar had 482% greater Fe and 36% greater Zn concentrations in the enlarged vascular bundle (EVB) than LN cultivar. In top nodes, HN cultivar had 225 and 116% greater Fe and Zn concentrations in the transit vascular bundle and 77 and 71% greater in the EVB when compared to LN cultivar. HN cultivar also had a greater ability to allocate Fe and Zn to the grain than LN cultivar. In conclusion, HN cultivar had greater capacity of Fe and Zn acquirement by roots and translocation and partitioning from shoots into grains. Screening wheat cultivars for larger Fe and Zn concentrations in shoot nodes could be a novel strategy for breeding crops with greater grain Fe and Zn concentrations.
Collapse
Affiliation(s)
- Zikang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingshu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runze Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Hui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sen Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture & Environment, The University of Western Australia, Perth, Western Australia 6001, Australia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Philip J White
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Mei Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, China
| | - Zhaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Ereful NC, Jones H, Fradgley N, Boyd L, Cherie HA, Milner MJ. Nutritional and genetic variation in a core set of Ethiopian Tef (Eragrostis tef) varieties. BMC PLANT BIOLOGY 2022; 22:220. [PMID: 35484480 PMCID: PMC9047342 DOI: 10.1186/s12870-022-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tef (Eragrostis tef) is a tropical cereal domesticated and grown in the Ethiopian highlands, where it has been a staple food of Ethiopians for many centuries. Food insecurity and nutrient deficiencies are major problems in the country, so breeding for enhanced nutritional traits, such as Zn content, could help to alleviate problems with malnutrition. RESULTS To understand the breeding potential of nutritional traits in tef a core set of 24 varieties were sequenced and their mineral content, levels of phytate and protein, as well as a number of nutritionally valuable phenolic compounds measured in grain. Significant variation in all these traits was found between varieties. Genome wide sequencing of the 24 tef varieties revealed 3,193,582 unique SNPs and 897,272 unique INDELs relative to the tef reference var. Dabbi. Sequence analysis of two key transporter families involved in the uptake and transport of Zn by the plant led to the identification of 32 Zinc Iron Permease (ZIP) transporters and 14 Heavy Metal Associated (HMA) transporters in tef. Further analysis identified numerous variants, of which 14.6% of EtZIP and 12.4% of EtHMA variants were non-synonymous changes. Analysis of a key enzyme in flavanol synthesis, flavonoid 3'-hydroxylase (F3'H), identified a T-G variant in the tef homologue Et_s3159-0.29-1.mrna1 that was associated with the differences observed in kaempferol glycoside and quercetin glycoside levels. CONCLUSION Wide genetic and phenotypic variation was found in 24 Ethiopian tef varieties which would allow for breeding gains in many nutritional traits of importance to human health.
Collapse
Affiliation(s)
- Nelzo C Ereful
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Philippine Genome Centre, University of the Philippines Los Baňos, Laguna, Philippines
| | - Huw Jones
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Nick Fradgley
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Lesley Boyd
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Hirut Assaye Cherie
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, P.O.Box 26, Bahir Dar, Ethiopia
| | | |
Collapse
|
13
|
Doolette CL, Howard DL, Afshar N, Kewish CM, Paterson DJ, Huang J, Wagner S, Santner J, Wenzel WW, Raimondo T, De Vries Van Leeuwen AT, Hou L, van der Bom F, Weng H, Kopittke PM, Lombi E. Tandem Probe Analysis Mode for Synchrotron XFM: Doubling Throughput Capacity. Anal Chem 2022; 94:4584-4593. [PMID: 35276040 PMCID: PMC8943523 DOI: 10.1021/acs.analchem.1c04255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 μm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.
Collapse
Affiliation(s)
- Casey L Doolette
- Future Industries Institutes, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Daryl L Howard
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Nader Afshar
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Cameron M Kewish
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia.,Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Jianyin Huang
- Future Industries Institutes, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Stefan Wagner
- Chair of General and Analytical Chemistry, Montanuniversität Leoben, Leoben 8700, Austria.,Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Tulln 3430, Austria.,Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln 3430, Austria
| | - Jakob Santner
- Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln 3430, Austria
| | - Walter W Wenzel
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln 3430, Austria
| | - Tom Raimondo
- Future Industries Institutes, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | | | - Lei Hou
- Future Industries Institutes, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Frederik van der Bom
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Han Weng
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- Future Industries Institutes, University of South Australia, Mawson Lakes, South Australia 5095, Australia.,UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
14
|
Beasley JT, Bonneau JP, Moreno-Moyano LT, Callahan DL, Howell KS, Tako E, Taylor J, Glahn RP, Appels R, Johnson AAT. Multi-year field evaluation of nicotianamine biofortified bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1168-1182. [PMID: 34902177 DOI: 10.1111/tpj.15623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Conventional breeding efforts for iron (Fe) and zinc (Zn) biofortification of bread wheat (Triticum aestivum L.) have been hindered by a lack of genetic variation for these traits and a negative correlation between grain Fe and Zn concentrations and yield. We have employed genetic engineering to constitutively express (CE) the rice (Oryza sativa) nicotianamine synthase 2 (OsNAS2) gene and upregulate biosynthesis of two metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - in bread wheat, resulting in increased Fe and Zn concentrations in wholemeal and white flour. Here we describe multi-location confined field trial (CFT) evaluation of a low-copy transgenic CE-OsNAS2 wheat event (CE-1) over 3 years and demonstrate higher concentrations of NA, DMA, Fe, and Zn in CE-1 wholemeal flour, white flour, and white bread and higher Fe bioavailability in CE-1 white flour relative to a null segregant (NS) control. Multi-environment models of agronomic and grain nutrition traits revealed a negative correlation between grain yield and grain Fe, Zn, and total protein concentrations, yet no correlation between grain yield and grain NA and DMA concentrations. White flour Fe bioavailability was positively correlated with white flour NA concentration, suggesting that NA-chelated Fe should be targeted in wheat Fe biofortification efforts.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Laura T Moreno-Moyano
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, 3125, Australia
| | - Kate S Howell
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Rudi Appels
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
15
|
Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. PHYSIOLOGIA PLANTARUM 2022; 174:e13612. [PMID: 34970752 DOI: 10.1111/ppl.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.
Collapse
Affiliation(s)
- Chandima Kamaral
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Stephen M Neate
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Urrbrae, South Australia, Australia
| | - Niroshini Gunasinghe
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David J Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
- Department of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Milner MJ, Bowden S, Craze M, Wallington EJ. Ectopic expression of TaBG1 increases seed size and alters nutritional characteristics of the grain in wheat but does not lead to increased yields. BMC PLANT BIOLOGY 2021; 21:524. [PMID: 34758742 PMCID: PMC8579524 DOI: 10.1186/s12870-021-03294-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Grain size is thought to be a major component of yield in many plant species. Here we set out to understand if knowledge from other cereals such as rice could translate to increased yield gains in wheat and lead to increased nitrogen use efficiency. Previous findings that the overexpression of OsBG1 in rice increased yields while increasing seed size suggest translating gains from rice to other cereals may help to increase yields. RESULTS The orthologous genes of OsBG1 were identified in wheat. One homoeologous wheat gene was cloned and overexpressed in wheat to understand its role in controlling seed size. Potential alteration in the nutritional profile of the grains were also analyzed in wheat overexpressing TaBG1. It was found that increased TaBG1-A expression could indeed lead to larger seed size but was linked to a reduction in seed number per plant leading to no significant overall increase in yield. Other important components of yield such as biomass or tillering did not change significantly with increased TaBG1-A expression. The nutritional profile of the grain was altered, with a significant decrease in the Zn levels in the grain associated with increased seed size, but Fe and Mn concentrations were unchanged. Protein content of the wheat grain also fell under moderate N fertilization levels but not under deficient or adequate levels of N. CONCLUSIONS TaBG1 does control seed size in wheat but increasing the seed size per se does not increase yield and may come at the cost of lower concentrations of essential elements as well as potentially lower protein content. Nevertheless, TaBG1 could be a useful target for further breeding efforts in combination with other genes for increased biomass.
Collapse
Affiliation(s)
| | - Sarah Bowden
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Melanie Craze
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | | |
Collapse
|
17
|
Nishiwaki Y, Takahashi T, Wada E, Nishimura Y. Nondestructive Mineral Imaging of Chinese Chive Leaves Withered by Physiological Damage Using Microbeam Synchrotron Radiation X-Ray Fluorescence Analysis. ANAL SCI 2021; 37:1459-1463. [PMID: 33716261 DOI: 10.2116/analsci.21n002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A significant problem encountered in Chinese chives (Allium tuberosum) grown in greenhouses is the reduction in the yield and quality due to symptoms of withered leaf tips. Withered leaf tips of three Chinese chive cultivars were nondestructively analyzed by microbeam synchrotron radiation X-ray fluorescence (μ-SR-XRF) imaging. Dead, wilting, and healthy parts of the leaves exhibited significant variations in the mineral composition. The Ca/K X-ray intensity ratios were significantly increased with the degree of withering.
Collapse
Affiliation(s)
| | | | - Eriko Wada
- Faculty of Agriculture and Marine Science, Kochi University.,Kochi Agricultural Research Center
| | | |
Collapse
|
18
|
Guo Z, Zhang X, Wang L, Wang X, Wang R, Hui X, Wang S, Wang Z, Shi M. Selecting High Zinc Wheat Cultivars Increases Grain Zinc Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11196-11203. [PMID: 34528796 DOI: 10.1021/acs.jafc.1c03166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Improving the concentration and bioavailability of zinc (Zn) in cereal grains is an important way to solve the problem of Zn deficiency in human body. The bioavailability of Zn is related to both its distribution and speciation in grains. In the current study, we examined the differences of Zn concentration, distribution, and speciation within grains among wheat cultivars with similar high grain yield but contrasting grain Zn concentration using synchrotron micro X-ray fluorescence (μ-XRF) and X-ray absorption near-edge structure (XANES). Results showed that compared to the low-Zn cultivar, the Zn concentration was 103, 50, 76, 33, and 64% higher in the crease region, aleurone layer, scutellum, embryonic axis, and endosperm of the high-Zn cultivar, respectively. Zinc mainly colocalized with phosphorus (P) in the aleurone layer and the scutellum, but less colocalization of Zn with P and a much lower concentration ratio of P/Zn were found in the high-Zn cultivar. Sulfur (S) is present in the form of scattered spots in the endosperm in accord with Zn, but the colocalization of Zn with S was predominant in the modified aleurone layer and the nucellar projection of the high-Zn cultivar. XANES results showed the lower proportion of Zn-phytate in the high-Zn cultivar. Findings indicated that it is possible to select the high-yield wheat cultivar with both high grain Zn concentration and high bioavailability, which provide a new perspective for genetic Zn biofortification.
Collapse
Affiliation(s)
- Zikang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingshu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoli Hui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sen Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Zhaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Shi M, Wang X, Wang H, Guo Z, Wang R, Hui X, Wang S, Kopittke PM, Wang Z. High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147608. [PMID: 34000558 DOI: 10.1016/j.scitotenv.2021.147608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The physiological disorders in humans resulting from the excess dietary intake of manganese (Mn) via whole-grain food has attracted considerable attention. However, the speciation and bioavailability of Mn in wheat grains and their response to different phosphorus (P) fertilization rates are still unclear. In the current study, using a long-term field trial with P application rates of 0, 21.8, 43.6, 65.5 and 87.3 kg/ha, we examined changes in the concentration, distribution, and speciation of Mn of wheat grains using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy. The total Mn concentration in grains was found to be increased by phosphorus fertilization, especially in embryo in the form of Mn(II), but this phosphorus fertilization also decreased Mn concentrations in the nucellar projection. In this study, the speciation of Mn in different wheat grain tissues was examined, and results indicate that in calcareous soils, high rates of P fertilizers can increase Mn concentrations in wheat grain, including Mn which is likely to be of high bioavailability, and thus may increase the risk for human to expose to high Mn intake via whole-grain food.
Collapse
Affiliation(s)
- Mei Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingshu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haolin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zikang Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Hui
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sen Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Zhaohui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Sheraz S, Wan Y, Venter E, Verma SK, Xiong Q, Waites J, Connorton JM, Shewry PR, Moore KL, Balk J. Subcellular dynamics studies of iron reveal how tissue-specific distribution patterns are established in developing wheat grains. THE NEW PHYTOLOGIST 2021; 231:1644-1657. [PMID: 33914919 DOI: 10.1111/nph.17440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.
Collapse
Affiliation(s)
- Sadia Sheraz
- School of Materials and Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Yongfang Wan
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Eudri Venter
- Bioimaging facility, Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Shailender K Verma
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Qing Xiong
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Joshua Waites
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - James M Connorton
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Peter R Shewry
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Katie L Moore
- School of Materials and Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
21
|
Aiqing Z, Zhang L, Ning P, Chen Q, Wang B, Zhang F, Yang X, Zhang Y. Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Crit Rev Food Sci Nutr 2021; 62:7917-7928. [PMID: 34224281 DOI: 10.1080/10408398.2021.1920883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zinc (Zn) is an essential micro-nutrient for humans, and Zn deficiency is of global concern. In addition to inherited and pathological Zn deficiencies, insufficient dietary intake is leading cause, especially in those consuming cereal grains as a stable food, in which Zn concentration and bioavailability are relatively low. To improve Zn levels in the human body, it is important to understand the accumulation and bioavailability of Zn in cereal grains. In recent years, knowledge on the molecular mechanisms underlying Zn uptake, transport, homeostasis, and deposition within cereal crops has been accumulating, paving the way for a more targeted approach to improving the nutrient status of crop plants. In this paper, we briefly review existing studies on the distribution and transport pathways of Zn in major small-grained cereals, using wheat as a case study. The findings confirm that Zn transport in plants is a complex physiological process mainly governed by Zn transporters and metal chelators. This work reviews studies on Zn uptake, transport, and deposition in wheat plants, summarizes the possible barriers impairing Zn deposition in wheat grains, and describes strategies for increasing Zn concentration in wheat grains.
Collapse
Affiliation(s)
- Zhao Aiqing
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Liansheng Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Peng Ning
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions (Ministry of Education), China Agricultural University, Beijing, China
| | - Qin Chen
- Northwest Land and Resources Research Center, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| |
Collapse
|
22
|
Wright TIC, Gardner KA, Glahn RP, Milner MJ. Genetic control of iron bioavailability is independent from iron concentration in a diverse winter wheat mapping population. BMC PLANT BIOLOGY 2021; 21:212. [PMID: 33975563 PMCID: PMC8112066 DOI: 10.1186/s12870-021-02996-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anemia is thought to affect up to 1.6 billion people worldwide. One of the major contributors to low iron (Fe) absorption is a higher proportion of cereals compared to meats and pulse crops in people's diets. This has now become a problem in both the developed and developing world, as a result of both modern food choice and food availability. Bread wheat accounts for 20 % of the calories consumed by humans and is an important source of protein, vitamins and minerals meaning it could be a major vehicle for bringing more bioavailable Fe into the diet. RESULTS To investigate whether breeding for higher concentrations of Fe in wheat grains could help increase Fe absorption, a multiparent advanced generation intercross (MAGIC) population, encompassing more than 80 % of UK wheat polymorphism, was grown over two seasons in the UK. The population was phenotyped for both Fe concentration and Fe bioavailability using an established Caco-2 cell bioassay. It was found that increasing Fe concentrations in the grains was not correlated with higher Fe bioavailability and that the underlying genetic regions controlling grain Fe concentrations do not co-localise with increased Fe absorption. Furthermore, we show that phytate concentrations do not correlate with Fe bioavailability in our wheat population and thus phytate-binding is insufficient to explain the lack of correlation between Fe bioavailability and Fe concentrations in the wheat grain. Finally, we observed no (Fe bioavailability) or low (Fe concentration) correlation between years for these traits, confirming that both are under strong environmental influence. CONCLUSIONS This suggests that breeders will have to select not only for Fe concentrations directly in grains, but also increased bioavailability. However the use of numerous controls and replicated trials limits the practicality of adoption of screening by Caco-2 cells by many breeders.
Collapse
Affiliation(s)
| | | | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 14853, Ithaca, NY, USA
| | | |
Collapse
|
23
|
Romeu SLZ, Marques JPR, Montanha GS, de Carvalho HWP, Pereira FMV. Chemometrics unraveling nutrient dynamics during soybean seed germination. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Lemmens E, Deleu LJ, De Brier N, Smolders E, Delcour JA. Mineral bio-accessibility and intrinsic saccharides in breakfast flakes manufactured from sprouted wheat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Wiggenhauser M, Aucour AM, Telouk P, Blommaert H, Sarret G. Changes of Cadmium Storage Forms and Isotope Ratios in Rice During Grain Filling. FRONTIERS IN PLANT SCIENCE 2021; 12:645150. [PMID: 33995443 PMCID: PMC8116553 DOI: 10.3389/fpls.2021.645150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Rice poses a major source of the toxic contaminant cadmium (Cd) for humans. Here, we elucidated the role of Cd storage forms (i.e., the chemical Cd speciation) on the dynamics of Cd within rice. In a pot trial, we grew rice on a Cd-contaminated soil in upland conditions and sampled roots and shoots parts at flowering and maturity. Cd concentrations, isotope ratios, Cd speciation (X-ray absorption spectroscopy), and micronutrient concentrations were analyzed. During grain filling, Cd and preferentially light Cd isotopes were strongly retained in roots where the Cd storage form did not change (Cd bound to thiols, Cd-S = 100%). In the same period, no net change of Cd mass occurred in roots and shoots, and the shoots became enriched in heavy isotopes (Δ114/110Cd maturity-flowering = 0.14 ± 0.04‰). These results are consistent with a sequestration of Cd in root vacuoles that includes strong binding of Cd to thiol containing ligands that favor light isotopes, with a small fraction of Cd strongly enriched in heavy isotopes being transferred to shoots during grain filling. The Cd speciation in the shoots changed from predominantly Cd-S (72%) to Cd bound to O ligands (Cd-O, 80%) during grain filling. Cd-O may represent Cd binding to organic acids in vacuoles and/or binding to cell walls in the apoplast. Despite this change of ligands, which was attributed to plant senescence, Cd was largely immobile in the shoots since only 0.77% of Cd in the shoots were transferred into the grains. Thus, both storage forms (Cd-S and Cd-O) contributed to the retention of Cd in the straw. Cd was mainly bound to S in nodes I and grains (Cd-S > 84%), and these organs were strongly enriched in heavy isotopes compared to straw (Δ114/110Cd grains/nodes- straw = 0.66-0.72‰) and flag leaves (Δ114/110Cd grains/nodes-flag leaves = 0.49-0.52‰). Hence, xylem to phloem transfer in the node favors heavy isotopes, and the Cd-S form may persist during the transfer of Cd from node to grain. This study highlights the importance of Cd storage forms during its journey to grain and potentially into the food chain.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| | - Anne-Marie Aucour
- Laboratoire de Geologie de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France
| | - Philippe Telouk
- Laboratoire de Geologie de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France
| | - Hester Blommaert
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| | - Géraldine Sarret
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| |
Collapse
|
26
|
Detterbeck A, Pongrac P, Persson DP, Vogel-Mikuš K, Kelemen M, Vavpetič P, Pelicon P, Arčon I, Husted S, Kofod Schjoerring J, Clemens S. Temporal and Spatial Patterns of Zinc and Iron Accumulation during Barley ( Hordeum vulgare L.) Grain Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12229-12240. [PMID: 33070613 DOI: 10.1021/acs.jafc.0c04833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Breeding and engineering of biofortified crops will benefit from a better understanding of bottlenecks controlling micronutrient loading within the seeds. However, few studies have addressed the changes in micronutrient concentrations, localization, and speciation occurring over time. Therefore, we studied spatial patterns of zinc and iron accumulation during grain development in two barley lines with contrasting grain zinc concentrations. Microparticle-induced-X-ray emission and laser ablation-inductively coupled plasma mass spectrometry were used to determine tissue-specific accumulation of zinc, iron, phosphorus, and sulfur. Differences in zinc accumulation between the lines were most evident in the endosperm and aleurone. A gradual decrease in zinc concentrations from the aleurone to the underlying endosperm was observed, while iron and phosphorus concentrations decreased sharply. Iron co-localized with phosphorus in the aleurone, whereas zinc co-localized with sulfur in the sub-aleurone. We hypothesize that differences in grain zinc are largely explained by the endosperm storage capacity. Engineering attempts should be targeted accordingly.
Collapse
Affiliation(s)
- Amelie Detterbeck
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
| | - Paula Pongrac
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Daniel P Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Mitja Kelemen
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Søren Husted
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan Kofod Schjoerring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Stephan Clemens
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
27
|
Hu N, Li W, Du C, Zhang Z, Gao Y, Sun Z, Yang L, Yu K, Zhang Y, Wang Z. Predicting micronutrients of wheat using hyperspectral imaging. Food Chem 2020; 343:128473. [PMID: 33160768 DOI: 10.1016/j.foodchem.2020.128473] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 11/26/2022]
Abstract
Micronutrients are the key factors to evaluate the nutritional quality of wheat. However, measuring micronutrients is time-consuming and expensive. In this study, the potential of hyperspectral imaging for predicting wheat micronutrient content was investigated. The spectral reflectance of wheat kernels and flour was acquired in the visible and near-infrared range (VIS-NIR, 375-1050 nm). Afterwards, wheat micronutrient contents were measured and their associations with the spectra were modeled. Results showed that the models based on the spectral reflectance of wheat kernel achieved good predictions for Ca, Mg, Mo and Zn (r2>0.70). The models based on the spectra reflectance of wheat flour showed good predictive capabilities for Mg, Mo and Zn (r2>0.60). The prediction accuracy was higher for wheat kernels than for the flour. This study showed the feasibility of hyperspectral imaging as a non-invasive, non-destructive tool to predict micronutrients of wheat.
Collapse
Affiliation(s)
- Naiyue Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Wei Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Zhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yanmei Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China.
| | - Li Yang
- College of Engineering, China Agricultural University, Beijing 100193, China.
| | - Kang Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China; School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Engineering Technology Research Center for Agriculture in Low Plain Areas, Heibei Province, China.
| |
Collapse
|
28
|
Madsen CK, Brinch-Pedersen H. Globoids and Phytase: The Mineral Storage and Release System in Seeds. Int J Mol Sci 2020; 21:ijms21207519. [PMID: 33053867 PMCID: PMC7589363 DOI: 10.3390/ijms21207519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
Phytate and phytases in seeds are the subjects of numerous studies, dating back as far as the early 20th century. Most of these studies concern the anti-nutritional properties of phytate, and the prospect of alleviating the effects of phytate with phytase. As reasonable as this may be, it has led to a fragmentation of knowledge, which hampers the appreciation of the physiological system at hand. In this review, we integrate the existing knowledge on the chemistry and biosynthesis of phytate, the globoid cellular structure, and recent advances on plant phytases. We highlight that these components make up a system that serves to store and-in due time-release the seed's reserves of the mineral nutrients phosphorous, potassium, magnesium, and others, as well as inositol and protein. The central component of the system, the phytate anion, is inherently rich in phosphorous and inositol. The chemical properties of phytate enable it to sequester additional cationic nutrients. Compartmentalization and membrane transport processes regulate the buildup of phytate and its associated nutrients, resulting in globoid storage structures. We suggest, based on the current evidence, that the degradation of the globoid and the mobilization of the nutrients also depend on membrane transport processes, as well as the enzymatic action of phytase.
Collapse
|
29
|
Feng X, Zhang H, Yu P. X-ray fluorescence application in food, feed, and agricultural science: a critical review. Crit Rev Food Sci Nutr 2020; 61:2340-2350. [PMID: 32543214 DOI: 10.1080/10408398.2020.1776677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently X-ray fluorescence techniques have been widely used in food and agricultural science areas. Minimal sample preparation, nondestructive analysis, high spatial resolution, and multiple elements measurements within a single sample are among its advantages. In this review, literature of X-ray fluorescence are extensively researched and summarized from food and agricultural science areas focusing on food safety inspection, food nutrition, plant science, soil science, and Ca-related problems in horticultural crops. In addition, the advantages and disadvantages of X-ray fluorescence comparing with traditional analytical techniques of elements are also discussed. The more advanced technology such as developments of detector, scanning system, beamline capability among others would significantly increase future application of X-ray fluorescence techniques. Combination use of XRF with other tools such as chemometrics or data analytics would greatly improve its prediction performance. These further improvements offer exciting perspectives for the application of X-ray fluorescence in the food and agricultural science areas.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China.,Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
30
|
Sun H, Du W, Peng Q, Lv Z, Mao H, Kopittke PM. Development of ZnO Nanoparticles as an Efficient Zn Fertilizer: Using Synchrotron-Based Techniques and Laser Ablation to Examine Elemental Distribution in Wheat Grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5068-5075. [PMID: 32255620 DOI: 10.1021/acs.jafc.0c00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zinc (Zn) deficiency is an important problem worldwide, adversely impacting human health. Using a field trial in China, we compared the foliar application of both ZnO nanoparticles (ZnO-NPs) and ZnSO4 on winter wheat (Triticum aestivum L.) for increasing the Zn concentration within the grain. We also used synchrotron-based X-ray fluorescence microscopy and laser ablation inductively coupled plasma mass spectrometry to examine the distribution of Zn within the grain. We found that ZnO-NPs increase the Zn concentration in the wheat grain, increasing from 18 mg·kg-1 in the control up to 40 mg·kg-1 when the ZnO-NPs were applied four times. These grain Zn concentrations in the ZnO-NP-treated grains are similar to those recommended for human consumption. However, the ZnO-NPs were similar in their effectiveness to ZnSO4. When examining trace element distribution in the grain, the trace elements were found to accumulate primarily in the aleurone layer and the crease region across all treatments. Importantly, Zn concentrations in the grain endosperm increased by nearly 30-fold relative to the control, with markedly increasing Zn concentrations within the edible portion. These results demonstrate that ZnO-NPs are a suitable fertilizer for increasing Zn within wheat grain and can potentially be used to improve human nutrition.
Collapse
Affiliation(s)
- Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Qingqing Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhiyuan Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
31
|
Yan B, Isaure MP, Mounicou S, Castillo-Michel H, De Nolf W, Nguyen C, Cornu JY. Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113987. [PMID: 31962265 DOI: 10.1016/j.envpol.2020.113987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 05/15/2023]
Abstract
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Collapse
Affiliation(s)
- Bofang Yan
- ISPA, INRAE, Bordeaux Sciences Agro, France
| | - Marie-Pierre Isaure
- CNRS / Université de Pau et des Pays de l'Adour / E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Sandra Mounicou
- CNRS / Université de Pau et des Pays de l'Adour / E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF), ID21 Beamline, BP 220, 38043, Grenoble, France
| | - Wout De Nolf
- European Synchrotron Radiation Facility (ESRF), ID21 Beamline, BP 220, 38043, Grenoble, France
| | | | | |
Collapse
|
32
|
Ram H, Gandass N, Sharma A, Singh A, Sonah H, Deshmukh R, Pandey AK, Sharma TR. Spatio-temporal distribution of micronutrients in rice grains and its regulation. Crit Rev Biotechnol 2020; 40:490-507. [DOI: 10.1080/07388551.2020.1742647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hasthi Ram
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nishu Gandass
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ankita Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anmol Singh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Humira Sonah
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ajay Kumar Pandey
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Tilak Raj Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
33
|
Montanha GS, Rodrigues ES, Romeu SLZ, de Almeida E, Reis AR, Lavres J, Pereira de Carvalho HW. Zinc uptake from ZnSO 4 (aq) and Zn-EDTA (aq) and its root-to-shoot transport in soybean plants (Glycine max) probed by time-resolved in vivo X-ray spectroscopy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110370. [PMID: 32005376 DOI: 10.1016/j.plantsci.2019.110370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the dynamic of zinc (Zn) uptake and the root-to-shoot Zn-transport when supplied as ZnSO4 (aq) or Zn-EDTA (aq) in soybean seedlings using in vivo X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XANES). The time-resolved X-ray fluorescence showed that plants absorbed ca. 10-fold more Zn from ZnSO4 (aq) than from Zn-EDTA (aq). However, the uptake velocity did not influence the amount of Zn in the stem. It let furthermore appear that the plants were able to reduce the absorption of Zn from Zn-EDTA (aq) earlier than ZnSO4 (aq). Thus, the entrance of Zn2+ into the roots is not necessarily accompanied by SO42-(aq). Regardless the source, the Zn distribution and its transport in the stem were spatially correlated to the bundles and cortex nearby the epidermal cells. Its chemical speciation showed that Zn is neither transported as ZnSO4(aq) nor as Zn-EDTA(aq), indicating that these compounds are retained in the roots or biotransformed on in the root-solution interface. Zn2+ was long-distance transported complexed by organic molecules such as histidine, malate, and citrate, and the proportion of ligands was affected by the concentration of Zn2+ in the stem rather than by the type of Zn source.
Collapse
Affiliation(s)
- Gabriel S Montanha
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Eduardo S Rodrigues
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Sara L Z Romeu
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Eduardo de Almeida
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - André R Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, São Paulo, Brazil.
| | - José Lavres
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Hudson W Pereira de Carvalho
- University of São Paulo (USP), Center of Nuclear Energy in Agriculture (CENA), Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
34
|
Fatiukha A, Klymiuk V, Peleg Z, Saranga Y, Cakmak I, Krugman T, Korol AB, Fahima T. Variation in phosphorus and sulfur content shapes the genetic architecture and phenotypic associations within the wheat grain ionome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:555-572. [PMID: 31571297 DOI: 10.1111/tpj.14554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 05/04/2023]
Abstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Zvi Peleg
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehoshua Saranga
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Ismail Cakmak
- Faculty of Engineering & Natural Sciences, Sabanci University, Tuzla İstanbul, 34956, Turkey
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| |
Collapse
|
35
|
Potentially toxic elements (PTEs) in cereal-based foods: A systematic review and meta-analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 2020; 477:259-274. [DOI: 10.1042/bcj20190188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023]
Abstract
To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.
Collapse
|
37
|
Pongrac P, Arčon I, Castillo-Michel H, Vogel-Mikuš K. Mineral Element Composition in Grain of Awned and Awnletted Wheat ( Triticum aestivum L.) Cultivars: Tissue-Specific Iron Speciation and Phytate and Non-Phytate Ligand Ratio. PLANTS 2020; 9:plants9010079. [PMID: 31936205 PMCID: PMC7020463 DOI: 10.3390/plants9010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
In wheat (Triticum aestivum L.), the awns—the bristle-like structures extending from lemmas—are photosynthetically active. Compared to awned cultivars, awnletted cultivars produce more grains per unit area and per spike, resulting in significant reduction in grain size, but their mineral element composition remains unstudied. Nine awned and 11 awnletted cultivars were grown simultaneously in the field. With no difference in 1000-grain weight, a larger calcium and manganese—but smaller iron (Fe) concentrations—were found in whole grain of awned than in awnletted cultivars. Micro X-ray absorption near edge structure analysis of different tissues of frozen-hydrated grain cross-sections revealed that differences in total Fe concentration were not accompanied by differences in Fe speciation (64% of Fe existed as ferric and 36% as ferrous species) or Fe ligands (53% were phytate and 47% were non-phytate ligands). In contrast, there was a distinct tissue-specificity with pericarp containing the largest proportion (86%) of ferric species and nucellar projection (49%) the smallest. Phytate ligand was predominant in aleurone, scutellum and embryo (72%, 70%, and 56%, respectively), while nucellar projection and pericarp contained only non-phytate ligands. Assuming Fe bioavailability depends on Fe ligands, we conclude that Fe bioavailability from wheat grain is tissue specific.
Collapse
Affiliation(s)
- Paula Pongrac
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (I.A.); (K.V.-M.)
- Correspondence: ; Tel.: +386-51-222-963; Fax: +386-477-31-51
| | - Iztok Arčon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (I.A.); (K.V.-M.)
- Laboratory for quantum optics, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | | | - Katarina Vogel-Mikuš
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (I.A.); (K.V.-M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Beasley JT, Bonneau JP, Sánchez‐Palacios JT, Moreno‐Moyano LT, Callahan DL, Tako E, Glahn RP, Lombi E, Johnson AAT. Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1514-1526. [PMID: 30623558 PMCID: PMC6662306 DOI: 10.1111/pbi.13074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up-regulate biosynthesis of two low molecular weight metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - that play key roles in metal transport and nutrition. The CE-OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X-ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field-grown CE-OsNAS2 grain and positively correlated with NA and DMA concentrations.
Collapse
Affiliation(s)
- Jesse T. Beasley
- School of BioSciencesThe University of MelbourneMelbourneVICAustralia
| | - Julien P. Bonneau
- School of BioSciencesThe University of MelbourneMelbourneVICAustralia
| | - Jose T. Sánchez‐Palacios
- School of BioSciencesThe University of MelbourneMelbourneVICAustralia
- Present address:
Institute for Applied EcologyUniversity of CanberraCanberraACT2617Australia
| | | | - Damien L. Callahan
- School of Life and Environmental SciencesDeakin UniversityBurwoodVICAustralia
| | - Elad Tako
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSIthacaNYUSA
| | - Raymond P. Glahn
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSIthacaNYUSA
| | - Enzo Lombi
- Future Industries InstituteUniversity of South AustraliaMawson LakesSAAustralia
| | | |
Collapse
|
40
|
Impact of mineral ions on the release of starch and gel forming capacity of potato flakes in relation to water dynamics and oil uptake during the production of snacks made thereof. Food Res Int 2019; 122:419-431. [DOI: 10.1016/j.foodres.2019.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022]
|
41
|
Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. CHEMOSPHERE 2019; 227:109-116. [PMID: 30986592 DOI: 10.1016/j.chemosphere.2019.03.168] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 05/04/2023]
Abstract
ZnO nanoparticles (NPs) are studied as a potential solution to alleviate Zn deficiency in human diet due to their special physicochemical properties. However, information for food quality and safety in NP-treated crops is limited. The effects of ZnO NPs and ZnSO4 on germination and growth of wheat (Triticum aestivum L.) were studied in germination and pot experiments. Zn content increased significantly, ZnO NPs were more effective than ZnSO4 at increasing grain Zn content, but less effective at increasing leaf Zn, and no ZnO NPs were detected in the wheat tissues by NP-treatments, indicated by XRD. Both ZnO NPs and ZnSO4 at moderate doses increased grain yield and biomass. Compared with control, the maximum grain yield and biomass of wheat treated with ZnO NPs and ZnSO4 were increased by 56%, 63% and 55%, 72%, respectively. ZnSO4 was more toxic than ZnO NPs at high doses as measured by the inhibitory effects in seed germination, root length, shoot length and dry biomass of seedlings. Structural damage in roots and variation in enzyme activities were greater with ZnSO4 than with ZnO NPs. ZnO NPs did not cause toxicity different from that of ZnSO4, which indicates that ZnO NPs used under the current experimental conditions did not cause Nano specific risks.
Collapse
Affiliation(s)
- Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingya Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingqing Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoping Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
42
|
Wang P, McKenna BA, Menzies NW, Li C, Glover CJ, Zhao FJ, Kopittke PM. Minimizing experimental artefacts in synchrotron-based X-ray analyses of Fe speciation in tissues of rice plants. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1272-1279. [PMID: 31274454 DOI: 10.1107/s1600577519004351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Iron (Fe) plays an important role within environmental systems. Synchrotron-based X-ray approaches, including X-ray absorption spectroscopy (XAS), provide powerful tools for in situ analyses of Fe speciation, but beam damage during analysis may alter Fe speciation during its measurement. XAS was used to examine whether experimental conditions affect the analysis of Fe speciation in plant tissues. Even when analyzed in a cryostat at 12 K, it was found that FeIII can rapidly (within 0.5-1 min) photoreduce to FeII, although the magnitude of photoreduction varied depending upon the hydration of the sample, the coordination chemistry of the Fe, as well as other properties. For example, photoreduction of FeIII was considerably higher for aqueous standard compounds than for hydrated plant-root tissues. The use of freeze-dried samples in the cryostat (12 K) markedly reduced the magnitude of this FeIII photoreduction, and there was no evidence that the freeze-drying process itself resulted in experimental artefacts under the current experimental conditions, such as through the oxidation of FeII, although some comparatively small differences were observed when comparing spectra of hydrated and freeze-dried FeII compounds. The results of this study have demonstrated that FeIII photoreduction can occur during X-ray analysis, and provides suitable conditions to preserve Fe speciation to minimize the extent of beam damage when analyzing environmental samples. All studies utilizing XAS are encouraged to include a preliminary experiment to determine if beam damage is occurring, and, where appropriate, to take the necessary steps (such as freeze drying) to overcome these issues.
Collapse
Affiliation(s)
- Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Brigid A McKenna
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Cui Li
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chris J Glover
- Australian Synchrotron ANSTO, Clayton, Victoria 3168, Australia
| | - Fang Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
43
|
Beasley JT, Hart JJ, Tako E, Glahn RP, Johnson AAT. Investigation of Nicotianamine and 2' Deoxymugineic Acid as Enhancers of Iron Bioavailability in Caco-2 Cells. Nutrients 2019; 11:E1502. [PMID: 31262064 PMCID: PMC6683067 DOI: 10.3390/nu11071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotianamine (NA) is a low-molecular weight metal chelator in plants with high affinity for ferrous iron (Fe2+) and other divalent metal cations. In graminaceous plant species, NA serves as the biosynthetic precursor to 2' deoxymugineic acid (DMA), a root-secreted mugineic acid family phytosiderophore that chelates ferric iron (Fe3+) in the rhizosphere for subsequent uptake by the plant. Previous studies have flagged NA and/or DMA as enhancers of Fe bioavailability in cereal grain although the extent of this promotion has not been quantified. In this study, we utilized the Caco-2 cell system to compare NA and DMA to two known enhancers of Fe bioavailability-epicatechin (Epi) and ascorbic acid (AsA)-and found that both NA and DMA are stronger enhancers of Fe bioavailability than Epi, and NA is a stronger enhancer of Fe bioavailability than AsA. Furthermore, NA reversed Fe uptake inhibition by Myricetin (Myr) more than Epi, highlighting NA as an important target for biofortification strategies aimed at improving Fe bioavailability in staple plant foods.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| | - Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | |
Collapse
|
44
|
Balk J, Connorton JM, Wan Y, Lovegrove A, Moore KL, Uauy C, Sharp PA, Shewry PR. Improving wheat as a source of iron and zinc for global nutrition. NUTR BULL 2019; 44:53-59. [PMID: 31007606 PMCID: PMC6472571 DOI: 10.1111/nbu.12361] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wheat is the staple food crop in temperate countries and increasingly consumed in developing countries, displacing traditional foods. However, wheat products are typically low in bioavailable iron and zinc, contributing to deficiencies in these micronutrients in countries where wheat is consumed as a staple food. Two factors contribute to the low contents of bioavailable iron and zinc in wheat: the low concentrations of these minerals in white flour, which is most widely consumed, and the presence of phytates in mineral‐rich bran fractions. Although high zinc types of wheat have been developed by conventional plant breeding (biofortification), this approach has failed for iron. However, studies in wheat and other cereals have shown that transgenic (also known as genetically modified; GM) strategies can be used to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a ‘sink’ for minerals. Although such strategies currently have low acceptability, greater understanding of the mechanisms which control the transport and deposition of iron and zinc in the developing grain should allow similar effects to be achieved by exploiting naturally induced genetic variation. When combined with conventional biofortification and innovative processing, this approach should provide increased mineral bioavailability in a range of wheat products, from white flour to wholemeal.
Collapse
Affiliation(s)
- J Balk
- John Innes Centre Norwich Research Park Norwich UK.,School of Biological Sciences University of East Anglia Norwich UK
| | - J M Connorton
- John Innes Centre Norwich Research Park Norwich UK.,School of Biological Sciences University of East Anglia Norwich UK
| | - Y Wan
- Department of Plant Science Rothamsted Research Harpenden UK
| | - A Lovegrove
- Department of Plant Science Rothamsted Research Harpenden UK
| | - K L Moore
- School of Materials University of Manchester Manchester UK.,Photon Science Institute University of Manchester Manchester UK
| | - C Uauy
- John Innes Centre Norwich Research Park Norwich UK
| | - P A Sharp
- Department of Nutritional Sciences Kings College London UK
| | - P R Shewry
- Department of Plant Science Rothamsted Research Harpenden UK
| |
Collapse
|
45
|
Tosi P, He J, Lovegrove A, Gonzáles-Thuillier I, Penson S, Shewry PR. Gradients in compositions in the starchy endosperm of wheat have implications for milling and processing. Trends Food Sci Technol 2018; 82:1-7. [PMID: 30532347 PMCID: PMC6267945 DOI: 10.1016/j.tifs.2018.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 09/26/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Wheat is the major food grain consumed in temperate countries. Most wheat is consumed after milling to produce white flour, which corresponds to the endosperm storage tissue of the grain. Because the starchy endosperm accounts for about 80% of the grain dry weight, the miller aims to achieve flour yields approaching this value. SCOPE AND APPROACH Bioimaging can be combined with biochemical analysis of fractions produced by sequential pearling of whole grains to determine the distributions of components within the endosperm tissue. KEY FINDINGS AND CONCLUSIONS This reveals that endosperm is not homogeneous, but exhibits gradients in composition from the outer to the inner part. These include gradients in both amount and composition. For example, the content of gluten proteins decreases but the proportion of glutenin polymers increases from the outside to the centre of the tissue. However, the content of starch increases with changes in the granule size distribution, the proportions of amylose and amylopectin, and their thermal properties. Hence these parts of the endosperm differ in the functional properties for food processing. Gradients also exist in minor components which may affect health and processing, such as dietary fibre and lipids. The gradients in grain composition are reflected in differences in the compositions of the mill streams which are combined to give white flour (which may number over 20). These differences could therefore be exploited by millers and food processors to develop flours with compositions and properties for specific end uses.
Collapse
Affiliation(s)
- Paola Tosi
- School of Agriculture, Policy and Development, University of Reading, Whiteknights Campus, Early Gate, RG6 6AR, Reading, UK
| | - Jibin He
- School of Science, Engineering and Design, Teesside University, TS1 3BA, UK
| | - Alison Lovegrove
- Plant Science Department, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | | | | | - Peter R. Shewry
- Plant Science Department, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
46
|
Ryan CG, Kirkham R, de Jonge MD, Siddons DP, van der Ent A, Pagés A, Boesenberg U, Kuczewski AJ, Dunn P, Jensen M, Liu W, Harris H, Moorhead GF, Paterson DJ, Howard DL, Afshar N, Garrevoet J, Spiers K, Falkenberg G, Woll AR, De Geronimo G, Carini GA, James SA, Jones MWM, Fisher LA, Pearce M. The Maia Detector and Event Mode. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/08940886.2018.1528430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - M. D. de Jonge
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - D. P. Siddons
- Brookhaven National Laboratory, Upton, New York, USA
| | - A. van der Ent
- Sustainable Minerals Institute, University of Queensland, Brisbane, Queensland, Australia
| | - A. Pagés
- CSIRO, Clayton, Victoria, Australia
| | - U. Boesenberg
- European X-ray Free-Electron Laser Facility, Schenefeld, Germany
| | | | - P. Dunn
- CSIRO, Clayton, Victoria, Australia
| | | | - W. Liu
- CSIRO, Clayton, Victoria, Australia
| | - H. Harris
- Department of Chemisty, University of Adelaide, Adelaide, Australia
| | | | - D. J. Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - D. L. Howard
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - N. Afshar
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - J. Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - K. Spiers
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - G. Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - A. R. Woll
- Cornell High Energy Synchrotron Source, Ithaca, New York, USA
| | | | - G. A. Carini
- Brookhaven National Laboratory, Upton, New York, USA
| | - S. A. James
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - M. W. M. Jones
- Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
47
|
Lemmens E, De Brier N, Spiers KM, Ryan C, Garrevoet J, Falkenberg G, Goos P, Smolders E, Delcour JA. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chem 2018; 264:367-376. [DOI: 10.1016/j.foodchem.2018.04.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/15/2023]
|
48
|
|
49
|
Gabaza M, Shumoy H, Muchuweti M, Vandamme P, Raes K. Enzymatic degradation of mineral binders in cereals: Impact on iron and zinc bioaccessibility. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Aslam MF, Ellis PR, Berry SE, Latunde-Dada GO, Sharp PA. Enhancing mineral bioavailability from cereals: Current strategies and future perspectives. NUTR BULL 2018; 43:184-188. [PMID: 30333713 PMCID: PMC6174934 DOI: 10.1111/nbu.12324] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inadequate intake of essential minerals such as iron and zinc is a public health concern in the UK, particularly for girls and young women. Approximately 30% and 50% of the zinc and iron, respectively, in the UK diet is provided by cereals. In wheat, most of the iron and zinc is contained within the aleurone cell layer; however, aleurone is removed during processing of wheat into white flour. While elemental iron powder is added back into white flour at the milling stage, there is no restoration of zinc. Elemental iron powder has very low bioavailability, and therefore, in our current Biotechnology and Biological Sciences Research Council Diet and Health Research Industry Club-funded project, we are investigating the potential use of aleurone as a bioavailable source of minerals that could be added to wheat-based foods. This work has relevance for the food industry and may establish the use of aleurone as a functional food ingredient for fortification of a range of cereal-based food products.
Collapse
|