1
|
Tabara M, Uraguchi S, Kiyono M, Watanabe I, Takeda A, Takahashi H, Fukuhara T. A resilient mutualistic interaction between cucumber mosaic virus and its natural host to adapt to an excess zinc environment and drought stress. JOURNAL OF PLANT RESEARCH 2024; 137:1151-1164. [PMID: 39190237 DOI: 10.1007/s10265-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri. The CMV(Ho) strain isolated from A. halleri was inoculated into clonal virus-free A. halleri plants, and a unique plant-virus system consisting of CMV(Ho) and its natural wild plant host was established. In a control environment with ambient zinc supplementation, CMV(Ho) infection retarded growth in the above-ground part of host plants but conferred strong drought tolerance. On the other hand, in an excess zinc environment, simulating a natural edaphic environment of A halleri, host plants hyperaccumulated zinc and CMV(Ho) infection did not cause any symptoms to host plants while conferring mild drought tolerance. We also demonstrated in Nicotiana benthamiana as another host that similar effects were induced by the combination of excess zinc and CMV(Ho) infection. Transcriptomic analysis indicated that the host plant recognized CMV(Ho) as a mutualistic symbiont rather than a parasitic pathogen. These results suggest a resilient mutualistic interaction between CMV(Ho) and its natural host A. halleri in its natural habitat.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Izumi Watanabe
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aza-Aoba, 468-1, Sendai, 980-0845, Japan
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Wu X, Chen S, Zhang Z, Zhou W, Sun T, Ning K, Xu M, Ke X, Xu P. A viral small interfering RNA-host plant mRNA pathway modulates virus-induced drought tolerance by enhancing autophagy. THE PLANT CELL 2024; 36:3219-3236. [PMID: 38801738 PMCID: PMC11371139 DOI: 10.1093/plcell/koae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Virus-induced drought tolerance presents a fascinating facet of biotic-abiotic interaction in plants, yet its molecular intricacies remain unclear. Our study shows that cowpea mild mottle virus (CPMMV) infection enhances drought tolerance in common bean (Phaseolus vulgaris) plants through a virus-derived small interfering RNA (vsiRNA)-activated autophagy pathway. Specifically, a 21 nt vsiRNA originating from the CPMMV Triple Gene Block1 (TGB1) gene targeted the 5' untranslated region (UTR) of the host Teosinte branched 1, Cycloidea, Proliferating Cell Factor (TCP) transcription factor gene PvTCP2, independent of the known role of TGB1 as an RNA silencing suppressor. This targeting attenuated the expression of PvTCP2, which encodes a transcriptional repressor, and in turn upregulated the core autophagy-related gene (ATG) PvATG8c, leading to activated autophagy activity surpassing the level induced by drought or CPMMV infection alone. The downstream EARLY RESPONSIVE TO DEHYDRATION (ERD) effector PvERD15 is a homologue of Arabidopsis thaliana AtERD15, which positively regulates stomatal aperture. PvERD15 was degraded in PvATG8c-mediated autophagy. Therefore, we establish a TGB1-PvTCP2-PvATG8c-PvERD15 module as a trans-kingdom fine-tuning mechanism that contributes to virus-induced drought tolerance in plant-drought-virus interactions.
Collapse
Affiliation(s)
- Xinyang Wu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shuting Chen
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zixin Zhang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Weixin Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ting Sun
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Kang Ning
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Min Xu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xubo Ke
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Pei Xu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Prakash V, Sharma V, Devendran R, Prajapati R, Ahmad B, Kumar R. A transition from enemies to allies: how viruses improve drought resilience in plants. STRESS BIOLOGY 2024; 4:33. [PMID: 38981936 PMCID: PMC11233480 DOI: 10.1007/s44154-024-00172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 07/11/2024]
Abstract
Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.
Collapse
Affiliation(s)
- Ved Prakash
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Veerendra Sharma
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Ramgopal Prajapati
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
4
|
Choudhary A, Senthil-Kumar M. Drought: A context-dependent damper and aggravator of plant diseases. PLANT, CELL & ENVIRONMENT 2024; 47:2109-2126. [PMID: 38409868 DOI: 10.1111/pce.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.
Collapse
|
5
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
6
|
Sun H, Ciska M, Makki M, Tenllado F, Canto T. Adaptive substitutions at two amino acids of HCPro modify its functional properties to separately increase the virulence of a potyviral chimera. MOLECULAR PLANT PATHOLOGY 2024; 25:e13487. [PMID: 38877765 PMCID: PMC11178974 DOI: 10.1111/mpp.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.
Collapse
Affiliation(s)
- Hao Sun
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| | - Malgorzata Ciska
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| | - Mongia Makki
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of SciencesUniversity of Tunis El ManarTunisTunisia
| | - Francisco Tenllado
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| |
Collapse
|
7
|
Sadras V, Guirao M, Moreno A, Fereres A. Inter-virus relationships in mixed infections and virus-drought relationships in plants: a quantitative review. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1786-1799. [PMID: 37902568 DOI: 10.1111/tpj.16516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Inter-virus relationships in mixed infections and virus-drought relationships are important in agriculture and natural vegetation. In this quantitative review, we sampled published factorial experiments to probe for relationships against the null hypothesis of additivity. Our sample captured antagonistic, additive and synergistic inter-virus relationships in double infections. Virus-drought relationships in our sample were additive or antagonistic, reinforcing the notion that viruses have neutral or positive effects on droughted plants, or that drought enhances plant tolerance to viruses. Both inter-virus and virus-drought relationships vary with virus species, host plant to the level of cultivar or accession, timing of infection, plant age and trait and growing conditions. The trait-dependence of these relationships has implications for resource allocation in plants. Owing to lagging theories, more experimental research in these fields is bound to return phenomenological outcomes. Theoretical work can advance in two complementary directions. First, the effective theory models the behaviour of the system without specifying all the underlying causes that lead to system state change. Second, mechanistic theory based on a nuanced view of the plant phenotype that explicitly considers downward causation; the influence of the plant phenotype on inter-virus relations and vice versa; the impact of timing, intensity and duration of drought interacting with viruses to modulate the plant phenotype; both the soil (moisture) and atmospheric (vapour pressure deficit) aspects of drought. Theories should scale in time, from short term to full growing season, and in levels of organisation up to the relevant traits: crop yield in agriculture and fitness in nature.
Collapse
Affiliation(s)
- Victor Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, Australia
| | - Maria Guirao
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Sharma V, Mohammed SA, Devi N, Vats G, Tuli HS, Saini AK, Dhir YW, Dhir S, Singh B. Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. STRESS BIOLOGY 2024; 4:10. [PMID: 38311681 PMCID: PMC10838894 DOI: 10.1007/s44154-023-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024]
Abstract
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Shakeel A Mohammed
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Nisha Devi
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Gourav Vats
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Hardeep S Tuli
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Yashika W Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Sunny Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Bharat Singh
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
9
|
Pandey P, Patil M, Priya P, Senthil-Kumar M. When two negatives make a positive: the favorable impact of the combination of abiotic stress and pathogen infection on plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:674-688. [PMID: 37864841 DOI: 10.1093/jxb/erad413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Combined abiotic and biotic stresses modify plant defense signaling, leading to either the activation or suppression of defense responses. Although the majority of combined abiotic and biotic stresses reduce plant fitness, certain abiotic stresses reduce the severity of pathogen infection in plants. Remarkably, certain pathogens also improve the tolerance of some plants to a few abiotic stresses. While considerable research focuses on the detrimental impact of combined stresses on plants, the upside of combined stress remains hidden. This review succinctly discusses the interactions between abiotic stresses and pathogen infection that benefit plant fitness. Various factors that govern the positive influence of combined abiotic stress and pathogen infection on plant performance are also discussed. In addition, we provide a brief overview of the role of pathogens, mainly viruses, in improving plant responses to abiotic stresses. We further highlight the critical nodes in defense signaling that guide plant responses during abiotic stress towards enhanced resistance to pathogens. Studies on antagonistic interactions between abiotic and biotic stressors can uncover candidates in host plant defense that may shield plants from combined stresses.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| |
Collapse
|
10
|
Bianchetti G, Clouet V, Legeai F, Baron C, Gazengel K, Vu BL, Baud S, To A, Manzanares-Dauleux MJ, Buitink J, Nesi N. Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14130. [PMID: 38842416 DOI: 10.1111/ppl.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 06/07/2024]
Abstract
In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.
Collapse
Affiliation(s)
- Grégoire Bianchetti
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Vanessa Clouet
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Cécile Baron
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Benoit Ly Vu
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | | | | | | | - Julia Buitink
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | - Nathalie Nesi
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| |
Collapse
|
11
|
Mirzayeva S, Huseynova I, Özmen CY, Ergül A. Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses. THE PLANT PATHOLOGY JOURNAL 2023; 39:466-485. [PMID: 37817493 PMCID: PMC10580053 DOI: 10.5423/ppj.oa.07.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.
Collapse
Affiliation(s)
- Samra Mirzayeva
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| |
Collapse
|
12
|
Nihranz CT, Guzchenko IA, Casteel CL. Silencing ZmPP2C-A10 with a foxtail mosaic virus (FoMV) derived vector benefits maize growth and development following water limitation. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:956-964. [PMID: 37658795 DOI: 10.1111/plb.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 09/05/2023]
Abstract
Global climate change is causing more frequent and severe droughts, which can have negative impacts on plant growth and crop productivity. Under drought conditions, plants produce the hormone ABA (abscisic acid), which regulates adaptive responses, such as stomatal closure and root elongation. Plant viruses have been used in the lab to convey new traits to plants and could also be used to increase production of ABA or to enhance downstream plant drought resistance responses. In this study, foxtail mosaic virus (FoMV) was used to silence ZmPP2C-A10, a negative regulator of ABA signalling, in maize (Zea mays L.). Both silenced and control plants were exposed to an 8-day drought treatment, followed by a 30-day period of rewatering, after which indicators of drought resistance were measured. After drought treatment, we observed a nearly twofold increase in expression of a stress-mitigation gene, ZmRAB17, reduced chlorophyll fluorescence changes (indicator of stress), and increased plant biomass and development in the ZmPP2C-A10-silenced maize compared to controls. These results demonstrate that the FoMV system can be used to silence endogenous expression of ZmPP2C-A10 and increase maize tolerance to drought. This could offer a useful tool to improve crop traits and reduce yield loss during the growing season.
Collapse
Affiliation(s)
- C T Nihranz
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| | - I A Guzchenko
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| | - C L Casteel
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Tsitsekian D, Daras G, Templalexis D, Avgeri F, Lotos L, Orfanidou CG, Ntoukakis V, Maliogka VI, Rigas S. A subset of highly responsive transcription factors upon tomato infection by pepino mosaic virus. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:529-540. [PMID: 36856454 DOI: 10.1111/plb.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/21/2023] [Indexed: 05/17/2023]
Abstract
Plants have evolved well-tuned surveillance systems, including complex defence mechanisms, to constrain pathogens. TFs are master regulators of host molecular responses against plant pathogens. While PepMV constitutes a major threat to the global tomato production, there is still a lack of information on the key TFs that regulate host responses to this virus. A combinatorial research approach was applied relying on tomato transcriptome analysis, RT-qPCR validation, phylogenetic classification, comparative analysis of structural features, cis-regulatory element mining and in silico co-expression analysis to identify a set of 11 highly responsive TFs involved in the regulation of host responses to PepMV. An endemic PepMV isolate, generating typical mosaic symptoms, modified expression of ca. 3.3% of tomato genes, resulting in 1,120 DEGs. Functional classification of 502 upregulated DEGs revealed that photosynthesis, carbon fixation and gene silencing were widely affected, whereas 618 downregulated genes had an impact mainly on plant defence and carotenoid biosynthesis. Strikingly, all 11 highly responsive TFs carried abiotic stress response cis-regulatory elements, whereas five of them were better aligned with rice than with Arabidopsis gene homologues, suggesting that plant responses against viruses may predate divergence into monocots and dicots. Interestingly, tomato C2H2 family TFs, ZAT1-like and ZF2, may have distinct roles in plant defence due to opposite response patterns, similar to their Arabidopsis ZAT10 and ZAT12 homologues. These highly responsive TFs provide a basis to study in-depth molecular responses of the tomato-PepMV pathosystem, providing a perspective to better comprehend viral infections.
Collapse
Affiliation(s)
- D Tsitsekian
- Department of Biotechnology, Molecular Biology Laboratory, Agricultural University of Athens, Athens, Greece
| | - G Daras
- Department of Biotechnology, Molecular Biology Laboratory, Agricultural University of Athens, Athens, Greece
| | - D Templalexis
- Department of Biotechnology, Molecular Biology Laboratory, Agricultural University of Athens, Athens, Greece
| | - F Avgeri
- Department of Biotechnology, Molecular Biology Laboratory, Agricultural University of Athens, Athens, Greece
| | - L Lotos
- School of Agriculture, Plant Pathology Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C G Orfanidou
- School of Agriculture, Plant Pathology Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V Ntoukakis
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - V I Maliogka
- School of Agriculture, Plant Pathology Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S Rigas
- Department of Biotechnology, Molecular Biology Laboratory, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
14
|
Fontdevila Pareta N, Khalili M, Maachi A, Rivarez MPS, Rollin J, Salavert F, Temple C, Aranda MA, Boonham N, Botermans M, Candresse T, Fox A, Hernando Y, Kutnjak D, Marais A, Petter F, Ravnikar M, Selmi I, Tahzima R, Trontin C, Wetzel T, Massart S. Managing the deluge of newly discovered plant viruses and viroids: an optimized scientific and regulatory framework for their characterization and risk analysis. Front Microbiol 2023; 14:1181562. [PMID: 37323908 PMCID: PMC10265641 DOI: 10.3389/fmicb.2023.1181562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties.
Collapse
Affiliation(s)
| | - Maryam Khalili
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
- EGFV, Univ. Bordeaux, INRAE, ISVV, Villenave d’Ornon, France
| | | | - Mark Paul S. Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- College of Agriculture and Agri-Industries, Caraga State University, Butuan, Philippines
| | - Johan Rollin
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- DNAVision (Belgium), Charleroi, Belgium
| | - Ferran Salavert
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Coline Temple
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Center for Edaphology and Applied Biology of Segura, Spanish National Research Council (CSIC), Murcia, Spain
| | - Neil Boonham
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive Plants and Plant Health (NIVIP), Wageningen, Netherlands
| | | | - Adrian Fox
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
- Fera Science Ltd, York Biotech Campus, York, United Kingdom
| | | | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | | | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ilhem Selmi
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rachid Tahzima
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Plant Sciences Unit, Institute for Agricultural, Fisheries and Food Research (ILVO), Merelbeke, Belgium
| | - Charlotte Trontin
- European and Mediterranean Plant Protection Organization, Paris, France
| | - Thierry Wetzel
- DLR Rheinpfalz, Institute of Plant Protection, Neustadt an der Weinstrasse, Germany
| | - Sebastien Massart
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Bioversity International, Montpellier, France
| |
Collapse
|
15
|
Prakash V, Nihranz CT, Casteel CL. The Potyviral Protein 6K2 from Turnip Mosaic Virus Increases Plant Resilience to Drought. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:189-197. [PMID: 36534062 DOI: 10.1094/mpmi-09-22-0183-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Virus infection can increase drought tolerance of infected plants compared with noninfected plants; however, the mechanisms mediating virus-induced drought tolerance remain unclear. In this study, we demonstrate turnip mosaic virus (TuMV) infection increases Arabidopsis thaliana survival under drought compared with uninfected plants. To determine if specific TuMV proteins mediate drought tolerance, we cloned the coding sequence for each of the major viral proteins and generated transgenic A. thaliana that constitutively express each protein. Three TuMV proteins, 6K1, 6K2, and NIa-Pro, enhanced drought tolerance of A. thaliana when expressed constitutively in plants compared with controls. While in the control plant, transcripts related to abscisic acid (ABA) biosynthesis and ABA levels were induced under drought, there were no changes in ABA or related transcripts in plants expressing 6K2 under drought compared with well-watered conditions. Expression of 6K2 also conveyed drought tolerance in another host plant, Nicotiana benthamiana, when expressed using a virus overexpression construct. In contrast to ABA, 6K2 expression enhanced salicylic acid (SA) accumulation in both Arabidopsis and N. benthamiana. These results suggest 6K2-induced drought tolerance is mediated through increased SA levels and SA-dependent induction of plant secondary metabolites, osmolytes, and antioxidants that convey drought tolerance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ved Prakash
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, U.S.A
| | - Chad T Nihranz
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, U.S.A
| | - Clare L Casteel
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
16
|
Sacco Botto C, Matić S, Moine A, Chitarra W, Nerva L, D’Errico C, Pagliarani C, Noris E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int J Mol Sci 2023; 24:2893. [PMID: 36769211 PMCID: PMC9918285 DOI: 10.3390/ijms24032893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant's adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.
Collapse
Affiliation(s)
- Camilla Sacco Botto
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Department of Agriculture, Forestry and Food Science DISAFA, Turin University, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| |
Collapse
|
17
|
Vaisman M, Hak H, Arazi T, Spiegelman Z. The Impact of Tobamovirus Infection on Root Development Involves Induction of Auxin Response Factor 10a in Tomato. PLANT & CELL PHYSIOLOGY 2023; 63:1980-1993. [PMID: 34977939 DOI: 10.1093/pcp/pcab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.
Collapse
Affiliation(s)
- Michael Vaisman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, PO Box 12, Rehovot 761001, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- Plant Sciences Institute, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
18
|
Augustine SM, Tzigos S, Snowdon R. Heat-Killed Tobacco Mosaic Virus Mitigates Plant Abiotic Stress Symptoms. Microorganisms 2022; 11:87. [PMID: 36677379 PMCID: PMC9862074 DOI: 10.3390/microorganisms11010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of the tobacco mosaic virus in the 1890s, awareness has grown in regard to how viruses affect the environment. Viral infections are now known to cause various effects besides pathogenicity, with some viruses in fact having a beneficial impact on plants. Although research has focused on disease-causing viruses that can infect plants, many wild plants are also infected with non-pathogenic viral agents. Traditionally, abiotic, and biotic stresses have been studied as isolated stimuli that trigger signaling pathways within the plant. However, both biotic and abiotic stress can trigger complex molecular interactions within plants, which in turn drive interconnected response pathways. Here, we demonstrate that heat-killed tobacco mosaic virus (TMV) can increase abiotic stress tolerance in plants, an effect that could potentially be implemented in challenging growth environments. To our knowledge, this is the first report of plant abiotic stress tolerance following treatment with heat-killed viral particles.
Collapse
Affiliation(s)
- Sruthy Maria Augustine
- Department of Plant Breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| | | | | |
Collapse
|
19
|
Jeger MJ. Tolerance of plant virus disease: Its genetic, physiological, and epidemiological significance. Food Energy Secur 2022. [DOI: 10.1002/fes3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael John Jeger
- Department of Life Sciences, Silwood Park Imperial College London Ascot UK
| |
Collapse
|
20
|
Gorovits R, Shteinberg M, Anfoka G, Czosnek H. Exploiting Virus Infection to Protect Plants from Abiotic Stresses: Tomato Protection by a Begomovirus. PLANTS (BASEL, SWITZERLAND) 2022; 11:2944. [PMID: 36365396 PMCID: PMC9657025 DOI: 10.3390/plants11212944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Tomato cultivation is threatened by environmental stresses (e.g., heat, drought) and by viral infection (mainly viruses belonging to the tomato yellow leaf curl virus family-TYLCVs). Unlike many RNA viruses, TYLCV infection does not induce a hypersensitive response and cell death in tomato plants. To ensure a successful infection, TYLCV preserves a suitable cellular environment where it can reproduce. Infected plants experience a mild stress, undergo adaptation and become partially "ready" to exposure to other environmental stresses. Plant wilting and cessation of growth caused by heat and drought is suppressed by TYLCV infection, mainly by down-regulating the heat shock transcription factors, HSFA1, HSFA2, HSFB1 and consequently, the expression of HSF-regulated stress genes. In particular, TYLCV captures HSFA2 by inducing protein complexes and aggregates, thus attenuating an acute stress response, which otherwise causes plant death. Viral infection mitigates the increase in stress-induced metabolites, such as carbohydrates and amino acids, and leads to their reallocation from shoots to roots. Under high temperatures and water deficit, TYLCV induces plant cellular homeostasis, promoting host survival. Thus, this virus-plant interaction is beneficial for both partners.
Collapse
Affiliation(s)
- Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Moshe Shteinberg
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ghandi Anfoka
- Faculty of Agricultural Technology, Al Balqa’ University, Al-Salt 10117, Jordan
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Transgenerational Tolerance to Salt and Osmotic Stresses Induced by Plant Virus Infection. Int J Mol Sci 2022; 23:ijms232012497. [PMID: 36293354 PMCID: PMC9604408 DOI: 10.3390/ijms232012497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Following pathogen infection, plants have developed diverse mechanisms that direct their immune systems towards more robust induction of defense responses against recurrent environmental stresses. The induced resistances could be inherited by the progenies, rendering them more tolerant to stressful events. Although within-generational induction of tolerance to abiotic stress is a well-documented phenomenon in virus-infected plants, the transgenerational inheritance of tolerance to abiotic stresses in their progenies has not been explored. Here, we show that infection of Nicotiana benthamiana plants by Potato virus X (PVX) and by a chimeric Plum pox virus (PPV) expressing the P25 pathogenicity protein of PVX (PPV-P25), but not by PPV, conferred tolerance to both salt and osmotic stresses to the progeny, which correlated with the level of virulence of the pathogen. This transgenerational tolerance to abiotic stresses in the progeny was partially sustained even if the plants experience a virus-free generation. Moreover, progenies from a Dicer-like3 mutant mimicked the enhanced tolerance to abiotic stress observed in progenies of PVX-infected wild-type plants. This phenotype was shown irrespective of whether Dicer-like3 parents were infected, suggesting the involvement of 24-nt small interfering RNAs in the transgenerational tolerance to abiotic stress induced by virus infection. RNAseq analysis supported the upregulation of genes related to protein folding and response to stress in the progeny of PVX-infected plants. From an environmental point of view, the significance of virus-induced transgenerational tolerance to abiotic stress could be questionable, as its induction was offset by major reproductive costs arising from a detrimental effect on seed production.
Collapse
|
22
|
To Be Seen or Not to Be Seen: Latent Infection by Tobamoviruses. PLANTS 2022; 11:plants11162166. [PMID: 36015469 PMCID: PMC9415976 DOI: 10.3390/plants11162166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV), on the other side, there are members which cause latent infection in host plants. New technologies, such as high-throughput sequencing (HTS), have enabled us to discover viruses from asymptomatic plants, viruses in mixed infections where the disease etiology cannot be attributed to a single entity and more and more researchers a looking at non-crop plants to identify alternative virus reservoirs, leading to new virus discoveries. However, the diversity of these interactions in the virosphere and the involvement of multiple viruses in a single host is still relatively unclear. For such host–virus interactions in wild plants, symptoms are not always linked with the virus titer. In this review, we refer to latent infection as asymptomatic infection where plants do not suffer despite systemic infection. Molecular mechanisms related to latent behavior of tobamoviruses are unknown. We will review different studies which support different theories behind latency.
Collapse
|
23
|
Pagliarani C, Moine A, Chitarra W, Nerva L, Catoni M, Tavazza R, Matić S, Vallino M, Secchi F, Noris E. The C4 protein of tomato yellow leaf curl Sardinia virus primes drought tolerance in tomato through morphological adjustments. HORTICULTURE RESEARCH 2022; 9:uhac164. [PMID: 36324645 PMCID: PMC9613725 DOI: 10.1093/hr/uhac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Viruses can interfere with the ability of plants to overcome abiotic stresses, indicating the existence of common molecular networks that regulate stress responses. A begomovirus causing the tomato yellow leaf curl disease was recently shown to enhance heat tolerance in tomato and drought tolerance in tomato and Nicotiana benthamiana and experimental evidence suggested that the virus-encoded protein C4 is the main trigger of drought responses. However, the physiological and molecular events underlying C4-induced drought tolerance need further elucidation. In this study, transgenic tomato plants expressing the tomato yellow leaf curl Sardinia virus (TYLCSV) C4 protein were subjected to severe drought stress, followed by recovery. Morphometric parameters, water potential, gas exchanges, and hormone contents in leaves were measured, in combination with molecular analysis of candidate genes involved in stress response and hormone metabolism. Collected data proved that the expression of TYLCSV C4 positively affected the ability of transgenic plants to tolerate water stress, by delaying the onset of stress-related features, improving the plant water use efficiency and facilitating a rapid post-rehydration recovery. In addition, we demonstrated that specific anatomical and hydraulic traits, rather than biochemical signals, are the keynote of the C4-associated stress resilience. Our results provide novel insights into the biology underpinning drought tolerance in TYLCSV C4-expressing tomato plants, paving the way for further deepening the mechanism through which such proteins tune the plant-virus interaction.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE). Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE). Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Marco Catoni
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | | | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Francesca Secchi
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | | |
Collapse
|
24
|
Moreno M, Ojeda B, Hernández-Walias FJ, Sanz-García E, Canto T, Tenllado F. Water Deficit Improves Reproductive Fitness in Nicotiana benthamiana Plants Infected by Cucumber mosaic virus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1240. [PMID: 35567241 PMCID: PMC9105947 DOI: 10.3390/plants11091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Plants are concurrently exposed to biotic and abiotic stresses, including infection by viruses and drought. Combined stresses result in plant responses that are different from those observed for each individual stress. We investigated compensatory effects induced by virus infection on the fitness of hosts grown under water deficit, and the hypothesis that water deficit improves tolerance, estimated as reproductive fitness, to virus infection. Our results show that infection by Turnip mosaic virus (TuMV) or Cucumber mosaic virus (CMV) promotes drought tolerance in Arabidopsis thaliana and Nicotiana benthamiana. However, neither CMV nor TuMV had a positive impact on host reproductive fitness following withdrawal of water, as determined by measuring the number of individuals producing seeds, seed grains, and seed germination rates. Importantly, infection by CMV but not by TuMV improved the reproductive fitness of N. benthamiana plants when exposed to drought compared to watered, virus-infected plants. However, no such conditional phenotype was found in Arabidopsis plants infected with CMV. Water deficit did not affect the capacity of infected plants to transmit CMV through seeds. These findings highlight a conditional improvement in biological efficacy of N. benthamiana plants infected with CMV under water deficit, and lead to the prediction that plants can exhibit increased tolerance to specific viruses under some of the projected climate change scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.M.); (B.O.); (F.J.H.-W.); (E.S.-G.); (T.C.)
| |
Collapse
|
25
|
Aguilar E, Lozano-Duran R. Plant viruses as probes to engineer tolerance to abiotic stress in crops. STRESS BIOLOGY 2022; 2:20. [PMID: 37676519 PMCID: PMC10441908 DOI: 10.1007/s44154-022-00043-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 09/08/2023]
Affiliation(s)
- Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China.
- Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Beijing, China.
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071, Málaga, Spain.
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076, Tübingen, Germany
| |
Collapse
|
26
|
Mishra R, Shteinberg M, Shkolnik D, Anfoka G, Czosnek H, Gorovits R. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. MOLECULAR PLANT PATHOLOGY 2022; 23:475-488. [PMID: 34970822 PMCID: PMC8916204 DOI: 10.1111/mpp.13172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/08/2023]
Abstract
With climate warming, drought becomes a vital challenge for agriculture. Extended drought periods affect plant-pathogen interactions. We demonstrate an interplay in tomato between drought and infection with tomato yellow leaf curl virus (TYLCV). Infected plants became more tolerant to drought, showing plant readiness to water scarcity by reducing metabolic activity in leaves and increasing it in roots. Reallocation of osmolytes, such as carbohydrates and amino acids, from shoots to roots suggested a role of roots in protecting infected tomatoes against drought. To avoid an acute response possibly lethal for the host organism, TYLCV down-regulated the drought-induced activation of stress response proteins and metabolites. Simultaneously, TYLCV promoted the stabilization of osmoprotectants' patterns and water balance parameters, resulting in the development of buffering conditions in infected plants subjected to prolonged stress. Drought-dependent decline of TYLCV amounts was correlated with HSFA1-controlled activation of autophagy, mostly in the roots. The tomato response to combined drought and TYLCV infection points to a mutual interaction between the plant host and its viral pathogen.
Collapse
Affiliation(s)
- Ritesh Mishra
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Moshik Shteinberg
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Doron Shkolnik
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Ghandi Anfoka
- Faculty of Agricultural TechnologyAl Balqa' UniversityAl‐SaltJordan
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in AgricultureRobert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
27
|
Shteinberg M, Mishra R, Anfoka G, Altaleb M, Brotman Y, Moshelion M, Gorovits R, Czosnek H. Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought. Cells 2021; 10:2875. [PMID: 34831098 PMCID: PMC8616339 DOI: 10.3390/cells10112875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
A growing body of research points to a positive interplay between viruses and plants. Tomato yellow curl virus (TYLCV) is able to protect tomato host plants against extreme drought. To envisage the use of virus protective capacity in agriculture, TYLCV-resistant tomato lines have to be infected first with the virus before planting. Such virus-resistant tomato plants contain virus amounts that do not cause disease symptoms, growth inhibition, or yield loss, but are sufficient to modify the metabolism of the plant, resulting in improved tolerance to drought. This phenomenon is based on the TYLCV-dependent stabilization of amounts of key osmoprotectants induced by drought (soluble sugars, amino acids, and proteins). Although in infected TYLCV-susceptible tomatoes, stress markers also show an enhanced stability, in infected TYLCV-resistant plants, water balance and osmolyte homeostasis reach particularly high levels. These tomato plants survive long periods of time during water withholding. However, after recovery to normal irrigation, they produce fruits which are not exposed to drought, similarly to the control plants. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.
Collapse
Affiliation(s)
- Moshik Shteinberg
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Ritesh Mishra
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Ghandi Anfoka
- Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan; (G.A.); (M.A.)
| | - Miassar Altaleb
- Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan; (G.A.); (M.A.)
| | - Yariv Brotman
- Faculty of Life Sciences, Ben Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel;
| | - Menachem Moshelion
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Rena Gorovits
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| | - Henryk Czosnek
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (M.S.); (R.M.); (M.M.); (R.G.)
| |
Collapse
|
28
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
29
|
Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proc Natl Acad Sci U S A 2021; 118:2020990118. [PMID: 33526695 DOI: 10.1073/pnas.2020990118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental conditions are an important factor driving pathogens' evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, with the magnitude of such benefit being a selectable trait.
Collapse
|
30
|
Manacorda CA, Gudesblat G, Sutka M, Alemano S, Peluso F, Oricchio P, Baroli I, Asurmendi S. TuMV triggers stomatal closure but reduces drought tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1399-1416. [PMID: 33554358 DOI: 10.1111/pce.14024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Compatible plant viral infections are a common cause of agricultural losses worldwide. Characterization of the physiological responses controlling plant water management under combined stresses is of great interest in the current climate change scenario. We studied the outcome of TuMV infection on stomatal closure and water balance, hormonal balance and drought tolerance in Arabidopsis. TuMV infection reduced stomatal aperture concomitantly with diminished gas exchange rate, daily water consumption and rosette initial dehydration rate. Infected plants overaccumulated salicylic acid and abscisic acid and showed altered expression levels of key ABA homeostasis genes including biosynthesis and catabolism. Also the expression of ABA signalling gene ABI2 was induced and ABCG40 (which imports ABA into guard cells) was highly induced upon infection. Hypermorfic abi2-1 mutant plants, but no other ABA or SA biosynthetic, signalling or degradation mutants tested abolished both stomatal closure and low stomatal conductance phenotypes caused by TuMV. Notwithstanding lower relative water loss during infection, plants simultaneously subjected to drought and viral stresses showed higher mortality rates than mock-inoculated drought stressed controls, alongside downregulation of drought-responsive gene RD29A. Our findings indicate that despite stomatal closure triggered by TuMV, additional phenomena diminish drought tolerance upon infection.
Collapse
Affiliation(s)
- Carlos Augusto Manacorda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Gustavo Gudesblat
- Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado"- Instituto de Biociencias, Biotecnología y Biología Translacional (IB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad, Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC. Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Río Cuarto, Argentina
| | - Franco Peluso
- Instituto de Clima y Agua, CIRN, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Patricio Oricchio
- Instituto de Clima y Agua, CIRN, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Irene Baroli
- Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad, Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| |
Collapse
|
31
|
Križnik M, Baebler Š, Gruden K. Roles of small RNAs in the establishment of tolerant interaction between plants and viruses. Curr Opin Virol 2020; 42:25-31. [PMID: 32480352 DOI: 10.1016/j.coviro.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
In a tolerant plant-virus interaction, viral multiplication is sustained without substantial effects on plant growth or reproduction. Such interactions are, in natural environments, frequent and sometimes even beneficial for both interactors. Here we compiled evidence showing that small RNAs modulate plant immune responses and growth, hence adjusting its physiology to enable a tolerant interaction. Importantly, the role of small RNAs in tolerant interactions resembles that required for establishment of a mutualistic symbiosis. Tolerance can become a sustainable strategy for breeding for virus resistance as selection pressure for emergence of more aggressive strains is low. Understanding the processes underlying establishment of tolerance is, therefore, important for the development of future crops.
Collapse
Affiliation(s)
- Maja Križnik
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kristina Gruden
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Corrales‐Gutierrez M, Medina‐Puche L, Yu Y, Wang L, Ding X, Luna AP, Bejarano ER, Castillo AG, Lozano‐Duran R. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1121-1123. [PMID: 31637850 PMCID: PMC7152601 DOI: 10.1111/pbi.13280] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 05/24/2023]
Affiliation(s)
- Miguel Corrales‐Gutierrez
- Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
- Center for Excellence in Molecular Plant ScienceChinese Academy of SciencesShanghaiChina
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Area de GenéticaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Laura Medina‐Puche
- Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
- Center for Excellence in Molecular Plant ScienceChinese Academy of SciencesShanghaiChina
| | - Yanling Yu
- Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
- Center for Excellence in Molecular Plant ScienceChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Liping Wang
- Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
- Center for Excellence in Molecular Plant ScienceChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Xue Ding
- Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
- Center for Excellence in Molecular Plant ScienceChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ana P. Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Area de GenéticaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Area de GenéticaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Araceli G. Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Area de GenéticaFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina
- Center for Excellence in Molecular Plant ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
33
|
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, Dauzat M, van Munster M, Vile D. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathog 2020; 16:e1008557. [PMID: 32413076 PMCID: PMC7255604 DOI: 10.1371/journal.ppat.1008557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.
Collapse
Affiliation(s)
- Sandy E. Bergès
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - François Vasseur
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Alexis Bediée
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
34
|
An update on salicylic acid biosynthesis, its induction and potential exploitation by plant viruses. Curr Opin Virol 2020; 42:8-17. [PMID: 32330862 DOI: 10.1016/j.coviro.2020.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 01/21/2023]
Abstract
Salicylic acid (SA) is a plant hormone essential for effective resistance to viral and non-viral pathogens. SA biosynthesis increases rapidly in resistant hosts when a dominant host resistance gene product recognizes a pathogen. SA stimulates resistance to viral replication, intercellular spread and systemic movement. However, certain viruses stimulate SA biosynthesis in susceptible hosts. This paradoxical effect limits virus titer and prevents excessive host damage, suggesting that these viruses exploit SA-induced resistance to optimize their accumulation. Recent work showed that SA production in plants does not simply recapitulate bacterial SA biosynthetic mechanisms, and that the relative contributions of the shikimate and phenylpropanoid pathways to the SA pool differ markedly between plant species.
Collapse
|
35
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
36
|
González R, Butković A, Elena SF. From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Adv Virus Res 2020; 106:85-121. [PMID: 32327149 DOI: 10.1016/bs.aivir.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies have shown how viral infections can even be beneficial for their hosts. This may happen especially in the context of stressed hosts, where the virus infection can induce beneficial changes in the host's physiological homeostasis, hence changing the shape of the reaction norm. Despite the fact that underlying physiological mechanisms and evolutionary dynamics are still not well understood, such beneficial interactions are being discovered in a growing number of plant-virus systems. Here, we aim to review these disperse studies and place them into the context of phenotypic plasticity and the evolution of reaction norms. This is an emerging field that is posing many questions that still need to be properly answered. The answers would clearly interest virologists, plant pathologists and evolutionary biologists and likely they will suggest possible future biotechnological applications, including the development of crops with higher survival rates and yield under adverse environmental situations.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain; The Santa Fe Institute, Santa Fe, NM, United States.
| |
Collapse
|
37
|
Aguilar E, del Toro FJ, Figueira-Galán D, Hou W, Canto T, Tenllado F. Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria–host interactions, which are compromised under conditions of elevated temperature and CO2 levels. J Gen Virol 2020; 101:122-135. [DOI: 10.1099/jgv.0.001353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - David Figueira-Galán
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| |
Collapse
|
38
|
Pérez-Bueno ML, Pineda M, Barón M. Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging. FRONTIERS IN PLANT SCIENCE 2019; 10:1135. [PMID: 31620158 PMCID: PMC6759674 DOI: 10.3389/fpls.2019.01135] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/16/2019] [Indexed: 05/20/2023]
Abstract
Photosynthesis is a pivotal process in plant physiology, and its regulation plays an important role in plant defense against biotic stress. Interactions with pathogens and pests often cause alterations in the metabolism of sugars and sink/source relationships. These changes can be part of the plant defense mechanisms to limit nutrient availability to the pathogens. In other cases, these alterations can be the result of pests manipulating the plant metabolism for their own benefit. The effects of biotic stress on plant physiology are typically heterogeneous, both spatially and temporarily. Chlorophyll fluorescence imaging is a powerful tool to mine the activity of photosynthesis at cellular, leaf, and whole-plant scale, allowing the phenotyping of plants. This review will recapitulate the responses of the photosynthetic machinery to biotic stress factors, from pathogens (viruses, bacteria, and fungi) to pests (herbivory) analyzed by chlorophyll fluorescence imaging both at the lab and field scale. Moreover, chlorophyll fluorescence imagers and alternative techniques to indirectly evaluate photosynthetic traits used at field scale are also revised.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | |
Collapse
|
39
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
40
|
Carr JP, Donnelly R, Tungadi T, Murphy AM, Jiang S, Bravo-Cazar A, Yoon JY, Cunniffe NJ, Glover BJ, Gilligan CA. Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Adv Virus Res 2018; 102:177-197. [PMID: 30266173 DOI: 10.1016/bs.aivir.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, Republic of Korea
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
41
|
Mauck KE, Chesnais Q, Shapiro LR. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Adv Virus Res 2018; 101:189-250. [PMID: 29908590 DOI: 10.1016/bs.aivir.2018.02.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission. Effects on host phenotypes vary by pathosystem but show a remarkable degree of convergence among unrelated viruses whose transmission is favored by the same vector behaviors. Convergence based on transmission mechanism, rather than phylogeny, supports the hypothesis that virus effects are adaptive and not just by-products of infection. Based on this, it has been proposed that viruses manipulate hosts through multifunctional proteins that facilitate exploitation of host resources and elicitation of specific changes in host phenotypes. But this proposition is rarely discussed in the context of the numerous constraints on virus evolution imposed by molecular and environmental factors, which figure prominently in research on virus-host interactions not dealing with host manipulation. To explore the implications of this oversight, we synthesized available literature to identify patterns in virus effects among pathogens with shared transmission mechanisms and discussed the results of this synthesis in the context of molecular and environmental constraints on virus evolution, limitations of existing studies, and prospects for future research.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Lori R Shapiro
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
42
|
Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M. Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2018; 9:703. [PMID: 29881396 PMCID: PMC5976794 DOI: 10.3389/fpls.2018.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.
Collapse
Affiliation(s)
- Sandy E. Bergès
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| | - Cecilia Vazquez-Rovere
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LABINTEX Europe, Instituto Nacional de Tecnología Agropecuária, Montpellier, France
| | - Stéphane Blanc
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Yvon
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alexis Bédiée
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Myriam Dauzat
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Manuella van Munster
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| |
Collapse
|
43
|
Carr JP. Exploring how viruses enhance plants' resilience to drought and the limits to this form of viral payback. PLANT, CELL & ENVIRONMENT 2017; 40:2906-2908. [PMID: 28898417 DOI: 10.1111/pce.13068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 05/21/2023]
Abstract
This article comments on: Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|