1
|
Peters JMR, Choat B. Out on a Limb: Testing the Hydraulic Vulnerability Segmentation Hypothesis in Trees Across Multiple Ecosystems. PLANT, CELL & ENVIRONMENT 2025; 48:2162-2177. [PMID: 39562846 DOI: 10.1111/pce.15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Plant hydraulic theory states that leaf and stem vulnerability to embolism is coordinated within individual plants. The hydraulic vulnerability segmentation hypothesis (HVSH) predicts higher vulnerability in leaves to protect the stem from hydraulic failure, preserving stem xylem, which is generally more metabolically expensive and slower to regenerate than leaf tissues. However, studies designed to test HVSH have reported wide ranges in vulnerability segmentation (VS), and patterns with the environment have been elusive. In this study, we tested HVSH in phylogenetically constrained tree species from contrasting ecosystems across the Australian landscape. In 12 species, we found no support for HVSH. While leaf vulnerability was strongly governed by climate, VS was universally absent or negative. Consistently, the onset of leaf embolism occurred after the loss of leaf turgor and seasonally low leaf water potentials, illustrating the rarity of embolism in leaves. Within the leaf, embolism primarily occurring first and last in the leaf midvein, suggesting redundancy in leaf architecture to preserve function. Overall, this multi-ecosystem study provides a more complete picture of drought resistance mechanisms: (1) leaf safety was greatest in trees from drier ecosystems and (2) hydraulic thresholds were mostly conserved across organs indicating environmentally driven drought resistance in both leaves and stems.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
2
|
Pratt RB. Surviving on the edge: drought resistance strategies among desert shrubs. TREE PHYSIOLOGY 2025; 45:tpaf005. [PMID: 39808692 DOI: 10.1093/treephys/tpaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Affiliation(s)
- Robert Brandon Pratt
- Department of Biology, California State University, 9001 Stockdale Hwy, Bakersfield, CA 93311, USA
| |
Collapse
|
3
|
Wilkening JV, Dawson TE, Thompson SE. Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39810482 DOI: 10.1111/pce.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.
Collapse
Affiliation(s)
- Jean V Wilkening
- Civil and Environmental Engineering, University of California, Berkeley, California, USA
- Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd E Dawson
- Integrative Biology, University of California, Berkeley, California, USA
- Environmental Science, Policy, & Management, University of California, Berkeley, California, USA
| | - Sally E Thompson
- Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia
- Centre for Water and Spatial Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Hasan MM, Liu XD, Yao GQ, Liu J, Fang XW. Ethylene-mediated stomatal responses to dehydration and rehydration in seed plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6719-6732. [PMID: 38367013 DOI: 10.1093/jxb/erae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/16/2024] [Indexed: 02/19/2024]
Abstract
Ethylene, a plant hormone that significantly influences both plant growth and response to stress, plays a well-established role in stress signaling. However, its impact on stomatal opening and closure during dehydration and rehydration remains relatively unexplored and is still debated. Exogenous ethylene has been proven to induce stomatal closure through a series of signaling pathways, including the accumulation of reactive oxygen species, subsequent synthesis of nitric oxide and hydrogen sulfide, and SLOW ANION CHANNEL-ASSOCIATED 1 activation. Thus, it has been suggested that ethylene might function to induce stomatal closure synergistically with abscisic acid (ABA). Furthermore, it has also been shown that increased ethylene can inhibit ABA- and jasmonic acid-induced stomatal closure, thus hindering drought-induced closure during dehydration. Simultaneously, other stresses, such as chilling, ozone pollution, and K+ deficiency, inhibit drought- and ABA-induced stomatal closure in an ethylene synthesis-dependent manner. However, ethylene has been shown to take on an opposing role during rehydration, preventing stomatal opening in the absence of ABA through its own signaling pathway. These findings offer novel insights into the function of ethylene in stomatal regulation during dehydration and rehydration, giving a better understanding of the mechanisms underlying ethylene-induced stomatal movement in seed plants.
Collapse
Affiliation(s)
- Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
You R, Liu Y, Deng X, Hu Y, Ouyang S, Chen L, Xiang W, He H. Variations in water use efficiency and carbon and nitrogen concentrations in red heart Chinese fir. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1088-1097. [PMID: 39011596 DOI: 10.1111/plb.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Temperature can significantly (P < 0.05) affect plant growth by modifying water use strategies, which are determined by intrinsic water use efficiency (WUE i). Red Heart Chinese Fir (Cunninghamia lanceolata) is one of the most important ecological and economic plantation species in China. However, the C. lanceolata water use strategy in response to increased temperatures and uneven temporal distribution of precipitation during the growing season is rarely reported. In a 7-year-old C. lanceolata plantation, differences in WUEi and C and N concentrations in different organs were analysed by anova, and the δ13C stable isotope, C, and N concentrations in stems determined at different tree heights. Stepwise regression and variance inflation factor were used to remove autocorrelated factors, and structural equation modelling was then used to explore relationships between WUEi and climate and biological factors. WUEi differed significantly between leaf and branch at different standardized precipitation evapotranspiration indices (SPEI). WUEi and N concentration decreased with age. The highest WUEi in branches and leaves were 92.7 and 88.4 μmol·mol-1 in 2020 (SPEI = 0.00), respectively. δ13C increased with relative tree height but N concentration and C/N ratio were not affected. Air temperatures has increased in between 2014 and 2020. WUEi and N concentration decreased with increasing branch and leaf age, but C concentration increased. SPEI significantly positively affected WUEi (P < 0.05), and WUE i was significantly negatively related to C concentration, which is consistent with the trade-off between C and water.
Collapse
Affiliation(s)
- R You
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
| | - Y Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
| | - X Deng
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Y Hu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - S Ouyang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - L Chen
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - W Xiang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, Hunan Province, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - H He
- National Ecosystem Science Data Center, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Ziegler C, Cochard H, Stahl C, Foltzer L, Gérard B, Goret JY, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4128-4147. [PMID: 38613495 DOI: 10.1093/jxb/erae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration tolerance and avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and maintenance, or even increases in soluble sugar concentrations, potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, indicating that dehydration avoidance is an effective drought-survival strategy linked to the 'fast-slow' continuum of plant performance at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.
Collapse
Affiliation(s)
- Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Louis Foltzer
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Bastien Gérard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Jean-Yves Goret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
7
|
Zambonini D, Savi T, Rosner S, Petit G. Consistent decrease in conifer embolism resistance from the stem apex to base resulting from axial trends in tracheid and pit traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1414448. [PMID: 38988629 PMCID: PMC11234846 DOI: 10.3389/fpls.2024.1414448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Introduction Drought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base. Methods We assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree. Results In both trees, Dh and PMA scaled with DFA 0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2 . The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter. Discussion and conclusions Apex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level.
Collapse
Affiliation(s)
- Dario Zambonini
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Giai Petit
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| |
Collapse
|
8
|
Duan H, Shao C, Zhao N, Wang D, Resco de Dios V, Tissue DT. The role of leaf superoxide dismutase and proline on intra-specific photosynthesis recovery of Schima superba following drought. Sci Rep 2024; 14:8824. [PMID: 38627563 PMCID: PMC11021533 DOI: 10.1038/s41598-024-59467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Changchang Shao
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Defu Wang
- Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, 25198, Lleida, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
9
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
10
|
Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C. Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163124. [PMID: 37001665 DOI: 10.1016/j.scitotenv.2023.163124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the β-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.
Collapse
Affiliation(s)
- Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| | - Barbara Baesso Moura
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| |
Collapse
|
11
|
Bi MH, Jiang C, Brodribb T, Yang YJ, Yao GQ, Jiang H, Fang XW. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought. TREE PHYSIOLOGY 2023; 43:883-892. [PMID: 36547259 DOI: 10.1093/treephys/tpac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/11/2023]
Abstract
Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.
Collapse
Affiliation(s)
- Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Chao Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Yu-Jie Yang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
13
|
Isasa E, Link RM, Jansen S, Tezeh FR, Kaack L, Sarmento Cabral J, Schuldt B. Addressing controversies in the xylem embolism resistance-vessel diameter relationship. THE NEW PHYTOLOGIST 2023; 238:283-296. [PMID: 36636783 DOI: 10.1111/nph.18731] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Although xylem embolism is a key process during drought-induced tree mortality, its relationship to wood anatomy remains debated. While the functional link between bordered pits and embolism resistance is known, there is no direct, mechanistic explanation for the traditional assumption that wider vessels are more vulnerable than narrow ones. We used data from 20 temperate broad-leaved tree species to study the inter- and intraspecific relationship of water potential at 50% loss of conductivity (P50 ) with hydraulically weighted vessel diameter (Dh ) and tested its link to pit membrane thickness (TPM ) and specific conductivity (Ks ) on species level. Embolism-resistant species had thick pit membranes and narrow vessels. While Dh was weakly associated with TPM , the P50 -Dh relationship remained highly significant after accounting for TPM . The interspecific pattern between P50 and Dh was mirrored by a link between P50 and Ks , but there was no evidence for an intraspecific relationship. Our results provide robust evidence for an interspecific P50 -Dh relationship across our species. As a potential cause for the inconsistencies in published P50 -Dh relationships, our analysis suggests differences in the range of trait values covered, and the level of data aggregation (species, tree or sample level) studied.
Collapse
Affiliation(s)
- Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Roman Mathias Link
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Str. 7, 01737, Tharandt, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fon Robinson Tezeh
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Juliano Sarmento Cabral
- Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of Würzburg, Klara-Oppenheimer-Weg 32, 97074, Würzburg, Germany
- Biodiversity Modelling and Environmental Change, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Str. 7, 01737, Tharandt, Germany
| |
Collapse
|
14
|
Riveros-Burgos C, Bustos-Peña R, Esteban-Condori W, Bastías E. Response of Maize ( Zea mays L.) to Drought under Salinity and Boron Stress in the Atacama Desert. PLANTS (BASEL, SWITZERLAND) 2023; 12:1519. [PMID: 37050145 PMCID: PMC10097302 DOI: 10.3390/plants12071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The Lluta valley in northern Chile is a hyper-arid region with annual precipitation lower than 1.1 mm, and high levels of boron (B) from alluvial deposits are present together with other salts that originated from the Cretaceous. Under these abiotic conditions, the 'lluteño' maize (Zea mays L.) is of interest because it has adapted to the Lluta valley with high salinity levels and B excess in the soil and irrigation water. Water and salt stress coincide in heavily irrigated hyper-arid agricultural areas, yet they are usually studied in isolation. We investigated in field conditions the combined effects of drought (22 days with no irrigation) under salinity (ECe: 5.5 mS cm-1; Na+: 17.8 meq L-1) and B (21.1 meq L-1) stress on physiology, growth, yield, and hourly water relations. The results allow to hypothesize that the measurement of the pre-dawn water potential represents the balance between the water potential of the soil and the root. Besides, under drought a significant effect of irrigation and time interaction was observed presenting a high differential between the leaf and stem water potential in both phenological stages. Furthermore, a decrease in net assimilation was observed, and it could be explained in part by non-stomatal factors such as the high radiation and temperature observed at the end of the season. Despite the drought, the cobs did not present a significantly lower quality compared to the cobs of plants without stress.
Collapse
Affiliation(s)
- Camilo Riveros-Burgos
- Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Richard Bustos-Peña
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica 1000000, Chile
| | - Wladimir Esteban-Condori
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica 1000000, Chile
| | - Elizabeth Bastías
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica 1000000, Chile
| |
Collapse
|
15
|
Shao J, Zhou X, Zhang P, Zhai D, Yuan T, Li Z, He Y, McDowell NG. Embolism resistance explains mortality and recovery of five subtropical evergreen broadleaf trees to persistent drought. Ecology 2023; 104:e3877. [PMID: 36178039 DOI: 10.1002/ecy.3877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023]
Abstract
Subtropical evergreen broadleaf forests (SEBF) are experiencing and expected to suffer more frequent and severe drought events. However, how the hydraulic traits directly link to the mortality and recovery of SEBF trees remains unclear. In this study, we conducted a drought-rewatering experiment on tree seedlings of five dominant species to investigate how the hydraulic traits were related to tree mortality and the resistance and recovery of photosynthesis (A) and transpiration (E) under different drought severities. Species with greater embolism resistance (P50 ) survived longer than those with a weaker P50 . However, there was no general hydraulic threshold associated with tree mortality, with the lethal hydraulic failure varying from 64% to 93% loss of conductance. The photosynthesis and transpiration of tree species with a greater P50 were more resistant to and recovered faster from drought than those with lower P50 . Other plant traits could not explain the interspecific variation in tree mortality and drought resistance and recovery. These results highlight the unique importance of embolism resistance in driving carbon and water processes under persistent drought across different trees in SEBFs. The absence of multiple efficient drought strategies in SEBF seedlings implies the difficulty of natural seedling regeneration under future droughts, which often occurs after destructive disturbances (e.g., extreme drought events and typhoon), suggesting that this biome may be highly vulnerable to co-occurring climate extremes.
Collapse
Affiliation(s)
- Junjiong Shao
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Peipei Zhang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Deping Zhai
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Tengfei Yuan
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Zhen Li
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yanghui He
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, Richland, Washington, USA.,School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
16
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
17
|
Pritzkow C, Brown MJM, Carins-Murphy MR, Bourbia I, Mitchell PJ, Brodersen C, Choat B, Brodribb TJ. Conduit position and connectivity affect the likelihood of xylem embolism during natural drought in evergreen woodland species. ANNALS OF BOTANY 2022; 130:431-444. [PMID: 35420657 PMCID: PMC9486930 DOI: 10.1093/aob/mcac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Hydraulic failure is considered a main cause of drought-induced forest mortality. Yet, we have a limited understanding of how the varying intensities and long time scales of natural droughts induce and propagate embolism within the xylem. METHODS X-ray computed tomography (microCT) images were obtained from different aged branch xylem to study the number, size and spatial distribution of in situ embolized conduits among three dominant tree species growing in a woodland community. KEY RESULTS Among the three studied tree species, those with a higher xylem vulnerability to embolism (higher water potential at 50 % loss of hydraulic conductance; P50) were more embolized than species with lower P50. Within individual stems, the probability of embolism was independent of conduit diameter but associated with conduit position. Rather than the occurrence of random or radial embolism, we observed circumferential clustering of high and low embolism density, suggesting that embolism spreads preferentially among conduits of the same age. Older xylem also appeared more likely to accumulate embolisms than young xylem, but there was no pattern suggesting that branch tips were more vulnerable to cavitation than basal regions. CONCLUSIONS The spatial analysis of embolism occurrence in field-grown trees suggests that embolism under natural drought probably propagates by air spreading from embolized into neighbouring conduits in a circumferential pattern. This pattern offers the possibility to understand the temporal aspects of embolism occurrence by examining stem cross-sections.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Matilda J M Brown
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Ibrahim Bourbia
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2750, Australia
| | | |
Collapse
|
18
|
Oliveira LA, Cardoso AA, Andrade MT, Pereira TS, Araújo WL, Santos GA, Damatta FM, Martins SCV. Exploring leaf hydraulic traits to predict drought tolerance of Eucalyptus clones. TREE PHYSIOLOGY 2022; 42:1750-1761. [PMID: 35388901 DOI: 10.1093/treephys/tpac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Ongoing changes in climate, and the consequent mortality of natural and cultivated forests across the globe, highlight the urgent need to understand the plant traits associated with greater tolerance to drought. Here, we aimed at assessing key foliar traits, with a focus on the hydraulic component, that could confer a differential ability to tolerate drought in three commercial hybrids of the most important Eucalyptus species utilized in tropical silviculture: E. urophyla, E. grandis and E. camaldulensis. All genotypes exhibited similar water potential when the 90% stomatal closure (Ψgs90) occurs with Ψgs90 always preceding the start of embolism events. The drought-tolerant hybrid showed a higher leaf resistance to embolism, but the leaf hydraulic efficiency was similar among all genotypes. Other traits presented by the drought-tolerant hybrid were a higher cell wall reinforcement, lower value of osmotic potential at full turgor and greater bulk modulus of elasticity. We also identified that the leaf capacitance after the turgor loss, the ratio between cell wall thickness (t) and lumen breadth (b) ratio (t/b)3, and the minimal conductance might be good proxies for screening drought-tolerant Eucalyptus genotypes. Our findings suggest that xylem resistance to embolism can be an important component of drought tolerance in Eucalyptus in addition to other traits aimed at delaying the development of high tensions in the xylem. Highlight Drought tolerance in tropical Eucalyptus hybrids encompasses a high leaf resistance to embolism and a suite of traits aimed at delaying the development of high tensions in the xylem.
Collapse
Affiliation(s)
- Leonardo A Oliveira
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Amanda A Cardoso
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Moab T Andrade
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Talitha S Pereira
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L Araújo
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Gleison A Santos
- Departmento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Fábio M Damatta
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Samuel C V Martins
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
19
|
Gleason SM, Barnard DM, Green TR, Mackay S, Wang DR, Ainsworth EA, Altenhofen J, Brodribb TJ, Cochard H, Comas LH, Cooper M, Creek D, DeJonge KC, Delzon S, Fritschi FB, Hammer G, Hunter C, Lombardozzi D, Messina CD, Ocheltree T, Stevens BM, Stewart JJ, Vadez V, Wenz J, Wright IJ, Yemoto K, Zhang H. Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. PLANT, CELL & ENVIRONMENT 2022; 45:2554-2572. [PMID: 35735161 DOI: 10.1111/pce.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
Collapse
Affiliation(s)
- Sean M Gleason
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Dave M Barnard
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Timothy R Green
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Scott Mackay
- Department of Geography & Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA
| | - Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth A Ainsworth
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, Illinois, USA
| | - Jon Altenhofen
- Northern Colorado Water Conservancy District, Berthoud, Colorado, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Tasmania Node, Hobart, Tasmania, Australia
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Louise H Comas
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Danielle Creek
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kendall C DeJonge
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, cedex, France
| | - Felix B Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland Node, St. Lucia, Queensland, Australia
| | - Cameron Hunter
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Danica Lombardozzi
- National Center for Atmospheric Research (NCAR), Climate & Global Dynamics Lab, Boulder, Colorado, USA
| | - Carlos D Messina
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Troy Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Bo Maxwell Stevens
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Jared J Stewart
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | | | - Joshua Wenz
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Western Sydney University Node, Penrith, New South Wales, Australia
| | - Kevin Yemoto
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| | - Huihui Zhang
- United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA
| |
Collapse
|
20
|
Duan H, Wang D, Zhao N, Huang G, Resco de Dios V, Tissue DT. Limited hydraulic recovery in seedlings of six tree species with contrasting leaf habits in subtropical China. FRONTIERS IN PLANT SCIENCE 2022; 13:967187. [PMID: 36035730 PMCID: PMC9403191 DOI: 10.3389/fpls.2022.967187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Subtropical tree species may experience severe drought stress due to variable rainfall under future climates. However, the capacity to restore hydraulic function post-drought might differ among co-occurring species with contrasting leaf habits (e.g., evergreen and deciduous) and have implications for future forest composition. Moreover, the links between hydraulic recovery and physiological and morphological traits related to water-carbon availability are still not well understood. Here, potted seedlings of six tree species (four evergreen and two deciduous) were grown outdoors under a rainout shelter. They grew under favorable water conditions until they were experimentally subjected to a soil water deficit leading to losses of ca. 50% of hydraulic conductivity, and then soils were re-watered to field capacity. Traits related to carbon and water relations were measured. There were differences in drought responses and recovery between species, but not as a function of evergreen or deciduous groups. Sapindus mukorossi exhibited the most rapid drought response, which was associated with a suite of physiological and morphological traits (larger plant size, the lowest hydraulic capacitance (C branch), higher minimum conductance (g min) and lower HV (Huber value)). Upon re-watering, xylem water potential exhibited fast recovery in 1-3 days among species, while photosynthesis at saturating light (A sat) and stomatal conductance (g s) recovery lagged behind water potential recovery depending on species, with g s recovery being more delayed than A sat in most species. Furthermore, none of the six species exhibited significant hydraulic recovery during the 7 days re-watering period, indicating that xylem refilling was apparently limited; in addition, NSC availability had a minimal role in facilitating hydraulic recovery during this short-term period. Collectively, if water supply is limited by insignificant hydraulic recovery post-drought, the observed carbon assimilation recovery of seedlings may not be sustained over the longer term, potentially altering seedling regeneration and shifting forest species composition in subtropical China under climate change.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Defu Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida, Spain
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
21
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|
22
|
Miranda MT, Espinoza-Núñez E, Silva SF, Pereira L, Hayashi AH, Boscariol-Camargo RL, Carvalho SA, Machado EC, Ribeiro RV. Water stress signaling and hydraulic traits in three congeneric citrus species under water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111255. [PMID: 35487664 DOI: 10.1016/j.plantsci.2022.111255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Morpho-physiological strategies to deal with water deficit vary among citrus species and the chemical signaling through ABA and anatomical, hydraulic, and physiological traits were evaluated in saplings of Rangpur lime, Swingle citrumelo and Valencia sweet orange. Trunk and roots of Swingle citrumelo presented lower vessel diameter and higher vessel frequency as compared to the other species. However, relative water content at the turgor loss point (RWCTLP), the osmotic potential at full turgor (Ψ0), the osmotic potential at the turgor loss point (ΨTLP), bulk modulus of elasticity (ε) and the xylem water potential when hydraulic conductivity is reduced by 50% (Ψ50) and 88% (Ψ88) indicated similar hydraulic traits among citrus species, with Rangpur lime showing the highest hydraulic safety margin. Roots of Rangpur lime and Swingle citrumelo were more water conductive than ones of Valencia sweet orange, which was linked to higher stomatal conductance. Chemical signaling through ABA prevented shoot dehydration in Rangpur lime under water deficit, with this species showing a more conservative stomatal behavior, sensing, and responding rapidly to low soil moisture. Taken together, our results suggest that Rangpur lime - the drought tolerant species - has an improved control of leaf water status due to chemical signaling and effective stomatal regulation for reducing water loss as well as decreased root hydraulic conductivity for saving water resources under limiting conditions.
Collapse
Affiliation(s)
- Marcela T Miranda
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil; University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil
| | - Erick Espinoza-Núñez
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil; Universidad Nacional Agraria La Molina (UNALM), Department of Horticulture, La Molina, Lima, Peru
| | - Simone F Silva
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil
| | - Luciano Pereira
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil; Ulm University, Institute of Systematic Botany and Ecology, Ulm, Germany
| | - Adriana H Hayashi
- Instituto de Botânica, Núcleo de Pesquisa em Anatomia, São Paulo, SP, Brazil
| | | | - Sérgio A Carvalho
- Agronomic Institute (IAC), Center of Citriculture Sylvio Moreira, Cordeirópolis, SP, Brazil
| | - Eduardo C Machado
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil
| | - Rafael V Ribeiro
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil.
| |
Collapse
|
23
|
Song J, Trueba S, Yin XH, Cao KF, Brodribb TJ, Hao GY. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique. PLANT PHYSIOLOGY 2022; 189:204-214. [PMID: 35099552 PMCID: PMC9070814 DOI: 10.1093/plphys/kiac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 05/11/2023]
Abstract
The hydraulic vulnerability segmentation (HVS) hypothesis implies the existence of differences in embolism resistance between plant organs along the xylem pathway and has been suggested as an adaptation allowing the differential preservation of more resource-rich tissues during drought stress. Compound leaves in trees are considered a low-cost means of increasing leaf area and may thus be expected to show evidence of strong HVS, given the tendency of compound-leaved tree species to shed their leaf units during drought. However, the existence and role of HVS in compound-leaved tree species during drought remain uncertain. We used an optical visualization technique to estimate embolism occurrence in stems, petioles, and leaflets of shoots in two compound-leaved tree species, Manchurian ash (Fraxinus mandshurica) and Manchurian walnut (Juglans mandshurica). We found higher (less negative) water potentials corresponding to 50% loss of conductivity (P50) in leaflets and petioles than in stems in both species. Overall, we observed a consistent pattern of stem > petiole > leaflet in terms of xylem resistance to embolism and hydraulic safety margins (i.e. the difference between mid-day water potential and P50). The coordinated variation in embolism vulnerability between organs suggests that during drought conditions, trees benefit from early embolism and subsequent shedding of more expendable organs such as leaflets and petioles, as this provides a degree of protection to the integrity of the hydraulic system of the more carbon costly stems. Our results highlight the importance of HVS as an adaptive mechanism of compound-leaved trees to withstand drought stress.
Collapse
Affiliation(s)
- Jia Song
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta National Observatory of Wetland Ecosystem, Shanghai Normal University, Shanghai 200234, China
| | - Santiago Trueba
- University of Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
| | - Xiao-Han Yin
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Timothy J Brodribb
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
24
|
Gauthey A, Peters JMR, Lòpez R, Carins-Murphy MR, Rodriguez-Dominguez CM, Tissue DT, Medlyn BE, Brodribb TJ, Choat B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. PLANT, CELL & ENVIRONMENT 2022; 45:1216-1228. [PMID: 35119114 DOI: 10.1111/pce.14265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Environmental Sciences Division, Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Rosana Lòpez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Syndey University, Richmond, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
25
|
Duan H, Resco de Dios V, Wang D, Zhao N, Huang G, Liu W, Wu J, Zhou S, Choat B, Tissue DT. Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species. PLANT, CELL & ENVIRONMENT 2022; 45:1187-1203. [PMID: 34985807 DOI: 10.1111/pce.14254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88 and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, Unversitat de Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA Centre, Lleida, Spain
| | - Defu Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Jianping Wu
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| |
Collapse
|
26
|
Manzi OJL, Bellifa M, Ziegler C, Mihle L, Levionnois S, Burban B, Leroy C, Coste S, Stahl C. Drought stress recovery of hydraulic and photochemical processes in Neotropical tree saplings. TREE PHYSIOLOGY 2022; 42:114-129. [PMID: 34302178 DOI: 10.1093/treephys/tpab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Climate models predict an increase in the severity and the frequency of droughts. Tropical forests are among the ecosystems that could be highly impacted by these droughts. Here, we explore how hydraulic and photochemical processes respond to drought stress and re-watering. We conducted a pot experiment on saplings of five tree species. Before the onset of drought, we measured a set of hydraulic traits, including minimum leaf conductance, leaf embolism resistance and turgor loss point. During drought stress, we monitored traits linked to leaf hydraulic functioning (leaf water potential (ψmd) and stomatal conductance (gs)) and traits linked to leaf photochemical functioning (maximum quantum yield of photosystem II (Fv/Fm) and maximum electron transport rate (ETRmax)) at different wilting stages. After re-watering, the same traits were measured after 3, 7 and 14 days. Hydraulic trait values decreased faster than photochemical trait values. After re-watering, the values of the four traits recovered at different rates. Fv/Fm recovered very fast close to their initial values only 3 days after re-watering. This was followed by ETRmax, Ψmd and gs. Finally, we show that species with large stomatal and leaf safety margin and low πtlp are not strongly impacted by drought, whereas they have a low recovery on photochemical efficiency. These results demonstrate that πtlp, stomatal and leaf safety margin are a good indicators of plant responses to drought stress and also to recovery for photochemical efficiency.
Collapse
Affiliation(s)
- Olivier Jean Leonce Manzi
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, PO Box 330, Huye, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - Maxime Bellifa
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Camille Ziegler
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Louis Mihle
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Sébastien Levionnois
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Benoit Burban
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Céline Leroy
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sabrina Coste
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Clément Stahl
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
27
|
Wang Z, Ding X, Li Y, Xie J. The compensation effect between safety and efficiency in xylem and role in photosynthesis of gymnosperms. PHYSIOLOGIA PLANTARUM 2022; 174:e13617. [PMID: 35199364 DOI: 10.1111/ppl.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The classical theory of safety-efficiency trade-off is a common theme in plant sciences. Despite safety and efficiency partly compensating for each other physiologically (namely, there is a compensation effect, CE, among traits from the "whole" organism perspective), they are always mathematically described as a trade-off against one another. However, the compensation effect has never been defined and quantified, let alone its role in the xylem water transport and subsequently photosynthesis. Here, we developed an alternative theory to define the CE as a positive relationship between safety and efficiency, and further define a new trade-off index, SETO, that is expressed as CE multiplied by a trade-off factor (differing from the classical average trade-off value). Then, we tested SETO- and CE-photosynthetic rate relationships across different levels based on a common garden experiment using nine conifers and published data for gymnosperms. The results demonstrated that the compensation effect in xylem functions was the dominant force in facilitating photosynthetic rates from species- to phylum-scale. By integrating the compensation effect into the xylem hydraulic functional strategy, our study clearly indicated that the compensation effect is the evolutionary basis for the coordination of xylem hydraulic and photosynthesis physiology.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaoran Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China
| | - Jiangbo Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
28
|
Lübbe T, Lamarque LJ, Delzon S, Torres Ruiz JM, Burlett R, Leuschner C, Schuldt B. High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broad‐leaved tree species. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torben Lübbe
- Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany
| | - Laurent J. Lamarque
- Département des Sciences de l'environnement Université du Québec à Trois‐Rivières Trois‐Rivières QC Canada
- University of Bordeaux INRAE BIOGECO Pessac France
| | | | | | | | - Christoph Leuschner
- Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany
| | - Bernhard Schuldt
- Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany
- Julius‐von‐Sachs‐Institute of Biological Sciences, Ecophysiology and Vegetation Ecology University of Würzburg Würzburg Germany
| |
Collapse
|
29
|
Lemaire C, Blackman CJ, Cochard H, Menezes-Silva PE, Torres-Ruiz JM, Herbette S. Acclimation of hydraulic and morphological traits to water deficit delays hydraulic failure during simulated drought in poplar. TREE PHYSIOLOGY 2021; 41:2008-2021. [PMID: 34259313 DOI: 10.1093/treephys/tpab086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (~160 h) compared with well-watered plants (~50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.
Collapse
Affiliation(s)
- Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Chris J Blackman
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Paulo Eduardo Menezes-Silva
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
- Department of Biology, Goiano Federal Institute of Education, Science and Technology-IF Goiano, Rio Verde, Goiás, Brazil
| | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| |
Collapse
|
30
|
Abate E, Azzarà M, Trifilò P. When Water Availability Is Low, Two Mediterranean Salvia Species Rely on Root Hydraulics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1888. [PMID: 34579421 PMCID: PMC8472023 DOI: 10.3390/plants10091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Increase in severity and frequency of drought events is altering plant community composition, exposing biomes to a higher risk of biodiversity losses. This is exacerbated in the most fragile areas as Mediterranean biome. Thus, identifying plant traits for forecasting species with a high risk of drought-driven mortality is particularly urgent. In the present study, we investigated the drought resistance strategy of two Mediterranean native species: Salvia ceratophylloides Ard. (Sc) and Salvia officinalis L. (So) by considering the impact of drought-driven water content decline on plant hydraulics. Well-watered samples of Sc displayed higher leaf and stemsaturated water content and lower shoot biomass than So samples, but similar root biomass. In response to drought, Sc showed a conservative water use strategy, as the prompt stomatal closure and leaves shedding suggested. A drought-tolerant mechanism was confirmed in So samples. Nevertheless, Sc and So showed similar drought-driven plant hydraulic conductance (Kplant) recover ability. Root hydraulic traits played a key role to reach this goal. Relative water content as well as loss of cell rehydration capability and membrane damages, especially of stem and root, were good proxies of drought-driven Kplant decline.
Collapse
Affiliation(s)
| | | | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.A.); (M.A.)
| |
Collapse
|
31
|
Qin DW, Chen WJ, Zhong LX, Qin WM, Cao KF. Gas exchange and hydraulic function in seedlings of three basal angiosperm tree-species during water-withholding and re-watering. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
Waseem M, Nie ZF, Yao GQ, Hasan M, Xiang Y, Fang XW. Dew absorption by leaf trichomes in Caragana korshinskii: An alternative water acquisition strategy for withstanding drought in arid environments. PHYSIOLOGIA PLANTARUM 2021; 172:528-539. [PMID: 33452683 DOI: 10.1111/ppl.13334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 05/25/2023]
Abstract
Investigating plant morphological traits can provide insights into plant drought tolerance. To date, many papers have focused on plant hydraulic responses to drought during dehydration, but atmospheric water absorption by trichomes to mitigate drought stress by influencing leaf hydraulics in plant species that inhabit arid environments has been largely ignored. The experiment in this study was designed to assess how dew absorbed by leaf trichomes helps Caragana korshinskii withstand drought. The results showed that under a drought stress and dew (DS & D) treatment, C. korshinskii displayed a strong capacity to absorb dew with trichomes; exhibited slow decreases in leaf water potential (Ψleaf ), leaf hydraulic conductivity (Kleaf ), and gas exchange; experienced 50% Kleaf and gas exchange losses at lower relative soil water content levels than plants treated with drought stress and no dew (DS & ND); and experienced 50% Kleaf loss (Kleaf P50 ) at similar Ψleaf levels as DS & ND plants. Its congener C. sinica, which does not have leaf trichomes, displayed little ability to absorb dew under drought stress and did not show any remarkable improvement in the above parameters under the DS & D treatment. Our results indicated that leaf trichomes are important epidermal dew-uptake structures that assist in partially sustaining the leaf hydraulic assimilation system, mitigate the adverse effects of drought stress and contribute to the distribution of C. korshinskii in arid environments.
Collapse
Affiliation(s)
- Muhammad Waseem
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
O’Donnell AJ, Renton M, Allen KJ, Grierson PF. Tree growth responses to temporal variation in rainfall differ across a continental-scale climatic gradient. PLoS One 2021; 16:e0249959. [PMID: 33945548 PMCID: PMC8096069 DOI: 10.1371/journal.pone.0249959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/27/2021] [Indexed: 11/30/2022] Open
Abstract
Globally, many biomes are being impacted by significant shifts in total annual rainfall as well as increasing variability of rainfall within and among years. Such changes can have potentially large impacts on plant productivity and growth, but remain largely unknown, particularly for much of the Southern Hemisphere. We investigate how growth of the widespread conifer, Callitris columellaris varied with inter-annual variation in the amount, intensity and frequency of rainfall events over the last century and between semi-arid (<500 mm mean annual rainfall) and tropical (>800 mm mean annual rainfall) biomes in Australia. We used linear and polynomial regression models to investigate the strength and shape of the relationships between growth (ring width) and rainfall. At semi-arid sites, growth was strongly and linearly related to rainfall amount, regardless of differences in the seasonality and intensity of rainfall. The linear shape of the relationship indicates that predicted future declines in mean rainfall will have proportional negative impacts on long-term tree growth in semi-arid biomes. In contrast, growth in the tropics showed a weak and asymmetrical ('concave-down') response to rainfall amount, where growth was less responsive to changes in rainfall amount at the higher end of the rainfall range (>1250 mm annual rainfall) than at the lower end (<1000 mm annual rainfall). The asymmetric relationship indicates that long-term growth rates of Callitris in the tropics are more sensitive to increased inter-annual variability of rainfall than to changes in the mean amount of rainfall. Our findings are consistent with observations that the responses of vegetation to changes in the mean or variability of rainfall differ between mesic and semi-arid biomes. These results highlight how contrasting growth responses of a widespread species across a hydroclimatic gradient can inform understanding of potential sensitivity of different biomes to climatic variability and change.
Collapse
Affiliation(s)
- Alison J. O’Donnell
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael Renton
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Kathryn J. Allen
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Victoria, Australia
- ARC Centre of Excellence in Australian Biodiversity and Heritage, University of New South Wales, Sydney, New South Wales, Australia
| | - Pauline F. Grierson
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Qi M, Liu X, Li Y, Song H, Yin Z, Zhang F, He Q, Xu Z, Zhou G. Photosynthetic resistance and resilience under drought, flooding and rewatering in maize plants. PHOTOSYNTHESIS RESEARCH 2021; 148:1-15. [PMID: 33661466 DOI: 10.1007/s11120-021-00825-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/08/2021] [Indexed: 05/29/2023]
Abstract
Abnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasseling than pre-tasseling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodi Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibo Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuotian Yin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qijin He
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Alonso-Forn D, Peguero-Pina JJ, Ferrio JP, Mencuccini M, Mendoza-Herrer Ó, Sancho-Knapik D, Gil-Pelegrín E. Contrasting functional strategies following severe drought in two Mediterranean oaks with different leaf habit: Quercus faginea and Quercus ilex subsp. rotundifolia. TREE PHYSIOLOGY 2021; 41:371-387. [PMID: 33079165 DOI: 10.1093/treephys/tpaa135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, evergreen sclerophyllous and winter-deciduous malacophyllous oaks with different paleogeographical origins coexist under Mediterranean-type climates, such as the mixed forests of the evergreen Quercus ilex subsp. rotundifolia Lam. and the winter-deciduous Quercus faginea Lam. Both Mediterranean oaks constitute two examples of contrasting leaf habit, so it could be expected that they would have different functional strategies to cope with summer drought. In this study, we analysed photosynthetic, photochemical and hydraulic traits of different organs for Q. faginea and Q. ilex subsp. rotundifolia under well-watered conditions and subjected to very severe drought. The coordinated response between photosynthetic and hydraulic traits explained the higher photosynthetic capacity of Q. faginea under well-watered conditions, which compensated its shorter leaf life span at the expense of higher water consumption. The progressive imposition of water stress evidenced that both types of Mediterranean oaks displayed different functional strategies to cope with water limitations. Specifically, the decrease in mesophyll conductance associated with edaphic drought seems to be the main factor explaining the differences found in the dynamics of net CO2 assimilation throughout the drought period. The sharp decline in photosynthetic traits of Q. faginea was coupled with a strong decrease in shoot hydraulic conductance in response to drought. This fact probably avoided extensive xylem embolism in the stems (i.e., 'vulnerability segmentation'), which enabled new leaf development after drought period in Q. faginea. By contrast, leaves of Q. ilex subsp. rotundifolia showed effective photoprotective mechanisms and high resistance to drought-induced cavitation, which would be related with the longer leaf life span of the evergreen Mediterranean oaks. The co-occurrence of both types of Mediterranean oaks could be related to edaphic conditions that ensure the maintenance of soil water potential above critical values for Q. faginea, which can be severely affected by soil degradation and climate change.
Collapse
Affiliation(s)
- David Alonso-Forn
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059, Zaragoza, Spain
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2-(CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan Pedro Ferrio
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059, Zaragoza, Spain
- Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus UAB, Cerdanyola del Vallés, 08193 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Óscar Mendoza-Herrer
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059, Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón -IA2-(CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059, Zaragoza, Spain
| |
Collapse
|
36
|
Yao GQ, Li FP, Nie ZF, Bi MH, Jiang H, Liu XD, Wei Y, Fang XW. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. PLANT, CELL & ENVIRONMENT 2021; 44:399-411. [PMID: 33131059 DOI: 10.1111/pce.13934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Drought is a cyclical phenomenon in natural environments. During dehydration, stomatal closure is mainly regulated by abscisic acid (ABA) dynamics that limit transpiration in seed plants, but following rehydration, the mechanism of gas exchange recovery is still not clear. In this study, leaf water potential (ψleaf ), stomatal conductance (gs ), leaf hydraulic conductance (Kleaf ), foliar ABA level, ethylene emission rate in response to dehydration and rehydration were investigated in four Caragana species with isohydric (Caragana spinosa and C. pruinosa) and anisohydric (C. intermedia and C. microphylla) traits. Two isohydric species with ABA-induced stomatal closure exhibited more sensitive gs and Kleaf to decreasing ψleaf than two anisohydric species which exhibited a switch from ABA to water potential-driven stomatal closure during dehydration. Following rehydration, the recovery of gas exchange was not associated with a decrease in ABA level but was strongly limited by the degradation of the ethylene emission rate in all species. Furthermore, two anisohydric species with low drought-induced ethylene production exhibited more rapid recovery in gas exchange upon rehydration. Our results indicated that ethylene is a key factor regulating the drought-recovery ability in terms of gas exchange, which may shape species adaptation to drought and potential species distribution.
Collapse
Affiliation(s)
- Guang-Qian Yao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng-Ping Li
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xu-Dong Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yang Wei
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Li S, Fang L, Hegelund JN, Liu F. Elevated CO 2 Modulates Plant Hydraulic Conductance Through Regulation of PIPs Under Progressive Soil Drying in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:666066. [PMID: 34168667 PMCID: PMC8218578 DOI: 10.3389/fpls.2021.666066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 05/13/2023]
Abstract
Increasing atmospheric CO2 concentrations accompanied by abiotic stresses challenge food production worldwide. Elevated CO2 (e[CO2]) affects plant water relations via multiple mechanisms involving abscisic acid (ABA). Here, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were used to investigate the responses of plant hydraulic conductance to e[CO2] and drought stress. Results showed that e[CO2] decreased transpiration rate (E) increased plant water use efficiency only in AC, whereas it increased daily plant water consumption and osmotic adjustment in both genotypes. Compared to growth at ambient [CO2], AC leaf and root hydraulic conductance (K leaf and K root) decreased at e[CO2], which coincided with the transcriptional regulations of genes of plasma membrane intrinsic proteins (PIPs) and OPEN STOMATA 1 (OST1), and these effects were attenuated in flacca during soil drying. Severe drought stress could override the effects of e[CO2] on plant water relation characteristics. In both genotypes, drought stress resulted in decreased E, K leaf, and K root accompanied by transcriptional responses of PIPs and OST1. However, under conditions combining e[CO2] and drought, some PIPs were not responsive to drought in AC, indicating that e[CO2] might disturb ABA-mediated drought responses. These results provide some new insights into mechanisms of plant hydraulic response to drought stress in a future CO2-enriched environment.
Collapse
|
38
|
Zhang C, Wang M, Chen J, Gao X, Shao C, Lv Z, Jiao H, Xu H, Shen C. Survival strategies based on the hydraulic vulnerability segmentation hypothesis, for the tea plant [Camellia sinensis(L.) O. Kuntze] in long-term drought stress condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:484-493. [PMID: 33038691 DOI: 10.1016/j.plaphy.2020.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
Tea plants are important economic perennial crops that can be negatively impacted by drought stress (DS). However, their survival strategies in long-term DS conditions and the accumulation and influence of metabolites and mineral elements (MEs) in their organs, when facing hydraulic vulnerability segmentation, require further investigation. The MEs and metabolites in the leaf, stem, and root after long-term DS (20 d) were examined here, using inductively coupled plasma optical emission spectrometry (ICP-OES) and liquid chromatograph-mass spectrometry (LC-MS). The accumulation patterns of 116 differentially accumulated metabolites (DAMs) and nine MEs were considerably affected in all organs. The concentration of all MEs varied significantly in at least one organ, while the K and Ca levels were markedly altered in all three. Most DAM levels increased in the stem but decreased in the root and leaf, implying that vulnerability segmentation may occur with long-term DS. The typical nitrogen- and carbon-compound levels similarly increased in the stem and decreased in the leaf and root, as the plant might respond to long-term DS by stabilizing respiration, promoting nitrogen recycling, and free radical scavenging. Correlation analysis showed several possible DAM-ME interactions and an association between Mn and flavonoids. Thus, survival strategies under long-term DS included sacrificing distal/vulnerable organs and accumulating function-specialized metabolites and MEs to mitigate drought-induced oxidative damage. This is the first study that reports substance fluctuations after long-term DS in different organs of plants, and highlights the need to use whole plants to fully comprehend stress response strategies.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Minhan Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xizhi Gao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Haizhen Jiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Huaqin Xu
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
39
|
Peters JMR, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ, Choat B. Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6623-6637. [PMID: 32822502 PMCID: PMC7586747 DOI: 10.1093/jxb/eraa381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/18/2020] [Indexed: 05/08/2023]
Abstract
Root vulnerability to cavitation is challenging to measure and under-represented in current datasets. This gap limits the precision of models used to predict plant responses to drought because roots comprise the critical interface between plant and soil. In this study, we measured vulnerability to drought-induced cavitation in woody roots and stems of five tree species (Acacia aneura, Cedrus deodara, Eucalyptus crebra, Eucalytus saligna, and Quercus palustris) with a wide range of xylem anatomies. X-ray microtomography was used to visualize the accumulation of xylem embolism in stems and roots of intact plants that were naturally dehydrated to varying levels of water stress. Vulnerability to cavitation, defined as the water potential causing a 50% loss of hydraulic function (P50), varied broadly among the species (-4.51 MPa to -11.93 MPa in stems and -3.13 MPa to -9.64 MPa in roots). The P50 of roots and stems was significantly related across species, with species that had more vulnerable stems also having more vulnerable roots. While there was strong convergence in root and stem vulnerability to cavitation, the P50 of roots was significantly higher than the P50 of stems in three species. However, the difference in root and stem vulnerability for these species was small; between 1% and 31% of stem P50. Thus, while some differences existed between organs, roots were not dramatically more vulnerable to embolism than stems, and the differences observed were less than those reported in previous studies. Further study is required to evaluate the vulnerability across root orders and to extend these conclusions to a greater number of species and xylem functional types.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Oak Ridge National Laboratory, Climate Change Science Institute & Environmental Science Division, Oak Ridge, TN, USA
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Departamento de Sistemas y Recursos Naturales. Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
40
|
Deans RM, Brodribb TJ, Busch FA, Farquhar GD. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. NATURE PLANTS 2020; 6:1116-1125. [PMID: 32895529 DOI: 10.1038/s41477-020-00760-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/28/2020] [Indexed: 05/12/2023]
Abstract
Tight coordination in the photosynthetic, gas exchange and water supply capacities of leaves is a globally conserved trend across land plants. Strong selective constraints on leaf carbon gain create the opportunity to use quantitative optimization theory to understand the connected evolution of leaf photosynthesis and water relations. We developed an analytical optimization model that maximizes the long-term rate of leaf carbon gain, given the carbon costs in building and maintaining stomata, leaf hydraulics and osmotic pressure. Our model demonstrates that selection for optimal gain should drive coordination between key photosynthetic, gas exchange and water relations traits. It also provides predictions of adaptation to drought and the relative costs of key leaf functional traits. Our results show that optimization in terms of carbon gain, given the carbon costs of physiological traits, successfully unites leaf photosynthesis and water relations and provides a quantitative framework to consider leaf functional evolution and adaptation.
Collapse
Affiliation(s)
- Ross M Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Florian A Busch
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Graham D Farquhar
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
41
|
Gebauer R, Plichta R, Urban J, Volařík D, Hájíčková M. The resistance and resilience of European beech seedlings to drought stress during the period of leaf development. TREE PHYSIOLOGY 2020; 40:1147-1164. [PMID: 32470134 DOI: 10.1093/treephys/tpaa066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 05/26/2023]
Abstract
Spring drought is becoming a frequently occurring stress factor in temperate forests. However, the understanding of tree resistance and resilience to the spring drought remains insufficient. In this study, European beech (Fagus sylvatica L.) seedlings at the early stage of leaf development were moderately and severely drought stressed for 1 month and then subjected to a 2-week recovery period after rewatering. The study aimed to disentangle the complex relationships between leaf gas exchange, vascular anatomy, tree morphology and patterns of biomass allocation. Stomatal conductance decreased by 80 and 85% upon moderate and severe drought stress, respectively, which brought about a decline in net photosynthesis. However, drought did not affect the indices of slow chlorophyll fluorescence, indicating no permanent damage to the light part of the photosynthetic apparatus. Stem hydraulic conductivity decreased by more than 92% at both drought levels. Consequently, the cambial activity of stressed seedlings declined, which led to lower stem biomass, reduced tree ring width and a lower number of vessels in the current tree ring, these latter also with smaller dimensions. In contrast, the petiole structure was not affected, but at the cost of reduced leaf biomass. Root biomass was reduced only by severe drought. After rewatering, the recovery of gas exchange and regrowth of the current tree ring were observed, all delayed by several days and by lower magnitudes in severely stressed seedlings. The reduced stem hydraulic conductivity inhibited the recovery of gas exchange, but xylem function started to recover by regrowth and refilling of embolized vessels. Despite the damage to conductive xylem, no mortality occurred. These results suggest the low resistance but high resilience of European beech to spring drought. Nevertheless, beech resilience could be weakened if the period between drought events is short, as the recovery of severely stressed seedlings took longer than 14 days.
Collapse
Affiliation(s)
- Roman Gebauer
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Josef Urban
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Daniel Volařík
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Martina Hájíčková
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| |
Collapse
|
42
|
Li S, Li X, Wei Z, Liu F. ABA-mediated modulation of elevated CO 2 on stomatal response to drought. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:174-180. [PMID: 31937452 DOI: 10.1016/j.pbi.2019.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 05/13/2023]
Abstract
Elevated atmospheric CO2 concentration (e[CO2]) and soil water deficits have substantial effect on stomatal morphology and movement that regulate plant water relations and plant growth. e[CO2] could alleviate the impact of drought stress, thus contributing to crop yield. Xylem-borne abscisic acid (ABA) plays a crucial role in regulating stomatal aperture serving as first line of defence against drought; whereas e[CO2] may disrupt this fundamental drought adaptation mechanism by delaying the stomatal response to soil drying. We review the state-of-the-art knowledge on stomatal response to drought stress at e[CO2] and discuss the role of ABA in mediating these responses.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 13, DK-2630, Taastrup, Denmark
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 13, DK-2630, Taastrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
43
|
Brunetti C, Savi T, Nardini A, Loreto F, Gori A, Centritto M. Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems. TREE PHYSIOLOGY 2020; 40:1043-1057. [PMID: 32186735 DOI: 10.1093/treephys/tpaa032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Drought compromises plant's ability to replace transpired water vapor with water absorbed from the soil, leading to extensive xylem dysfunction and causing plant desiccation and death. Short-term plant responses to drought rely on stomatal closure, and on the plant's ability to recover hydraulic functioning after drought relief. We hypothesize a key role for abscisic acid (ABA) not only in the control of stomatal aperture, but also in hydraulic recovery. Young plants of Populus nigra L. were used to investigate possible relationships among ABA, non-structural carbohydrates (NSC) and xylem hydraulic function under drought and after re-watering. In Populus nigra L. plants subjected to drought, water transport efficiency and hydraulic recovery after re-watering were monitored by measuring the percentage loss of hydraulic conductivity (PLC) and stem specific hydraulic conductivity (Kstem). In the same plants ABA and NSC were quantified in wood and bark. Drought severely reduced stomatal conductance (gL) and markedly increased the PLC. Leaf and stem water potential, and stem hydraulic efficiency fully recovered within 24 h after re-watering, but gL values remained low. After re-watering, we found significant correlations between changes in ABA content and hexoses concentration both in wood and bark. Our findings suggest a role for ABA in the regulation of stem carbohydrate metabolism and starch mobilization upon drought relief, possibly promoting the restoration of xylem transport capacity.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Tadeja Savi
- University of Natural Resources and Life Sciences, Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, 1190, Vienna, Austria Austria
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
44
|
Li X, Smith R, Choat B, Tissue DT. Drought resistance of cotton (Gossypium hirsutum) is promoted by early stomatal closure and leaf shedding. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:91-98. [PMID: 31825787 DOI: 10.1071/fp19093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/06/2019] [Indexed: 05/11/2023]
Abstract
Water relations have been well documented in tree species, but relatively little is known about the hydraulic characteristics of crops. Here, we report on the hydraulic strategy of cotton (Gossypium hirsutum L.). Leaf gas exchange and in vivo embolism formation were monitored simultaneously on plants that were dried down in situ under controlled environment conditions, and xylem vulnerability to embolism of leaves, stems and roots was measured using intact plants. Water potential inducing 50% embolised vessels (P50) in leaves was significantly higher (less negative) than P50 of stems and roots, suggesting that leaves were the most vulnerable organ to embolism. Furthermore, the water potential generating stomatal closure (Pgs) was higher than required to generate embolism formation, and complete stomatal closure always preceded the onset of embolism with declining soil water content. Although protracted drought resulted in massive leaf shedding, stem embolism remained minimal even after ~90% leaf area was lost. Overall, cotton maintained hydraulic integrity during long-term drought stress through early stomatal closure and leaf shedding, thus exhibiting a drought avoidance strategy. Given that water potentials triggering xylem embolism are uncommon under field conditions, cotton is unlikely to experience hydraulic dysfunction except under extreme climates. Results of this study provide physiological evidence for drought resistance in cotton with regard to hydraulics, and may provide guidance in developing irrigation schedules during periods of water shortage.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Renee Smith
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; and Corresponding author.
| |
Collapse
|
45
|
Cranston BM, Powers BF, Macinnis-Ng C. Inexpensive throughfall exclusion experiment for single large trees. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11325. [PMID: 32110504 PMCID: PMC7035431 DOI: 10.1002/aps3.11325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/26/2019] [Indexed: 05/18/2023]
Abstract
PREMISE Drought-induced tree mortality is an emergent threat to forests worldwide, particularly to large trees. Drought-manipulation experiments involving throughfall exclusion (TFE) tend to focus on large plots that can be expensive to establish and maintain and may be unsuitable for large trees or indigenous forests. We set out to establish a relatively inexpensive TFE method in a natural forest with large trees. METHODS We designed a novel TFE method and installed it in the Waitākere Range of West Auckland, New Zealand, to study the southern conifer kauri (Agathis australis) under long-term simulated drought. We measured fluxes of water (sap flow) and carbon (stem increment and litterfall) as indicators of drought effects. RESULTS Throughfall was cut off to a 22.25-m2 area around individual boles, causing reduced soil moisture and reduced sap flow in droughted trees. DISCUSSION Our new TFE method centered on individual, large trees in native forest and is highly customizable to fit other forest and species types. It can be used to assess physiological responses to drought of individual trees independent of stem size.
Collapse
Affiliation(s)
- Benjamin M Cranston
- School of Biological Sciences The University of Auckland Private Bag 92019 Auckland Mail Center Auckland 1142 New Zealand
| | - Breanna F Powers
- School of the Environment The University of Auckland Private Bag 92019 Auckland Mail Center Auckland 1142 New Zealand
- Te Pūnaha Matatini The University of Auckland Private Bag 92019 Auckland Mail Center Auckland 1142 New Zealand
- Present address: Department of Biological Sciences Boise State University 1910 University Drive Boise Idaho 83725 USA
| | - Cate Macinnis-Ng
- School of Biological Sciences The University of Auckland Private Bag 92019 Auckland Mail Center Auckland 1142 New Zealand
- Te Pūnaha Matatini The University of Auckland Private Bag 92019 Auckland Mail Center Auckland 1142 New Zealand
| |
Collapse
|
46
|
Ammitzboll H, Vaillancourt RE, Potts BM, Harrison PA, Brodribb T, Sussmilch FC, Freeman JS. Independent genetic control of drought resistance, recovery, and growth of Eucalyptus globulus seedlings. PLANT, CELL & ENVIRONMENT 2020; 43:103-115. [PMID: 31472076 DOI: 10.1111/pce.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Drought is a major stress impacting forest ecosystems worldwide. We utilized quantitative trait loci (QTL) analysis to study the genetic basis of variation in (a) drought resistance and recovery and (b) candidate traits that may be associated with this variation in the forest tree Eucalyptus globulus. QTL analysis was performed using a large outcrossed F2 mapping population from which 300 trees were phenotyped based on the mean performance of their open-pollinated F3 progeny. Progenies were grown in a glasshouse in a randomized complete block design. A subset of seedlings was subjected to a drought treatment after which they were rewatered and scored for damage and growth postdrought. Nondroughted seedlings were assessed for growth traits as well as lignotuber size and resprouting following severe damage to the main stem. QTL were detected for most traits. Importantly, independent QTL were detected for (a) drought damage and plant size, (b) drought damage and growth recovery, and (c) lignotuber size and resprouting capacity. Such independence argues that trade-offs are unlikely to be a major limitation to the response to selection and at the early life history stage studied; there are opportunities to improve resilience to drought without adverse effects on productivity.
Collapse
Affiliation(s)
- Hans Ammitzboll
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Peter A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Tim Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
- Institute of Plant Physiology and Biophysics, University of Würzburg, 97082, Würzburg, Germany
| | - Jules S Freeman
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, 7001, Australia
- Forest Genetics, Scion, Rotorua, 3046, New Zealand
| |
Collapse
|
47
|
Rodriguez-Dominguez CM, Brodribb TJ. Declining root water transport drives stomatal closure in olive under moderate water stress. THE NEW PHYTOLOGIST 2020; 225:126-134. [PMID: 31498457 DOI: 10.1111/nph.16177] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/01/2019] [Indexed: 05/24/2023]
Abstract
Efficient water transport from soil to leaves sustains stomatal opening and steady-state photosynthesis. The aboveground portion of this pathway is well-described, yet the roots and their connection with the soil are still poorly understood due to technical limitations. Here we used a novel rehydration technique to investigate changes in the hydraulic pathway between roots and soil and within the plant body as individual olive plants were subjected to a range of water stresses. Whole root hydraulic resistance (including the radial pathway from xylem to the soil-root interface) constituted 81% of the whole-plant resistance in unstressed plants, increasing to > 95% under a moderate level of water stress. The decline in this whole root hydraulic conductance occurred in parallel with stomatal closure and contributed significantly to the reduction in canopy conductance according to a hydraulic model. Our results demonstrate that losses in root hydraulic conductance, mainly due to a disconnection from the soil during moderate water stress in olive plants, are profound and sufficient to induce stomatal closure before cavitation occurs. Future studies will determine whether this core regulatory role of root hydraulics exists more generally among diverse plant species.
Collapse
Affiliation(s)
- Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
48
|
Fuenzalida TI, Bryant CJ, Ovington LI, Yoon HJ, Oliveira RS, Sack L, Ball MC. Shoot surface water uptake enables leaf hydraulic recovery in Avicennia marina. THE NEW PHYTOLOGIST 2019; 224:1504-1511. [PMID: 31419324 DOI: 10.1111/nph.16126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/11/2019] [Indexed: 05/08/2023]
Abstract
The significance of shoot surface water uptake (SSWU) has been debated, and it would depend on the range of conditions under which it occurs. We hypothesized that the decline of leaf hydraulic conductance (Kleaf ) in response to dehydration may be recovered through SSWU, and that the hydraulic conductance to SSWU (Ksurf ) declines with dehydration. We quantified effects of leaf dehydration on Ksurf and effects of SSWU on recovery of Kleaf in dehydrated leaves of Avicennia marina. SSWU led to overnight recovery of Kleaf , with recovery retracing the same path as loss of Kleaf in response to dehydration. SSWU declined with dehydration. By contrast, Ksurf declined with rehydration time but not with dehydration. Our results showed a role of SSWU in the recovery of leaf hydraulic conductance and revealed that SSWU is sensitive to leaf hydration status. The prevalence of SSWU in vegetation suggests an important role for atmospheric water sources in maintenance of leaf hydraulic function, with implications for plant responses to changing environments.
Collapse
Affiliation(s)
- Tomás I Fuenzalida
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Callum J Bryant
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Leuwin I Ovington
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hwan-Jin Yoon
- Statistical Consulting Unit, The Australian National University, Acton, ACT, 2601, Australia
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP 6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
49
|
McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC. A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. PLANT, CELL & ENVIRONMENT 2019; 42:2789-2807. [PMID: 31273812 DOI: 10.1111/pce.13607] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
Collapse
Affiliation(s)
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| |
Collapse
|
50
|
Kiorapostolou N, Da Sois L, Petruzzellis F, Savi T, Trifilò P, Nardini A, Petit G. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. TREE PHYSIOLOGY 2019; 39:1675-1684. [PMID: 31211372 DOI: 10.1093/treephys/tpz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2019] [Accepted: 05/17/2019] [Indexed: 05/26/2023]
Abstract
Understanding which structural and functional traits are linked to species' vulnerability to embolism formation (P50) may provide fundamental knowledge on plant strategies to maintain an efficient water transport. We measured P50, wood density (WD), mean conduit area, conduit density, percentage areas occupied by vessels, parenchyma cells (PATOT) and fibers (FA) on branches of angiosperm and gymnosperm species. Moreover, we compiled a dataset of published hydraulic and anatomical data to be compared with our results. Species more vulnerable to embolism had lower WD. In angiosperms, the variability in WD was better explained by PATOT and FA, which were highly correlated. Angiosperms with a higher P50 (less negative) had a higher amount of PATOT and total amount of nonstructural carbohydrates. Instead, in gymnosperms, P50 vs PATOT was not significant. The correlation between PATOT and P50 might have a biological meaning and also suggests that the causality of the commonly observed relationship of WD vs P50 is indirect and dependent on the parenchyma fraction. Our study suggests that angiosperms have a potential active embolism reversal capacity in which parenchyma has an important role, while in gymnosperms this might not be the case.
Collapse
Affiliation(s)
- Natasa Kiorapostolou
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy
| | - Luca Da Sois
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Tadeja Savi
- Institute for Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, Tulln, Vienna, 3430, Austria
| | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy
| |
Collapse
|